Datasheet ADATE209 Datasheet (ANALOG DEVICES)

V
www.BDTIC.com/ADI
4.0 Gbps Dual Driver

FEATURES

>4.0 Gbps (2 V swings) 120 ps rise time/fall time (2 V swings) <1.0 W for dual driver (<500 mW/channel)
−1 V to +3.5 V range Fast termination mode (VTx) Cable loss compensation

APPLICATIONS

Automatic test equipment Semiconductor test systems Board test systems Instrumentation and characterization equipment High speed memory testing (DDR2/DDR3/DDR4) HDMI testing

GENERAL DESCRIPTION

The ADATE209 is a dual pin driver designed for testing DDR2, DDR3, and DDR4. It can also be used for high speed SoC applica­tions, such as testing PCI Express 1.0 and HDMI™. The device is a three-level driver capable of high fidelity swings from 200 mV to 4 V over a −1 V to +3.5 V range. It has rise/fall times (20% to 80%) under 120 ps for a 2 V programmed swing and 150 ps for
ADATE209

FUNCTIONAL BLOCK DIAGRAM

H1
VL1
VT1
DA1
DB1
TERM1
DA2
DB2
TERM2
Figure 1.
a 3 V programmed swing, and is capable of supporting data rates of 4.4 Gbps and 3.2 Gbps, respectively.
The device is capable of high speed transitions into and out of termination mode. It also contains peaking/pre-emphasis circuitry.
The ADATE209 is available in an 8 mm × 8 mm, 49-ball CSP_BGA.
CLC1EN
VH2
VL2
CLC2EN
VT2
DROUT1
DROUT2
07277-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.
ADATE209
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 6
Thermal Resistance ...................................................................... 6
Explanation of Test Levels ........................................................... 6

REVISION HISTORY

5/08—Revision 0: Initial Version
ESD Caution...................................................................................6
Pin Configuration and Function Descriptions ..............................7
Typical Performance Characteristics ..............................................9
Applications Information .............................................................. 14
Data Inputs .................................................................................. 14
Thermal Diode String ................................................................ 14
Cable Loss Compensation/Peaking Circuitry ........................ 14
Default Test Conditions ............................................................. 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 15
Rev. 0 | Page 2 of 16
ADATE209
www.BDTIC.com/ADI

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VCC = 7.0 V, VEE = −4.5 V, GND = 0.0 V; all test conditions are as defined in Table 7, unless otherwise specified. All specified values are at
= 70°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are measured at TJ =
T
J
70°C ± 20°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed.
Table 1.
Te st
Parameter Min Typ Max Unit
TOTAL FUNCTION
DROUTx Pin Range −1.0 +3.5 V I
POWER SUPPLIES
Positive Supply, VCC 6.65 7.0 7.35 V I Defines PSRR conditions Negative Supply, VEE −4.73 −4.5 −4.28 V I Defines PSRR conditions Data and Termination, V Data and Termination, I
Positive Supply Current, ICC 50 76 100 mA II Negative Supply Current, IEE 60 80 110 mA II Total Power Dissipation 0.5 0.87 1.3 W II
0.97 W III
TEMPERATURE MONITORS
Temperature Sensor Gain −4.7 Temperature Sensor Offset 3.1 V III Voltage reading at 30°C
DRIVER DC SPECIFICATIONS
High Speed Differential Logic Input
Characteristics (DAx, DBx, TERMx) Input Termination Resistance 45 48 55 Ω II
Input Voltage Differential 0.25 0.8 V IV Common-Mode Voltage −1.0 +3.3 V IV Input Bias Current −10 +1.2 +10 μA II
Pin Output Characteristics
Output High Range, VHx −0.9 +3.5 V I Output Low Range, VLx −1.0 +3.4 V I Output Termination Range, VTx −1.0 +3.5 V I Output High Range, VHx −0.9 +4.0 V I VCC = 7.5 V, this range is not production tested Output Low Range, VLx −1.0 +3.9 V I VCC = 7.5 V, this range is not production tested Output Termination Range, VTx −1.0 +4.0 V I VCC = 7.5 V, this range is not production tested Functional Amplitude (VHx − VLx) 0.2 4.5 V I
DC Output Current-Limit Source 50 60 70 mA II
DAx
DAx
, V
, V
DBx
, I
DBx
−1 +1.3 +3.3 V I
TERMx
, I
40 mA I
TERMx
mV/°C
Rev. 0 | Page 3 of 16
Level1 Test Conditions/Comments
Exceeding 40 mA through any input termination resistor may cause damage to the device or cause long-term reliability concerns
Quiescent; excludes current draw through data input termination resistors
VLx = 0.0 V, VHx = 2.0 V; driver toggling into open circuit; excludes current draw through data input termination resistors
III
9 mA pushed into DAxB/DBxB/TERMxB signal,
0.6 V forced on DAx/DBx/TERMx signal; DAxT, DBxT, TERMxT open; measure voltage from DAx/DBx/ TERMx signal to DAxB/DBxB/TERMxB signal, calculate resistance (ΔV/ΔI)
Each pin tested at −1.0 V and +3.3 V, while other high speed pins (DAxB, DBx, DBxB, TERMx, TERMxB) are left open, termination pins (DAxT, DBxT, TERMxT ) open
Amplitude can be programmed to VHx = VLx, accuracy specifications apply when VHx − VLx ≥ 200 mV
Driver high, VHx = 3.5 V, short DROUTx pin to
−1.0 V, then measure current
ADATE209
www.BDTIC.com/ADI
Te st
Parameter Min Typ Max Unit
DC Output Current-Limit Sink −70 −60 −50 mA II
Output Resistance, ±30 mA 46.5 48.5 50.5 Ω II
Absolute Accuracy
VHx, VLx, VTx Offset −150 +20 +150 mV II Measured at 0.0 V, target: improve offset VHx, VLx, VTx Offset Temperature
Coefficient VHx, VLx, VTx Gain 0.97 1.02 1.03 %FSR II Relative to straight line from 0.0 V to 2.0 V VHx, VLx, VTx Linearity −15 ±2.4 +15 mV II
VLx, VHx, VTx Interaction 0.3 mV III
VHx, VLx, VTx DC PSRR −36 +24 +36 mV/V II
VHx, VLx, VTx Input Bias Current −10 +1 +10 μA II
DRIVER AC SPECIFICATIONS
Rise/Fall Times Toggle DAx inputs
0.2 V Programmed Swing 115 ps V VHx = 0.2 V, VLx = 0.0 V, terminated, 20% to 80%
0.5 V Programmed Swing 90 ps V VHx = 0.5 V, VLx = 0.0 V, terminated, 20% to 80%
1.0 V Programmed Swing 90 ps V VHx = 1.0 V, VLx = 0.0 V, terminated, 20% to 80%
2.0 V Programmed Swing 90 110 130 ps II/V VHx = 2.0 V, VLx = 0.0 V, terminated, 20% to 80%
3.0 V Programmed Swing 150 ps V VHx = 3.0 V, VLx = 0.0 V, terminated, 20% to 80%
4.0 V Programmed Swing 190 ps V VHx = 3.5 V, VLx = −0.5 V, terminated, 20% to 80% Rise-to-Fall Matching 10 ps V
Minimum Pulse Width Toggle both DAx and DBx inputs
0.2 V Programmed Swing 200 ps V
0.5 V Programmed Swing 180 ps V
1.0 V Programmed Swing 180 ps V
2.0 V Programmed Swing 200 ps V
3.0 V Programmed Swing 300 ps V
Maximum Toggle Rate 2.5 GHz V
2.2 GHz V
1.8 GHz V
270 μV/°C III Measured at calibration points, 0.0 V and 2.0 V
Level1 Test Conditions/Comments
Driver high, VHx = −1.0 V, short DROUTx pin to
3.5 V, then measure current Source: driver high, VHx = 3.0 V, I
9 mA; sink: driver low, VLx = 0.0 V, I
/ΔI
and −9 mA; ΔV VHx tests conducted with VLx = −1.0 V and
VTx = −1.0 V; VLx tests conducted with VHx =
3.5 V and VTx = 3.5 V; VTx tests conducted with VLx = −1.0 V and VHx = 3.5 V
After two-point gain/offset calibration, relative to straight line from 0.0 V to 2.0 V
VLx = −1.0 V, VHx swept from −0.9 V to +3.5 V, VTx swept from −1.0 V to 3.5 V, VHx = 3.5 V, VLx swept from −1.0 V to +3.4 V, VTx swept from −0.8 V to +3.5 V, VTx = 1.5 V, VLx swept from −1.0 V to +3.5 V, VHx swept from −1.0 V to +3.5 V
Change in output voltage as power supplies are moved by ±5%; measured at calibration points,
0.0 V and 2.0 V
VHx = 1.0 V, VLx = 0.0 V, terminated; rise to fall within one channel
VHx = 0.2 V, VLx = 0.0 V, terminated, timing error less than ±25 ps
VHx = 0.5 V, VLx = 0.0 V, terminated, timing error less than ±25 ps
VHx = 1.0 V, VLx = 0.0 V, terminated, timing error less than ±25 ps
VHx = 2.0 V, VLx = 0.0 V, terminated, timing error less than ±25 ps
VHx = 3.0 V, VLx = 0.0 V, terminated, timing error less than ±25 ps
VHx = 1.0 V, VLx = 0.0 V, terminated, 10% amplitude degradation
VHx = 2.0 V, VLx = 0.0 V, terminated, 10% amplitude degradation
VHx = 3.0 V, VLx = 0.0 V, terminated, 10% amplitude degradation
DROUTx
DROUTx
= 1 mA and
DUT
= −1 mA
DUT
Rev. 0 | Page 4 of 16
ADATE209
www.BDTIC.com/ADI
Te st
Parameter Min Typ Max Unit
Dynamic Performance, Drive (VHx to VLx) Toggle DAx inputs
Propagation Delay Time 300 660 1400 ps II/V VHx = 2.0 V, VLx = 0.0 V, terminated Propagation Delay Temperature
Coefficient Delay Matching, Edge to Edge ±15 ps V VHx = 2.0 V, VLx = 0.0 V, terminated, rising vs. falling Delay Change vs. Duty Cycle ±10 ps V
Preshoot and Undershoot 10 mV V VHx = 2.0 V, VLx = 0.0 V, terminated
Settling Time (VHx to VLx) Toggle DAx Inputs
To Within 3% of Final Value 0.4 ns V VHx = 2.0 V, VLx = 0.0 V, terminated To Within 1% of Final Value 2 ns V VHx = 2.0 V, VLx = 0.0 V, terminated
Rise/Fall Times (VTx to/from VHx/VLx) Toggle DAx inputs
1.0 V Programmed Swing 110 ps V
2.0 V Programmed Swing 170 ps V
Dynamic Performance, V (VHx or VLx to/from VTx)
Propagation Delay Time 720 ns V VHx = 3.0 V, VTx = 1.5 V, VLx = 0.0 V, terminated
Cable Loss Compensation
Logic Control Inputs, CLCxEN 0 3.3 V I
Logic High
Logic Low
I
CLCxEN
Compensation Constants
Boost Time Constant
Boost Peaking Amplifier 18 % V
1
See the Explanation of Test Levels section.
TERM
0.7 ps/ºC III VHx = 2.0 V, VLx = 0.0 V, terminated
Toggle TERMx inputs
0.9 3.3 V IV 0 0.7 V IV
−10 ±1.2 +10 μA II VIN = 0.0 V and 3.3 V
275 ps V
Level1 Test Conditions/Comments
VHx = 2.0 V, VLx = 0.0 V, terminated, 5% to 95% duty cycle
VHx = 1.0 V, VTx = 0.5V, VLx = 0.0 V, terminated, 20% to 80%
VHx = 2.0 V, VTx = 1.0 V, VLx = 0.0 V, terminated, 20% to 80%
CLCxEN = 3.3 V, VHx = 1.0 V, VLx = 0.0 V, terminated
CLCxEN = 3.3 V, VHx = 1.0 V, VLx = 0.0 V, terminated
Rev. 0 | Page 5 of 16
ADATE209
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Supply Voltages
Positive Supply Voltage (VCC to GND) −0.5 V to +8.0 V Negative Supply Voltage (VEE to GND) −5.0 V to +0.5 V Supply Voltage Difference (VCC to VEE) −1.0 V to +13 V Reference Ground (DUTGND to GND) −0.5 V to +0.5 V
Input Voltages
Input Common-Mode Voltage VEE to VCC Short-Circuit Voltage (RL = 0 Ω, V
Continuous Short-Circuit Condition) High Speed Input Voltage
(Data and Termination Inputs, DAx, DBx, and TERMx)
High Speed Differential Input Voltage
(DAx, DBx, TERMx to Termination Pin
DAxT, DBxT, TERMxT) VHx, VLx, VTx −2 V to +4.5 V CLCxEN −1 V to +3.5 V
DROUTx I/O Pin Current
DCL Maximum Short-Circuit Current
RL = 0 Ω, V
(
Current Limit)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
= −1.5 V to +4 V; DCL
DUT
DUT
−1.5 V to +4.0 V
−1.5 V to +3.9 V
2 V
±100 mA

THERMAL RESISTANCE

θJA is specified for the following conditions: JEDEC 4L PCB, 50°C, and 100 LFM forced convection. θ cold plate and 50°C ambient temperature.
Table 3. Thermal Resistance
Package Type θJA θ
49-Ball CSP_BGA 48.4 3.9 °C/W
is specified for a 50°C
JC
Unit
JC

EXPLANATION OF TEST LEVELS

I. Definition.
II. 100% Production Tested.
III. Characterized on Tester.
IV. Functionally Checked During Production Test.
V. Characterized on Bench.

ESD CAUTION

Rev. 0 | Page 6 of 16
ADATE209
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1234567
GND VEE DROUT2 GND DROUT1 VEE G ND
A
TERM2
B
TERM2B
C
DA2 DA2T
D
DA2B
E
DB2 DB2T
F
DB2B CLC2EN VT2
G
TERM2T
VCC
GND
VEE GND VEE VCC TERM1
VCC GND VCC TERM1T TERM1B
GND
VH2
VL2
Figure 2. Pin Configuration
GND GND DA1T DA1
GND VH1 GND DA1B
VCCTHERM VL1 DB1T DB1
THERM
VT1 CLC1EN DB1B
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
A1 GND Ground.
A2 VEE Negative Power Supply, −4.5 V.
A3 DROUT2 Driver Output, Channel 2.
A4 GND Ground.
A5 DROUT1 Driver Output, Channel 1.
A6 VEE Negative Power Supply, −4.5 V.
A7 GND Ground.
B1 TERM2 Termination Mode Data Input. Noninverting input for Channel 2.
B2 VCC Positive Power Supply, 7.0 V.
B3 VEE Negative Power Supply, −4.5 V.
B4 GND Ground.
B5 VEE Negative Power Supply, − 4.5 V.
B6 VCC Positive Power Supply, 7.0 V.
B7 TERM1 Termination Mode Data Input. Noninverting input for Channel 1.
C1 TERM2B Termination Mode Data Input. Inverting input for Channel 2.
C2 TERM2T Termination Pin for Termination Mode Data Input, Channel 2.
C3 VCC Positive Power Supply, 7.0 V.
C4 GND Ground.
C5 VCC Positive Power Supply, 7.0 V.
C6 TERM1T Termination Pin for Termination Mode Data Input, Channel 1.
C7 TERM1B Termination Mode Data Input. Inverting input for Channel 1.
D1 DA2 Data Input A. Noninverting input for Channel 2.
D2 DA2T Termination for Data Input A, Channel 2.
D3 GND Ground.
Rev. 0 | Page 7 of 16
07277-002
ADATE209
www.BDTIC.com/ADI
Pin No. Mnemonic Description
D4 GND Ground. D5 GND Ground. D6 DA1T Termination for Data Input A, Channel 1. D7 DA1 Data Input A. Noninverting input for Channel 1. E1 DA2B Data Input A. Inverting input for Channel 2. E2 GND Ground. E3 VH2 VH Input, Channel 2. E4 GND Ground. E5 VH1 VH Input, Channel 1. E6 GND Ground. E7 DA1B Data Input A. Inverting input for Channel 1. F1 DB2 Data Input B. Noninverting input for Channel 2. F2 DB2T Termination for Data Input B, Channel 2. F3 VL2 VL Input, Channel 2. F4 VCCTHERM Positive Power Supply for Thermal Diode String, 7.0 V. F5 VL1 VL Input, Channel 1. F6 DB1T Termination for Data Input B, Channel 1. F7 DB1 Data Input B. Noninverting input for Channel 1. G1 DB2B Data Input B. Inverting input for Channel 2. G2 CLC2EN Cable-Loss Compensation Control Pin, Channel 2. G3 VT2 VT Input, Channel 2. G4 THERM Thermal Diode Connection. G5 VT1 VT Input, Channel 1. G6 CLC1EN Cable-Loss Compensation Control Pin, Channel 1. G7 DB1B Data Input B. Inverting input for Channel 1.
Rev. 0 | Page 8 of 16
ADATE209
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

0.30
0.25
0.5V
1.2
1.0
0.20
0.15
0.10
VOLTAGE (V)
0.05
–0.05
0
0
0.29
0.2V
0.58
0.87
1.16
1.45
1.74
2.03
2.32
2.61
2.90
3.19
3.48
3.77
4.06
4.35
4.64
TIME (ns)
4.93
Figure 3. Small Signal Response, VHx = 500 mV, 200 mV, VLx = 0.0 V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
0
0.29
0.58
0.87
1.16
1.45
1.74
2.03
2.32
2.61
2.90
3.19
3.48
3.77
4.06
4.35
4.64
TIME (ns)
4.93
Figure 4. Large Signal Response, VHx = 3.0 V, 2.0 V, 1.0 V, VLx = 0.0 V
0.8
0.6
0.4
VOLTAGE (V)
0.2
0
CLC ENABLED
–0.2
07277-015
CLC DISABLED
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
TIME (ns)
1.040
1.160
1.280
1.390
1.510
1.620
1.740
1.860
1.970
07277-009
Figure 6. VHx = 2.0 V, VLx = 0.0 V, 1.5 GHz Waveform,
CLC Disabled and Enabled
1.2 CLC ENABLED
CLC DISABLED
1.0
0.8
0.6
0.4
VOLTAGE (V)
0.2
0
–0.2
0
0.058
0.116
0.174
0.232
0.290
0.348
0.406
0.464
0.522
0.580
0.638
0.696
0.754
0.812
0.870
0.928
07277-013
TIME (ns)
0.986
07277-010
Figure 7. VHx = 2.0 V, VLx = 0.0 V, 2.0 GHz Waveform,
CLC Disabled And Enabled
2.0
1.5
1.0
0.5
VOLTAGE (V)
0
–0.5
0
0.29
0.58
0.87
1.16
1.45
1.74
2.03
2.32
2.61
TIME (ns)
2.90
3.19
CLC ENABLED CLC DISABLED
3.48
3.77
4.06
4.35
4.64
4.93
07277-014
Figure 5. Large Signal Response, VHx = 3.0 V, 2.0 V, 1.0 V, VLx = 0.0 V,
CLC Disabled and Enabled
Rev. 0 | Page 9 of 16
1.4
CLC ENABLED CLC DISABLED
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
1.040
1.160
TIME (ns)
1.280
Figure 8. VHx = 2.0 V, VLx = 0.0 V, 1.0 GHz Waveform,
CLC Disabled and Enabled
1.390
1.510
1.620
1.740
1.860
1.970
07277-008
ADATE209
www.BDTIC.com/ADI
1.2
1.0
0.8
0.6
0.4
VOLTAGE (V)
0.2
0
–0.2
CLC ENABLED CLC DISABLED
–0.4
0
0.385
0.770
1.160
1.540
1.930
2.310
2.700
3.080
TIME (ns)
3.470
Figure 9. VHx = 2.0 V, VLx = 0.0 V, 500 MHz Waveform,
CLC Disabled and Enabled
0.6
3.850
4.240
4.620
07277-011
0.7 CLC ENABLED
CLC DISABLED
0.6
0.5
0.4
0.3
0.2
VOLTAGE (V)
0.1
0
–0.1
–0.2
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
1.040
1.160
TIME (ns)
1.280
Figure 12. VHx = 1.0 V, VLx = 0.0 V, 1.0 GHz Waveform,
CLC Disabled and Enabled
0.6
1.390
1.510
1.620
1.740
1.860
1.970
07277-003
0.5
0.4
0.3
0.2
VOLTAGE (V)
0.1
0
–0.1
CLC ENABLED CLC DISABLED
–0.2
0
0.29
0.58
0.87
1.16
1.45
1.74
2.03
2.32
2.61
2.90
3.19
TIME (ns)
3.48
Figure 10. VHx = 1.0 V, VLx = 0.0 V, 500 MHz Waveform,
CLC Disabled and Enabled
0.6
0.5
0.4
0.3
0.2
VOLTAGE (V)
0.1
0.5
0.4
0.3
0.2
VOLTAGE (V)
0.1
0
–0.1
CLC ENABLED CLC DISABLED
–0.2
3.77
4.06
4.35
4.64
4.93
07277-006
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
1.040
1.160
1.280
1.390
1.510
1.620
1.740
1.860
1.970
TIME (ns)
07277-004
Figure 13. VHx = 1.0 V, VLx = 0.0 V, 1.5 GHz Waveform,
CLC Disabled and Enabled
0.6
0.5
0.4
0.3
0.2
VOLTAGE (V)
0.1
0
CLC ENABLED CLC DISABLED
–0.1
0
0.058
0.116
0.174
0.232
0.290
0.348
0.406
0.464
0.522
0.580
0.638
0.696
0.754
0.812
0.870
0.928
0.986
TIME (ns)
07277-005
Figure 11. VHx = 1.0 V, VLx = 0.0 V, 2.0 GHz Waveform,
CLC Disabled and Enabled
Rev. 0 | Page 10 of 16
0
–0.1
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
1.040
TIME (ns)
Figure 14. VHx = 1.0 V, VTx = 0.5 V, VLx = 0.0 V,
Transitions Between VHx/VLx and VTx
1.160
1.280
1.390
1.510
1.620
1.740
1.860
1.970
07277-007
ADATE209
www.BDTIC.com/ADI
1.2
1.0
0.8
0.6
0.4
VOLTAGE (V)
0.2
0
–0.2
0
0.116
0.232
0.348
0.464
0.580
0.696
0.812
0.928
1.040
1.160
1.280
1.390
1.510
1.620
1.740
1.860
1.970
TIME (ns)
07277-012
Figure 15. VHx = 2.0 V, VTx = 1.0 V, VLx = 0.0 V,
30
20
10
0
–10
TRAILING EDGE ERROR (ps)
–20
–30
0.1 1 10
NEGATIVE PULSE
PULSE WIDTH (ns)
POSITIVE PULSE
07277-018
Figure 18. 3 V Minimum Pulse Width (VHx = 3.0 V, VLx = 0.0 V), CLC Disabled
Transitions Between VHx/VLx and VTx
30
20
10
0
NEGATIVE PUL SE
5
0
–5
–10
–10
TRAILING EDGE ERROR (ps)
–20
–30
0.1 1 10
POSITIVE PULSE
PULSE WIDTH (ns)
07277-016
Figure 16. 1 V Minimum Pulse Width (VHx = 1.0 V, VLx = 0.0 V), CLC Disabled
30
20
10
0
–10
TRAILING EDGE ERROR (ps)
–20
–30
0.1 1 10
POSITIVE PULSE
NEGATIVE PULSE
PULSE WIDTH (ns)
07277-017
Figure 17. 2 V Minimum Pulse Width (VHx = 2.0 V, VLx = 0.0 V), CLC Disabled
–15
LINEARITY ERROR (mV)
–20
–25
50°C
70°C
90°C
–2 –1 0 1 2 3 4
VHx (V)
Figure 19. Driver Linearity (VHx), VLx = −1.1 V, VTx = 1.0 V
4
3
2
1
0
–1
LINEARITY ERROR (mV)
–2
–3
–2 –1 0 1 2 3 4
VLx (V)
Figure 20. Driver Linearity (VLx), VHx = 3.6 V, VTx = 1.0 V
90°C
70°C
50°C
07277-019
07277-020
Rev. 0 | Page 11 of 16
ADATE209
V
www.BDTIC.com/ADI
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
–2.0
LINEARITY ERROR (mV)
50°C
–2.5
–3.0
–3.5
–2 –1 0 1 2 3 4
VTx (V)
90°C
Figure 21. Driver Linearity (VTx), VHx = 2.0 V, VLx = 0.0 V
70°C
07277-021
3.10
3.05
3.00
2.95
2.90
2.85
THERM VOLTAGE (V)
2.80
2.75
2.70 0 20406080100120
TEMPERATURE (° C)
Figure 24. Temperature Sensor Output Voltage vs. Temperature
07277-024
1.040
1.035
1.030
1.025
GAIN (%FSR)
1.020
1.015
1.010 40 100
50 60 8070 90
TEMPERATURE (°C)
GAIN VHx CH1 GAIN VHx CH2
Figure 22. Gain of VHx
10
5
0
–5
–10
DRIVER OFFSET (µ V)
–15
CH2 OFFSET
CH1 OFFSET
61.18mV/DIV
07277-022
200ps/DIV
07277-025
Figure 25. VHx = 1.8 V, VLx = 0.0 V, PRBS31, 1.6 Gbps, CLC Disabled
100mV/DI
–20
–25
50 60 8070 90
40 100
TEMPERATURE (° C)
07277-023
Figure 23. Driver Offset vs. Temperature
Rev. 0 | Page 12 of 16
200ps/DIV
07277-026
Figure 26. VHx = 1.8 V, VLx = 0.0 V, PRBS31, 2.1 Gbps, CLC Disabled
ADATE209
V
V
V
www.BDTIC.com/ADI
100mV/DI
100ps/DIV
Figure 27. VHx = 1.5 V, VLx = 0.0 V, PRBS31, 3.2 Gbps, CLC Disabled
100mV/DIV
100ps/DIV
Figure 28. VHx = 1.5 V, VLx = 0.0 V, PRBS31, 4.0 Gbps, CLC Disabled
50mV/DI
07277-027
Figure 29. VHx = 0.5 V, VLx = 0.0 V, PRBS31, 5.0 Gbps, CLC Disabled
50mV/DI
07277-028
Figure 30. VHx = 0.5 V, VLx = 0.0 V, PRBS31, 5.0 Gbps, CLC Enabled
50ps/DIV
50ps/DIV
07277-029
07277-030
Rev. 0 | Page 13 of 16
ADATE209
V
www.BDTIC.com/ADI

APPLICATIONS INFORMATION

DATA INPUTS

The ADATE209 contains three high speed differential inputs for each channel. Two of the inputs, combined in an on-chip exclusive-OR gate, control the VHx/VLx transitions. The exclusive-OR gate can be used as a data mux or for data inversion. The third input is used to control the transitions to the VTx level.
Table 5. Logic Truth Table
DAx DBx TERMx DROUTx
Low Low Low VL High Low Low VH Low High Low VH High High Low VL X1 X
1
X = don’t care.
1
High VT
The high speed inputs are designed to be compatible with most types of differential inputs. Each side of the differential inputs is terminated through 50 Ω to a common point. For connection to PECL inputs, connect the DAxT/DBxT/TERMxT input termination to V
− 2.0 V (VCC of the input signal, not of the
CC
ADATE209) or to an appropriate resistor to ground. For connec­tion to LVDS, do not connect DAxT/DBxT/TERMxT. For connection to CML signals, either leave DAxT/DBxT/TERMxT open or connect DAxT/DBxT/TERMxT to the appropriate V
CC/VDD
level.
DAxT, DBxT,
TERMxT

CABLE LOSS COMPENSATION/PEAKING CIRCUITRY

The ADATE209 has two different CLC/peaking modes: nominal and boost. In nominal mode, a small amount of high frequency energy is injected in the driver output signal to compensate for high frequency losses in the test interface. In boost mode, a much larger percentage of high frequency energy is injected in the driver output signal. The two modes are controlled through the CLCxEN signal.
Table 6.
CLCxEN CLC/Peaking Mode
Logic low Nominal Logic high Boost
For applications using very short path lengths, very high fidelity cables and connectors, and/or lower data rates, nominal mode should be used. For applications using lower fidelity cables and connectors (and often lower cost) and/or at higher data rates, use boost mode.
CCTHERM
40
THERM
GND
Figure 32. Thermal Diode String Schematic
ADATE209
07277-032
50
DAx, DBx,
TERMx
DAxB, DBxB,
TERMxB
Figure 31. Input Termination Schematic Diagram
50
07277-031

THERMAL DIODE STRING

Figure 32 shows a simplified schematic of the thermal diode string. To use the diode string, connect VCCTHERM to 7.0 V and measure the voltage at THERM. The nominal gain of the thermal diode string is −4.7 mV/°C.

DEFAULT TEST CONDITIONS

Table 7 lists the default test conditions.
Table 7.
Name Default Test Condition
DB1/DB1B Logic high DB2/DB2B Logic high DA1T/DA2T/DB1T/DB2T 1.3 V VHx 2.0 V VLx 0.0 V VTx 1.0 V
Rev. 0 | Page 14 of 16
ADATE209
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

8.10
8.00 SQ
A1 BALL CORNER
7.90
TOP VIEW
3.275 REF
3.225 REF
6.00
BSC SQ
1.00
BSC
7654 231
BOTTOM VIEW
A
B
C
D
E
F
G
A1 BALL CORNER
0.68
0.63
0.58
0.305 REF
0.100 REF
COPLANARITY
0.10
030408-A
*
1.60 MAX
1.21 NOM
DETAIL A
0.60
0.56
0.52
0.55
0.50
0.45
SEATING
PLANE
*
COMPLIANT TO JEDEC ST ANDARDS MO-192-ABB-1 W ITH EXCEPTIO N TO PACKAGE HEI GHT.
DETAIL A
BALL DIAMET ER
Figure 33. 49-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-49-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
ADATE209BBCZ1 −40°C to +85°C 49-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-49-4
1
Z = RoHS Compliant Part.
Rev. 0 | Page 15 of 16
ADATE209
www.BDTIC.com/ADI
NOTES
©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07277-0-5/08(0)
Rev. 0 | Page 16 of 16
Loading...