Datasheet AD9778 Datasheet (ANALOG DEVICES)

Page 1
Dual 12-/14-/16-Bit,
1 GSPS, Digital-to-Analog Converters

FEATURES

Low power: 1.0 W @ 1 GSPS, 600 mW @ 500 MSPS,
full operating conditions SFDR = 78 dBc to f Single carrier WCDMA ACLR = 79 dBc @ 80 MHz IF Analog output: adjustable 8.7 mA to 31.7 mA,
= 25 Ω to 50 Ω
R
L
Novel 2×, 4×, and 8× interpolator/coarse complex modulator
allows carrier placement anywhere in DAC bandwidth Auxiliary DACs allow control of external VGA and offset control Multiple chip synchronization interface High performance, low noise PLL clock multiplier Digital inverse sinc filter 100-lead, exposed paddle TQFP package

APPLICATIONS

Wireless infrastructure
WCDMA, CDMA2000, TD-SCDMA, WiMax, GSM Digital high or low IF synthesis Internal digital upconversion capability Transmit diversity Wideband communications: LMDS/MMDS, point-to-point
= 100 MHz
OUT
AD9776/AD9778/AD9779

GENERAL DESCRIPTION

The AD9776/AD9778/AD9779 are dual, 12-/14-/16-bit, high dynamic range, digital-to-analog converters (DACs) that pro­vide a sample rate of 1 GSPS, permitting multicarrier generation up to the Nyquist frequency. They include features optimized for direct conversion transmit applications, including complex digital modulation, and gain and offset compensation. The DAC outputs are optimized to interface seamlessly with analog quad­rature modulators such as the AD8349. A serial peripheral interface (SPI®) provides for programming/readback of many internal parameters. Full-scale output current can be programmed over a range of 10 mA to 30 mA. The devices are manufactured on an advanced 0.18 m CMOS process and operate on 1.8 V and
3.3 V supplies for a total power consumption of 1.0 W. They are enclosed in 100-lead TQFP packages.

PRODUCT HIGHLIGHTS

1. Ultralow noise and intermodulation distortion (IMD)
enable high quality synthesis of wideband signals from baseband to high intermediate frequencies.
2. A proprietary DAC output switching technique enhances
dynamic performance.
3. The current outputs are easily configured for various
single-ended or differential circuit topologies.
4. CMOS data input interface with adjustable set up and hold.
5. Novel 2×, 4×, and 8× interpolator/coarse complex
modulator allows carrier placement anywhere in DAC bandwidth.

TYPICAL SIGNAL CHAIN

COMPLEX I AND Q
DC
DC
FPGA/ASIC/DSP
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
DIGITAL INTERPOLATION FILTERS
AD9779
QUADRATURE
MODULATOR/
MIXER/
AMPLIFIER
I DAC
POST DAC
ANALOG FILTER
Q DAC
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2007 Analog Devices, Inc. All rights reserved.
LO
A
05361-114
Page 2
AD9776/AD9778/AD9779
TABLE OF CONTENTS
Features .............................................................................................. 1
SPI Register Map ............................................................................ 27
Applications....................................................................................... 1
General Description......................................................................... 1
Product Highlights........................................................................... 1
Typical S i g nal C h a i n ......................................................................... 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
Specifications..................................................................................... 4
DC Specifications ......................................................................... 4
Digital Specifications ................................................................... 6
Digital Input Data Timing Specifications ................................. 7
AC Specifications.......................................................................... 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configurations and Function Descriptions ........................... 9
Typical Performance Characteristics ........................................... 15
Te r mi n ol o g y .................................................................................... 24
Theory of Operation ...................................................................... 25
Serial Peripheral Interface......................................................... 25
Interpolation Filter Architecture .................................................. 31
Interpolation Filter Minimum and Maximum Bandwidth
Specifications .............................................................................. 35
Driving the REFCLK Input....................................................... 35
Internal PLL Clock Multiplier/Clock Distribution................ 36
Full-Scale Current Generation ................................................. 38
Power Dissipation....................................................................... 39
Power-Down and Sleep Modes................................................. 41
Interleaved Data Mode .............................................................. 41
Timing Information ................................................................... 41
Synchronization of Input Data to DATACLK
Output (Pin 37)........................................................................... 43
Synchronization of Input Data to the REFCLK Input (Pin 5
and Pin 6) with PLL Enabled or Disabled............................... 43
Evaluation Board Operation ......................................................... 46
Modifying the Evaluation Board to Use the AD8349 On-
Board Quadrature Modulator................................................... 48
Evaluation Board Schematics ................................................... 49
Outline Dimensions ....................................................................... 56
Ordering Guide .......................................................................... 56
MSB/LSB Transfers.....................................................................26

REVISION HISTORY

3/07—Rev. 0 to Rev. A
Changes to Features.......................................................................... 1
Changes to Applications .................................................................. 1
Changes to General Product Highlights........................................ 1
Added Figure 1, Renumbered Figures Sequentially..................... 1
Changes to Table 1............................................................................ 4
Changes to Table 2............................................................................ 5
Changes to Table 3............................................................................ 5
Changes to Figure 53 and Figure 54............................................. 26
Changes to Table 12........................................................................ 29
Changes to Power Dissipation Section ........................................39
Rev. A | Page 2 of 56
Added Table 19, Renumbered Tables Sequentially.................... 41
Changes to Figure 92 and Figure 93............................................. 42
Changes to Figure 94...................................................................... 42
Added New Figure 95, Renumbered Figures Sequentially ....... 42
Changes to Synchronization of Input Data to the REFCLK Input
(Pin 5 and Pin 6) with PLL Enabled or Disabled Section ......... 43
Added New Figure 96, Renumbered Figures Sequentially ....... 43
Changes to Figure 106 ................................................................... 51
7/05—Revision 0: Initial Version
Page 3
AD9776/AD9778/AD9779
K

FUNCTIONAL BLOCK DIAGRAM

SYNC_O
SYNC_I
DATACLK_OUT
P1D(15:0)
P2D(15:0)
DELAY
LINE
DELAY
LINE
DATA
ASSEMBLER
LATCH
LATCH
CLOCK GENERAT ION/DISTRIBUTIO N
SYNC
I
Q
DIGITAL CONTROLLER
SERIAL
PERIPHERAL
INTERFACE
SDO
SDIO
SCL
CSB
POWER-ON
RESET
n ×
f
/8
DAC
n = 0, 1, 2 ... 7
COMPLEX
MODULATOR
SYNC
10
10
10
10
CLOCK
MULTIPLIER
2×/4×/8×
1
1
GAIN
GAIN
GAIN
GAIN
16-BIT
IDAC
16-BIT QDAC
REFERENCE
AND BIAS
CLK+
CLK–
IOUT1_P
IOUT1_N
IOUT2_P
IOUT2_N
VREF
I120
AUX1_P AUX1_N
AUX2_P AUX2_N
5361-001
Figure 2. Functional Block Diagram
Rev. A | Page 3 of 56
Page 4
AD9776/AD9778/AD9779

SPECIFICATIONS

DC SPECIFICATIONS

T
to T
MIN
otherwise noted.
Table 1. AD9776, AD9778, and AD9779 DC Specifications
AD9776 AD9778 AD9779 Parameter Min Typ Max Min Typ Max Min Typ Max Unit
RESOLUTION 12 14 16 Bits ACCURACY
Differential Nonlinearity (DNL) ±0.1 ±0.65 ±2.1 LSB
Integral Nonlinearity (INL) ±0.6 ±1 ±3.7 LSB MAIN DAC OUTPUTS
Offset Error −0.001 0 +0.001 −0.001 0 +0.001 −0.001 0 +0.001 % FSR
Gain Error (with Internal
Reference)
Full-Scale Output Current
Output Compliance Range −1.0 +1.0 −1.0 +1.0 −1.0 +1.0 V
Output Resistance 10 10 10
Gain DAC Monotonicity Guaranteed Guaranteed Guaranteed MAIN DAC TEMPERATURE DRIFT
Offset 0.04 0.04 0.04 ppm/°C
Gain 100 100 100 ppm/°C
Reference Voltage 30 30 30 ppm/°C AUX DAC OUTPUTS
Resolution 10 10 10 Bits
Full-Scale Output Current
Output Compliance Range
(Source)
Output Compliance Range
(Sink)
Output Resistance 1 1 1
Aux DAC Monotonicity
Guaranteed REFERENCE
Internal Reference Voltage 1.2 1.2 1.2 V
Output Resistance 5 5 5 kΩ ANALOG SUPPLY VOLTAGES
AVDD33 3.13 3.3 3.47 3.13 3.3 3.47 3.13 3.3 3.47 V
CVDD18 1.70 1.8 1.90 1.70 1.8 1.90 1.70 1.8 1.90 V DIGITAL SUPPLY VOLTAGES
DVDD33 3.13 3.3 3.47 3.13 3.3 3.47 3.13 3.3 3.47 V
DVDD18 1.70 1.8 1.90 1.70 1.8 1.90 1.70 1.8 1.90 V POWER CONSUMPTION
1× Mode, f
IF = 1 MHz
2× Mode, f
IF = 16 MHz, PLL Off
2× Mode, f
IF = 16 MHz, PLL On
4× Mode, f
f
DAC
IF = 137.5 MHz, Q DAC Off
, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 =1.8 V, = 20 mA, maximum sample rate, unless
MAX
I
OUTF
S
±2 ±2 ±2 % FSR
1
1
8.66 20.2 31.66 8.66 20.2 31.66 8.66 20.2 31.66 mA
−1.998 +1.998 −1.998 +1.998 −1.998 +1.998 mA 0 1.6 0 1.6 0 1.6 V
0.8 1.6 0.8 1.6 0.8 1.6 V
= 100 MSPS,
DAC
= 320 MSPS,
DAC
= 320 MSPS,
DAC
/4 Modulation,
DAC
250 300 250 300 250 300 mW
498 498 498 mW
588 588 588 mW
572 572 572 mW
= 500 MSPS,
Rev. A | Page 4 of 56
Page 5
AD9776/AD9778/AD9779
AD9776 AD9778 AD9779 Parameter Min Typ Max Min Typ Max Min Typ Max Unit
8× Mode, f
= 1 GSPS, IF = 262.5 MHz
f
DAC
/4 Modulation,
DAC
Power-Down Mode 2 3.7 2 3.7 2 3.7 mW Power Supply Rejection Ratio,
AVDD33
OPERATING RANGE −40 +25 +85 −40 +25 +85 −40 +25 +85 °C
1
Based on a 10 kexternal resistor.
980 980 980 mW
−0.3 +0.3 −0.3 +0.3 −0.3 +0.3 % FSR/V
Rev. A | Page 5 of 56
Page 6
AD9776/AD9778/AD9779

DIGITAL SPECIFICATIONS

T
to T
MIN
, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, = 20 mA, maximum sample rate, unless
MAX
otherwise noted. LVDS driver and receiver are compliant to the IEEE-1596 reduced range link, unless otherwise noted.
Table 2. AD9776, AD9778, and AD9779 Digital Specifications
Parameter Conditions Min Typ Max Unit
CMOS INPUT LOGIC LEVEL
Input V
Input V
Logic High 2.0 V
IN
Logic Low 0.8 V
IN
Maximum Input Data Rate at Interpolation
300 MSPS 2× 250 MSPS 4× 200 MSPS 8× 125 MSPS
CMOS OUTPUT LOGIC LEVEL (DATACLK, PIN 37)
Output V
Output V
Logic High 2.4 V
OUT
Logic Low 0.4 V
OUT
1
LVDS RECEIVER INPUTS (SYNC_I+, SYNC_I−) SYNC_I+ = VIA, SYNC_I− = V
Input Voltage Range, VIA or V
Input Differential Threshold, V
Input Differential Hysteresis, V
IB
−100 +100 mV
IDTH
− V
IDTHH
IDTHL
Receiver Differential Input Impedance, R
2
IN
825 1575 mV
20 mV
80 120 Ω LVDS Input Rate 125 MSPS Set-Up Time, SYNC_I to DAC Clock −0.2 ns Hold Time, SYNC_I to DAC Clock 1 ns
LVDS DRIVER OUTPUTS (SYNC_O+, SYNC_O−) SYNC_O+ = VOA, SYNC_O− = VOB, 100 Ω termination
Output Voltage High, VOA or V Output Voltage Low, VOA or V
OB
OB
825 1575 mV
1025 mV Output Differential Voltage, |VOD| 150 200 250 mV Output Offset Voltage, V Output Impedance, R
O
OS
1150 1250 mV
Single-ended 80 100 120 Ω Maximum Clock Rate 1 GHz
DAC CLOCK INPUT (CLK+, CLK−)
Differential Peak-to-Peak Voltage (CLK+, CLK−)
3
400 800 2000 mV Common-Mode Voltage 300 400 500 mV Maximum Clock Rate
4
1 GSPS
SERIAL PERIPHERAL INTERFACE
Maximum Clock Rate (SCLK) 40 MHz Minimum Pulse Width High 12.5 ns Minimum Pulse Width Low 12.5 ns
1
Specification is at a DATACLK frequency of 100 MHz into a 1 kΩ load; maximum drive capability of 8 mA. At higher speeds or greater loads, best practice suggests
using an external buffer for this signal.
2
Guaranteed at 25°C. Can drift above 120 Ω at temperatures above 25°C.
3
When using the PLL, a differential swing of 2 V p-p is recommended.
4
Typical maximum clock rate when DVDD18 = CVDD18 = 1.9 V.
I
OUTF
S
IB
Rev. A | Page 6 of 56
Page 7
AD9776/AD9778/AD9779

DIGITAL INPUT DATA TIMING SPECIFICATIONS

Table 3. AD9776, AD9778, and AD9779 Digital Input Data Timing Specifications
Parameter Min Typ Max Unit
INPUT DATA (ALL MODES, −40°C to +85°C)1
Set-Up Time, Input Data to DATACLK +2.5 ns Hold Time, Input Data to DATACLK −0.4 ns Set-Up Time, Input Data to REFCLK −0.8 ns Hold Time, Input Data to REFCLK +2.9 ns
1
Timing vs. temperature and data valid keep out windows are delineated in Table 19.

AC SPECIFICATIONS

T
to T
MIN
otherwise noted.
Table 4. AD9776, AD9778, and AD9779 AC Specifications
Parameter Min Typ Max Min Typ Max Min Typ Max Unit
SPURIOUS FREE DYNAMIC RANGE (SFDR)
f
DAC
f
DAC
f
DAC
f
DAC
TWO-TONE INTERMODULATION DISTORTION
(IMD) f
DAC
f
DAC
f
DAC
f
DAC
NOISE SPECTRAL DENSITY (NSD) EIGHT-TONE,
500 kHz TONE SPACING f
DAC
f
DAC
f
DAC
WCDMA ADJACENT CHANNEL LEAKAGE
RATIO (ACLR), SINGLE CARRIER f
DAC
f
DAC
WCDMA SECOND ADJACENT CHANNEL
LEAKAGE RATIO (ACLR), SINGLE CARRIER f
DAC
f
DAC
, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, = 20 mA, maximum sample rate, unless
MAX
I
OUTF
S
AD9776 AD9778 AD9779
= 100 MSPS, f = 200 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 20 MHz 82 82 82 dBc
OUT
= 50 MHz 81 81 82 dBc
OUT
= 70 MHz 80 80 80 dBc
OUT
= 70 MHz 85 85 87 dBc
OUT
= 200 MSPS, f = 400 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 50 MHz 87 87 91 dBc
OUT
= 60 MHz 80 85 85 dBc
OUT
= 80 MHz 75 81 81 dBc
OUT
= 100 MHz 75 80 81 dBc
OUT
= 200 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 80 MHz −152 −155 −158 dBm/Hz
OUT
= 80 MHz −155 −159 −160 dBm/Hz
OUT
= 80 MHz −157.5 −160 −161 dBm/Hz
OUT
= 491.52 MSPS, f = 491.52 MSPS, f
= 100 MHz 76 78 79 dBc
OUT
= 200 MHz 69 73 74 dBc
OUT
= 491.52 MSPS, f = 491.52 MSPS, f
= 100 MHz 77.5 80 81 dBc
OUT
= 200 MHz 76 78 78 dBc
OUT
Rev. A | Page 7 of 56
Page 8
AD9776/AD9778/AD9779

ABSOLUTE MAXIMUM RATINGS

Table 5.
With Respect
Parameter
AVDD33, DVDD33
DVDD18, CVDD18
AGND
DGND
CGND
I120, VREF, IPTAT AGND −0.3 V to AVDD33 + 0.3 V I
, I
2-P
OUT1-N
, Aux
, Aux
1-P
2-N
, I
OUT2-P
, Aux
OUT1-P
I
OUT2-N
Aux P1D15 to P1D0,
P2D15 to P2D0 DATACLK, TXENABLE DGND −0.3 V to DVDD33 + 0.3 V CLK+, CLK− CGND −0.3 V to CVDD18 + 0.3 V RESET, IRQ, PLL_LOCK,
SYNC_O+, SYNC_O−, SYNC_I+, SYNC_I−, CSB, SCLK, SDIO, SDO
Junction Temperature +125°C Storage Temperature
Range
To
AGND,
Rating
−0.3 V to +3.6 V DGND, CGND
AGND,
−0.3 V to +1.98 V DGND, CGND
DGND,
−0.3 V to +0.3 V CGND
AGND,
−0.3 V to +0.3 V CGND
AGND,
−0.3 V to +0.3 V DGND
AGND −1.0 V to AVDD33 + 0.3 V
,
,
1-N
DGND −0.3 V to DVDD33 + 0.3 V
DGND −0.3 V to DVDD33 + 0.3 V
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

100-lead, thermally enhanced TQFP_EP package, θJA = 19.1°C/W with the bottom EPAD soldered to the PCB. With the bottom EPAD not soldered to the PCB, θ
= 27.4°C/W. These
JA
specifications are valid with no airflow movement.

ESD CAUTION

Rev. A | Page 8 of 56
Page 9
AD9776/AD9778/AD9779

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

AVDD3399AGND98AVDD3397AGND96AVDD3395AGND94AGND93OUT1_P92OUT1_N91AGND90AUX1_P89AUX1_N88AGND87AUX2_N86AUX2_P85AGND84OUT2_N83OUT2_P82AGND81AGND80AVDD3379AGND78AVDD3377AGND76AVDD33
100
CGND
CGND
CLK+
CLK–
CGND
CGND
CGND
AGND
DGND
P1D<9>
P1D<8>
P1D<7>
DGND
P1D<6>
P1D<5>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PIN 1
26
P1D<4>27P1D<3>28P1D<2>29P1D<1>30P1D<0>
31NC32
CVDD18
CVDD18
CVDD18
CVDD18
SYNC_I+
SYNC_I–
DVDD18
P1D<11>
P1D<10>
DVDD18
NC = NO CONNECT
Table 6. AD9776 Pin Function Descriptions
Pin No.
Mnemonic Description
1 CVDD18 1.8 V Clock Supply. 2 CVDD18 1.8 V Clock Supply. 3 CGND Clock Common. 4 CGND Clock Common. 5 CLK+ 6 CLK−
1
1
Differential Clock Input.
Differential Clock Input. 7 CGND Clock Common. 8 CGND Clock Common. 9 CVDD18 1.8 V Clock Supply. 10 CVDD18 1.8 V Clock Supply. 11 CGND Clock Common. 12 AGND Analog Common. 13 SYNC_I+ Differential Synchronization Input. 14 SYNC_I− Differential Synchronization Input. 15 DGND Digital Common. 16 DVDD18 1.8 V Digital Supply. 17 P1D<11> Port 1, Data Input D11 (MSB). 18 P1D<10> Port 1, Data Input D10. 19 P1D<9> Port 1, Data Input D9.
ANALOG DOMAIN
DIGITAL DOMAIN
AD9776
TOP VIEW
(Not to Scale)
33
DGND
DVDD18
34NC35NC36NC37
38
39
DVDD33
DATACLK
TXENABLE
40
P2D<11>41P2D<10>
42
P2D<9>
Figure 3. AD9776 Pin Configuration
Pin No.
Mnemonic Description
20 P1D<8> Port 1, Data Input D8. 21 P1D<7> Port 1, Data Input D7. 22 DGND Digital Common. 23 DVDD18 1.8 V Digital Supply. 24 P1D<6> Port 1, Data Input D6. 25 P1D<5> Port 1, Data Input D5. 26 P1D<4> Port 1, Data Input D4. 27 P1D<3> Port 1, Data Input D3. 28 P1D<2> Port 1, Data Input D2. 29 P1D<1> Port 1, Data Input D1. 30 P1D<0> Port 1, Data Input D0 (LSB). 31 NC No Connect. 32 DGND Digital Common. 33 DVDD18 1.8 V Digital Supply. 34 NC No Connect. 35 NC No Connect. 36 NC No Connect.
DATACLK
37 38 DVDD33 3.3 V Digital Supply.
43
44
45
DGND
DVDD18
P2D<8>46P2D<7>47P2D<6>48P2D<5>49P2D<4>50P2D<3>
Data Clock Output.
75
I120
74
VREF
73
IPTAT
72
AGND
71
IRQ
70
RESET
69
CSB
68
SCLK
67
SDIO
66
SDO
65
PLL_LOCK
64
DGND
63
SYNC_O+
62
SYNC_O–
61
DVDD33
60
DVDD18
59
NC
58
NC
57
NC
56
NC
55
P2D<0>
54
DGND
53
DVDD18
52
P2D<1>
51
P2D<2>
05361-002
Rev. A | Page 9 of 56
Page 10
AD9776/AD9778/AD9779
Pin No. Mnemonic
39 TXENABLE Transmit Enable. 40 P2D<11> Port 2, Data Input D11 (MSB). 41 P2D<10> Port 2, Data Input D10. 42 P2D<9> Port 2, Data Input D9. 43 DVDD18 1.8 V Digital Supply. 44 DGND Digital Common. 45 P2D<8> Port 2, Data Input D8. 46 P2D<7> Port 2, Data Input D7. 47 P2D<6> Port 2, Data Input D6. 48 P2D<5> Port 2, Data Input D5. 49 P2D<4> Port 2, Data Input D4. 50 P2D<3> Port 2, Data Input D3. 51 P2D<2> Port 2, Data Input D2. 52 P2D<1> Port 2, Data Input D1. 53 DVDD18 1.8 V Digital Supply. 54 DGND Digital Common. 55 P2D<0> Port 2, Data Input D0 (LSB). 56 NC No Connect. 57 NC No Connect. 58 NC No Connect. 59 NC No Connect. 60 DVDD18 1.8 V Digital Supply. 61 DVDD33 3.3 V Digital Supply. 62 SYNC_O− Differential Synchronization Output. 63 SYNC_O+ Differential Synchronization Output 64 DGND Digital Common 65 PLL_LOCK PLL Lock Indicator 66 SDO SPI Port Data Output 67 SDIO SPI Port Data Input/Output 68 SCLK SPI Port Clock 69 CSB SPI Port Chip Select Bar. 70 RESET Reset, Active High. 71 IRQ Interrupt Request. 72 AGND Analog Common.
Description
Pin No. Mnemonic
73 IPTAT
Description
Factory Test Pin. Output current is proportional to absolute temperature, approximately 10 μA at 25°C with approximately 20 nA/°C slope. This pin
should remain floating. 74 VREF Voltage Reference Output. 75 I120 120 μA Reference Current. 76 AVDD33 3.3 V Analog Supply. 77 AGND Analog Common. 78 AVDD33 3.3 V Analog Supply. 79 AGND Analog Common. 80 AVDD33 3.3 V Analog Supply. 81 AGND Analog Common. 82 AGND Analog Common. 83 OUT2_P Differential DAC Current Output, Channel 2. 84 OUT2_N Differential DAC Current Output, Channel 2. 85 AGND Analog Common. 86 AUX2_P Auxiliary DAC Current Output, Channel 2. 87 AUX2_N Auxiliary DAC Current Output, Channel 2. 88 AGND Analog Common. 89 AUX1_N Auxiliary DAC Current Output, Channel 1. 90 AUX1_P Auxiliary DAC Current Output, Channel 1. 91 AGND Analog Common. 92 OUT1_N Differential DAC Current Output, Channel 1. 93 OUT1_P Differential DAC Current Output, Channel 1. 94 AGND Analog Common. 95 AGND Analog Common. 96 AVDD33 3.3 V Analog Supply. 97 AGND Analog Common. 98 AVDD33 3.3 V Analog Supply. 99 AGND Analog Common. 100 AVDD33 3.3 V Analog Supply.
1
The combined differential clock input at the CLK+ and CLK– pins are referred
to as REFCLK.
Rev. A | Page 10 of 56
Page 11
AD9776/AD9778/AD9779
AVDD3399AGND98AVDD3397AGND96AVDD3395AGND94AGND93OUT1_P92OUT1_N91AGND90AUX1_P89AUX1_N88AGND87AUX2_N86AUX2_P85AGND84OUT2_N83OUT2_P82AGND81AGND80AVDD3379AGND78AVDD3377AGND76AVDD33
100
CGND
CGND
CLK+
CLK–
CGND
CGND
CGND
AGND
DGND
P1D<9>
DGND
P1D<8>
P1D<7>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
CVDD18
CVDD18
CVDD18
CVDD18
SYNC_I+
SYNC_I–
DVDD18
P1D<13>
P1D<12>
P1D<11>
P1D<10>
DVDD18
NC = NO CONNECT
PIN 1
26
P1D<6>27P1D<5>28P1D<4>29P1D<3>30P1D<2>31P1D<1>
ANALOG DOMAIN
DIGITAL DOMAIN
AD9778
TOP VIEW
(Not to Scale)
32
33
34
35NC36NC37
38
39
40
DGND
P1D<0>
DVDD18
Figure 4. AD9778 Pin Configuration
DVDD33
DATACLK
TXENABLE
P2D<13>41P2D<12>42P2D<11>
75
I120
74
VREF
73
IPTAT
72
AGND
71
IRQ
70
RESET
69
CSB
68
SCLK
67
SDIO
66
SDO
65
PLL_LOCK
64
DGND
63
SYNC_O+
62
SYNC_O–
61
DVDD33
60
DVDD18
59
NC
58
NC
57
P2D<0>
56
P2D<1>
55
P2D<2>
54
DGND
53
DVDD18
52
P2D<3>
51
P2D<4>
43
44
45
46
DGND
DVDD18
P2D<9>47P2D<8>48P2D<7>49P2D<6>50P2D<5>
P2D<10>
05361-003
Table 7. AD9778 Pin Function Description
Pin No.
Mnemonic Description
1 CVDD18 1.8 V Clock Supply. 2 CVDD18 1.8 V Clock Supply. 3 CGND Clock Common. 4 CGND Clock Common. 5 CLK+ 6 CLK−
1
1
Differential Clock Input.
Differential Clock Input. 7 CGND Clock Common. 8 CGND Clock Common. 9 CVDD18 1.8 V Clock Supply. 10 CVDD18 1.8 V Clock Supply. 11 CGND Clock Common. 12 AGND Analog Common. 13 SYNC_I+ Differential Synchronization Input. 14 SYNC_I− Differential Synchronization Input. 15 DGND Digital Common. 16 DVDD18 1.8 V Digital Supply. 17 P1D<13> Port 1, Data Input D13 (MSB). 18 P1D<12> Port 1, Data Input D12. 19 P1D<11> Port 1, Data Input D11. 20 P1D<10> Port 1, Data Input D10.
Pin No.
21 P1D<9> Port 1, Data Input D9. 22 DGND Digital Common. 23 DVDD18 1.8 V Digital Supply. 24 P1D<8> Port 1, Data Input D8. 25 P1D<7> Port 1, Data Input D7. 26 P1D<6> Port 1, Data Input D6. 27 P1D<5> Port 1, Data Input D5. 28 P1D<4> Port 1, Data Input D4. 29 P1D<3> Port 1, Data Input D3. 30 P1D<2> Port 1, Data Input D2. 31 P1D<1> Port 1, Data Input D1. 32 DGND Digital Common. 33 DVDD18 1.8 V Digital Supply. 34 P1D<0> Port 1, Data Input D0 (LSB). 35 NC No Connect. 36 NC No Connect. 37 38 DVDD33 3.3 V Digital Supply. 39 TXENABLE Transmit Enable. 40 P2D<13> Port 2, Data Input D13 (MSB).
Rev. A | Page 11 of 56
Mnemonic Description
DATACLK
Data Clock Output.
Page 12
AD9776/AD9778/AD9779
Pin No.
41 P2D<12> Port 2, Data Input D12. 42 P2D<11> Port 2, Data Input D11. 43 DVDD18 1.8 V Digital Supply. 44 DGND Digital Common. 45 P2D<10> Port 2, Data Input D10. 46 P2D<9> Port 2, Data Input D9. 47 P2D<8> Port 2, Data Input D8. 48 P2D<7> Port 2, Data Input D7. 49 P2D<6> Port 2, Data Input D6. 50 P2D<5> Port 2, Data Input D5. 51 P2D<4> Port 2, Data Input D4. 52 P2D<3> Port 2, Data Input D3. 53 DVDD18 1.8 V Digital Supply. 54 DGND Digital Common. 55 P2D<2> Port 2, Data Input D2. 56 P2D<1> Port 2, Data Input D1. 57 P2D<0> Port 2, Data Input D0 (LSB). 58 NC No Connect. 59 NC No Connect. 60 DVDD18 1.8 V Digital Supply. 61 DVDD33 3.3 V Digital Supply. 62 SYNC_O− Differential Synchronization Output. 63 SYNC_O+ Differential Synchronization Output. 64 DGND Digital Common. 65 PLL_LOCK PLL Lock Indicator. 66 SDO SPI Port Data Output. 67 SDIO SPI Port Data Input/Output. 68 SCLK SPI Port Clock. 69 CSB SPI Port Chip Select Bar. 70 RESET Reset, Active High. 71 IRQ Interrupt Request. 72 AGND Analog Common. 73 IPTAT
Mnemonic Description
Factory Test Pin. Output current is proportional to absolute temperature, approximately 10 μA at 25°C with approximately 20 nA/°C slope. This pin should remain floating.
Pin No.
Mnemonic Description
74 VREF Voltage Reference Output. 75 I120 120 μA Reference Current. 76 AVDD33 3.3 V Analog Supply. 77 AGND Analog Common. 78 AVDD33 3.3 V Analog Supply. 79 AGND Analog Common. 80 AVDD33 3.3 V Analog Supply. 81 AGND Analog Common. 82 AGND Analog Common. 83 OUT2_P
Differential DAC Current Output, Channel 2.
84 OUT2_N
Differential DAC Current Output,
Channel 2. 85 AGND Analog Common. 86 AUX2_P
Auxiliary DAC Current Output,
Channel 2. 87 AUX2_N
Auxiliary DAC Current Output,
Channel 2. 88 AGND Analog Common. 89 AUX1_N
Auxiliary DAC Current Output,
Channel 1. 90 AUX1_P
Auxiliary DAC Current Output,
Channel 1. 91 AGND Analog Common. 92 OUT1_N
Differential DAC Current Output,
Channel 1. 93 OUT1_P
Differential DAC Current Output,
Channel 1. 94 AGND Analog Common. 95 AGND Analog Common. 96 AVDD33 3.3 V Analog Supply. 97 AGND Analog Common. 98 AVDD33 3.3 V Analog Supply. 99 AGND Analog Common. 100 AVDD33 3.3 V Analog Supply.
1
The combined differential clock input at the CLK+ and CLK– pins are referred
to as REFCLK.
Rev. A | Page 12 of 56
Page 13
AD9776/AD9778/AD9779
AVDD3399AGND98AVDD3397AGND96AVDD3395AGND94AGND93OUT1_P92OUT1_N91AGND90AUX1_P89AUX1_N88AGND87AUX2_N86AUX2_P85AGND84OUT2_N83OUT2_P82AGND81AGND80AVDD3379AGND78AVDD3377AGND76AVDD33
100
CGND
CGND
CLK+
CLK–
CGND
CGND
CGND
AGND
DGND
DGND
P1D<9>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PIN 1
26
P1D<8>27P1D<7>28P1D<6>29P1D<5>30P1D<4>31P1D<3>
32
33
DGND
DVDD18
CVDD18
CVDD18
CVDD18
CVDD18
SYNC_I+
SYNC_I–
DVDD18
P1D<15>
P1D<14>
P1D<13>
P1D<12>
P1D<11>
DVDD18
P1D<10>
Figure 5. AD9779 Pin Configuration
Table 8. AD9779 Pin Function Descriptions
Pin No.
Mnemonic Description
1 CVDD18 1.8 V Clock Supply. 2 CVDD18 1.8 V Clock Supply. 3 CGND Clock Common. 4 CGND Clock Common. 5 CLK+ 6 CLK−
1
1
Differential Clock Input.
Differential Clock Input. 7 CGND Clock Common. 8 CGND Clock Common. 9 CVDD18 1.8 V Clock Supply. 10 CVDD18 1.8 V Clock Supply. 11 CGND Clock Common. 12 AGND Analog Common. 13 SYNC_I+ Differential Synchronization Input. 14 SYNC_I− Differential Synchronization Input. 15 DGND Digital Common. 16 DVDD18 1.8 V Digital Supply. 17 P1D<15> Port 1, Data Input D15 (MSB). 18 P1D<14> Port 1, Data Input D14. 19 P1D<13> Port 1, Data Input D13. 20 P1D<12> Port 1, Data Input D12. 21 P1D<11> Port 1, Data Input D11.
34
P1D<2>35P1D<1>36P1D<0>
ANALOG DOMAIN
DIGITAL DOMAIN
AD9779
TOP VIEW
(Not to Scale)
37
38
39
DVDD33
DATACLK
TXENABLE
75
I120
74
VREF
73
IPTAT
72
AGND
71
IRQ
70
RESET
69
CSB
68
SCLK
67
SDIO
66
SDO
65
PLL_LOCK
64
DGND
63
SYNC_O+
62
SYNC_O–
61
DVDD33
60
DVDD18
59
P2D<0>
58
P2D<1>
57
P2D<2>
56
P2D<3>
55
P2D<4>
54
DGND
53
DVDD18
52
P2D<5>
51
P2D<6>
40
43
44
45
48
P2D<15>41P2D<14>42P2D<13>
DVDD18
DGND
P2D<12>46P2D<11>47P2D<10>
P2D<9>49P2D<8>50P2D<7>
05361-004
Pin No.
Mnemonic Description
22 DGND Digital Common. 23 DVDD18 1.8 V Digital Supply. 24 P1D<10> Port 1, Data Input D10. 25 P1D<9> Port 1, Data Input D9. 26 P1D<8> Port 1, Data Input D8. 27 P1D<7> Port 1, Data Input D7. 28 P1D<6> Port 1, Data Input D6. 29 P1D<5> Port 1, Data Input D5. 30 P1D<4> Port 1, Data Input D4. 31 P1D<3> Port 1, Data Input D3. 32 DGND Digital Common. 33 DVDD18 1.8 V Digital Supply. 34 P1D<2> Port 1, Data Input D2. 35 P1D<1> Port 1, Data Input D1. 36 P1D<0> Port 1, Data Input D0 (LSB).
DATACLK
37
Data Clock Output. 38 DVDD33 3.3 V Digital Supply. 39 TXENABLE Transmit Enable. 40 P2D<15> Port 2, Data Input D15 (MSB). 41 P2D<14> Port 2, Data Input D14. 42 P2D<13> Port 2, Data Input D13.
Rev. A | Page 13 of 56
Page 14
AD9776/AD9778/AD9779
Pin
Mnemonic Description
No.
43 DVDD18 1.8 V Digital Supply. 44 DGND Digital Common. 45 P2D<12> Port 2, Data Input D12. 46 P2D<11> Port 2, Data Input D11. 47 P2D<10> Port 2, Data Input D10. 48 P2D<9> Port 2, Data Input D9. 49 P2D<8> Port 2, Data Input D8. 50 P2D<7> Port 2, Data Input D7. 51 P2D<6> Port 2, Data Input D6. 52 P2D<5> Port 2, Data Input D5. 53 DVDD18 1.8 V Digital Supply. 54 DGND Digital Common. 55 P2D<4> Port 2, Data Input D4. 56 P2D<3> Port 2, Data Input D3. 57 P2D<2> Port 2, Data Input D2. 58 P2D<1> Port 2, Data Input D1. 59 P2D<0> Port 2, Data Input D0 (LSB). 60 DVDD18 1.8 V Digital Supply. 61 DVDD33 3.3 V Digital Supply. 62 SYNC_O− Differential Synchronization Output. 63 SYNC_O+ Differential Synchronization Output. 64 DGND Digital Common. 65 PLL_LOCK PLL Lock Indicator. 66 SPI_SDO SPI Port Data Output. 67 SPI_SDIO SPI Port Data Input/Output. 68 SCLK SPI Port Clock. 69 SPI_CSB SPI Port Chip Select Bar. 70 RESET Reset, Active High. 71 IRQ Interrupt Request. 72 AGND Analog Common. 73 IPTAT
Factory Test Pin. Output current is proportional to absolute temperature, approximately 10 μA at 25°C with approximately 20 nA/°C slope. This pin should remain floating.
Pin
Mnemonic Description
No.
74 VREF Voltage Reference Output. 75 I120 120 μA Reference Current. 76 AVDD33 3.3 V Analog Supply. 77 AGND Analog Common. 78 AVDD33 3.3 V Analog Supply. 79 AGND Analog Common. 80 AVDD33 3.3 V Analog Supply. 81 AGND Analog Common. 82 AGND Analog Common. 83 OUT2_P
Differential DAC Current Output, Channel 2.
84 OUT2_N
Differential DAC Current Output,
Channel 2. 85 AGND Analog Common. 86 AUX2_P Auxiliary DAC Current Output, Channel 2. 87 AUX2_N Auxiliary DAC Current Output, Channel 2. 88 AGND Analog Common. 89 AUX1_N Auxiliary DAC Current Output, Channel 1. 90 AUX1_P Auxiliary DAC Current Output, Channel 1. 91 AGND Analog Common. 92 OUT1_N
Differential DAC Current Output,
Channel 1. 93 OUT1_P
Differential DAC Current Output,
Channel 1. 94 AGND Analog Common. 95 AGND Analog Common. 96 AVDD33 3.3 V Analog Supply. 97 AGND Analog Common. 98 AVDD33 3.3 V Analog Supply. 99 AGND Analog Common. 100 AVDD33 3.3 V Analog Supply.
1
The combined differential clock input at the CLK+ and CLK– pins are referred
to as REFCLK.
Rev. A | Page 14 of 56
Page 15
AD9776/AD9778/AD9779

TYPICAL PERFORMANCE CHARACTERISTICS

4
3
2
1
0
–1
–2
INL (16-BIT LSB)
–3
–4
–5
–6
0
10k 20k 30k 60k50k40k
CODE
Figure 6. AD9779 Typical INL
05361-005
100
f
= 160MSPS
90
80
70
SFDR (dBc)
60
50
0 100
Figure 9. AD9779 In-Band SFDR vs. f
DATA
f
= 200MSPS
DATA
f
= 250MSPS
DATA
20 40 60 80
f
OUT
(MHz)
, 2× Interpolation
OUT
05361-008
1.5
1.0
0.5
0
–0.5
DNL (16-BIT LSB)
–1.0
–1.5
–2.0
0
100
90
80
70
SFDR (dBc)
CODE
Figure 7. AD9779 Typical DNL
f
= 160MSPS
DATA
f
f
= 200MSPS
DATA
DATA
60k50k40k30k20k10k
= 250MSPS
05361-006
100
f
f
= 100MSPS
DATA
90
80
f
= 150MSPS
DATA
70
SFDR (dBc)
60
50
0 100
20 40 60 80
f
OUT
(MHz)
Figure 10. AD9779 In-Band SFDR vs. f
100
f
= 50MSPS
DATA
90
80
70
SFDR (dBc)
f
DATA
= 200MSPS
DATA
, 4× Interpolation
OUT
= 100MSPS
f
DATA
= 125MSPS
05361-009
60
50
0 100
Figure 8. AD9779 In-Band SFDR vs. f
20 40 60 80
f
(MHz)
OUT
, 1x Interpolation
OUT
05361-007
Rev. A | Page 15 of 56
60
50
0
10 20 30 40
f
OUT
(MHz)
Figure 11. AD9779 In-Band SFDR vs. f
, 8× Interpolation
OUT
50
05361-010
Page 16
AD9776/AD9778/AD9779
100
100
90
f
= 160MSPS
DATA
80
70
SFDR (dBc)
60
50
0
20 40 60 80
f
OUT
f
DATA
(MHz)
Figure 12. AD9779 Out-of-Band SFDR vs. f
100
90
80
f
= 150MSPS
DATA
70
SFDR (dBc)
f
= 100MSPS
DATA
60
= 200MSPS
f
DATA
OUT
f
= 200MSPS
DATA
= 250MSPS
, 2× Interpolation
100
05361-011
90
80
70
SFDR (dBc)
60
50
04
10 20 30
f
OUT
PLL OFF
(MHz)
PLL ON
0
05361-014
Figure 15. AD9779 In-Band SFDR, 4× Interpolation,
= 100 MSPS, PLL On/Off
f
DATA
100
90
80
70
SFDR (dBc)
60
0dBFS
–3dBFS
–6dBFS
50
0
20 40 60 80
f
OUT
(MHz)
Figure 13. AD9779 Out-of-Band SFDR vs. f
100
90
f
80
70
SFDR (dBc)
60
50
0
10 20 30 40
DATA
= 50MSPS
f
DATA
f
OUT
= 125MSPS
(MHz)
Figure 14. AD9779 Out-of-Band SFDR vs. f
, 4× Interpolation
OUT
f
= 100MSPS
DATA
, 8× Interpolation
OUT
100
50
05361-012
08
20 40 60
f
OUT
(MHz)
0
05361-015
Figure 16. AD9779 In-Band SFDR vs. Digital Full-Scale Input
100
90
80
70
SFDR (dBc)
60
50
05361-013
50
08
10mA
20mA
30mA
20 40 60
f
OUT
(MHz)
0
05361-016
Figure 17. AD9779 In-Band SFDR vs. Output Full-Scale Current
Rev. A | Page 16 of 56
Page 17
AD9776/AD9778/AD9779
100
f
= 160MSPS
DATA
f
= 200MSPS
(MHz)
DATA
, 1× Interpolation
OUT
90
f
80
IMD (dBc)
70
60
50
0 120
= 250MSPS
DATA
20 40 60 80 100
f
OUT
Figure 18. AD9779 Third-Order IMD vs. f
05361-017
100
90
80
f
IMD (dBc)
70
f
50
DATA
75
= 50MSPS
150
125
100
175
f
DATA
f
OUT
200
60
50
0
25
Figure 21. AD9779 Third-Order IMD vs. f
= 75MSPS
DATA
= 125MSPS
250
225
(MHz)
f
= 100MSPS
DATA
350
325
300
275
, 8× Interpolation
OUT
375
400
425
450
05361-020
100
f
= 160MSPS
DATA
90
80
IMD (dBc)
70
60
50
0 20 40 60 80 100 120 140 160 180 200 220
Figure 19. AD9779 Third-Order IMD vs. f
100
90
80
IMD (dBc)
70
60
50
0 400
Figure 20. AD9779 Third-Order IMD vs. f
f
= 200MSPS
DATA
f
= 250MSPS
DATA
f
(MHz)
OUT
, 2× Interpolation
OUT
f
= 150MSPS
DATA
f
= 100MSPS
DATA
f
= 200MSPS
DATA
40 80 120 160 200 240 280 320 360
f
(MHz)
OUT
, 4× Interpolation
OUT
05361-018
05361-019
100
90
80
PLL OFF
IMD (dBc)
70
60
50
0 200
20 40 60 80 120 140 160 180
PLL ON
f
OUT
Figure 22. AD9779 Third-Order IMD vs. f
= 100 MSPS, PLL On vs. PLL Off
f
DATA
100
95
90
85
80
75
IMD (dBc)
70
65
60
55
50
40 80 120 160 200 240 280 320
0 400360
f
OUT
Figure 23. AD9779 Third-Order IMD vs. f
= 200 MSPS
f
DATA
100
(MHz)
, 4× Interpolation,
OUT
(MHz)
, over 50 Parts,4× Interpolation,
OUT
05361-021
05361-022
Rev. A | Page 17 of 56
Page 18
AD9776/AD9778/AD9779
100
95
90
85
80
75
IMD (dBc)
70
65
60
55
50
0
Figure 24. IMD Performance vs. Digital Full-Scale Input, 4× Interpolation,
100
95
90
85
80
75
30mA
IMD (dBc)
70
65
60
55
50
0
Figure 25. IMD Performance vs. Full-Scale Output Current, 4× Interpolation,
REF 0dBm *PEAK
Log 10dB/
0dBFS
–3dBFS
–6dBFS
80 160 240 36032040 120 200 280
80 160 240 36032040 120 200 280
*ATTEN 20dB
f
20mA
f
f
OUT
= 200 MSPS
DATA
10mA
f
OUT
= 200 MSPS
DATA
(MHz)
(MHz)
EXT REF
DC COUPLED
400
05361-117
400
05361-118
REF 0dBm *PEAK
Log 10dB/
LGAV 51
S2
W1
FC
S3
AA £(f): FTUN SWP
START 1.0MHz *RES BW 20kHz
*ATTEN 20dB
SWEEP 1.203s (601 pts)VBW 20kHz
EXT REF
DC COUPLED
STOP 400.0MHz
05361-024
Figure 27. AD9779 Two-Tone Spectrum, 4× Interpolation,
= 100 MSPS, f
f
DATA
–142
–146
–150
–154
–158
NSD (dBm/Hz)
–162
–166
–170
0
20 40 60 80
= 30 MHz, 35 MHz
OUT
0dBFS
–6dBFS
f
(MHz)
OUT
–3dBFS
05361-025
Figure 28. AD9779 Noise Spectral Density vs. Digital Full-Scale of Single-Tone
Input, f
–150
–154
–158
= 200 MSPS, 2× Interpolation
DATA
f
DAC
f
= 200MSPS
DAC
= 400MSPS
LGAV 51
S2
W1
FC
S3
AA £(f): FTUN SWP
START 1.0MHz *RES BW 20kHz
SWEEP 1.203s (601 pts)VBW 20kHz
Figure 26. AD9779 Single Tone, 4× Interpolation, f
= 30 MHz
f
OUT
STOP 400.0MHz
= 100 MSPS,
DATA
05361-023
Rev. A | Page 18 of 56
–162
NSD (dBm/Hz)
–166
–170
0 100
20 40 60 80
Figure 29. AD9779 Noise Spectral Density vs. f
with 500 kHz Spacing, f
f
OUT
f
DAC
(MHz)
DATA
= 800MSPS
, Eight-Tone Input
DAC
= 200 MSPS
05361-026
Page 19
AD9776/AD9778/AD9779
–150
–55
–154
f
= 200MSPS
–158
–162
NSD (dBm/Hz)
–166
–170
0 100
DAC
20 40 60 80
f
= 400MSPS
DAC
f
= 800MSPS
DAC
f
(MHz)
OUT
Figure 30. AD9779 Noise Spectral Density vs. f
DAC
05361-027
,
Single-Tone Input at −6 dBFS
–55
–60
–65
–70
0dBFS
–75
ACLR (dBc)
–80
–85
–90
20 40 60 80 100 120 140 160 180 200 220 240
0 260
–3dBFS
f
OUT
(MHz)
0dBFS – PLL ON
–6dBFS
05361-028
Figure 31. AD9779 ACLR for First Adjacent Band WCDMA, 4× Interpolation,
= 122.88 MSPS, On-Chip Modulation Translates Baseband Signal to IF
f
DATA
–60
–65
–70
–75
ACLR (dBc)
–80
–85
–90
0 260
–6dBFS
0dBFS
20 40 60 80 100 120 140 160 180 200 220 240
f
OUT
(MHz)
0dBFS – PLL ON
–3dBFS
05361-029
Figure 32. AD9779 ACLR for Second Adjacent Band WCDMA, 4×
Interpolation, f
= 122.88 MSPS. On-Chip Modulation Translates
DATA
Baseband Signal to IF
–55
–60
–65
–70
–75
ACLR (dBc)
–80
–85
–90
0dBFS
20 40 60 80 100 120 140 160 180 200 220 240
0 260
–6dBFS
f
OUT
(MHz)
0dBFS – PLL ON
–3dBFS
05361-030
Figure 33. AD9779 ACLR for Third Adjacent Band WCDMA, 4× Interpolation,
= 122.88 MSPS, On-Chip Modulation Translates Baseband Signal to IF
f
DATA
Rev. A | Page 19 of 56
Page 20
AD9776/AD9778/AD9779
REF –25.28dBm *AVG
Log 10dB/
*ATTEN 4dB
1.5
1.0
PAVG 10 W1 S2
CENTER 143.88MHz *RES BW 30kHz
RMS RESULTS
CARRIER POWER –12.49dBm/
3.84000MHz
FREQ OFFSET
5.000MHz
10.00MHz
15.00MHz
Figure 34. AD9779 WCDMA Signal, 4× Interpolation,
REF –30.28dBm *AVG
Log 10dB/
REF BW
3.840MHz
3.840MHz
3.840MHz
=122.88 MSPS, f
f
DATA
*ATTEN 4dB
SWEEP 162.2ms (601 pts)VBW 300kHz
LOWER
dBm
dBc
–89.23
–76.75
–93.43
–80.94
–92.44
–79.95
/4 Modulation
DAC
SPAN 50MHz
UPPER
dBc –77.42 –80.47 –78.96
EXT REF
dBm –89.91 –92.96 –91.45
EXT REF
05361-031
0.5
0
INL (14-BIT LSB)
–0.5
–1.0
–1.5
0
0.6
0.4
0.2
0
–0.2
–0.4
DNL (14-BIT LSB)
–0.6
2k 4k 6k 8k
CODE
Figure 36. AD9778 Typical INL
10k
05361-033
PAVG 10 W1 S2
dBm –85.57 –97.87 –99.52
SPAN 50MHz
UPPER
dBc
dBm
–67.70
–85.57
–69.32
–87.19
–71.00
–88.88
CENTER 151.38MHz *RES BW 30kHz
TOTAL CARRIER POWER –12.61dBm/15.3600MHz REF CARRIER POWER –17.87dBm/3.84000MHz
1 –17.87dBm 2 –20.65dBm 3 –18.26dBm 4 –18.23dBm
FREQ OFFSET
5.000MHz
10.00MHz
15.00MHz
INTEG BW
3.840MHz
3.840MHz
3.840MHz
LOWER
dBc –67.70 –70.00 –71.65
SWEEP 162.2ms (601 pts)VBW 300kHz
Figure 35. AD9779 Multicarrier WCDMA Signal, 4× Interpolation,
f
=122.88 MSPS, f
DAC
/4 Modulation
DAC
05361-032
–0.8
–1.0
0
CODE
16k14k12k10k8k6k4k2k
05361-034
Figure 37. AD9778 Typical DNL
Rev. A | Page 20 of 56
Page 21
AD9776/AD9778/AD9779
*ATTEN 4dB
100
REF –25.39dBm *AVG
Log 10dB/
90
4× 150MSPS
80
IMD (dBc)
70
4× 200MSPS
4× 100MSPS
60
50
0 400
40 80 120 160 200 240 280 320 360
f
OUT
(MHz)
Figure 38. AD9778 IMD, 4× Interpolation
100
90
80
70
SFDR (dBc)
f
DATA
= 160MSPS
f
DATA
f
= 200MSPS
DATA
= 250MSPS
PAVG 10 W1 S2
dBm –89.23 –92.87 –93.64
SPAN 50MHz
UPPER
dBc
dBm
–76.89
–89.63
–80.02
–92.76
–79.53
–92.27
05361-038
CENTER 143.88MHz *RES BW 30kHz
RMS RESULTS
05361-035
CARRIER POWER –12.74dBm/
3.84000MHz
FREQ OFFSET
5.000MHz
10.00MHz
15.00MHz
REF BW
3.884MHz
3.840MHz
3.840MHz
Figure 41. AD9778 ACLR, f
f
DAC
SWEEP 162.2ms (601 pts)VBW 300kHz
LOWER
dBc –76.49 –80.13 –80.90
= 122.88 MSPS, 4× Interpolation,
DATA
/4 Modulation
–150
–154
f
= 200MSPS
DAC
–158
–162
NSD (dBm/Hz)
f
f
= 800MSPS
DAC
= 400MSPS
DAC
60
50
0 100
20 40 60 80
f
(MHz)
OUT
Figure 39. AD9778 In-Band SFDR, 2× Interpolation
–60
–70
ACLR (dBc)
3RD ADJ CHAN
1ST ADJ CHAN
–80
2ND ADJ CHAN
–90
0
25 50 75 100 125 150 175 200 225
f
OUT
(MHz)
Figure 40. AD9778 ACLR, Single-Carrier WCDMA, 4× Interpolation,
= 122.88 MSPS, Amplitude = −3 dBFS
f
DATA
250
05361-036
05361-037
–166
–170
0 100
Figure 42. AD9778 Noise Spectral Density vs. f
20 40 60 80
f
(MHz)
OUT
DAC
with 500 kHz Spacing, f
= 200 MSPS
DATA
Eight-Tone Input
–150
–154
f
= 200MSPS
DAC
f
= 400MSPS
–158
–162
NSD (dBm/Hz)
f
DAC
= 800MSPS
DAC
–166
–170
0 100
Figure 43. AD9778 Noise Spectral Density vs. f
20 40 60 80
f
(MHz)
OUT
Single-Tone Input
at −6 dBFS, f
= 200 MSPS
DATA
DAC
05361-039
05361-040
Rev. A | Page 21 of 56
Page 22
AD9776/AD9778/AD9779
0.4
0.3
0.2
0.1
0
–0.1
INL (12-BIT LSB)
–0.2
–0.3
100
90
f
= 160MSPS
DATA
80
f
= 250MSPS
70
SFDR (dBc)
60
f
DATA
= 200MSPS
DATA
–0.4
512 1024 256020481536 3072 3584
0 4096
CODE
Figure 44. AD9776 Typical INL
0.20
0.15
0.10
0.05
0
–0.05
DNL (12-BIT LSB)
–0.10
–0.15
–0.20
512 1024 1536 2560 3072 3584
0 4096
2048
CODE
Figure 45. AD9776 Typical DNL
100
95
90
85
80
75
IMD (dBc)
70
65
60
55
50
0 400
40 80 120 160 200 240 280 320 360
4× 100MSPS
4× 150MSPS
f
(MHz)
OUT
Figure 46. AD9776 IMD, 4× Interpolation
4× 200MSPS
05361-041
05361-042
05361-043
50
0 100
20 40 60 80
f
OUT
(MHz)
Figure 47. AD9776 In-Band SFDR, 2× Interpolation
–55
–60
–65
–70
–75
ACLR (dBc)
–80
–85
–90
0
25 50 75 100 125 150 175 200 225
Figure 48. AD9776 ACLR, f
REF –25.29dBm *AVG
Log 10dB/
PAVG 10 W1 S2
CENTER 143.88MHz *RES BW 30kHz
RMS RESULTS
CARRIER POWER –12.67dBm/
3.84000MHz
FREQ OFFSET
5.000MHz
10.00MHz
15.00MHz
3RD ADJ CHAN
DATA
/4 Modulation
f
DAC
*ATTEN 4dB
REF BW
3.884MHz
3.840MHz
3.840MHz
1ST ADJ CHAN
2ND ADJ CHAN
(MHz)
F
OUT
= 122.88 MSPS, 4× Interpolation,
SWEEP 162.2ms (601 pts)VBW 300kHz
LOWER
dBc –75.00 –78.05 –77.73
dBm –87.67 –90.73 –90.41
dBc –75.30 –77.99 –77.50
Figure 49. AD9776, Single Carrier WCDMA, 4× Interpolation,
= 122.88 MSPS, Amplitude = −3 dBFS
f
DATA
SPAN 50MHz
UPPER
dBm –87.97 –90.66 –90.17
250
05361-044
05361-045
05361-046
Rev. A | Page 22 of 56
Page 23
AD9776/AD9778/AD9779
–150
f
= 200MSPS
DAC
–154
–158
f
= 800MSPS
DAC
–162
NSD (dBm/Hz)
–166
–170
0 100
20 40 60 80
10 30 50 70 90
f
OUT
Figure 50. AD9776 Noise Spectral Density vs. f
with 500 kHz Spacing, f
f
(MHz)
DATA
= 400MSPS
DAC
DAC
= 200 MSPS
, Eight-Tone Input
05361-047
–150
f
= 200MSPS
DAC
f
(MHz)
= 400MSPS
DAC
–154
–158
f
= 800MSPS
DAC
–162
NSD (dBm/Hz)
–166
–170
0 100
20 40 60 80
10 30 50 70 90
f
OUT
Figure 51. AD9776 Noise Spectral Density vs. f
Single-Tone Input at −6 dBFS, f
= 200 MSPS
DATA
DAC
05361-048
,
Rev. A | Page 23 of 56
Page 24
AD9776/AD9778/AD9779

TERMINOLOGY

Integral Nonlinearity (INL)
INL is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.
Differential Nonlinearity (DNL)
DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.
Monotonicity
A DAC is monotonic if the output either increases or remains constant as the digital input increases.
Offset Error
The deviation of the output current from the ideal of zero is called offset error. For I inputs are all 0s. For I inputs are set to 1.
Gain Error
The difference between the actual and ideal output span. The actual span is determined by the difference between the output when all inputs are set to 1 and the output when all inputs are set to 0.
Output Compliance Range
The range of allowable voltage at the output of a current-output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.
Tem p er at u re Dr if t
Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either T offset and gain drift, the drift is reported in ppm of full-scale range (FSR) per degree Celsius. For reference drift, the drift is reported in ppm per degree Celsius.
Power Supply Rejection (PSR)
The maximum change in the full-scale output as the supplies are varied from minimum to maximum specified voltages.
Settling Time
The time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition.
, 0 mA output is expected when the
OUTA
, 0 mA output is expected when all
B
OUTB
or T
MIN
MAX
. For
In-Band Spurious Free Dynamic Range (SFDR)
The difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal between dc and the frequency equal to half the input data rate.
Out-of-Band Spurious Free Dynamic Range (SFDR)
The difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal within the band that starts at the frequency of the input data rate and ends at the Nyquist frequency of the DAC output sample rate. Normally, energy in this band is rejected by the interpolation filters. This specification, therefore, defines how well the interpolation filters work and the effect of other parasitic coupling paths to the DAC output.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first six harmonic com­ponents to the rms value of the measured fundamental. It is expressed as a percentage or in decibels.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.
Interpolation Filter
If the digital inputs to the DAC are sampled at a multiple rate of f
(interpolation rate), a digital filter can be constructed that
DATA
has a sharp transition band near f appear around f
(output data rate) can be greatly suppressed.
DAC
/2. Images that typically
DATA
Adjacent Channel Leakage Ratio (ACLR)
The ratio in dBc between the measured power within a channel relative to its adjacent channel.
Complex Image Rejection
In a traditional two-part upconversion, two images are created around the second IF frequency. These images have the effect of wasting transmitter power and system bandwidth. By placing the real part of a second complex modulator in series with the first complex modulator, either the upper or lower frequency image near the second IF can be rejected.
Rev. A | Page 24 of 56
Page 25
AD9776/AD9778/AD9779

THEORY OF OPERATION

The AD9776/AD9778/AD9779 combine many features that make them very attractive DACs for wired and wireless communications systems. The dual digital signal path and dual DAC structure allow an easy interface with common quadrature modulators when designing single sideband transmitters. The speed and performance of the parts allow wider bandwidths and more carriers to be synthesized than in previously available DACs. The digital engine uses a break­through filter architecture that combines the interpolation with a digital quadrature modulator. This allows the parts to conduct digital quadrature frequency upconversion. They also have features that allow simplified synchronization with incoming data and between multiple parts.
The serial port configuration is controlled by Register 0x00, Bits<6:7>. It is important to note that the configuration changes immediately upon writing to the last bit of the byte. For multi­byte transfers, writing to this register can occur during the middle of a communication cycle. Care must be taken to compensate for this new configuration for the remaining bytes of the current communication cycle.
The same considerations apply to setting the software reset, RESET (Register 0x00, Bit 5) or pulling the RESET pin (Pin 70) high. All registers are set to their default values, except Register 0x00 and Register 0x04, which remain unchanged.
Use of only single-byte transfers when changing serial port configurations or initiating a software reset is recommended to prevent unexpected device behavior.
As described in this section, all serial port data is transferred to/from the device in synchronization to the SCLK pin. If synchronization is lost, the device has the ability to asynchro­nously terminate an I/O operation, putting the serial port controller into a known state and, thereby, regaining synchronization.

SERIAL PERIPHERAL INTERFACE

66
SPI_SDO
SPI
67
SPI_SDI
SPI_SCLK
SPI_CSB
Figure 52. SPI Port
The serial port is a flexible, synchronous serial communications port allowing easy interface to many industry-standard micro­controllers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the
Motorola SPI
® and Intel® SSR protocols. The interface allows
read/write access to all registers that configure the AD9776/ AD9778/AD9779. Single or multiple byte transfers are sup-
PORT
68
69
05361-049
ported, as well as MSB-first or LSB-first transfer formats. The serial interface ports can be configured as a single pin I/O (SDIO) or two unidirectional pins for input/output (SDIO/SDO).

General Operation of the Serial Interface

There are two phases to a communication cycle with the AD977x. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), coincident with the first eight SCLK rising edges. The instruction byte provides the serial port controller with information regarding the data transfer cycle, Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is a read or write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the device.
A logic high on the CSB pin followed by a logic low resets the SPI port timing to the initial state of the instruction cycle. From this state, the next eight rising SCLK edges represent the instruction bits of the current I/O operation, regardless of the state of the internal registers or the other signal levels at the inputs to the SPI port. If the SPI port is in an instruction cycle or a data transfer cycle, none of the present data is written.
The remaining SCLK edges are for Phase 2 of the communica­tion cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one, two, three, or four data bytes as determined by the instruction byte. Using one multibyte transfer is preferred. Single-byte data transfers are useful in reducing CPU overhead when register access requires only one byte. Registers change immediately upon writing to the last bit of each transfer byte.

Instruction Byte

The instruction byte contains the information shown in Tabl e 9 .
Table 9. SPI Instruction Byte
MSB LSB I7 I6 I5 I4 I3 I2 I1 I0
R/W
N1 N0 A4 A3 A2 A1 A0
R/W, Bit 7 of the instruction byte, determines whether a read or a write data transfer occurs after the instruction byte write. Logic high indicates a read operation. Logic 0 indicates a write operation.
N1 and N0, Bit 6 and Bit 5 of the instruction byte, determine the number of bytes to be transferred during the data transfer cycle. The bit decodes are listed in
Tabl e 10 .
A4, A3, A2, A1, and A0—Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0, respec­tively, of the instruction byte determine the register that is accessed during the data transfer portion of the communication cycle.
Rev. A | Page 25 of 56
Page 26
AD9776/AD9778/AD9779
For multibyte transfers, this address is the starting byte address. The remaining register addresses are generated by the device based on the LSB-first bit (Register 0x00, Bit 6).
Table 10. Byte Transfer Count
N1 N0 Description
0 0 Transfer one byte 0 1 Transfer three bytes 1 0 Transfer two bytes 1 1 Transfer four bytes

Serial Interface Port Pin Descriptions

Serial Clock (SCLK)
The serial clock pin synchronizes data to and from the device and to run the internal state machines. The maximum frequency of SCLK is 40 MHz. All data input is registered on the rising edge of SCLK. All data is driven out on the falling edge of SCLK.
Chip Select (CSB) Active low input starts and gates a communication cycle. It allows more than one device to be used on the same serial communications lines. The SDO and SDIO pins go to a high impedance state when this input is high. Chip select should stay low during the entire communication cycle.
Serial Data I/O (SDIO) Data is always written into the device on this pin. However, this pin can be used as a bidirectional data line. The configuration of this pin is controlled by Register 0x00, Bit 7. The default is Logic 0, configuring the SDIO pin as unidirectional.
Serial Data Out (SDO)
Data is read from this pin for protocols that use separate lines for transmitting and receiving data. In the case where the device operates in a single bidirectional I/O mode, this pin does not output data and is set to a high impedance state.

MSB/LSB TRANSFERS

The serial port can support both MSB-first and LSB-first data formats. This functionality is controlled by Register Bit LSB_FIRST (Register 0x00, Bit 6). The default is MSB-first (LSB-first = 0).
When LSB-first = 0 (MSB-first) the instruction and data bit must be written from MSB to LSB. Multibyte data transfers in MSB-first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes should follow from high address to low address. In MSB-first mode, the serial port internal byte address generator decrements for each data byte of the multibyte communication cycle.
When LSB-first = 1 (LSB-first) the instruction and data bit must be written from LSB to MSB. Multibyte data transfers in LSB-first format start with an instruction byte that includes the register address of the least significant data byte followed by mul­tiple data bytes. The serial port internal byte address generator increments for each byte of the multibyte communication cycle.
The serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations if the MSB-first mode is active. The serial port controller address increments from the data address written toward 0x1F for multibyte I/O operations if the LSB-first mode is active.
INSTRUCTIO N CYCLE DATA TRANSFER CYCLE
CSB
SCLK
SDIO
SDO
CSB
SCLK
SDIO
SDO
CSB
SCLK
SDIO
CSB
SCLK
SDIO
SDO
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6ND5
D7 D6ND5
N
N
Figure 53. Serial Register Interface Timing MSB-First
INSTRUCTIO N CYCLE DATA TRANSFER CYCLE
A0 A1 A2 A3 A4 N0 N1 R/W D00D10D2
D00D10D2
0
0
Figure 54. Serial Register Interface Timing LSB-First
t
DS
t
DS
t
PWH
t
t
SCLK
t
PWL
DH
INSTRUCTIO N BIT 6INSTRUCTION BIT 7
Figure 55. Timing Diagram for SPI Register Write
t
DV
DATA BIT n–1DATA BIT n
Figure 56. Timing Diagram for SPI Register Read
D00D10D20D3
0
D00D10D20D3
0
N
N
05361-050
D7ND6ND5ND4
D7ND6ND5ND4
05361-051
05361-052
05361-053
Rev. A | Page 26 of 56
Page 27
AD9776/AD9778/AD9779

SPI REGISTER MAP

Table 11.
Register Name Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Def.
Comm 0x00 00 SDIO
Digital Control
Sync Control
0x04 04 Data Clock Delay<3:0> Output Sync Pulse Divide<2:0> Sync Out
0x05 05 Sync Out Delay<3:0> Input Sync Pulse Frequency Ratio<2:0> Sync Input
0x06 06 Sync Input Delay<3:0> Input Sync Pulse Timing Error Tolerance<3:0> 0x00 0x07 07 Sync
PLL Control
0x09 09 PLL Enable PLL VCO Divider Ratio<1:0> PLL Loop
Misc Control
Control Register
Control Register
Control Register
Aux DAC2 Control Register
Interrupt Register
0x01 01 Filter Interpolation Factor<1:0> Filter Modulation Mode<3:0> Zero
0x02 02 Data Format Dual/Interleaved
0x03 03 Data Clock Delay Mode<1:0> Data Clock Divide
0x08 08 PLL Band Select<5:0> PLL VCO AGC
0x0A 10 PLL Control Voltage Range<2:0> (Read Only) PLL Loop Bandwidth Adjustment<4:0> 0x38
0x0B 11 I DAC Gain Adjustment<7:0> 0xF9 I DAC 0x0C 12 I DAC Sleep I DAC Power
0x0D 13 Auxiliary DAC1 Data<7:0> 0x00 Aux DAC1 0x0E 14 Auxiliary
0x0F 15 Q DAC Gain Adjustment<7:0> 0xF9 Q DAC 0x10 16 Q DAC Sleep Q DAC Power-
0x11 17 Auxiliary DAC2 Data<7:0> 0x00 0x12 18 Auxiliary
19 to 24 Reserved
0x13 to 0x18
0x19 25 Sync Delay IRQ Sync
26 to 31 Reserved
0x1A to 0x1F
Bidirectional
Receiver Enable
DAC1 Sign
DAC2 Sign
LSB/MSB First Software
Data Bus Mode
Sync Driver Enable
Down
Auxiliary DAC1
Current Direction
Down
Auxiliary DAC2
Current Direction
Reset
Real Mode Data
Ratio<1:0>
Sync Triggering Edge
I DAC Gain
Auxiliary
DAC1
Power-
Down
Q DAC Gain
Auxiliary
DAC2
Power-
Down
Power­Down Mode
Clock Delay Enable
Ratio<1:0>
Auto Power­Down Enable
Inverse Sinc Enable
Divide
Auxiliary DAC1
Auxiliary DAC2
PLL Lock
DATACLK Invert
DAC Clock Offset<4:0> 0x00
PLL Bias Setting<2:0> 0x37
Delay
Enable
Indicator (Read Only)
TxEnable Invert
Reserved 0x00
Adjustment<9:8>
Adjustment<9:8>
IRQ
0x00
Stuffing Enable
Q First 0x00
Delay<4>
Delay<4>
Gain<1:0>
Data<9:8>
Data<9:8>
Internal
Sync
Loopback
0x00
0x00
0x00
0xCF
0x01
0x00
0x01
0x00
0x00
Rev. A | Page 27 of 56
Page 28
AD9776/AD9778/AD9779
Table 12. SPI Register Description
Address Register Name Reg. No. Bits Description Function Default
Comm Register 00 7 SDIO bidirectional 0: use SDIO pin as input data only 0 1: use SDIO as both input and output data 00 6 LSB/MSB first 0: first bit of serial data is MSB of data byte 0 1: first bit of serial data is LSB of data byte 00 5 Software reset
00 4 Power-down mode 0: all circuitry is active
00 3 Auto power-down enable
00 1 PLL lock (read only) 0: PLL is not locked 1: PLL is locked 0 Digital Control Register 01 7:6 Filter interpolation factor 00: 1× interpolation 00 01: 2× interpolation 10: 4× interpolation 11: 8× interpolation 01 5:2 Filter modulation mode See Table 21 for filter modes 0000 01 0 Zero stuffing 0: zero stuffing off 0 1: zero stuffing on 02 7 Data format 0: signed binary 0 1: unsigned binary 02 6 Dual/interleaved data bus mode 0: both input data ports receive data 0 1: Data Port 1 only receives data 02 5 Real mode 0: enable Q path for signal processing 0
02 4 DATACLK delay enable
02 3 Inverse sinc enable 0: inverse sinc filter disabled 0 1: inverse sinc filter enabled 02 2 DATACLK invert
02 1 TxEnable invert
02 0 Q first
Sync Control Register 03 7:6 Data clock delay mode 00: manual 00 03 5:4 Extra data clock divide ratio
03 3:0 Reserved 000 04 7:4 Data clock delay Sets delay of REFCLK in to DATACLK out 0000 04 3:1 Output sync pulse divide Sets frequency of SYNC_O pulses 000 04 0 Sync out delay Sync output delay, Bit 4 05 7:4 Sync out delay Sync output delay, Bits<3:0> 0 05 3:1 Input sync pulse frequency
05 0 Sync input delay Sync input delay, Bit 4 0
Bit must be written with a 1, then 0 to soft reset SPI register map
1: disable all digital and analog circuitry, only SPI port is active
Controls auto power-down mode, see the Power-Down and Sleep Modes section
1: disable Q path data (internal Q channel clocks disabled, I and Q modulators disabled)
Using Data Delay to Meet Timing
See the Requirements
0: output DATACLK same phase as internal capture clock
1: output DATACLK opposite phase as internal capture clock
Inverts the function of TxEnable Pin 39, see
Interleaved Data Mode section
the 0: first byte of data is always I data at
beginning of transmit 1: first byte of data is always Q data at
beginning of transmit
Data clock output divider (see divider ratio)
Input sync pulse frequency divider, see the
AN-822 application note
section.
Table 22 for
0
0
0
0
00
000
Rev. A | Page 28 of 56
Page 29
AD9776/AD9778/AD9779
Address Register Name Reg. No. Bits Description Function Default
Sync Control Register 06 7:4 Sync input delay
See the
Multiple DAC Synchronization section for details on using these registers to synchronize multiple DACs
06 3:0
Input sync pulse timing error
0
tolerance 07 7 Sync receiver enable 0 07 6 Sync driver enable 0 07 5 Sync triggering edge 0 07 4:0
SYNC_I to input data sampling
0
clock offset PLL Control 08 7:2 PLL band select
08 1:0 VCO AGC gain control
VCO frequency range vs. PLL band select value (see
Tab le 18)
Lower number (low gain) is generally better for performance
09 7 PLL enable
0: PLL off, DAC rate clock supplied by outside source
1: PLL on, DAC rate clock synthesized internally from external reference clock via PLL clock multiplier
09 6:5 PLL VCO divide ratio FVCO/f
DAC
00 × 1 01 × 2 10 × 4 11 × 8 09 4:3 PLL loop divide ratio f
DAC/fREF
00 × 2 01 × 4 10 × 8 11 × 16 09 2:0 PLL bias setting Always set to 010 010
0A 7:5 PLL control voltage range
000 to 111, proportional to voltage at PLL loop filter output, readback only
0A 4:0 PLL loop bandwidth adjustment
PLL Loop Filter Bandwidth section for
See details
I DAC Control Register 0B 7:0 I DAC gain adjustment
(7:0) LSB slice of 10-bit gain setting word
for I DAC 0C 7 I DAC sleep 0: I DAC on 0 1: I DAC off 0C 6 I DAC power-down 0: I DAC on 0 1: I DAC off 0C 1:0 I DAC gain adjustment
(9:8) MSB slice of 10-bit gain setting word
for I DAC Aux DAC1 Control
Register
0D 7:0 Aux DAC1 gain adjustment
(7:0) LSB slice of 10-bit gain setting word for
Aux DAC1
0E 7 Aux DAC1 sign 0: positive 1: negative 0E 6 Aux DAC1 current direction 0: source 0 1: sink 0E 5 Aux DAC1 power-down 0: Aux DAC1 on 0 1: Aux DAC1 off 0E 1:0 Aux DAC1 gain adjustment
(9:8) MSB slice of 10-bit gain setting word
for Aux DAC1
0
111001
11
0
Misc Control
11111001
01
00000000
00
Rev. A | Page 29 of 56
Page 30
AD9776/AD9778/AD9779
Address Register Name Reg. No. Bits Description Function Default
Q DAC Control Register 0F 7:0 Q DAC gain adjustment
10 7 Q DAC sleep 0: Q DAC on 0 1: Q DAC off 10 6 Q DAC power-down 0: Q DAC on 0 1: Q DAC off 10 1:0 Q DAC gain adjustment
Aux DAC2 Control Register
Interrupt Register 19 7 0 19 6 Sync delay IRQ Readback, must write 0 to clear 0 19 5 0 19 3 0 19 2 Sync delay IRQ enable 0 19 1 0 19 0 Internal sync loopback 0
11 7:0 Aux DAC2 gain adjustment
12 7 Aux DAC2 sign 0: positive 1: negative 12 6 Aux DAC2 current direction 0: source 0 1: sink 12 5 Aux DAC2 power-down 0: Aux DAC2 on 0 1: Aux DAC2 off 12 1:0 Aux DAC2 gain adjustment
(7:0) LSB slice of 10-bit gain setting word for Q DAC
(9:8) MSB slice of 10-bit gain setting word for Q DAC
(7:0) LSB slice of 10-bit gain setting word for Aux DAC2
(9:8) MSB slice of 10-bit gain setting word for Aux DAC2
11111001
00000000
00
Rev. A | Page 30 of 56
Page 31
AD9776/AD9778/AD9779

INTERPOLATION FILTER ARCHITECTURE

The AD9776/AD9778/AD9779 can provide up to 8× interpola­tion, or the interpolation filters can be entirely disabled. It is important to note that the input signal should be backed off by approximately 0.01 dB from full scale to avoid overflowing the interpolation filters. The coefficients of the low-pass filters and the inverse sinc filter are given in
Tabl e 16 . Spectral plots for the filter responses are shown in
and
Tabl e 1 3 , Tab l e 1 4 , Tab l e 1 5 ,
Figure 57, Figure 58, and Figure 59.
Table 13. Half-Band Filter 1
Lower Coefficient Upper Coefficient Integer Value
H(1) H(55) −4 H(2) H(54) 0 H(3) H(53) +13 H(4) H(52) 0 H(5) H(51) −34 H(6) H(50) 0 H(7) H(49) +72 H(8) H(48) 0 H(9) H(47) −138 H(10) H(46) 0 H(11) H(45) +245 H(12) H(44) 0 H(13) H(43) −408 H(14) H(42) 0 H(15) H(41) +650 H(16) H(40) 0 H(17) H(39) −1003 H(18) H(38) 0 H(19) H(37) +1521 H(20) H(36) 0 H(21) H(35) −2315 H(22) H(34) 0 H(23) H(33) +3671 H(24) H(32) 0 H(25) H(31) −6642 H(26) H(30) 0 H(27) H(29) +20,755 H(28) +32,768
Table 14. Half-Band Filter 2
Lower Coefficient Upper Coefficient Integer Value
H(1) H(23) −2 H(2) H(22) 0 H(3) H(21) +17 H(4) H(20) 0 H(5) H(19) −75 H(6) H(18) 0 H(7) H(17) +238 H(8) H(16) 0 H(9) H(15) −660 H(10) H(14) 0 H(11) H(13) +2530 H(12) +4096
Rev. A | Page 31 of 56
Table 15. Half-Band Filter 3
Lower Coefficient Upper Coefficient Integer Value
H(1) H(15) −39 H(2) H(14) 0 H(3) H(13) +273 H(4) H(12) 0 H(5) H(11) −1102 H(6) H(10) 0 H(7) H(9) +4964 H(8) +8192
Table 16. Inverse Sinc Filter
Lower Coefficient Upper Coefficient Integer Value
H(1) H(9) +2 H(2) H(8) −4 H(3) H(7) +10 H(4) H(6) −35 H(5) +401
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 57. 2× Interpolation, Low-Pass Response to ±4× Input Data Rate
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
Figure 58. 4× Interpolation, Low-Pass Response to ±4× Input Data Rate
(Dotted Lines Indicate 1 dB Roll-Off)
–4
3–2–10123
f
(× Input Data Rate)
OUT
(Dotted Lines Indicate 1 dB Roll-Off)
4
4
05361-054
05361-055
Page 32
AD9776/AD9778/AD9779
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
4
05361-056
Figure 59. 8× Interpolation, Low-Pass Response to ±4× Input Data Rate
(Dotted Lines Indicate 1 dB Roll-Off)
With the interpolation filter and modulator combined, the incoming signal can be placed anywhere within the Nyquist region of the DAC output sample rate. When the input signal is complex, this architecture allows modulation of the input signal to positive or negative Nyquist regions (see
Tabl e 17).
The Nyquist regions of up to 4× the input data rate can be seen in
Figure 60.
7–7 –5 –3 –1 2 4 6 8
–4×–8–3×–6–2×–4–1×–2DC11×32×53×
4×
05361-057
Figure 60. Nyquist Zones
Figure 57, Figure 58, and Figure 59 show the low-pass response of the digital filters with no modulation. By turning on the modulation feature, the response of the digital filters can be tuned to anywhere within the DAC bandwidth. As an example, Figure 61 to Figure 67 show the nonshifted mode filter responses (refer to
Tabl e 1 7 for shifted/nonshifted mode filter responses).
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 61. Interpolation/Modulation Combination of 4 f
DAC
4
/8 Filter
05361-058
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 62. Interpolation/Modulation Combination of −3 f
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 63. Interpolation/Modulation Combination of −2 f
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 64. Interpolation/Modulation Combination of −1 f
/8 Filter
DAC
/8 Filter
DAC
/8 Filter
DAC
4
4
4
05361-059
05361-060
05361-061
Rev. A | Page 32 of 56
Page 33
AD9776/AD9778/AD9779
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(× Input Data Rate)
OUT
Figure 65. Interpolation/Modulation Combination of f
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
–3 –2 –1 0 1 2 3
f
(×Input Data Rate)
OUT
Figure 66. Interpolation/Modulation Combination of
/8 Filter in Shifted Mode
2 f
DAC
10
0
–10
–20
–30
–40
–50
–60
ATTENUATION (dB)
–70
–80
–90
–100
–4
3–2–10123
f
(×Input Data Rate)
OUT
Figure 67. Interpolation/Modulation Combination of
/8 Filter in Shifted Mode
3 f
DAC
DAC
/8 Filter
4
4
4
05361-062
05361-063
05361-064
Shifted mode filter responses allow the pass band to be centered around ±0.5 f
DATA
, ±1.5 f
DATA
, ±2.5 f
, and ±3.5 f
DATA
. Switching
DATA
to the shifted mode response does not modulate the signal. Instead, the pass band is simply shifted. For example, picture the response shown in is a complex signal over the bandwidth 3.2 f
Figure 67 and assume the signal in-band
DATA
to 3.3 f
DATA
. If the even mode filter response is then selected, the pass band becomes centered at 3.5 f
. However, the signal remains at
DATA
the same place in the spectrum. The shifted mode capability allows the filter pass band to be placed anywhere in the DAC Nyquist bandwidth.
The AD9776/AD9778/AD9779 are dual DACs with internal complex modulators built into the interpolating filter response. In dual channel mode, the devices expect the real and the imaginary components of a complex signal at Digital Input Port 1 and Digital Input Port 2 (I and Q, respectively). The DAC outputs then represent the real and imaginary components of the input signal, modulated by the complex carrier f f
DAC
/4, or f
DAC
/8.
DAC
/2,
With Register 2, Bit 6 set, the device accepts interleaved data on Port 1 in the I, Q, I, Q . . . sequence. Note that in interleaved mode, the channel data rate at the beginning of the I and the Q data paths are now half the input data rate because of the inter­leaving. The maximum input data rate is still subject to the maximum specification of the device. This limits the synthesis bandwidth available at the input in interleaved mode.
With Register 0x02, Bit 5 (real mode) set, the Q channel and the internal I and Q digital modulation are turned off. The output spectrum at the I DAC then represents the signal at Digital Input Port 1, interpolated by 1×, 2×, 4×, or 8×.
The general recommendation is that if the desired signal is within ±0.4 × f
, the odd filter mode should be used. Outside
DATA
of this, the even filter mode should be used. In any situation, the total bandwidth of the signal should be less than 0.8 × f
DATA
.
Rev. A | Page 33 of 56
Page 34
AD9776/AD9778/AD9779
Table 17. Interpolation Filter Modes, (Register 0x01, Bits<5:2>)
Nyquist
Filter
Interpolation Factor <7:6>
Mode <5:2>
Modulation
8 0x00 DC 1 −0.05 0 +0.05 8 0x01 DC shifted 2 0.0125 0.0625 0.1125 8 0x02 F/8 3 0.075 0.125 0.175 8 0x03 F/8 shifted 4 0.1375 0.1875 0.2375 8 0x04 F/4 5 0.2 0.25 0.3 8 0x05 F/4 shifted 6 0.2625 0.3125 0.3625 8 0x06 3F/8 7 0.325 0.375 0.425 8 0x07 3F/8 shifted 8 0.3875 0.4375 0.4875 8 0x08 F/2 −8 −0.55 −0.5 −0.45 8 0x09 F/2 shifted −7 −0.4875 −0.4375 −0.3875 8 0x0A −3F/8 −6 −0.425 −0.375 −0.343 8 0x0B −3F/8 shifted −5 −0.3625 −0.3125 −0.2625 8 0x0C −F/4 −4 −0.3 −0.25 −0.2 8 0x0D −F/4 shifted −3 −0.2375 −0.1875 −0.1375 8 0x0E −F/8 −2 −0.175 −0.125 −0.075 8 0x0F −F/8 shifted −1 −0.1125 −0.0625 −0.0125 4 0x00 DC 1 −0.1 0 +0.1 4 0x01 DC shifted 2 0.025 0.125 0.225 4 0x02 F/4 3 0.15 0.25 0.35 4 0x03 F/4 shifted 4 0.275 0.375 0.475 4 0x04 F/2 −4 −0.6 −0.5 −0.4 4 0x05 F/2 shifted −3 −0.475 −0.375 −0.275 4 0x06 −F/4 −2 −0.35 −0.25 −0.15 4 0x07 −F/4 shifted −1 −0.225 −0.125 −0.025 2 0x00 DC 1 −0.2 0 +0.2 2 0x01 DC shifted 2 0.05 0.25 0.45 2 0x02 F/2 −2 −0.7 −0.5 −0.3 2 0x03 F/2 shifted −1 −0.45 −0.25 −0.05
1
Frequency normalized to f
DAC
.
Zone Pass Band
F_Low
1
Center
1
F_High
1
Comments In 8× interpolation;
BW (min) = 0.0375 × f BW (max) = 0.1 × f
In 4× interpolation; BW (min) = 0.075 × f BW (max) = 0.2 × f
In 2× interpolation; BW (min) = 0.15 × f BW (max) = 0.4 × f
DAC
DAC
DAC
DAC
DAC
DAC
Rev. A | Page 34 of 56
Page 35
AD9776/AD9778/AD9779

INTERPOLATION FILTER MINIMUM AND MAXIMUM BANDWIDTH SPECIFICATIONS

The AD977x uses a novel interpolation filter architecture that allows DAC IF frequencies to be generated anywhere in the spectrum. output bandwidth placement. Note that there are no possible filter modes in which the carrier can be placed near 0.5 × f
1.5 × f
The filter architecture not only allows the interpolation filter pass bands to be centered in the middle of the input Nyquist zones (as explained in this section), but also allows the possi­bility of a 3 × f combinations, a carrier of given bandwidth can be placed anywhere in the spectrum and fall into a possible pass band of the interpolation filters. The possible bandwidths accessible with the filter architecture are shown in Figure 70. Note that the shifted and nonshifted filter modes are all accessible by programming the filter mode for the particular interpolation rate.
Figure 69. Nonshifted Bandwidths Accessible with the Filter Architecture
Figure 68 shows the traditional choice of DAC IF
, 2.5 × f
DATA
10
0
–10
/2
DAC
f
–20
–30
–40
–50
ATTENUATION (dB)
–60
–70
–80
–4 4
Figure 68. Traditional Bandwidth Options for TxDAC Output IF
, and so on.
DATA
/4
BASEBAND
/8
DAC
f
+
DAC
f
+
/8
/4
DAC
DAC
f
f
3–2–10123
f
(× Input Data Rate),
OUT
ASSUMING 8× INTERPOLATION
/8 modulation mode. With all of these filter
DAC
Figure 69 and
10
0
–10
–20
–30
–40
–50
ATTENUATIO N (dB)
–60
–70
–80
/8
/2
DAC
f
–4 4
/4
DAC
f
–3 ×
–3 –2 –1 0 1 2 3
/8
DAC
DAC
f
f
f
(×Input Data Rate),
OUT
ASSUMING 8× INTERPOLATION
/8
DAC
f
BASEBAND
+
/4
f
+
DAC
/8
f
+3 ×
DAC
/2
f
+
/2
f
+
DAC
DAC
DATA
05361-066
05361-065
10
0
/8
/4
–10
DAC
f
×
–20
–30
SHIFTED –3
,
–40
–50
ATTENUATION (dB)
–60
–70
–80
–4 4
–3 –2 –1 0 1 2 3
/8
DAC
f
f
SHIFTED –
SHIFTED –
f
OUT
ASSUMING 8
DAC
SHIFTED –DC
(×Input Data Rate),
×
INTERPOLATION
SHIFTED –DC
/8
DAC
f
SHIFTED –
/4
f
SHIFTED –
DAC
/8
DAC
f
×
SHIFTED –3
05361-067
Figure 70. Shifted Bandwidths Accessible with the Filter Architecture
With this filter architecture, a signal placed anywhere in the spectrum is possible. However, the signal bandwidth is limited by the input sample rate of the DAC and the specific placement of the carrier in the spectrum. The bandwidth restriction resulting from the combination of filter response and input sample rate is often referred to as the synthesis bandwidth, since this is the largest bandwidth that the DAC can synthesize.
The maximum bandwidth condition exists if the carrier is placed directly in the center of one of the filter pass bands. In this case, the total 0.1 dB bandwidth of the interpolation filters is equal to 0.8 × f
. As Tab le 1 7 shows, the synthesis band-
DATA
width as a fraction of DAC output sample rate drops by a factor of 2 for every doubling of interpolation rate. The minimum bandwidth condition exists, for example, if a carrier is placed at
0.25 × f enabled, the high end of the filter response cuts off at 0.4 × f
. In this situation, if the nonshifted filter response is
DATA
DATA
, thus limiting the high end of the signal bandwidth. If the shifted filter response is enabled instead, then the low end of the filter response cuts off at 0.1 × f
, thus limiting the low end of the
DATA
signal bandwidth. The minimum bandwidth specification that applies for a carrier at 0.25 × f
is therefore 0.3 × f
DATA
DATA
. The minimum bandwidth behavior is repeated over the spectrum for carriers placed at (±n ± 0.25) × f
, where n is any integer.
DATA

DRIVING THE REFCLK INPUT

The REFCLK input requires a low jitter differential drive signal. It is a PMOS input differential pair powered from the 1.8 V supply, therefore, it is important to maintain the specified 400 mV input common-mode voltage. Each input pin can safely swing from 200 mV p-p to 1 V p-p about the 400 mV common-mode voltage. While these input levels are not directly LVDS-compatible, REFCLK can be driven by an offset ac-coupled LVDS signal, as shown in
Figure 71.
Rev. A | Page 35 of 56
Page 36
AD9776/AD9778/AD9779
2
LVDS_P_IN CLK+
LVDS_N_IN CLK–
0.1μF
0.1μF
50Ω
50Ω
V
CM
= 400mV
05361-068
Figure 71. LVDS REFCLK Drive Circuit
If a clean sine clock is available, it can be transformer-coupled to REFCLK, as shown in
Figure 71. Use of a CMOS or TTL clock is also acceptable for lower sample rates. It can be routed through a CMOS to LVDS translator, then ac-coupled, as described in this section. Alternatively, it can be transformer­coupled and clamped, as shown in
TTL OR CMOS
CLK INPUT
Figure 72. TTL or CMOS REFCLK Drive Circuit
0.1μF
Figure 72.
50Ω
50Ω
CLK+
BAV99ZXCT HIGH SPEED DUAL DIODE
= 400mV
V
CM
CLK–
05361-069
A simple bias network for generating VCM is shown in Figure 73. It is important to use CVDD18 and CGND for the clock bias circuit. Any noise or other signal that is coupled onto the clock is multiplied by the DAC digital input signal and can degrade DAC performance.
= 400mV
V
CM
CVDD18
1kΩ
87Ω
0.1μF 1nF
Figure 73. REFCLK VCM Generator Circuit
1nF
CGND
05361-070

PLL Enabled (Register 0x09, Bit 7 = 1)

The PLL enable switch shown in Figure 74 is connected to the junction of the N1 dividers (PLL VCO divide ratio) and N2 dividers (PLL loop divide ratio). Divider N3 determines the interpolation rate of the DAC, and the ratio N3/N2 determines the ratio of reference clock/input data rate. The VCO runs optimally over the range of 1.0 GHz to 2.0 GHz, so that N1 keeps the speed of the VCO within this range, although the DAC sample rate can be lower. The loop filter components are entirely internal and no external compensation is necessary.

PLL Disabled (Register 0x09, Bit 7 = 0)

The PLL enable switch shown in Figure 74 is connected to the reference clock input. The differential reference clock input is the same as the DAC output sample rate. N3 determines the interpolation rate.
0x0A (7:5) PLL CONT ROL VOLTAG E RANGE
DAC
INTERPO LATION
RATE
DATACLK OUT (PIN 37)
REFERENCE CL OCK
(PINS 5 AND 6)
0x0A (4:0)
PHASE
DETECTI ON
DIVIDE RAT IO
0x09 (7)
PLL ENABLE
LOOP FILTER
BANDWIDTH
INTERNAL
LOOP
FILTER
÷N2 ÷N1
0x09 (4:3)
PLL LOOP
INTERNAL DAC SAM PLE
RATE CLOCK
VCO RANGE
0x09 (6:5) PLL VCO
DIVIDE RATI O
÷N3
0x01 (7:6)
Figure 74. Internal Clock Architecture
ADC
0x08 (7:2)
VCO
05361-071

INTERNAL PLL CLOCK MULTIPLIER/CLOCK DISTRIBUTION

The internal clock structure on the devices allows the user to drive the differential clock inputs with a clock at 1× or an integer multiple of the input data rate or at the DAC output sample rate. An internal PLL provides input clock multiplication and provides all the internal clocks required for the interpolation filters and data synchronization.
The internal clock architecture is shown in reference clock is the differential clock at Pin 5 and Pin 6. This clock input can be run differentially or singled-ended by driving Pin 5 with a clock signal and biasing Pin 6 to the midswing point of the signal at Pin 5. The clock architecture can be run in the following configurations:
Figure 74. The
Rev. A | Page 36 of 56
Page 37
AD9776/AD9778/AD9779
Table 18. VCO Frequency Range vs. PLL Band Select Value
Typical PLL Lock Ranges
PLL Band Select
VCO Frequency Range in MHz
Typ at 2 5°C Typ over Temp
f
LOW
f
HIGH
f
LOW
f
HIGH
111111 (63) Auto mode Auto mode 111110 (62) 2056 2170 2105 2138 111101 (61) 2002 2113 2048 2081 111100 (60) 1982 2093 2029 2061 111011 (59) 1964 2075 2010 2043 111010 58) 1947 2057 1992 2026 111001 (57) 1927 2037 1971 2006 111000 (56) 1907 2016 1951 1986 110111 (55) 1894 2003 1936 1972 110110 (54) 1872 1981 1913 1952 110101 (53) 1852 1960 1892 1931 110100 (52) 1841 1948 1881 1920 110011 (51) 1816 1923 1855 1895 110010 (50) 1796 1903 1835 1874 110001 (49) 1789 1895 1828 1867 110000 (48) 1764 1871 1803 1844 101111 (47) 1746 1853 1784 1826 101110 (46) 1738 1842 1776 1815 101101 (45) 1714 1820 1752 1794 101100 (44) 1700 1804 1737 1779 101011 (43) 1689 1790 1726 1764 101010 (42) 1657 1757 1695 1734 101001 (41) 1641 1738 1679 1714 101000 (40) 1610 1707 1649 1684 100111 (39) 1597 1689 1635 1666 100110 (38) 1568 1661 1607 1639 100101 (37) 1553 1641 1592 1617 100100 (36) 1525 1613 1562 1592 100011 (35) 1511 1595 1548 1572 100010 (34) 1484 1570 1519 1549 100001 (33) 1470 1552 1506 1528 100000 (32) 1441 1525 1474 1504 011111 (31) 1429 1509 1463 1487 011110 (30) 1403 1485 1433 1464 011101 (29) 1390 1469 1422 1447 011100 (28) 1362 1443 1391 1423 011011 (27) 1352 1429 1380 1407 011010 (26) 1325 1405 1352 1385 011001 (25) 1314 1390 1340 1369 011000 (24) 1290 1368 1315 1350 010111 (23) 1276 1351 1302 1332 010110 (22) 1253 1331 1277 1313 010101 (21) 1239 1313 1264 1295 010100 (20) 1183 1255 1205 1240 010011 (19) 1204 1275 1227 1259 010010 (18) 1151 1221 1172 1207 010001 (17) 1171 1240 1193 1224 010000 (16) 1148 1218 1170 1204 001111 (15) 1137 1204 1159 1189
PLL Band Select
001110 (14) 1116 1184 1137 1170 001101 (13) 1106 1171 1127 1157 001100 (12) 1086 1152 1106 1138 001011 (11) 1075 1138 1095 1124 001010 (10) 1055 1119 1075 1106 001001 (9) 1045 1107 1065 1093 001000 (8) 1027 1090 1047 1076 000111 (7) 1016 1076 1034 1062 000110 (6) 998 1059 1016 1046 000101 (5) 987 1046 1005 1032 000100 (4) 960 1017 977 1004 000011 (3) 933 989 949 976 000010 (2) 908 962 923 950 000001 (1) 883 936 898 925 000000 (0) 859 911 873 899

VCO Frequency Ranges

Because the PLL band covers greater than a 2× frequency range, there can be two options for the PLL band select: one at the low end of the range and one at the high end of the range. Under these conditions, the VCO phase noise is optimal when the user selects the band select value corresponding to the high end of the frequency range. the optimal VCO frequency varies with the band select value.

VCO Frequency Ranges over Temperature

The specifications given over temperature in Tab le 1 8 are for a single part in a single lot. Part-to-part, and lot-to-lot, these specifications can exhibit a mean shift of several register settings. Systems should be designed to take this potential shift into account to maintain optimal PLL performance.

PLL Loop Filter Bandwidth

The loop filter bandwidth of the PLL is programmed via SPI Register 0x0A, Bits<4:0>. Changing these values switches capacitors on the internal loop filter. No external loop filter components are required. This loop filter has a pole at 0 (P1), and then a zero (Z1) pole (P2) combination. Z1 and P2 occur within a decade of each other. The location of the zero pole is determined by Bits<4:0>. For a setting of 00000, the zero pole occurs near 10 MHz. By setting Bits<4:0> to 11111, the Z1/P2 combination can be lowered to approximately 1 MHz. The relationship between Bits<4:0> and the position of the zero pole between 1 MHz and 10 MHz is linear. The internal components are not low tolerance, however, and can drift by as much as ±30%.
For optimal performance, the bandwidth adjustment (Register 0x0A, Bits<4:0>) should be set to 11111 for all operating modes with PLL enabled. The PLL bias settings
Rev. A | Page 37 of 56
Typical PLL Lock Ranges
VCO Frequency Range in MHz
Typ at 2 5°C Typ over Temp
f
LOW
f
HIGH
f
LOW
f
HIGH
Figure 75 shows how the VCO bandwidth and
Page 38
AD9776/AD9778/AD9779
(Register 0x09, Bits<2:0>) should be set to 111. The PLL control voltage (Register 0x0A, Bits<7:5>) is read back and is propor­tional to the dc voltage at the internal loop filter output. With the PLL bias settings given in this section, the readback from the PLL control voltage should typically be 010, or possibly 001 or 011. Anything outside of this range indicates that the PLL is not operating correctly.
60
56
52
48
44
40
36
32
28
PLL BAND
24
20
16
12
8
4
0
850
950
1050
1150
1250
1350
F
VCO
1450
(MHz)
1550
1650
1750
1850
Figure 75. Typical PLL Band Select vs. Frequency at 25°C
1950
2050
2150
05361-072
external resistor is 10 k, which sets up an I
REFERENCE
in the resistor of 120 A, which in turn provides a DAC output full­scale current of 20 mA. Because the gain error is a linear function of this resistor, a high precision resistor improves gain matching to the internal matching specification of the devices. Internal current mirrors provide a current-gain scaling, where I DAC or Q DAC gain is a 10-bit word in the SPI port register (Register 0x0A, Register 0x0B, Register 0x0E, and Register 0x0F). The default value for the DAC gain registers gives an I approximately 20 mA, where I
0.1μF
R
VREF
35
V2.1
I120
10kΩ
27
⎛ ⎜
12
6
⎛ ⎜
1024
AD9779
1.2V BAND GAP
Figure 77. Reference Circuitry
×+× gainDAC
is equal to
FS
⎞ ⎟ ⎠
I DAC GAIN
CURRENT
SCALING
Q DAC GAIN
32
×
⎟ ⎠
I DAC
Q DAC
of
FS
DAC FULL-SCALE REFERENCE CURRENT
05361-073
60
56
52
48
44
40
36
32
28
PLL BAND
24
20
16
12
8
4
0
850
950
1050
1150
1250
1350
F
VCO
1450
(MHz)
1550
1650
1750
1850
1950
2050
2150
05361-113
Figure 76. Typical PLL Band Select vs. Frequency over Temperature
The AD977x has an autosearch feature that determines the optimal settings for the PLL. To enable the autosearch mode, set Register 0x08, Bits<7:2> to 11111b, and read back the value from Register 0x08, Bits<7:2>. Autosearch mode is intended to find the optimal PLL settings only, after which the same settings should be applied in manual mode. It is not recommended that the PLL be set to autosearch mode during regular operation.

FULL-SCALE CURRENT GENERATION

Internal Reference

Full-scale current on the I DAC and Q DAC can be set from
8.66 mA to 31.66 mA. Initially, the 1.2 V band gap reference is used to set up a current in an external resistor connected to I120 (Pin 75). A simplified block diagram of the reference circuitry is shown in
Figure 77. The recommended value for the
Rev. A | Page 38 of 56
30
25
20
(mA)
FS
I
15
10
5
0
0
200 400 600 800
DAC GAIN CODE
Figure 78. I
vs. DAC Gain Code
FS
1000
05361-074

Application of Auxiliary DACs in Single Sideband Transmitter

Two auxiliary DACs are provided on the AD977x. The full-scale output current on these DACs is derived from the 1.2 V band gap reference and external resistor. The gain scale from the ref­erence amplifier current I
to the auxiliary DAC reference
REFERENCE
current is 16.67 with the auxiliary DAC gain set to full scale (10-bit values, SPI Register 0x0D and SPI Register 0x11), this gives a full-scale current of approximately 2 mA for auxiliary DAC1 and auxiliary DAC2. The auxiliar y DAC outputs are not differential. Only one side of the auxiliary DAC (P or N) is active at one time. The inactive side goes into a high impedance state (>100 k). In addition, the P or N outputs can act as current sources or sinks. The control of the P and N side for both auxiliary DACs is via Register 0x0E and Register 0x10, Bits<7:6>. When sourcing current, the output compliance
Page 39
AD9776/AD9778/AD9779
voltage is 0 V to 1.6 V. When sinking current, the output compliance voltage is 0.8 V to 1.6 V.
The auxiliary DACs can be used for local oscillator (LO) cancella­tion when the DAC output is followed by a quadrature modulator. This LO feedthrough is caused by the input referred dc offset voltage of the quadrature modulator (and the DAC output offset voltage mismatch) and can degrade system performance. Typical DAC-to-quadrature modulator interfaces are shown in and
Figure 80. Often, the input common-mode voltage for the
Figure 79
modulator is much higher than the output compliance range of the DAC, so that ac coupling or a dc level shift is necessary. If the required common-mode input voltage on the quadrature modulator matches that of the DAC, then the dc blocking capacitors in
Figure 79 can be removed. A low-pass or band-pass passive filter is recommended when spurious signals from the DAC (distortion and DAC images) at the quadrature modulator inputs can affect the system performance. Placing the filter at the location shown in
Figure 79 and Figure 80 allows easy design of the filter, as the source and load impedances can easily be designed close to 50 Ω.
QUADRATURE
MODULATOR V+
AD9779
AUX
DAC1
QUADRATURE
MODULATOR V+
AD9779
I DAC
25Ω TO 50Ω
0.1μF
0.1μF
OPTIONAL
PASSIVE
FILTERING
AD9779
Q DAC
25Ω TO 50Ω
QUAD MOD I INPUTS
0.1μF
0.1μF
OPTIONAL
PASSIVE
FILTERING
Figure 79. Typical Use of Auxiliary DACs AC Coupling to
Quadrature Modulator
QUADRATURE
MODULATOR V+
AD9779
AUX
DAC1 OR 2
QUAD MOD I OR Q INPUTS
AD9779
AUX
DAC2
QUAD MOD Q INPUTS
05361-115
of the 3.3 V supply (mode and speed independent) in single DAC mode is 102 mW/31 mA. In dual DAC mode, this is 182 mW/5
5 mA. Furthermore, when the PLL is enabled, it adds 90 mW/50 mA to the 1.8 V clock supply regardless of the mode of the AD9779.
0.7
0.6
8× INTERPOLATION,
0.5
0.4
0.3
POWER (W)
0.2
0.1
ZERO STUFFING
0
25 50 75 100 125 150 175 200 225
0 250
Figure 81. Total Power Dissipation, I Data Only, Real Mode
0.4
8× INTERPOLATION
0.3
0.2
POWER (W)
0.1
0
25 50 75 100 125 150 175 200 225
0 250
Figure 82. Power Dissipation, Digital 1.8 V Supply, I Data Only, Real Mode,
Does Not Include Zero Stuffing
0.08
0.06 8× INTERPOLATION
8× INTERPOLATION
4× INTERPOLATION,
ZERO STUFFING
f
(MSPS)
DATA
4× INTERPOLATION
f
(MSPS)
DATA
4× INTERPOLATION
4× INTERPOLATION
2× INTERPOLATION,
ZERO STUFFING
2× INTERPOLATION
1× INTERPOLATION,
ZERO STUFFING
1× INTERPOLATION
2× INTERPOLATION
1× INTERPOLATION
05361-076
05361-078
AD9779
I OR Q DAC
25Ω TO 50Ω
OPTIONAL
PASSIVE
FILTERING
25Ω TO 50Ω
05361-116
Figure 80. Typical Use of Auxiliary DACs DC Coupling to Quadrature
Modulator with DC Shift

POWER DISSIPATION

Figure 81 to Figure 89 show the power dissipation of the 1.8 V and 3.3 V digital and clock supplies in single DAC and dual DAC modes. In addition to this, the power dissipation/current
Rev. A | Page 39 of 56
0.04
POWER (W)
0.02
0
25 50 75 100 125 150 175 200 225
0 250
f
DATA
(MSPS)
2× INTERPOLATION
1× INTERPOLATION
Figure 83. Power Dissipation, Clock 1.8 V Supply, I Data Only, Real Mode,
Includes Modulation Modes, Does Not Include Zero Stuffing
05361-079
Page 40
AD9776/AD9778/AD9779
0.075
ALL INTERPOLATION MODES
0.050
POWER (W)
0.025
0
25 50 75 100 125 150 175 200 225
0 250
Figure 84. Digital 3.3 V Supply, I Data Only, Real Mode, Includes Modulation
1.0
8× INTERPOLATI ON,
0.9
ZERO STUFFING
0.8
0.7
0.6
0.5
0.4
POWER (W)
0.3
0.2
4× INTE RPOLATI ON, ZERO STUFFING
0.1
0
0 300250 275
25 50 75 100 125 150 175 200 225
Figure 85. Total Power Dissipation, Dual DAC Mode
f
(MSPS)
DATA
Modes and Zero Stuffing
8× INTERPOLATION, ALL MODULAT ION M ODES
2× INTE RPOLATI ON, ALL MODULATION MO DES
2× INTE RPOLATI ON, ZERO STUFFING
f
DATA
(MSPS)
1× INTE RPOLATI ON, ZERO STUFFING
4× INT ERPOLATI ON, ALL MODULATION MODES
1× INTERPOLATION
05361-077
05361-080
0.125
8× INTERPOLATION, f
0.100
0.075
0.050
POWER (W)
0.025
0
0
NO MODULATION
25 50 75 100 125 150 175 200 225
DAC
f
DAC
f
DAC
f
DATA
/8, /4, /2,
(MSPS)
4× INTERPOLATION
2× INTERPOLATION
1× INTERPOLATION,
NO MODULATION
250
05361-082
Figure 87. Power Dissipation, Clock 1.8 V Supply, I and Q Data, Dual DAC
Mode, Does Not Include Zero Stuffing
0.075
ALL INTERPOLATION MODES
0.050
POWER (W)
0.025
0
0 250
25 50 75 100 125 150 175 200 225
f
DATA
(MSPS)
Figure 88. Digital 3.3 V Supply, I and Q Data, Dual DAC Mode
05361-083
0.8
8× INTERPOLATION, f
0.7
0.6
0.5
0.4
POWER (W)
0.3
0.2
0.1
0
0
NO MODULATION
25 50 75 100 125 150 175 200 225
f f
DAC DAC DAC
f
DATA
/8, /4, /2,
4× INTERPOLATION
2× INTERPOLATION
1× INTERPOLATION, NO MODULATION
(MSPS)
250
05361-081
Figure 86. Power Dissipation, Digital 1.8 V Supply, I and Q Data, Dual DAC
Mode, Does Not Include Zero Stuffing
Rev. A | Page 40 of 56
0.16
0.14
0.12
0.10
0.08
POWER (W)
0.06
0.04
0.02
0
0 1200
200 400 600 800 1000
f
DAC
(MSPS)
Figure 89. Power Dissipation of Inverse Sinc Filter
05361-084
Page 41
AD9776/AD9778/AD9779

POWER-DOWN AND SLEEP MODES INTERLEAVED DATA MODE

The AD977x has a variety of power-down modes, so that the digital engine, main TxDACs, or auxiliary DACs can be powered down individually or together. Via the SPI port, the main TxDACs can be placed in sleep or power-down mode. In sleep mode, the TxDAC output is turned off, thus reducing power dissipation. The reference remains powered on, however, so that recovery from sleep mode is very fast. With the power-down mode bit set (Register 0x00, Bit 4), all analog and digital circuitry, including the reference, is powered down. The SPI port remains active in this mode. This mode offers more substantial power savings than sleep mode, but the turn-on time is much longer. The auxiliary DACs also have the capability to be programmed into sleep mode via the SPI port. The auto power-down enable bit (Register 0x00, Bit 3) controls the power-down function for the digital section of the devices. The auto power-down function works in conjunction with the TXENABLE pin (Pin 39) according to the following:
TXENABLE (Pin 39) =
0: autopower-down enable =
0: flush data path with 0s 1: flush data for multiple REFCLK cycles; then automatically place the digital engine in power-down state. DACs, reference, and SPI port are not affected.
or TXENABLE (Pin 39) =
1: normal operation
As shown in
Figure 90, the power dissipation saved by using the power down mode is nearly proportional to the duty cycle of the signal at the TXENABLE pin.
0.9
0.8
0.7
0.6
0.5
0.4
POWER SAVINGS
0.3
0.2
0.1
0
0 10080604020
Figure 90. Power Savings Based on Duty Cycle of TxEnable
DUTY CYCLE (%)
2× INT f 2× INT f 4× INT 4× INT f 8× INT f 8× INT f
DATA
DATA
f
DATA
DATA
DATA
DATA
= 50MSPS = 200MSPS = 50MSPS = 200MSPS = 50MSPS = 200MSPS
05361-119
If the TxEnable invert bit (Register 0x02, Bit 1) is set, the function of this TXENABLE pin is inverted.
Rev. A | Page 41 of 56
The TxEnable bit is dual function. In dual port mode, it is simply used to power down the digital section of the devices. In interleaved mode, the IQ data stream is synchronized to TXENABLE. Therefore, to achieve IQ synchronization, TXENABLE should be held low until an I data word is present at the inputs to Data Port 1. If a DATACLK rising edge occurs while TXENABLE is at a high logic level, IQ data becomes synchronized to the DATACLK output. TXENABLE can remain high and the input IQ data remains synchronized. To be backwards-compatible with previous DACs from Analog Devices, Inc. such as the AD9777 and AD9786, the user can also toggle TXENABLE once during each data input cycle, thus continually updating the synchronization. If TXENABLE is brought low and held low for multiple REFCLK cycles, then the devices flush the data in the interpolation filters, and shut down the digital engine after the filters are flushed. The amount of REFCLK cycles it takes to go into this power-down mode is then a function of the length of the equivalent 2×, 4×, or 8× interpolation filter. The timing of TXENABLE, I/Q select, filter flush, and digital power-down are shown in
INTERLEAVED
INPUT DATA
TxENABLE
TxENABLE CAN REMAIN
HIGH OR TOGGLE FOR
I/Q SYNCHRONIZATION
I1 Q1 I2 Q2
FLUSHING
INTERPOLATION
FILTERS
Figure 91. TXENABLE Function
Figure 91.
POWER
DOWN DIGITAL
SECTION
The TXENABLE function can be inverted by changing the status of Register 0x02, Bit 1. The other bit that controls IQ ordering is the Q-first bit (Register 0x02, Bit 0). With the Q-first bit reset to the default of 0, the IQ pairing that is latched is the I1Q1, I2Q2, and so on. With IQ first set to 1, the first I data is discarded and the pairing is I2Q1, I3Q2, and so on. Note that with IQ-first set, the I data is still routed to the internal I channel, the Q data is routed to the internal Q channel, and only the pairing changes.

TIMING INFORMATION

Figure 92 to Figure 95 show some of the various timing possibilities when the PLL is enabled. The combination of the settings of N2 and N3 from clock frequency can be a multiple of the actual input data rate. Figure 92 to Figure 95 show, respectively, what the timing looks like when N2/N3 = 1 and 2.
In interleaved mode, set-up and hold times of DATACLK out to data in are the same as those shown in is recommended that any toggling of TXENABLE occur concurrently with the digital data input updating. In this way, timing margins between DATACLK, TXENABLE, and digital input data are optimized.
Figure 74 means that the reference
Figure 92 to Figure 95. It
05361-085
Page 42
AD9776/AD9778/AD9779
REFERENCE
CLOCK IN
DATA
CLOCK OUT
INPUT
DATA
t
SREFCLK
t
SDATACLK
t
HREFCLK
t
HDATACLK
05361-120
Figure 92. Timing Specifications, PLL Enabled or Disabled, Interpolation = 1×
SYNC_IN
t
H_SYNC
t
S_SYNC
REFERENCE
CLOCK IN
DATA
CLOCK OUT
t
HREFCLK
t
HDATACLK
05361-121
INPUT
DATA
t
SREFCLK
t
SDATACLK
Figure 93. Timing Specifications, PLL Enabled or Disabled, Interpolation = 2×
SYNC_IN
t
H_SYNC
t
S_SYNC
REFERENCE
CLOCK IN
DATA
CLOCK OUT
INPUT
DATA
t
SREFCLK
t
SDATACLK
t
HREFCLK
t
HDATACLK
Figure 94. Timing Specifications, PLL Enabled or Disabled, Interpolation = 4×
SYNC_IN
t
H_SYNC
t
REFERENCE
CLOCK IN
DATA
CLOCK OUT
INPUT
DATA
t
SREFCLK
t
SDATACLK
S_SYNC
t
HREFCLK
t
HDATACLK
Figure 95. Timing Specifications, PLL Enabled or Disabled, Interpolation = 8×
5361-122
05361-123
Rev. A | Page 42 of 56
Page 43
AD9776/AD9778/AD9779
K
Specifications are given in Tabl e 1 9 for the drift of input data set up and hold time vs. temperature, as well as the data keep out window (KOW). Note that although these specifications do drift, the length of the keep out window, where input data is invalid, changes very little over temperature.
Table 19. AD9779 Timing Specifications vs. Temperature
Timing Parameter
Temperature
Min t
S
(ns)
Min t
H
(ns)
Max KOW (ns)
REFCLK to DATA −40°C −0.8 +2.2 +1.3 +25°C −1.1 +2.5 +1.4 +85°C −1.3 +2.9 +1.5 DATACLK to DATA −40°C +1.8 −0.4 +1.3 +25°C +2.1 −0.7 +1.4 +85°C +2.5 −0.9 +1.5 SYNC_I to
−40°C to +85°C −0.2 +1.0 +0.8
REFCLK

SYNCHRONIZATION OF INPUT DATA TO DATACLK OUTPUT (PIN 37)

Synchronizing the input data bus to the DATACLK out signal is achieved by meeting the timing relationships between DATACLK and DATA timing specified in nizing the input data to the DATACLK out, the sync input (SYNC_I) signal does not need to be applied and can be ignored (connect to GND).
Tabl e 1 9 . If the user is synchro-
and must be no greater than DATACLK for proper synchronization. There is no limit on how slow the SYNC_I signal can be driven. As long as the set up and hold timing relationship between SYNC_I and REFCLK given in
Tabl e 19 is met, the input data is latched on the immediate next rising edge of REFCLK. Note that a rising edge of DATACLK out occurs concurrently with the next REFCLK rising edge, after a short propagation delay. Although this propagation delay is not specified, input data setup and hold timing information is given with respect to REFCLK in and DATACLK out in
Figure 92 to
Figure 95. Also, note that in 1× interpolation, because there is no phase ambiguity, there is no need to use the SYNC_I signal.

Valid Timing Window

In addition to the timing requirements of SYNC_I with respect to REFCLK, it is important to understand that the valid timing window for SYNC_I is limited by the internal DAC sample rate. This is shown in
Figure 96. When the tS and tH requirements are met, the valid timing window for SYNC_I extends only as far as one period of the internal DAC sample rate (minus t
and tH).
S
Failure to meet this timing specification can potentially result in erroneous data being latched into the AD9779 digital inputs.
As an example, if the AD9779 input data rate is 122.88 MSPS and the REFCLK is the same, with the AD9779 in 4× interpola­tion, the DAC sample rate is 1/491.52 MHz or about 2 ns. With a t
of −0.2 ns and tH of 1.0 ns, this gives a valid timing window
S
for SYNC_I of
2 ns − 0.8 ns = 1.2 ns

SYNCHRONIZATION OF INPUT DATA TO THE REFCLK INPUT (PIN 5 AND PIN 6) WITH PLL ENABLED OR DISABLED

Synchronizing the input data bus to the REFCLK input requires the use of the SYNC_I input pins (Pin 13 and Pin 14). If the SYNC_I input is not used, there is a phase ambiguity between the DATACLK out and the REFCLK in. This ambiguity matches the interpolation rate in which the AD9779, for example, is currently operating. Because input data is latched on the rising edge of DATACLK, it is impossible for the user to determine onto which one of the multiple internal DACCLK edges (as an example, one of four edges in 4× interpolation) the input data actually latches. For the user to specifically determine the exact edge of REFCLK on which the data is being latched, a rising edge must be periodically applied to SYNC_I. The frequency of the SYNC_I signal must be equal to f
REFCL
SYNC_I
/2N, N being an integer,
DAC
Figure 96. Valid Timing Relationship for SYNC_I to REFCLK
t
DAC_SAMPLE
The timing window of the digital input data to REFCLK can be moved in increments of one internal REFCLK cycle by using the REFCLK OFFSET register (Register 0x7, Bits<4:0>).
Because SYNC_I can be run at the same frequency as REFCLK when the PLL is enabled, best practice suggests that in this con­dition, REFCLK and SYNC_I originate from the same source. This limits the variation in time between these two signals and makes the overall timing budget easier to achieve. A slight delay may be necessary on the REFCLK path in this configuration to add more timing margin between REFCLK and SYNC_I (see Tabl e 1 9 for timing relationship).
t
t
S
H
t
DAC_SAMPLE
5361-124
Rev. A | Page 43 of 56
Page 44
AD9776/AD9778/AD9779

Using Data Delay to Meet Timing Requirements

To meet strict timing requirements at input data rates of up to 250 MSPS, the AD977x has a fine timing feature. Fine timing adjustments are made by programming values into the data clock delay register (Register 0x04, Bits<7:4>). This register can be used to add delay between the REFCLK in and the DATACLK out.
Figure 97 shows the default delay present when DATACLK delay is disabled. The disable function bit is found in Register 0x02, Bit 4. DATACLK delay is enabled and set to 0000.
Figure 98 shows the delay present when
Figure 99 indicates the delay when DATACLK delay is enabled and set to 1111. Note that the setup and hold times specified for data to DATACLK are defined for DATACLK delay disabled.
TEK RUN: 5.00GS/s SAMPLE
Δ: 4.48nS @: 40.28nS
2
TEK RUN: 5.00GS/s SAMPLE
Δ
: 7.84nS
@: 32.44nS
2
1
CH1 1.00V
Figure 99. Delay from REFCLK to DATACLK Out with DATACLK Delay = 1111
Ω
CH2 500mV
Ω
M2.00ns CH1 420mV
The difference between the minimum delay shown in Figure 98 and the maximum delay shown in
Figure 99 is the range programmable using the DATACLK delay register. The delay (in absolute time) when programming DATACLK delay between 0000 and 1111 is a linear extrapolation between these two figures. The typical delays per increment over temperature are shown in
Tabl e 2 0 .
05361-091
1
CH1 1.00VΩ
Figure 97. Delay from REFCLK to DATACLK with DATACLK Delay Disabled
TEK RUN: 5.00GS/s SAMPLE
2
1
CH1 1.00V
Figure 98. Delay from REFCLK to DATACLK Out with DATACLK Delay = 0000
CH2 500mVΩ M2.00ns CH1 420mV
CH2 500mV
Ω
Ω
M2.00ns CH1 420mV
Δ
: 4.76nS
@: 35.52nS
05361-089
05361-090
Table 20. Data Delay Line Typical Delays Over Temperature
Delays −40°C +25°C +85°C Unit
Delay Between Disabled and
370 416 432 ps
Enabled Average Delay per Increment 171 183 197 ps
The frequency of DATACLK out depends on several program­mable settings: interpolation, zero stuffing, and interleaved/ dual port mode, all of which have an effect on the REFCLK frequency. The divisor function between REFCLK and DATACLK is equal to the values shown in
Tabl e 2 1 .
Table 21. REFCLK to DATACLK Divisor Ratio
Interpolation Zero Stuffing Input Mode Divisor
1 Disabled Dual port 1 2 Disabled Dual port 2 4 Disabled Dual port 4 8 Disabled Dual port 8 1 Disabled Interleaved Invalid 2 Disabled Interleaved 1 4 Disabled Interleaved 2 8 Disabled Interleaved 4 1 Enabled Dual port 2 2 Enabled Dual port 4 4 Enabled Dual port 8 8 Enabled Dual port 16 1 Enabled Interleaved 1 2 Enabled Interleaved 2 4 Enabled Interleaved 4 8 Enabled Interleaved 8
Rev. A | Page 44 of 56
Page 45
AD9776/AD9778/AD9779
In addition to this divisor function, DATACLK can be divided by up to an additional factor of 4, according to the state of the DATACLK divide register (Register 0x03, Bits<5:4>). For more details, see
Table 22. Extra DATACLK Divisor Ratio
Register 0x03, Bits<5:4> Divider Ratio
00 1 01 2 10 4 11 1
The maximum divisor resulting from the combination of the values in
Tabl e 22 ).
Tabl e 21 , and the DATACLK divide register is 32.

Manual Input Timing Correction

Correction of input timing can be achieved manually. The correction function is controlled by Register 0x03, Bits<7:6>. The function is programmed as shown in
Table 23. Input Timing Correction Mode
Register 0x03, Bits<7:6> Function
00 Error check disabled 01 Reserved 10 Reserved 11 Reserved
Tabl e 2 3 .
Necessary corrections can be made by adjusting DATACLK delay and the DATACLK invert bit (Register 2, Bit 2). DATACLK delay can then be swept to find the range over which the timing is valid. The final value for data delay should be the value that corresponds to the middle of the valid timing range. If a valid timing range is not found during this sweep, the user should invert the DATACLK invert bit and repeat the process.

Multiple DAC Synchronization

The AD9779 has programmable features that allow the CMOS digital data bus inputs and internal filters on multiple devices to be synchronized. This means that the DATACLK output signal on one AD9779 can be used to register the output data for a data bus delivering data to multiple AD9779s. The details of this opera­tion are given in the Analog Devices Application Note AN-822.
Rev. A | Page 45 of 56
Page 46
AD9776/AD9778/AD9779
C

EVALUATION BOARD OPERATION

The AD977x evaluation board is designed to optimize the DAC performance and the speed of the digital interface, yet remains user friendly. To operate the board, the user needs a power source, a clock source, and a digital data source. The user also needs a spectrum analyzer or an oscilloscope to look at the DAC output. The diagram in Figure 100 illustrates the test setup. A sine or square wave clock works well as a clock source. The dc offset on the clock is not a problem, since the clock is ac-coupled on the evaluation board before the REFCLK inputs. All necessary connections to the evaluation board are shown in more detail in Figure 101.
CLOCK
GENERATOR
ADAPTER
CABLES
CLKIN SPI PORT
The evaluation board comes with software that allows the user to program the SPI port. Via the SPI port, the devices can be programmed into any of its various operating modes. When first operating the evaluation board, it is useful to start with a simple configuration, that is, a configuration in which the SPI port settings are as close as possible to the default settings. The default software window is shown in Figure 102. The arrows indicate which settings need to be changed for an easy first time evaluation. Note that this implies that the PLL is not being used and that the clock being used is at the speed of the DAC output sample rate. For a more detailed description of how to use the PLL, see the PLL Loop Filter Bandwidth section.
DIGITAL
PATTERN
GENERATOR
LOCK IN
DATACLK OUT
P4 Digital Input Connector
Figure 101. AD977x Evaluation Board Showing All Connections
AUX33
S7 DCLKOUT
AD9779
EVALUATION
BOARD
Figure 100. Typical Test Setup
DVDD18 DVDD33 CVDD18 AVDD33
J1 CLOCK IN
JP4
AD9779
SPI PORT
JP15 JP14
JP16 JP17
JP8
JP3 JP2
S5 OUTPUT 1
AD8349
S6 OUTPUT 2
SPECTRUM ANALYZER
1.8V POWER SUPPLY
3.3V POWER SUPPLY
J2
5V Supply
MODULATOR
OUTPUT
+5V
GND
LOCAL OSC
INPUT
ANALOG DEVICES
AD9779/8/6
REV D
05361-097
05361-098
Rev. A | Page 46 of 56
Page 47
AD9776/AD9778/AD9779
1. SET INTERPOLATION RATE
2. SET INTERPOLATION FILTER MODE
3. SET INPUT DATA FORMAT
4. SET DATACLK POLARITY TO MATCH INPUT TIM ING
Figure 102. SPI Port Software Window
The default settings for the evaluation board allow the user to view the differential outputs through a transformer that converts the DAC output signal to a single-ended signal. On the evaluation board, these transformers are designated T1A, T2A, T3A, and T4A. There are also four common-mode transformers on the board that are designated T1B, T2B, T3B, and T4B. The recommended operating setup places the transformer and common-mode transformer in series. A pair of transformers
5361-099
and common-mode transformers are installed on each DAC output, so that the pairs can be set up in either order. As an example, for the frequency range of dc to 30 MHz, it is recommended that the transformer be placed right after the DAC. Above DAC output frequencies of 30 MHz, it is recommended that the common-mode transformer is placed right after the DAC outputs, followed by the transformer.
Rev. A | Page 47 of 56
Page 48
AD9776/AD9778/AD9779

MODIFYING THE EVALUATION BOARD TO USE THE AD8349 ON-BOARD QUADRATURE MODULATOR

The evaluation board contains an Analog Devices AD8349 quadrature modulator. The AD977x and AD8349 provide an easy-to-interface DAC/modulator combination that can be easily evaluated on the evaluation board. To route the DAC output signal to the quadrature modulator, the following jumper settings must be made:
Unsoldered: JP14, JP15, JP16, JP17 Soldered: JP2, JP3, JP4, JP8
The DAC output area of the evaluation board is shown in Figure 103. The jumpers that need to be changed to use the AD8349 are circled. Also circled are the 5 V and GND connections for the AD8349.
05361-100
Figure 103. Photo of Evaluation Board, DAC Output Area
Rev. A | Page 48 of 56
Page 49
AD9776/AD9778/AD9779

EVALUATION BOARD SCHEMATICS

EXC-CL4532U1
L12
RED
TP14
VDDM
VDDM_IN
4
74AC14
U6
3
RED
TP13
C66
0.1μF
L16
C67
0.1μF
+
16V
C46
22μF
10
U6
11
DGND2
TP15
DGND2
74AC14
2
EXC-CL4532U1
BLACK
8
6
74AC14
U6
9
74AC14
U6
5
S2
SWSECMA
SCLK
3
2
CSB
1
S1
SWSECMA
R51
9kΩ
13
U5
12
74AC14
1
U5
2
74AC14
3
2
1
S3
R53
9kΩ
11
U5
10
3
U5
4
3
2
SDI
SWSECMA
R54
9kΩ
9
U5
8
74AC14
5
U5
6
74AC14
P1
123
S4
SWSECMA
2
SDO
1
12
U6
74AC14
74AC14
13
2
U6
1
5
4
3
1
74AC14
74AC14
SPI_SDI
SPI_CLK
SPI_CSB
SPI_SDO
FCI-68898
CLASS = IO
TJAK06RAP
6
RED
TP16
R52
10kΩ
R55
10kΩ
TP1
TP3
DVDD18
L2
EXC-CL4532U1
RED
DVDD18_IN
C70
C71
RED
TP18
+
C76
TP4
BLACK
0.1μF
L7
0.1μF
EXC-CL4532U1
16V
22μF
TP5
AVDD33
L3
EXC-CL4532U1
RED
AVDD33_IN
C26
C28
RED
TP19
+
C20
TP8
BLACK
0.1μF
L13
0.1μF
EXC-CL4532U1
16V
22μF
TP6
DVDD33
L4
EXC-CL4532U1
RED
DVDD33_IN
C42
C45
RED
TP20
+
C21
TP9
BLACK
0.1μF
L14
0.1μF
EXC-CL4532U1
16V
22μF
TP7
DPWR33
L5
EXC-CL4532U1
RED
DPWR33_IN
C49
C48
RED
TP21
+
C22
TP10
BLACK
0.1μF
L15
0.1μF
EXC-CL4532U1
16V
22μF
05361-101
CVDD18
L1
EXC-CL4532U1
RED
CVDD18_IN
C69
C68
RED
TP17
+
C77
TP2
BLACK
0.1μF
L6
0.1μF
EXC-CL4532U1
16V
22μF
Figure 104. Evaluation Board, Rev. D, Power Supply Decoupling and SPI Interface
Rev. A | Page 49 of 56
Page 50
AD9776/AD9778/AD9779
T2B
1
3
6
S
P
4
ADTL1-12
T2A
6
2
1
4
S5
1 2
3
TC1-1T
T1B
1
P
3
ADTL1-12
T1A
6
4
TC1-1T
6
S
4
1 2
3
R10
50
JP14
JP15
R9 50
R11 50
R6 0
R5 0
R11 50
JP16
JP17
R7 0
R8 0
T3A
3 2 1
TC1-1T
T3B
4
S
6
ADTL1-12
T4A
4
3 2
6
1
S6
2
4
6
1
TC1-1T
T4B
3
P
1
4
6
3
P
S
1
ADTL1-12
CVDD18
S15
1
2
S2
1
2
VOLT
C62
0.1µF
C61 1nF
C60
0.1µF
C59 1nF
AVDD33
C58 1nF
C57
0.1µF
C56 1nF
C55
0.1µF
C31 1nF
C14
0.1µF
C6
4.7µF
+
JP13
C33
1nF
C37
0.1µF
C24
1nF
C9
0.1µF
C1
4.7µF
+
CLK_N CLK_P
CR1 VAL
R64 1k
7068696766
71
IRQ
RESET
P1D3
P1D4
31302928272625
32
0.1µF
SPI_CSB
SPI_CSB
VSSD_32
C84
33
SPI_CLK
SPI_CLK
VDDD18_33
34
DGND;5
2
SW1
4
SPI_SDI
SPI_SDO
65
SPI_SDI
SPI_SDO
P1D1
P1D2
36
35
1
3
CR2 VAL
R64 1k
63
64
VSSD_64
SYNC_OP
PLL_LOCK
VDDD33_38
DCLK
P1D0
37
38
DPWR33
R63 10
P2D0
P2D1
P2D2
P2D3
P2D4
P2D5
P2D6P2D7
DVDD33
62
59
58
5756555251
P2D1
VDD18_43
44
P2D2
P2D3
VSSD_44
P2D12
1 2 3
3 1 2
74LCX112
53
54
PAD
PAD
P2D4
P2D5
P2D6
VSSD_54
VDDD18_53
P2D8
P2D9
P2D10
P2D11
474645
J
K
15
4
JP7
PRE
CLR
U1
504948
P2D15
R59
6
22
5 4
R58 22
DPWR33
U10
5
Q
6
Q_
60
61
P2D0
SYNC_ON
VDDD18_60
VDDD33_61
TX
P2D13
P2D14
P2D15
43
424140
39
JP18
C34 1nF
C38
0.1µF
C25 1nF
C10
0.1µF
C2
VOLT
4.7µF
+
DVDD18
9779TQFP
+
C4
4.7µF
VOLT
DVDD33
S16
1
2
74LCX112
C40
0.1µF
C35 1nF
C39
0.1µF
C36 1nF
C27 1nF
C11
0.1µF
C3
4.7µF
VOLT
+
C29 1nF
C12
0.1µF
C30 1nF
C13
0.1µF
C5
4.7µF
+
DVDD18
U10
10
11
J
13 12
K
9
PRE
Q
7
Q_
CLR
14
05361-102
JP3
JP2
JP4
JP8
D1ND1P
IOUT1_P
VOLT
100
96
98
97
99
VSSA_99
VSSA_97
VDDA33_98
VDDA33_100
VSSC_3
VSSC_4
VDDC18_1
VDDC18_2
5
1102
3
4
DATACLK
S7
IOUT1_N
AUX1_P
908986
92
93
91
94
95
AUX1_P
IOUT1_P
IOUT1_N
VSSA_91
VSSA_94
VSSA_95
VDDA33_96
VSSC_11
VSSC_7
VSSC_8
VDDC18_10
VDDC18_9
CLK_N
CLK_P
6
9
7
8
11
12
R32 25
1
2
DPWR33
C78
4.7µF
VOLT
C7
VOLT
4.7µF
C15
1nF
C32
0.1µF
IOUT2_N
AUX1_N
AUX2_P
AUX2_N
87
84
85
88
AUX2_P
AUX2_N
AUX1_N
VSS_12
+
+
VSSA_88
SYNC_1P
13
SYNC_1N
VSSD_15
14
15
4
5
IOUT2_N
VSSA_85
VDDD18
P1D15
16
VCCYNC
SN74LVC1G34
D2PD2N
TP11 RED
C18 1nF
6.3V
IOUT2_P
80
83
81
82
IOUT2_P
VSSA_81
VSSA_82
VDDA33_80
P1D11
P1D12
P1D13
P1D14
2120191817
U11
3
GND
2
A
1
+
C8
10µF
R56 10
76
78
75
73
74
77
79
VSSA_79
VDDA33_78
VSSD_22
VDDD18_23
24
23
22
R26 22
VSSA_77
P1D10
I120
VDDA33_76
P1D8
P1D9
DPWR33
72
IPTAT
VSS_72
VREF_74
P1D5
P1D6 TP12 RED
P1D7
R26 22
Figure 105. Evaluation Board, Rev. D, Circuitry Local to Devices
Rev. A | Page 50 of 56
Page 51
AD9776/AD9778/AD9779
D1N
AUX1_N
AUX1_P
D1P
D2N
AUX2_N
AUX2_P
D2P
R15 20
R16 20
R24 20
R23 20
R17
150
150
R12
150
R25
150
150
150
C64
17.2pF
R19
R4
300
C63
17.2pF
VDDM
C41
10µF
C44
17.2pF
R27
R2
300
R3
C43
17.2pF
10V
+
DGND2
C80
2.1pF
55nH
C81
2.1pF
55nH
2
C83
2.1pF
55nH
C82
2.1pF
55nH
L10
L11
C73
0.1µF
L10
L11
C50
17.2pF
C52
17.2pF
C72
0.1µF
C65
17.2pF
C79
17.2pF
C51
0.1µF
DGND2
1
3
P
T5
S
6
4
141611
QBBP
AD8349
IBBP
IBBN QBBN
3
1
215
2
6
4
S
P
ADTL1-12
1
3
10
G3
VPS1
7
C74
100pF
C75
100pF
98
G2ENBL
C53
0.1µF
R22
147.5
DGND2
U9
1 2 3
ETC1-1-13
C54
0.1µF
R62
147.5
2
R14 1k
S
VDDM
JP1
T4
MODULATED O UTPUT
C47
J4
100pF
1
2
DGND2
2
DGND2
5
P
4
2
DGND2
LOCAL OSC OUTPUT
J5
1
2
DGND2
JP9
JP10
DGND2
2
05361-103
R20 40
JP13
R21 40
ADTL1-12
12
13
G4A
G4B
VPS2
VOUT
G1A
G1B
LOIP
LOIN
4
6
5
T3
R60 40
JP13
R61 40
Figure 106. Evaluation Board, Rev. D, AD8349 Quadrature Modulator
CLK_P
C19
μ
F
0.1
0.1
C23
R28
25
R29
25
μ
F
3 2
S
1
Rev. A | Page 51 of 56
CVDD18
C16
R30
DNB
1k
R31 300
Ω
C17
μ
F
0.1
Ω
CLK_N
05361-104
Ω
Ω
CLKIN
J1
R13
VAL
T2
4
P
5
ETC1-1-13
Figure 107. Evaluation Board, Rev. D, DAC Clock Interface
Page 52
AD9776/AD9778/AD9779
J
PKG_TYPE = MOLEX110
P4 A1 A2 A3 A4 A5 A6 A7 A8
A9 A10 A11
A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25
VAL
P4 B1 B2 B3 B4 B5 B6 B7 B8
B9 B10 B11
B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25
PKG_TYPE = MOLEX110
VAL
P4 C1 C2 C3 C4 C5 C6 C7 C8
C9 C10 C11
C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25
PKG_TYPE = MOLEX110
VAL
DGND BLK
CSB SD1 P2D0 P2D2 P2D4 P2D6 P2D8 P2D10 P2D12 P2D14
P1D0 P1D2 P1D4 P1D6 P1D8 P1D10 P1D12 P1D14
DGND1 BLK
P4 D1 D2 D3 D4 D5 D6 D7 D8
D9 D10 D11
D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25
PKG_TYPE = MOLEX110
VAL
P4 E1 E2 E3 E4 E5 E6 E7 E8
E9 E10 E11
E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25
PKG_TYPE = MOLEX110
VAL
P1D1 P1D3 P1D5 P1D7 P1D9 P1D11 P1D13 P1D15
SCLK SD0 P2D1 P2D3 P2D5 P2D7 P2D9 P2D11 P2D13 P2D15
05361-105
Figure 108. Evaluation Board, Rev. D, Digital Input Buffers
5V
1
2
2
P2
1 2
VAL
CNTERM_2P
C86 1μF
C89 1μF
C92 1μF
C93 1μF
C85 1μF
C88 1μF
C91 1μF
C94 1μF
1 2 3
1 2 3
1 2 3
1 2 3
U2
4
ADP3339-1-8
U3
4
ADP3339-1-8
U4
4
ADP3339-3-3
U7
4
ADP3339-3-3
CVDD18_IN
JP19
DVDD18_IN
JP20
DVDD33_IN
JP21
AVDD33_IN
JP22
U8
4
ADP3339-3-3
JP23
DPWR33_IN
05361-106
C96 1μF
C97 1μF
1 2 3
Figure 109. Evaluation Board, On-Board Voltage Regulators
Rev. A | Page 52 of 56
Page 53
AD9776/AD9778/AD9779
Figure 110. Evaluation Board, Rev. D, Top Silk Screen
05361-107
Figure 111. Evaluation Board, Rev. D, Top Layer
Rev. A | Page 53 of 56
05361-108
Page 54
AD9776/AD9778/AD9779
Figure 112. Evaluation Board, Rev. D, Layer 2
05361-109
05361-110
Figure 113. Evaluation Board, Rev. D, Layer 3
Rev. A | Page 54 of 56
Page 55
AD9776/AD9778/AD9779
05361-111
Figure 114. Evaluation Board, Rev. D, Bottom Layer
Figure 115. Evaluation Board, Rev. D, Bottom Silkscreen
Rev. A | Page 55 of 56
05361-112
Page 56
AD9776/AD9778/AD9779
2
F
L
E

OUTLINE DIMENSIONS

1.20
0.75 MAX
0.60
0.45
SEATING
PLANE
0.20
0.09
NOTES
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED. . THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION O
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNA TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIV
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.
3.5° 0°
16.00 BSC SQ
1
PIN 1
25
26 50
0.50 BSC
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD
14.00 BSC SQ
TOP VIEW
(PINS DOWN)
0.27
0.22
0.17
76100
0.15
0.05
75
51
76 100
75
BOTTOM VIEW
(PINS UP)
CONDUCTIVE
HEAT SINK
51
1.05
1.00
0.95
COPLANARITY
0.08
6.50
NOM
Figure 116. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-1)
Dimensions shown in millimeters
1
25
2650

ORDERING GUIDE

Model Temperature Range Package Description Package Option
AD9776BSVZ AD9776BSVZRL
AD9778BSVZ AD9778BSVZRL
AD9779BSVZ AD9779BSVZRL
AD9776-EB Evaluation Board AD9778-EB Evaluation Board AD9779-EBZ
1
Z = RoHS Compliant Part.
1
1
1
1
1
1
1
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Evaluation Board
100-lead TQFP_EP SV-100-1 100-lead TQFP_EP SV-100-1
100-lead TQFP_EP SV-100-1 100-lead TQFP_EP SV-100-1
100-lead TQFP_EP SV-100-1 100-lead TQFP_EP SV-100-1
©2005–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05361-0-3/07(A)
Rev. A | Page 56 of 56
Loading...