Datasheet AD9446 Datasheet (ANALOG DEVICES)

Page 1
www.BDTIC.com/ADI
16-Bit, 80/100 MSPS ADC

FEATURES

100 MSPS guaranteed sampling rate (AD9446-100)
83.6 dBFS SNR with 30 MHz input (3.8 V p-p input, 80 MSPS)
82.6 dBFS SNR with 30 MHz input (3.2 V p-p input, 80 MSPS) 89 dBc SFDR with 30 MHz input (3.2 V p-p input, 80 MSPS) 95 dBFS 2-tone SFDR with 9.8 MHz and 10.8 MHz (100 MSPS) 60 fsec rms jitter Excellent linearity
DNL = ±0.4 LSB typical INL = ±3.0 LSB typical
2.0 V p-p to 4.0 V p-p differential full-scale input Buffered analog inputs LVDS outputs (ANSI-644 compatible) or CMOS outputs Data format select (offset binary or twos complement) Output clock available
3.3 V and 5 V supply operation

APPLICATIONS

MRI receivers Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Communications instrumentation

GENERAL DESCRIPTION

The AD9446 is a 16-bit, monolithic, sampling analog-to-digital converter (ADC) with an on-chip track-and-hold circuit. It is optimized for performance, small size, and ease of use. The product operates up to a 100 MSPS, providing superior SNR for instrumentation, medical imaging, and radar receivers employing baseband (<100 MHz) IF frequencies.
The ADC requires 3.3 V and 5.0 V power supplies and a low v
oltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are CMOS or LVDS compatible (ANSI-644 compatible) and include the means to reduce the overall current needed for short trace distances.
AD9446

FUNCTIONAL BLOCK DIAGRAM

AGND DRGND DRVDD
AVDD1 AVDD2
2
32
2
DFS DCS MODE OUTPUT MODE OR
D15 TO D0
DCO
AD9446
VIN+ VIN–
CLK+ CLK–
BUFFER
CLOCK
AND TIMING
MANAGEMENT
T/H
PIPELINE
VREF
ADC
REF
Figure 1.
16
CMOS
OR
LVDS
OUTPUT
STAGING
REFBSENSE REFT
Optional features allow users to implement various selectable op
erating conditions, including input range, data format select,
and output data mode.
The AD9446 is available in a Pb-free, 100-lead, surface-mount,
lastic package (100-lead TQFP/EP) specified over the
p industrial temperature range −40°C to +85°C.

PRODUCT HIGHLIGHTS

1. True 16-bit linearity.
2. H
igh performance: outstanding SNR performance for baseband IFs in data acquisition, instrumentation, magnetic resonance imaging, and radar receivers.
ase of use: on-chip reference and high input impedance
3. E
track-and-hold with adjustable analog input range and an output clock simplifies data capture.
ackaged in a Pb-free, 100-lead TQFP/EP package.
4. P
5. C
lock duty cycle stabilizer (DCS) maintains overall ADC
performance over a wide range of clock pulse widths.
6. O
R (out-of-range) outputs indicate when the signal is
beyond the selected input range.
05490-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
Page 2
AD9446
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Te r mi n ol o g y .......................................................................................9
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
DC Specifications ......................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 6
Switching Specifications .............................................................. 6
Timing Diagrams.......................................................................... 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configurations and Function Descriptions ......................... 10
Equivalent Circuits......................................................................... 15
Typical Perf or m an c e Chara c t e ristic s ........................................... 16
Theory of Operation ...................................................................... 24
Analog Input and Reference Overview ................................... 24
Clock Input Considerations...................................................... 26
Power Considerations ................................................................ 27
Digital Outputs........................................................................... 27
Timing ......................................................................................... 27
Operational Mode Selection ..................................................... 28
Evaluation Board ............................................................................ 29
Outline Dimensions ....................................................................... 36
Ordering Guide .......................................................................... 36

REVISION HISTORY

10/05—Revision 0: Initial Version
Rev. 0 | Page 2 of 36
Page 3
AD9446
www.BDTIC.com/ADI

SPECIFICATIONS

DC SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 3.2 V p-p differential input, internal trimmed reference (1.6 V mode), A
Table 1.
AD9446BSVZ-80 AD9446BSVZ-100 Parameter Te mp Min Typ Max Min Typ Max Unit
RESOLUTION Full 16 16 Bits ACCURACY
No Missing Codes Full Guaranteed Guaranteed Offset Error Full −5 ±0.1 +5 −5 ±0.1 +5 mV Gain Error Full −3 ±0.6 +3 −3 ±0.5 +3 % FSR 25°C −2 ±0.3 +2 −2 ±0.3 +2 % FSR Differential Nonlinearity (DNL) Integral Nonlinearity (INL)1 25°C −5 ±3.0 +5 −6 ±3.0 +6 LSB
VOLTAGE REFERENCE
Output Voltage
1
VREF = 1.6 V (3.2 V p-p Analog Input Range) Full 1.6 1.6 V Load Regulation @ 1.0 mA Full ±2 ±2 mV Reference Input Current (External 1.6 V Reference) Full µA
INPUT REFERRED NOISE 25°C 1.5 1.9 LSB rms ANALOG INPUT
Input Span
VREF = 1.6 V Full 3.2 3.2 V p-p
VREF = 1.0 V (External) Full 2.0 2.0 V p-p Internal Input Common-Mode Voltage Full 3.5 3.5 V External Input Common-Mode Voltage Full 3.2 3.8 3.2 3.8 V Input Resistance Input Capacitance
2
2
POWER SUPPLIES
Supply Voltage
AVDD1 Full 3.14 3.3 3.46 3.14 3.3 3.46 V
AVDD2 Full 4.75 5.0 5.25 4.75 5.0 5.25 V
DRVDD—LVDS Outputs Full 3.0 3.3 3.6 3.0 3.3 3.6 V
DRVDD—CMOS Outputs Full 3.0 3.3 3.6 3.0 3.3 3.6 V Supply Current
1
I
AVDD
1
I
AVDD2
1
I
—LVDS Outputs Full 68 75 69 75 mA
DRVDD
1
I
—CMOS Outputs Full 14 14 mA
DRVDD
PSRR
Offset Full 1 1 mV/V
Gain Full 0.2 0.2 %/V
POWER CONSUMPTION
LVDS Outputs Full 2.4 2.6 2.6 2.8 W CMOS Outputs (DC Input) Full 2.2 2.3 W
1
Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and
approximately 5 pF loading on each output bit for CMOS output mode.
2
Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure.
= −1.0 dBFS, DCS on, unless otherwise noted.
IN
1
Full −0.75 ±0.4 +0.75 −0.85 ±0.4 +0.85 LSB
Full 1 1 kΩ Full 6 6 pF
Full 335 365 368 401 mA Full 204 234 223 255 mA
Rev. 0 | Page 3 of 36
Page 4
AD9446
www.BDTIC.com/ADI

AC SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 3.2 V p-p differential input, internal trimmed reference (1.6 V mode), A
Table 2.
AD9446BSVZ-80 AD9446BSVZ-100 Parameter Te m p Min Typ Max Min Typ Max Unit
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 10 MHz 25°C 79.6 81.8 78.4 79.7 dB fIN = 30 MHz 25°C 80.5 81.6 78.3 79.5 dB Full 79.2 77.9 dB fIN = 70 MHz 25°C 79.0 80.6 77.7 79.0 dB Full 78.2 77.6 dB fIN = 92 MHz 25°C 80.1 78.9 dB fIN = 125 MHz 25°C 78.8 78.2 dB fIN = 170 MHz 25°C 77.1 77.0 dB
fIN = 10 MHz (2 V p-p Input) 25°C 78.3 76.6 dB fIN = 30 MHz (2 V p-p Input) 25°C 78.3 76.6 dB fIN = 70 MHz (2 V p-p Input) 25°C 77.6 76.2 dB fIN = 92 MHz (2 V p-p Input) 25°C 77.5 76 dB fIN = 125 MHz (2 V p-p Input) 25°C 76.7 75.6 dB fIN = 170 MHz (2 V p-p Input) 25°C 75.5 75.1 dB
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 10 MHz 25°C 77.1 80.5 76.9 78.9 dB fIN = 30 MHz 25°C 75.9 80.4 75.5 78.6 dB Full 74.9 71.7 dB fIN = 70 MHz 25°C 75.5 78.6 73.8 77.7 dB Full 74.4 69.1 dB fIN = 92 MHz 25°C 79.2 77.1 dB fIN = 125 MHz 25°C 74.9 76.9 dB fIN = 170 MHz 25°C 66.0 70.5 dB
fIN = 10 MHz (2 V p-p Input) 25°C 77.9 76.2 dB fIN = 30 MHz (2 V p-p Input) 25°C 77.8 76.1 dB fIN = 70 MHz (2 V p-p Input) 25°C 77.1 75.9 dB fIN = 92 MHz (2 V p-p Input) 25°C 77.1 75.7 dB fIN = 125 MHz (2 V p-p Input) 25°C 75.7 75.3 dB fIN = 170 MHz (2 V p-p Input) 25°C 72.5 73.6 dB
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 10 MHz 25°C 13.2 13.0 Bits fIN = 30 MHz 25°C 13.2 12.9 Bits fIN = 70 MHz 25°C 12.9 12.8 Bits fIN = 92 MHz 25°C 13.0 12.7 Bits fIN = 125 MHz 25°C 12.3 12.6 Bits fIN = 170 MHz 25°C 10.8 11.6 Bits
= −1 dBFS, DCS on, unless otherwise noted.
IN
Rev. 0 | Page 4 of 36
Page 5
AD9446
www.BDTIC.com/ADI
AD9446BSVZ-80 AD9446BSVZ-100 Parameter Te m p Min Typ Max Min Typ Max Unit
SPURIOUS-FREE DYNAMIC RANGE
(SFDR, Second or Third Harmonic) fIN = 10 MHz 25°C 82 90 82 92 dBc fIN = 30 MHz 25°C 82 89 82 89 dBc Full 80 79 dBc fIN = 70 MHz 25°C 80 87 81 89 dBc Full 79 77 dBc fIN = 92 MHz 25°C 84 84 dBc fIN = 125 MHz 25°C 80 83 dBc fIN = 170 MHz 25°C 66 74 dBc
fIN = 10 MHz (2 V p-p Input) 25°C 92 94 dBc fIN = 30 MHz (2 V p-p Input) 25°C 93 92 dBc fIN = 70 MHz (2 V p-p Input) 25°C 92 92 dBc fIN = 92 MHz (2 V p-p Input) 25°C 90 89 dBc fIN = 125 MHz (2 V p-p Input) 25°C 85 87 dBc fIN = 170 MHz (2 V p-p Input) 25°C 77 82 dBc
WORST SPUR EXCLUDING SECOND OR
THIRD HARMONICS fIN = 10 MHz 25°C −98 −89 −96 −91 dBc fIN = 30 MHz 25°C −97 −89 −97 −89 dBc Full −89 −87 dBc fIN = 70 MHz 25°C −98 −90 −96 −90 dBc Full −89 −88 dBc fIN = 92 MHz 25°C −98 −95 dBc fIN = 125 MHz 25°C −96 −96 dBc fIN = 170 MHz 25°C −95 −92 dBc
fIN = 10 MHz (2 V p-p Input) 25°C −97 −93 dBc fIN = 30 MHz (2 V p-p Input) 25°C −97 −96 dBc fIN = 70 MHz (2 V p-p Input) 25°C −94 −94 dBc fIN = 92 MHz (2 V p-p Input) 25°C −97 −99 dBc fIN = 125 MHz (2 V p-p Input) 25°C −97 −95 dBc fIN = 170 MHz (2 V p-p Input) 25°C −93 −95 dBc
TWO-TONE SFDR
fIN = 10.8 MHz @ −7 dBFS,
9.8 MHz @ −7 dBFS
fIN = 70.3 MHz @ −7 dBFS,
69.3 MHz @ −7 dBFS
ANALOG BANDWIDTH Full 325 540 MHz
25°C 96 95 dBFS
25°C 92 92 dBFS
Rev. 0 | Page 5 of 36
Page 6
AD9446
www.BDTIC.com/ADI

DIGITAL SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, R
Table 3.
AD9446BSVZ-80 AD9446BSVZ-100 Parameter Te mp Min Typ Max Min Typ Max Unit
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)
High Level Input Voltage Full 2.0 2.0 V Low Level Input Voltage Full 0.8 0.8 V High Level Input Current Full 200 200 µA Low Level Input Current Full −10 Input Capacitance Full
DIGITAL OUTPUT BITS—CMOS MODE (D0 to D15, OTR)
DRVDD = 3.3 V
High Level Output Voltage Full 3.25 Low Level Output Voltage Full
DIGITAL OUTPUT BITS—LVDS MODE (D0 to D15, OTR)
VOD Differential Output Voltage
2
VOS Output Offset Voltage Full 1.125
CLOCK INPUTS (CLK+, CLK−)
Differential Input Voltage Full 0.2 Common-Mode Voltage Full 1.3 1.5 1.6 1.3 1.5 1.6 V Input Resistance Full 1.1 1.4 1.7 1.1 1.4 1.7 kΩ Input Capacitance Full
1
Output voltage levels measured with 5 pF load on each output.
2
LVDS R
TERM
= 100 Ω.
= 3.74 kΩ, unless otherwise noted.
LVD S_ BI AS
1
Full 247
2
+10 −10 +10 µA
0.2 0.2 V
2
545 247 545 mV
1.375 1.125 1.375 V
2 pF
3.25 V
0.2 V
2 pF

SWITCHING SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.
Table 4.
AD9446BSVZ-80 AD9446BSVZ-100 Parameter Te mp Min Typ Max Min Typ Max Unit
CLOCK INPUT PARAMETERS
Maximum Conversion Rate Full 80 100 MSPS Minimum Conversion Rate Full 1 1 MSPS CLK Period Full 12.5 10 ns CLK Pulse Width High1 (t CLK Pulse Width Low1 (t
DATA OUTPUT PARAMETERS
Output Propagation Delay—CMOS (tPD)2 (Dx, DCO+) Full 3.35 3.35 ns Output Propagation Delay—LVDS (tPD)3 (Dx+), (t Pipeline Delay (Latency) Full 13 13 Cycles Aperture Delay (tA) Full ns Aperture Uncertainty (Jitter, tJ) Full 60 60
1
With duty cycle stabilizer (DCS) enabled.
2
Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load.
3
LVDS R
= 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.
TERM
) Full 5.0 4.0 ns
CLKH
) Full 5.0 4.0 ns
CLKL
)3 (DCO+) Full 2.1 3.6 4.8 2.3 3.6 4.8 ns
CPD
fsec
s
rm
Rev. 0 | Page 6 of 36
Page 7
AD9446
www.BDTIC.com/ADI

TIMING DIAGRAMS

A
CLK+
CLK–
N–1
IN
t
CLKH
t
CLKL
N
N + 1
1/
f
S
t
PD
DATA OUT
DCO+
DCO–
VIN
CLK–
CLK+
DX
DCO+
DCO–
N–1
t
CLKH
N + 1
05490-002
t
CPD
N – 13
13 CLOCK CYCLES
N–12
N
Figure 2. LVDS Mode Timing Diagram
N
N + 1
t
CLKL
t
PD
N – 13 N – 12 N – 1 N
N + 2
13 CLOCK CYCLES
05490-003
Figure 3. CMOS T
iming Diagram
Rev. 0 | Page 7 of 36
Page 8
AD9446
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 5.
With
t
Respec
Parameter
ELECTRICAL
AVDD1 AGND −0.3 V to +4 V AVDD2 AGND −0.3 V to +6 V DRVDD DGND −0.3 V to +4 V AGND DGND −0.3 V to +0.3 V AVDD1 DRVDD −4 V to +4 V AVDD2 DRVDD −4 V to +6 V AVDD2 AVDD1 −4 V to +6 V D0± to D15± DGND –0.3 V to DRVDD + 0.3 V CLK+/CLK− AGND –0.3 V to AVDD1 + 0.3 V OUTPUT MODE,
DCS MODE, DFS VIN+, VIN− AGND –0.3 V to AVDD2 + 0.3 V VREF AGND –0.3 V to AVDD1 + 0.3 V SENSE AGND –0.3 V to AVDD1 + 0.3 V REFT, REFB AGND –0.3 V to AVDD1 + 0.3 V
ENVIRONMENTAL
Storage Temperature
Range Operating Temperature
Range Lead Temperature
(Soldering 10 sec) Junction Temperature 150°C
to
AGND –0.3 V to AVDD1 + 0.3 V
–65°C to +125°C
–40°C to +85°C
300°C
Rating
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The heat sink of the AD9446 package must be soldered to ground.
Table 6.
Package Type θ
100-lead TQFP/EP 19.8 8.3 2 °C/W
JA
Typical θJA = 19.8°C/W (heat sink soldered) for multilayer board in still air.
Typical θ
= 8.3°C/W (heat sink soldered) for multilayer board
JB
in still air.
Typical θ
= 2°C/W (junction to exposed heat sink) represents
JC
the thermal resistance through heat sink path.
Airflow increases heat dissipation, effectively reducing θ more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the θ
. It is required that the exposed heat sink be soldered to
JA
the ground plane.
θ
JB
θ
JC
Unit
. Also,
JA

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 8 of 36
Page 9
AD9446
www.BDTIC.com/ADI

TERMINOLOGY

Analog Bandwidth (Full Power Bandwidth)
The analog input frequency at which the spectral power of the
undamental frequency (as determined by the FFT analysis) is
f reduced by 3 dB.
Minimum Conversion Rate
The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.
Aperture Delay (t
The delay between the 50% point of the rising edge of the clock
nd the instant at which the analog input is sampled.
a
Aperture Uncertainty (Jitter, t
The sample-to-sample variation in aperture delay.
Clock Pulse Width and Duty Cycle
Pulse width high is the minimum amount of time that the
lock pulse should be left in the Logic 1 state to achieve rated
c performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle.
Differential Nonlinearity (DNL, No Missing Codes)
An ideal ADC exhibits code transitions that are exactly 1 LSB
part. DNL is the deviation from this ideal value. Guaranteed
a no missing codes to 16-bit resolution indicates that all 65,536 codes must be present over all operating ranges.
Effective Number of Bits (ENOB)
The effective number of bits for a sine wave input at a given
put frequency can be calculated directly from its measured
in SINAD using the following formula:
ENOB
Gain Error
The first code transition should occur at an analog value of ½ LSB above negative full scale. The last transition should occur at an analog value of 1½ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.
Integral Nonlinearity (INL)
The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.
Maximum Conversion Rate
The clock rate at which parametric testing is performed.
)
A
)
J
()
SINAD
=
1.76
6.02
Offset Error
The major carry transition should occur for an analog value of ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point.
Out-of-Range Recovery Time
The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.
Output Propagation Delay (tPD)
The delay between the clock rising edge and the time when all bits are within valid logic levels.
Power-Supply Rejection Ratio
The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit.
Signal-to-Noise and Distortion (SINAD)
The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc.
Signal-to-Noise Ratio (SNR)
The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc.
Spurious-Free Dynamic Range (SFDR)
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may be a harmonic. SFDR can be reported in dBc (that is, degrades as signal level is lowered) or dBFS (always related back to converter full scale).
Tem p er at u re Dr i ft
The temperature drift for offset error and gain error specifies the maximum change from the initial (25°C) value to the value at T
or T
MIN
Total Harmonic Distortion (THD)
The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components.
Two -Tone SFDR
The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product.
MAX
.
Rev. 0 | Page 9 of 36
Page 10
AD9446
www.BDTIC.com/ADI

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

AGND99AGND98AGND97AVDD196AVDD195AVDD194AVDD193AVDD192AVDD191AGND90OR+89OR–88DRVDD87DRGND86D15+ (MSB)85D15–84D14+83D14–82D13+81D13–80D12+79D12–78D11+77D11–76DRVDD
100
DNC
DFS
AVDD1 SENSE
VREF
AGND
REFT
REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1
AGND
VIN+ VIN–
AGND
AVDD2
1 2 3 4 5 6 7 8 9
10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DCS MODE
OUTPUT MODE
LVDS_BIAS
DNC = DO NOT CONNECT
PIN 1
AD9446
LVDS MODE
TOP VIEW
(Not to Scale)
26
AVDD227AVDD228AVDD229AVDD230AVDD231AVDD232AVDD133AVDD134AVDD135AVDD236AVDD137AVDD238AVDD1
39
40
AGND
41
CLK+
42
CLK–
AGND
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode
43
AVDD144AVDD145AVDD1
46
47
AGND
48
DRVDD
DRGND
75
DRGND
74
D10+
73
D10–
72
D9+
71
D9–
70
D8+
69
D8–
68
DCO+
67
DCO–
66
D7+
65
D7–
64
DRVDD
63
DRGND
62
D6+
61
D6–
60
D5+
59
D5–
58
D4+
57
D4–
56
D3+
55
D3–
54
D2+
53
D2–
52
D1+
51
D1–
49
50
D0+
D0– (LSB)
05490-004
Rev. 0 | Page 10 of 36
Page 11
AD9446
www.BDTIC.com/ADI
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode
Pin No. Mnemonic Description
1 DCS MODE
2 DNC Do Not Connect. These pins should float. 3
4 DFS
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 6, 18 to 20, 32 to 34, 36, 38,
43 to 45, 92 to 97 7 SENSE
8 VREF
9, 21, 24, 39, 42, 46, 91, 98, 99, 100, Exposed Heat Sink
10 REFT
11 REFB
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%). 22 VIN+ Analog Input—True. 23 VIN− Analog Input—Complement. 40 CLK+ Clock Input—True. 41 CLK− Clock Input—Complement. 47, 63, 75, 87, DRGND Digital Output Ground. 48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V). 49 D0− (LSB) D0 Complement Output Bit (LVDS Levels). 50 D0+ D0 True Output Bit. 51 D1− D1 Complement Output Bit. 52 D1+ D1 True Output Bit. 53 D2− D2 Complement Output Bit. 54 D2+ D2 True Output Bit. 55 D3− D3 Complement Output Bit. 56 D3+ D3 True Output Bit. 57 D4− D4 Complement Output Bit. 58 D4+ D4 True Output Bit. 59 D5− D5 Complement Output Bit. 60 D5+ D5 True Output Bit. 61 D6− D6 Complement Output Bit. 62 D6+ D6 True Output Bit. 65 D7− D7 Complement Output Bit. 66 D7+ D7 True Output Bit. 67 DCO− Data Clock Output—Complement. 68 DCO+ Data Clock Output—True. 69 D8− D8 Complement Output Bit. 70 D8+ D8 True Output Bit. 71 D9− D9 Complement Output Bit. 72 D9+ D9 True Output Bit. 73 D10− D10 Complement Output Bit. 74 D10+ D10 True Output Bit. 77 D11− D11 Complement Output Bit. 78 D11+ D11 True Output Bit.
OUTPUT MODE
AVDD1 3.3 V (±5%) Analog Supply.
AGND
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable
ecommended); DCS = high (AVDD1) to disable DCS.
DCS (r
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE
Data Format Select Pin. CMOS control pin that det high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
Reference Mode Selection. Connect to AGND for internal 1.6 V reference (3.2 V p-p analog
ange); connect to AVDD1 for external reference.
input r
1.6 V Reference I/O. Function dependent on SENSE and ex Decouple to ground with 0.1 µF and 10 µF capacitors.
Analog Ground. The exposed heat sink on the bottom of the package must be connected to AG
ND.
Differential Reference Output. Decoupled to ground with 0.1 µF with 0.1 µF and 10 µF capacitors.
Differential Reference Output. Decoupled to ground with a 0.1 µ (Pin 10) with 0.1 µF and 10 µF capacitors.
= 1 (AVDD1) for LVDS outputs.
ermines the format of the output data. DFS =
ternal programming resistors.
capacitor and to REFB (Pin 11)
F capacitor and to REFT
Rev. 0 | Page 11 of 36
Page 12
AD9446
www.BDTIC.com/ADI
Pin No. Mnemonic Description
79 D12− D12 Complement Output Bit. 80 D12+ D12 True Output Bit. 81 D13− D13 Complement Output Bit 82 D13+ D13 True Output Bit. 83 D14− D14 Complement Output Bit 84 D14+ D14 True Output Bit. 85 D15− D15 Complement Output Bit. 86 D15+ (MSB) D15 True Output Bit. 89 OR− Out-of-Range Complement Output Bit. 90 OR+ Out-of-Range True Output Bit.
Rev. 0 | Page 12 of 36
Page 13
AD9446
www.BDTIC.com/ADI
AGND99AGND98AGND97AVDD196AVDD195AVDD194AVDD193AVDD192AVDD191AGND90OR+89D15+ (MSB)88DRVDD87DRGND86D14+85D13+84D12+83D11+82D10+81D9+80D8+79D7+78D6+77D5+76DRVDD
100
DNC
DFS
AVDD1 SENSE
VREF
AGND
REFT
REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1
AGND
VIN+ VIN–
AGND
AVDD2
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DCS MODE
OUTPUT MODE
LVDS_BIAS
DNC = DO NOT CONNECT
PIN 1
AD9446
CMOS MODE
TOP VIEW
(Not to Scale)
26
AVDD227AVDD228AVDD229AVDD230AVDD231AVDD232AVDD133AVDD134AVDD135AVDD236AVDD137AVDD238AVDD1
Figure 5. 100-Lead TQFP/EP Pin C
onfiguration in CMOS Mode
39
40
AGND
41
CLK+
42
CLK–
43
AGND
AVDD144AVDD145AVDD1
46
47
AGND
48
DRVDD
DRGND
49
DNC50DNC
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
DRGND D4+ D3+ D2+ D1+ D0+ (LSB) DNC DCO+ DCO– DNC DNC DRVDD DRGND DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
05490-005
Rev. 0 | Page 13 of 36
Page 14
AD9446
www.BDTIC.com/ADI
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode
Pin No. Mnemonic Description
1 DCS MODE
2, 49 to 62, 65 to 66, 69, DNC Do Not Connect. These pins should float. 3 OUTPUT MODE
4 DFS
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 6, 18 to 20, 32 to 34, 36,
38, 43 to 45, 92 to 97 7 SENSE
8 VREF
9, 21, 24, 39, 42, 46, 91, 98, 99, 100, Exposed Heat Sink
10 REFT
11 REFB
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%). 22 VIN+ Analog Input—True. 23 VIN− Analog Input—Complement. 40 CLK+ Clock Input—True. 41 CLK− Clock Input—Complement. 47, 63, 75, 87, DRGND Digital Output Ground. 48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V). 67 DCO− Data Clock Output—Complement. 68 DCO+ Data Clock Output—True. 70 D0+ (LSB) D0 True Output Bit (CMOS levels). 71 D1+ D1 True Output Bit. 72 D2+ D2 True Output Bit. 73 D3+ D3 True Output Bit. 74 D4+ D4 True Output Bit. 77 D5+ D5 True Output Bit. 78 D6+ D6 True Output Bit. 79 D7+ D7 True Output Bit. 80 D8+ D8 True Output Bit. 81 D9+ D9 True Output Bit. 82 D10+ D10 True Output Bit. 83 D11+ D11 True Output Bit. 84 D12+ D12 True Output Bit. 85 D13+ D13 True Output Bit. 86 D14+ D14 True Output Bit. 89 D15+ (MSB) D15 True Output Bit. 90 OR+ Out-of-Range True Output Bit.
AVDD1 3.3 V (±5%) Analog Supply.
AGND
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (r
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE
Data Format Select Pin. CMOS control pin tha DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1
r external reference.
fo
1.6 V Reference I/O. Function dependent on SENSE and external programming resistors. couple to ground with 0.1 µF and 10 µF capacitors.
De Analog Ground. The exposed heat sink on the bottom of the package must be connected to
AGND.
Differential Reference Output. Decoupled to ground with with 0.1 µF and 10 µF capacitors.
Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 10) with 0.1 µF and 10 µF capacitor
ecommended); DCS = high (AVDD1) to disable DCS.
= 1 (AVDD1) for LVDS outputs.
t determines the format of the output data.
0.1 µF capacitor and to REFB (Pin 11)
s.
Rev. 0 | Page 14 of 36
Page 15
AD9446
www.BDTIC.com/ADI

EQUIVALENT CIRCUITS

AVDD2
VIN+
VIN–
3.5V
6pF
6pF
X1
AVDD2
1k
Ω
1k
Ω
Figure 6. Equivalent Analog Input Circuit
DRVDD DRVDD
1.2V
LVDSBIAS
3.74k
Ω
I
LVDSOUT
Figure 7. Equivalent LVDS_BIAS Circuit
T/H
DRVDD
DX
05490-006
05490-009
Figure 9. Equivalent CMOS Digital Output Circuit
VDD
K
05490-007
DCS MODE,
OUTPUT MODE,
DFS
30kΩ
05490-010
Figure 10. Equivalent Digital Input Circuit,
DFS, DCS MO
DE, OUTPUT MODE
DRVDD
V
DX– DX+
V
Figure 8. Equivalent LVDS Dig
V
V
05490-008
ital Output Circuit
Rev. 0 | Page 15 of 36
CLK+
AVDD2
3k
2.5k
Ω
Ω
3k
Ω
Figure 11. Equivalent Sample Clock Input Circuit
2.5k
CLK–
Ω
05490-011
Page 16
AD9446
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25°C, 3.2 V p-p differential input, AIN = −1dBFS, internal trimmed reference (nominal VREF = 1.6 V), unless otherwise noted.
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
100MSPS
10.3MHz @ –1.0dBFS SNR = 79.7dB ENOB = 13.1BITS SFDR = 90dBc
Figure 12. AD9446-100 64k Point Single-Tone FFT/100 MSPS/10.3 MHz
05490-012
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100
–110 –120 –130
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
100MSPS
92.16MHz @ –1.0dBFS SNR = 78.9dB ENOB = 12.7BITS SFDR = 84dBc
Figure 15. AD9446-100 64k Point Single-Tone FFT/100 MSPS/92.16 MHz
05490-015
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
100MSPS
30.3MHz @ –1.0dBFS SNR = 79.5dB ENOB = 12.9BITS SFDR = 90dBc
Figure 13. AD9446-100 64k Point Single-Tone FFT/100 MSPS/30.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
100MSPS
70.3MHz @ –1.0dBFS SNR = 79.0dB ENOB = 12.9BITS SFDR = 86dBc
Figure 14. AD9446-100 64k Point Single-Tone FFT/100 MSPS/70.3 MHz
05490-013
05490-014
0.6
0.4
0.2
0
–0.2
DNL ERROR (MSB)
–0.4
–0.6
0
0 655368192 16384 24576 32768 40960 49152 57344
Figure 16. AD9446-100 DNL Error vs. O
4
3
2
1
0
–1
INL ERROR (MSB)
–2
–3
–4
0 655368192 16384 24576 32768 40960 49152 57344
0
Figure 17. AD9446-100 INL Error vs. O
OUTPUT CODE
utput Code, 100 MSPS, 10.3 MHz
OUTPUT CODE
utput Code, 100 MSPS, 10.3 MHz
05490-016
05490-017
Rev. 0 | Page 16 of 36
Page 17
AD9446
www.BDTIC.com/ADI
AMPLITUDE (dBFS)
–10 –20 –30 –40 –50 –60 –70 –80
–90 –100 –110 –120 –130
0
0
12.5 25.0 37.5 FREQUENCY (MHz)
80MSPS
10.3MHz @ –1.0dBFS SNR = 81.8dB ENOB = 13.2BITS SFDR = 90dBc
Figure 18. AD9446-80 64k Point Single-Tone FFT/80 MSPS/10.3 MHz
05490-018
AMPLITUDE (dBFS)
–10 –20 –30 –40 –50 –60 –70 –80
–90 –100 –110 –120 –130
0
0
12.5 25.0 37.5 FREQUENCY (MHz)
80MSPS
100.3MHz @ –1.0dBFS SNR = 79.5dB ENOB = 12.7BITS SFDR = 92dBc
Figure 21. AD9446-80 64k Point Single-Tone FFT/80 MSPS/100.3 MHz
05490-021
0
80MSPS
–10
30.3MHz @ –1.0dBFS SNR = 81.6dB
–20
ENOB = 13.2BITS SFDR = 89dBc
–30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90 –100 –110 –120 –130
0
12.5 25.0 37.5 FREQUENCY (MHz)
Figure 19. AD9446-80 64k Point Single-Tone FFT/80 MSPS/30.3 MHz
AMPLITUDE (dBFS)
–10 –20 –30 –40 –50 –60 –70 –80
–90 –100 –110 –120 –130
0
0
12.5 25.0 37.5 FREQUENCY (MHz)
80MSPS
70.3MHz @ –1.0dBFS SNR = 80.6dB ENOB = 12.9BITS SFDR = 85dBc
Figure 20. AD9446-80 64k Point Single-Tone FFT/80 MSPS/70.3 MHz
05490-019
05490-020
0.6
0.4
0.2
0
–0.2
DNL ERROR (MSB)
–0.4
–0.6
0 655368192 16384 24576 32768 40960 49152 57344
0
Figure 22. AD9446-80 DNL Error vs. Ou
4
3
2
1
0
–1
INL ERROR (MSB)
–2
–3
–4
0 655368192 16384 24576 32768 40960 49152 57344
0
OUTPUT CODE
tput Code, 80 MSPS, 10.3 MHz
OUTPUT CODE
Figure 23. AD9446-80 INL Error vs. Output Code, 80 MSPS, 10.3 MHz
05490-022
05490-023
Rev. 0 | Page 17 of 36
Page 18
AD9446
www.BDTIC.com/ADI
95
90
85
SFDR (dBc) –40°C
SFDR (dBc) +85°C
SFDR (dBc) +25°C
95
90
85
SFDR (dBc) +85°C
SFDR (dBc) +25°C
SFDR (dBc) –40°C
(dB)
Figure 24. AD9446-100 SNR/SFDR vs. Analog Input
(dB)
SNR (dB) +25°C
80
75
70
0 180
20 40 60 80 100 120 140 160
ANALOG INPUT FREQUENCY (MHz)
SNR (dB) –40°C
SNR (dB) +85°C
Frequency, 100 MSPS, 3.2 V p-p
95
SFDR (dBc) +85°C
90
85
80
75
70
0 180
SFDR (dBc) +25°C
SFDR (dBc) –40°C
SNR (dB) +25°C
20 40 60 80 100 120 140 160
ANALOG INPUT FREQUENCY (MHz)
SNR (dB) –40°C
SNR (dB) +85°C
Figure 25. AD9446-100 SNR/SFDR vs. Analog Input Frequency, 100 MSPS,
3.2 V p-p, CMOS
Output Mode
05490-024
05490-025
(dB)
80
SNR (dB) +25°C
75
70
0 180
20 40 60 80 100 120 140 160
Figure 27. AD9446-100 SNR/SFDR vs. Analog Input
86
85
84
83
82
(dB)
81
80
79
78
77
1.8 4.2
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
SNR (dB) –40°C
SNR (dB) +85°C
ANALOG INPUT FREQUENCY (MHz)
Frequency, 100 MSPS, 2.0 V p-p
80M SNR dBFS
100M SNR dBFS
ANALOG INPUT RANGE (V p-p)
Figure 28. AD9446-100 SNR vs. Input Range, 30.3 MHz, −30 dBFS
05490-027
05490-039
120
100
80
60
(dB)
40
20
0
–100 0
SFDR dBFS
SNR dBFS
SFDR dBc
SNR dB
–90 –80 –70 –60 –50 –40 –30 –20 –10
ANALOG INPUT AMPLITUDE (dB)
05490-026
Figure 26. AD9446-100 SNR/SFDR vs. Analog Input Level, 100 MSPS
Rev. 0 | Page 18 of 36
130
110
90
70
(dB)
50
30
10
0 –100 0
SFDR dBFS
SNR dBFS
SFDR dBc
SNR dB
–90 –80 –70 –60 –50 –40 –30 –20 –10
ANALOG INPUT AMPLITUDE (dB)
Figure 29. AD9446-100 SNR/SFDR vs. Analog Input Level, 100 MSPS,
CMOS Output Mod
e
05490-029
Page 19
AD9446
www.BDTIC.com/ADI
(dB)
95
90
85
80
75
70
SFDR (dBc) +85°C
SFDR (dBc) –40°C
SFDR (dBc) +25°C
SNR (dB) –40°C
SNR (dB) +85°C
SNR (dB) +25°C
(dB)
95
90
SFDR (dBc) +25°C
85
SNR (dB) –40°C
80
75
SNR (dB) +25°C
70
SFDR (dBc) –40°C
SFDR (dBc) +85°C
SNR (dB) +85°C
65
60
0 180
20 40 60 80 100 120 140 160
ANALOG INPUT FREQUENCY (MHz)
05490-030
Figure 30. AD9446-80 SNR/SFDR vs. Analog Input Frequency, 80 MSPS, 3.2 V p-p
95
SFDR (dBc) +25°C
90
85
80
SNR (dB) +25°C
(dB)
75
70
65
60
0 180
SFDR (dBc) –40°C
SFDR (dBc) +85°C
SNR (dB) –40°C
SNR (dB) +85°C
20 40 60 80 100 120 140 160
ANALOG INPUT FREQUENCY (MHz)
05490-031
Figure 31. AD9446-80 SNR/SFDR vs. Analog Input Frequency, 80 MSPS, 3.2 V p-p,
CMOS Mode
65
60
0 180
20 40 60 80 100 120 140 160
ANALOG INPUT FREQUENCY (MHz)
05490-033
Figure 33. AD9446-80 SNR/SFDR vs. Analog Input Frequency, 80 MSPS, 2.0 V p-p
90
88
86
84
82
80
(dB)
78
76
74
72 70
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT COMMON-MODE VOLTAGE
SFDR dBc
SNR dB
05490-034
Figure 34. AD9446-80 SNR/SFDR vs. Analog Input Common Mode, 80 MSPS
120
100
80
60
(dB)
40
20
0
–100 0
SFDR dBFS
SNR dBFS
SFDR dBc
SNR dB
–90 –80 –70 –60 –50 –40 –30 –20 –10
ANALOG INPUT AMPLITUDE (dB)
05490-032
Figure 32. AD9446-80 SNR/SFDR vs. Analog Input Level, 80 MSPS
Rev. 0 | Page 19 of 36
120
100
80
60
(dB)
40
20
0
–100 0
SFDR dBFS
SNR dBFS
SFDR dBc
SNR dB
–90 –80 –70 –60 –50 –40 –30 –20 –10
ANALOG INPUT AMPLITUDE (dB)
Figure 35. AD9446-80 SNR/SFDR vs. Analog Input Level, 80 MSPS,
CMOS Output Mod
e
05490-035
Page 20
AD9446
www.BDTIC.com/ADI
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
Figure 36. AD9446-100 64k Point Two-Tone FFT/100 MSPS/9.8 MHz, 10.8 MHz
100MSPS
9.8MHz @ –7.0dBFS
10.8MHz @ –7.0dBFS SFDR = 95dBc
05490-037
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
SPUR AND IMD3 (dB)
–100 –110 –120 –130
–100 0
WORST IMD3 dBc
SFDR dBFS
WORST IMD3 dBFS
–90 –80 –70 –60 –50 –40 –30 –20 –10
FUNDAMENTAL LEVEL (dB)
SFDR dBc
05490-041
Figure 39. AD9446-100 Two-Tone SFDR vs. Analog Input Level 100 MSPS/
3 MHz, 70.3 MHz
69.
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
SPUR AND IMD3 (dB)
–100 –110 –120 –130
–100 0
WORST IMD3 dBc
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBc
SFDR dBFS
WORST IMD3 dBFS
FUNDAMENTAL LEVEL (dB)
05490-038
Figure 37. AD9446-100 Two-Tone SFDR vs. Analog Input Level 100 MSPS/
.8 MHz, 10.8 MHz
9
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
0 50.0
12.5 25.0 37.5 FREQUENCY (MHz)
100MSPS
69.3MHz @ –7.0dBFS
70.3MHz @ –7.0dBFS SFDR = 92dBc
05490-040
Figure 38. AD9446-100 64k Point Two-Tone FFT/100 MSPS/69.3 MHz, 70.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100
–110 –120 –130 –140
04
10 20 30
FREQUENCY (MHz)
80MSPS
9.8MHz @ –7.0dBFS
10.8MHz @ –7.0dBFS SFDR = 96dBc
05490-042
0
Figure 40. AD9446-80 64k Point Two-Tone FFT/80 MSPS/9.8 MHz, 10.8 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
SPUR AND IMD3 (dB)
–100 –110 –120 –130
–100 0
–90 –80 –70 –60 –50 –40 –30 –20 –10
WORST IMD3 dBc
FUNDAMENTAL LEVEL (dB)
SFDR dBc
SFDR dBFS
WORST IMD3 dBFS
05490-043
Figure 41. AD9446-80 Two-Tone SFDR vs. Analog Input Level 80 MSPS/
9
.8 MHz, 10.8 MHz
Rev. 0 | Page 20 of 36
Page 21
AD9446
www.BDTIC.com/ADI
16000
11927
7277
N– 2
N– 3
OUTPUT CODE
14296
N– 1
12619
8376
N
N + 1
14000
12000
10000
8000
FREQUENCY
6000
4000
2000
0
11 40
N– 7
3424
1192
315
N– 4
N– 5
N– 6
Figure 42. AD9446-100 Grounded Input Histogram
SAMPLE SIZE = 65538
4073
1458
426
80
N + 6
N + 5
N + 4
N + 3
N + 2
22
05490-044
N + 7
18000
SAMPLE SIZE = 65538
16000
14000
12000
10000
8000
FREQUENCY
6000
4000
2000
310
0
3916
947
146
N– 3
N– 4
N– 5
N– 6
17090
16450
10145
N
N– 1
N– 2
OUTPUT CODE
Figure 45. AD9446-80 Grounded Input Histogram
11027
N + 1
4393
N + 2
1181
N + 3
N + 4
198
N + 5
30
05490-047
N + 6
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
040
10 20 30
FREQUENCY (MHz)
80MSPS
69.3MHz @ –7.0dBFS
70.3MHz @ –7.0dBFS SFDR = 92dBc
05490-045
Figure 43. AD9446-80 64k Point Two-Tone FFT/80 MSPS/69.3 MHz, 70.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
SPUR AND IMD3 (dB)
–100 –110 –120 –130
–100 0
–90 –80 –70 –60 –50 –40 –30 –20 –10
WORST IMD3 dBc
WORST IMD3 dBFS
FUNDAMENTAL LEVEL (dB)
SFDR dBc
SFDR dBFS
05490-046
Figure 44. AD9446-80 Two-Tone SFDR vs. Analog Input Level 80 MSPS/
69.
3 MHz, 70.3 MHz
0
–0.1
–0.2
–0.3
–0.4
–0.5
GAIN ERROR (%FSR)
–0.6
–0.7
–0.8
–40
–20 0 20 40 60 80
TEMPERATURE (°C)
Figure 46. AD9446-100 Gain vs. Temperature
400
350
(mA)
SUPPLY
I
300
250
200
150
100
AVDD1
AVDD2
DRVDD
50
0
20 40 60 80 100 120
0
SAMPLE RATE (MSPS)
Figure 47. AD9446-80 Power Supply Current vs. Sample Rate
10.
3 MHz @ −1 dBFS
140
05490-048
05490-049
Rev. 0 | Page 21 of 36
Page 22
AD9446
www.BDTIC.com/ADI
95
82
93
10.3MHz SFDR dBc
70.3MHz SFDR dBc
(dB)
91
89
87
85
83
81
79
1.8
30.3MHz SFDR dBc
ANALOG INPUT RANGE (V p-p)
Figure 48. AD9446-100/SFDR vs. Analog Input Range,
0 MSPS
10
1.625
1.620
1.615
VREF
1.610
1.605 –40
–20 0 20 40 60 80
TEMPERATURE (°C)
Figure 49. AD9446-100 VREF vs. Temperature
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
05490-050
05490-051
81
80
70.3MHz SFDR dBc
(dB)
79
78
77
76
1.8
10.3MHz SFDR dBc
30.3MHz SFDR dBc
ANALOG INPUT RANGE (V p-p)
Figure 51. AD9446-100 SNR vs. Analog Input Range,
0 MSPS
10
95
(dB)
93
91
89
87
85
83
81
79
1.8
30.3MHz SFDR dBc
ANALOG INPUT RANGE (V p-p)
10.3MHz SFDR dBc
70.3MHz SFDR dBc
Figure 52. AD9446-80 SFDR vs. Analog Input Range,
10
0 MSPS
05490-064
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
05490-065
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
450
400
350
AVDD1
AVDD2
DRVDD
50
0
0
20 40 60 80 100 120
SAMPLE RATE (MSPS)
140
05490-063
(mA)
SUPPLY
I
300
250
200
150
100
Figure 50. AD9446-100 Power Supply Current vs. Sample Rate
3 MHz @ −1 dBFS
10.
Rev. 0 | Page 22 of 36
84
10.3MHz SNR dB
70.3MHz SNR dB
(dB)
83
82
81
80
79
78
77
1.8
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 ANALOG INPUT RANGE (V p-p)
Figure 53. AD9446-80/SNR vs. Analog Input Range,
80 MSPS
30.3MHz SNR dB
4.2
05490-066
Page 23
AD9446
www.BDTIC.com/ADI
100
0
100M SFDR dBc
80M SFDR dBc
80M SNR dB
100M SNR dB
2010 30 40 50 60 70 80 90 100 110
SAMPLE RATE (MSPS)
95
90
(dB)
85
80
75
Figure 54. AD9446 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz
05490-036
Rev. 0 | Page 23 of 36
Page 24
AD9446
www.BDTIC.com/ADI

THEORY OF OPERATION

The AD9446 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth track-and-hold circuit that samples the signal prior to quantization by the 16-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin.

ANALOG INPUT AND REFERENCE OVERVIEW

A stable and accurate 0.5 V band gap voltage reference is built into the AD9446. The input range can be adjusted by varying the reference voltage applied to the AD9446, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly.

Internal Reference Connection

A comparator within the AD9446 detects the potential at the SENSE pin and configures the reference into three possible states, which are summarized in Ta bl e 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 55), setting VREF to ~1.6 V. If a resistor
er is connected as shown in Figure 56, the switch again sets
divid
o the SENSE pin. This puts the reference amplifier in a
t noninverting mode with the VREF output defined as
R2
VVREF 15.0
⎜ ⎝
In all reference configurations, REFT and REFB drive the
nalog-to-digital conversion core and establish its input span.
a The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.

Internal Reference Trim

The internal reference voltage is trimmed during the production test; therefore, there is little advantage to the user supplying an external voltage reference to the AD9446. The gain trim is per­formed with the AD9446 input range set to 3.2 V p-p nominal (SENSE connected to AGND). Because of this trim and the maximum ac performance provided by the 3.2 V p-p analog input range, there is little benefit to using analog input ranges
+×=
R1
<2 V p-p. However, reducing the range can improve SFDR performance in some applications. Likewise, increasing the range up to 3.8 V p-p can improve SNR. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use <2.0 V p-p may exhibit missing codes and therefore degraded noise and distortion performance.
VIN+
10μF+0.1μF
10μF+0.1μF
VIN–
ADC
CORE
VREF
SELECT
LOGIC
SENSE
0.5V
AD9446
Figure 55. Internal Reference Configuration
VIN+
VIN–
VREF
R2
SENSE
R1
Figure 56. Programmable Reference Configuration
SELECT
LOGIC
0.5V
AD9446
ADC
CORE
REFT
0.1μF
0.1μF 10μF
REFB
0.1μF
REFT
0.1μF
0.1μF 10μF
REFB
0.1μF
+
05490-052
+
05490-053
Rev. 0 | Page 24 of 36
Page 25
AD9446
www.BDTIC.com/ADI
Table 9. Reference Configuration Summary
Selected Mode SENSE Voltage Resulting VREF (V) Resulting Differential Span (V p-p)
External Reference AVDD N/A 2 × external reference Programmable Reference 0.2 V to VREF
Programmable Reference
(Set for 2 V p-p)
Programmable Reference
(Set for 2 V p-p)
Internal Fixed Reference AGND to 0.2 V 1.6 3.2
0.2 V to VREF
0.2 V to VREF
R2
⎛ ⎜ ⎝
⎛ ⎜ ⎝
⎛ ⎜ ⎝
(See Figure 56)
+×
10.5
R1
R2
, R1 = R2 = 1 kΩ
+×
10.5
R1
R2
, R1 = 1 kΩ , R2 = 2.8 kΩ
+×
10.5
R1

External Reference Operation

When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent
VIN+
7 kΩ load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC
1.6V p-p
core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a
VIN–
maximum of 2.0 V. See Figure 46 for gain variation vs. temperature.
DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s
2 × VREF
2.0
3.8
3.5V

Analog Inputs

As with most new high speed, high dynamic range ADCs, the analog input to the AD9446 is differential. Differential inputs improve on-chip performance because signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9446 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact sales for recommendations of other 16-bit ADCs that support single­ended analog input configurations.
With the 1.6 V reference, which is the nominal value (see the Internal Reference Trim section), the differential input range of
e AD9446 analog input is nominally 3.2 V p-p or 1.6 V p-p on
th each input (VIN+ or VIN−).
Figure 57. Differential Analog Input Range for VREF = 1.6 V
The AD9446 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 kΩ resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the s
ection). Therefore, the analog source driving the AD9446
Equivalent Circuits
should be ac-coupled to the input pins. The recommended method for driving the analog input of the AD9446 is to use an RF transformer to convert single-ended signals to differential
Figure 58). Series resistors between the output of the
(see
nsformer and the AD9446 analog inputs help isolate the
tra analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 kΩ resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformer input. For example, if R
is set to 51 Ω, RS is set to 33 Ω and
T
there is a 1:1 impedance ratio transformer, the input will match a 50 Ω source with a full-scale drive of 16.0 dBm. The 50 Ω impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board schematic (see Figure 61).
05490-054
Rev. 0 | Page 25 of 36
Page 26
AD9446
www.BDTIC.com/ADI
0.1
R
S
VIN+
AD9446
R
S
μF
VIN–
05490-055
R
ADT1–1WT
T
ANALOG
INPUT
SIGNAL
Figure 58. Transformer-Coupled Analog Input Circuit

CLOCK INPUT CONSIDERATIONS

Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-to­digital output. For that reason, considerable care was taken in the design of the clock inputs of the AD9446, and the user is advised to give careful thought to the clock source.
Typical high speed ADCs use both clock edges to generate a
riety of internal timing signals and, as a result, may be sensitive
va to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance charac­teristics. The AD9446 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal ~50% duty cycle. Noise and distortion per­formance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates of less than 30 MHz nominally. The loop is associated with a time constant that should be considered in applications where the clock rate can change dynamically, requiring a wait time of 1.5 μs to 5 μs after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time that the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance.
The DCS circuit is controlled by the DCS MODE pin; a CMOS
gic low (AGND) on DCS MODE enables the duty cycle stabilizer,
lo and logic high (AVDD1 = 3.3 V) disables the controller.
The AD9446 input sample clock signal must be a high quality,
remely low phase noise source to prevent degradation of per-
ext formance. Maintaining 16-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See the AN-501 Application Note,
Aperture Uncertainty and ADC System Performance.”) For
“ optimum performance, the AD9446 must be clocked differentially. The sample clock inputs are internally biased to ~1.5 V, and the input signal is usually ac-coupled into the CLK+ and CLK− pins
via a transformer or capacitors. m
ethod for clocking the AD9446. The clock source (low jitter)
Figure 59 shows one preferred
is converted from single-ended to differential using an RF trans­former. The back-to-back Schottky diodes across the secondary of the transformer limit clock excursions into the AD9446 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9446 and limits the noise presented to the sample clock inputs.
If a low jitter clock is available, it may help to band-pass filter
he clock reference before driving the ADC clock inputs. Another
t option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 60.
CRYSTAL
SINE
SOURCE
Figure 59. Crystal Clock Oscillator, Differential Encode
PECL
ADT1–1WT
0.1
μF
HSMS2812
DIODES
VT
0.1
μF
ECL/
Figure 60. Differential ECL for Encode
0.1μF
VT
CLK+
AD9446
CLK–
ENCODE
AD9446
ENCODE
05490-057
05490-056

Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input
f
frequency (
t
) can be calculated using the following equation:
(
J
SNR = 20 log[2πf
) and rms amplitude due only to aperture jitter
INPUT
× tJ]
INPUT
In the equation, the rms aperture jitter represents the root-mean-
uare of all jitter sources, which includes the clock input, analog
sq input signal, and ADC aperture jitter specification. IF under­sampling applications are particularly sensitive to jitter
The clock input should be treated as an analog signal in cases w
here aperture jitter may affect the dynamic range of the AD9446. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be synchronized by the original clock during the last step.
Rev. 0 | Page 26 of 36
Page 27
AD9446
www.BDTIC.com/ADI

POWER CONSIDERATIONS

Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9446. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 μF chip capacitors.
The AD9446 has separate digital and analog power supply pins. The a
nalog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V), and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies can be tied together, best per­formance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage.
The DRVDD supply of the AD9446 is a dedicated supply for the
igital outputs in either LVDS or CMOS output mode. When in
d LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply can be connected from 2.5 V to 3.6 V for compatibility with the receiving logic.

DIGITAL OUTPUTS

LVDS Mode

The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 3 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 kΩ R resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9446 is used in LVDS mode; designers are encouraged to take advantage of this mode. The AD9446 outputs include complimentary LVDS outputs for each data bit (Dx+/Dx−), the overrange output (OR+/OR−), and the output
SET
data clock output (DCO+/DCO−). The R multiplied on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 × I
termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended, with a 100 Ω termination resistor located as close to the receiver as possible. It is recommended to keep the trace length less than 2 inches and to keep differential output trace lengths as equal as possible.
R
SET

CMOS Mode

In applications that can tolerate a slight degradation in dynamic performance, the AD9446 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits, Dx, are single-ended CMOS, as is the overrange output, OR+. The output clock is provided as a differential CMOS signal, DCO+/DCO−. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 Ω) to minimize switching transients caused by the capacitive loading.

TIMING

The AD9446 provides latched data outputs with a pipeline delay of 13 clock cycles. Data outputs are available one propagation delay (t Figure 3 for detailed timing diagrams.
) after the rising edge of CLK+. Refer to Figure 2 and
PD
resistor current is
SET
). A 100 Ω differential
Rev. 0 | Page 27 of 36
Page 28
AD9446
www.BDTIC.com/ADI

OPERATIONAL MODE SELECTION

Data Format Select

The data format select (DFS) pin of the AD9446 determines the coding format of the output data. This pin is 3.3 V CMOS compatible, with logic high (or AVDD1, 3.3 V) selecting twos complement and DFS logic low (AGND) selecting offset binary format. Tabl e 10 summarizes the output coding.

Output Mode Select

The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS-
Table 10. Digital Output Coding
VIN+ − VIN−
Code
65,536 +1.600 +1.000 1111 1111 1111 1111 0111 1111 1111 1111 32,768 0 0 1000 0000 0000 0000 0000 0000 0000 0000 32,767 −0.0000488 −0.000122 0111 1111 1111 1111 1111 1111 1111 1111 0 −1.60 −1.00 0000 0000 0000 0000 1000 0000 0000 0000
Input Span = 3.
2 V p-p (V)
VIN+ − VIN− Input Span = 2 V p-p (V)
compatible input. With OUTPUT MODE = 0 (AGND), the AD9446 outputs are CMOS compatible, and the pin assignment for the device is as defined in Tabl e 8. With OUTPUT MODE = 1
VDD1, 3.3 V), the AD9446 outputs are LVDS compatible, and
(A the pin assignment for the device is as defined in

Duty Cycle Stabilizer

The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller.
Digital Output Offset Binary (D15••••••D0)
Digital Output Twos Complement (D15••••••D0)
Tabl e 7 .
Rev. 0 | Page 28 of 36
Page 29
AD9446
www.BDTIC.com/ADI

EVALUATION BOARD

Evaluation boards are offered to configure the AD9446 in either CMOS or LVDS mode only. This design represents a recom­mended configuration for using the device over a wide range of sampling rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics are shown in
iles are available from engineering applications demonstrating
f the proper routing and grounding techniques that should be applied at the system level.
Figure 61 through Figure 64. Gerber
The LVDS mode evaluation boards include an LVDS-to-CMOS
ranslator, making them compatible with the high speed ADC
t FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32 kB samples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256 kB samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9446 and many other high speed ADCs.
It is critical that signal sources with very low phase noise (
<60 fsec rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal to remove harmonics and lower the integrated noise at the input is also necessary to achieve the specified noise performance.
The evaluation boards are shipped with a 115 V ac to 6 V dc p
ower supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9446 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see Figure 61).
Behavioral modeling of the AD9446 is also available at www.analog.com/ADIsimADC. The ADIsimADC™ software supp
orts virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9446 and other high speed ADCs with or without hardware evaluation boards.
The user can choose to remove the translator and terminations
o access the LVDS outputs directly.
t
Rev. 0 | Page 29 of 36
Page 30
AD9446
www.BDTIC.com/ADI
P21
P22
GND
DRGND
1
P1
2
P2
3
P3
4
P4
PTMICRO4
1
P1
2
P2
3
P3
4
P4
PTMICRO4
DRGND
GND
GND
H4 MTHOLE6
H3 MTHOLE6
H1 MTHOLE6
H2 MTHOLE6
XTALPWR EXTREF
DRVDD
VCC
5V
(MSB) D15_T/D15_Y
DRVDD D11_C/D6_Y D11_T/D7_Y D12_C/D8_Y D12_T/D9_Y
D13_C/D10_Y
D13_T/D11_Y
D14_C/D12_Y
D14_T/D13_Y
D15_C/D14_Y
DRGND
DRVDD
DOR_C
DOR_T/DOR_Y
GND
VCC VCC VCC
VCC VCC VCC GND
100
101
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
DRVDD D11_C D11_T D12_C D12_T D13_C D13_T D14_C D14_T D15_C D15_T DRGND DRVDD OR_C OR_T AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND
EPAD
DRGND
D10_T/D5_Y
74
75
D10_T
DRGND
D9_C/D2_Y
D9_T/D3_Y
D10_C/D4_Y
72
73
71
D9_T
D9_C
D10_C
D8_C/D0_Y
D8_T/D1_Y
68
69
70
D8_T
D8_C
DR
67
DCO
DRB
66
DCOB
D7_T
65
D7_T
D7_C
64
D7_C
U1
AD9445/AD9446
DRGND
DRVDD
63
DRVDD
DRGND
62
D6_T
61
D6_T
D6_C
60
D6_C
D5_T
59
D5_T
D5_C
58
D5_C
D4_T
57
D4_T
D4_C
56
D4_C
D3_T
55
D3_T
D3_C
54
D3_C
D2_T
53
D2_T
D2_C
52
D1_T
D2_C
DRVDD DRGND
AGND AVDD1 AVDD1 AVDD1
AGND
ENCB
AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2
D1_T
51
D0_T
D0_C
ENC
D1_C
D1_C
50
D0_T
49
D0_C (LSB)
48
DRVDD
47
DRGND
46
GND
45
VCC
44
VCC
43
VCC
42
GND
41
ENCB
40
ENC
39
GND
38
VCC
37
5V
36
VCC
35
5V
34
VCC
33
VCC
32
VCC
31 30 29 28 27 26
5V
E19
VCC
E66
E18
GND
E4
VCC
DCS MODE
DNC
OUTPUT MODE
DFS
LVDSBIAS
AVDD1
SENSE
VREF
AGND
REFT
REFB
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AGND
VIN+
VIN–
AGND
6
VCC
GND
GND
7
C86
E26
VCC
8
0.1μF
E25
9
E27
E41
GND
R1
11
10
C3
GND
E24
EXTREF
DNP
R3
3.74kΩ
12
0.1μF
+
GND
5V
13
C2
C51
C40
GND
R2
5V
GND
0.1μF
10μF
0.1μF
C39
14
C9
DNP
15
16
5V
5V
0.1μF
GND
10μF
20
21
19
18
17
5V
5V
C98
GND
DNP
VCC
VCC
GND
GND
VCC
T1
ETC1-1-13
R5
234
E14
GND
R11
E2
GND
5
1kΩ
VCC
1
GND
E10
E5
E6
GND
VCC
E1
GND
SCLK
E3
E9
VCC
23
22
24
GND
R28
33Ω
C7
0.1μF
GND
GND
TOUT
C12
CT
2
15
GND
L1
10nH
DNP
J4
SMBMST
AVDD2
25
5V
C13
OPTIONAL
R9
R4
36Ω
ETC1-1-13
125
T2
3
PRI SEC
TOUTB
0.1μF
34
PRI SEC
TINB
C5
0.1μF
ANALOG
DNP
DNP
4
C91
0.1μF
R6
E15
36Ω
T5
ADT1-1WT
GND
GND
TOUT
624
153
GND
R35
33Ω
C8
0.1μF
CT
PRI SEC
NC
TINB TOUTB
05490-059
Figure 61. AD9446 Evaluation Board Schematic
Rev. 0 | Page 30 of 36
Page 31
AD9446
X
www.BDTIC.com/ADI
VIN
U6
GND
5
NC
ECLOSC
C42
4
XTALINPUT
8
OUTVCC
14
VXTAL
ENCB
3
1 2
GND
0.1μF
SEC
PRI
C41
0.1μF
C1
10μF
+
5V
E31
0Ω
ENC
VXTAL
E30
XTALPWR
E20
2
1
3
GND
C44
+
T3
10μF
ADT1-1WT
C36
CR1
CR2
DNP
6
123
DNP
VXTAL
OPTIONAL ENCODE CIRCUITS
LOADING SYMMETRICAL
CR2 TO MAKE LAYOUT AND PARASITIC
ENCODE
GND
R39
1
7
VEE ~OUT
GND
L5
FERRITE
DRVDDXDRVDD
VCCXVCC
L4
FERRITE
L2
DNP
L3
FERRITE
DRGNDGND
5VX5V
U3
3.3V
ADP3338
U7
3.3V
ADP3338
5V
U14
ADP3338
DRGND
1
GND
GND
1
GND
GND
1
GND
DRVDD
OUT1
OUT
DRVDDX
VCCX
OUT1
OUT
VCCX
5VX
OUT1
OUT
C4
10μF
+
342
IN
VIN
C6
10μF
+
342
IN
VIN
C34
10μF
+
342
IN
DRGND
C88
10μF
+
C87
10μF
+
C89
10μF
+
DRGND
GND
GND
GND
GND
GND
R7
DNP
J5
SMBMST
C26
0.1μF
GND
R8
50Ω
J1
SMBMST
XTALINPUT
Figure 62. AD9446 Evaluation Board Schematic (Continued)
Rev. 0 | Page 31 of 36
POWER OPTIONS
5VX
VIN
C33
GND
1
3
2
P4
PJ-102A
1
3
2
10μF
+
GND
05490-060
Page 32
AD9446
www.BDTIC.com/ADI
BYPASS CAPACITORS
VCC
+
C64 10μF
GND
C43
0.1μF
C35
0.1μF
C32
0.1μF
C30
0.01μF
C28
0.1μF
C27
0.1μF
C90
0.1μF
C50
0.1μF
C60
0.1μF
C10
0.1μF
C61
0.1μF
C75
0.1μF
VCC
GND
DRVDD
DRGND
GND
GND
GND
C11XXC14
+
C65
C47
0.1μF
C85
0.1μF
C23
0.1μF
10μF
5V
+
C56 10μF
5V
5V
C17XXC16XXC15
XX
C53
C52
0.1μF
0.1μF
C72XXC73
XX
C94
C95
0.1μF
0.1μF
C21
0.1μF
C58
0.01μF
C22
0.1μF
C20
0.1μF
C31 XX
XX
C108XXC109
XX
C59
C93
0.1μF
0.1μF
DRVDD
DRGND
C38XXC29XXC19
C69XXC70
C37
0.1μF
C110 XX
C96
C97
0.1μF
0.1μF
XX
C48
0.1μF
C84
0.1μF
XX
C45XXC49
EXTREF
C18
0.1μF GND
C46
0.1μF
XX
+
C55 10μF
05490-061
Figure 63. AD9446 Evaluation Board Schematic (Continued)
Rev. 0 | Page 32 of 36
Page 33
AD9446
www.BDTIC.com/ADI
DRVDD
DRO
R190ΩR20
DRVDD
0Ω
DRGND
ORO
DRVDD
DRO
GND??
DRGND
33
35
37
39
P35
P37
P39
P36
P38
P40
34
36
38
40
ORO
DRGND
D14O
D15O
16151413121110
220
R3R1R2
RSO16ISO
RZ5
DRVDD
DRGND
DRVDD
DRGND
DRVDD
312
D15O
P33
P34
D13O
7
8
D2O
6
DRVDD
D2O
P7
P8
R7
DRGND
D0O
D1O
DRGND
1
3
5
P1
P3
P5
P7
C40MS
P2
P4
P6
2
4
6
DRGND
D1O
D0O
9
R8
RZ4
8
7
DRVDD
DRVDD
DRGND
D13O
D11O
D9O
D8O
D10O
D12O
D14O
23
25
27
29
31
P23
P25
P27
P29
P31
P24
P26
P28
P30
P32
24
26
28
30
32
D8O
D9O
D10O
D11O
D12O
9
R8
R7
R6
R5
R4
8
7
6
5
4
DRVDD
DRGND
DRVDD
D7O
17
19
21
P17
P19
P21
P18
P20
P22
18
20
22
D7O
16151413121110
220
RSO16ISO
DRVDD
DRGND
15
16
D6O
P15
D6O
P16
D4O
D3O
D5O
9
11
13
P9
P11
P13
P10
P12
P14
10
12
14
D4O
D5O
D3O
R6
R5
R4
R3R1R2
5
4
312
DRVDD
91011
12
13
14
15
16
4Y
3Y
2Y
1Y
VCC
GND
3A
2B
EN_3_4
4B
4A
3B
8765432
DOR_C
DRO_T/DOR_Y
EN_1_2
U15
2A
1B
1A
SN75LVDT390
1
DR
DRB
64
D4Y
D3Y
D2Y
D1Y
C4Y
C3Y
C2Y
23
24
16
D9_C/D2_Y
P23
P24
D9_T/D3_Y
VCC3
B4B
17
D8_C/D0_Y
C1Y
VCC4
GND3
C2A
C1B
C1A
20
19
18
D7_T
D6_T
D7_C
D8_C/DO_Y
DRB
19
21
P19
P21
P20
P22
20
22
DR
D8_T/D1_Y
C2B
D6_C
D7_C
17
P17
18
D7_T
21
P18
C3A
D5_T
22
15
16
C3B
D5_C
D6_C
P15
P16
D6_T
ENC
C4B
C4A
24
23
D4_T
D4_C
D5_C
13
P13
P14
14
D5_T
END
VCC6
VCC5
GND5
GND4
D4B
D4A
D3B
D3A
D2B
D2A
D1B
D1A
32
31
30
29
28
27
26
25
D3_T
D2_T
D1_T
D2_C
7
8
D2_C
P7
P8
D2_T
D0_T
D1_C
D0_C
D0_C
D1_C
DRGND
1
3
5
P1
P3
P5
P2
P4
P6
2
4
6
D0_T
D1_T
DRGND
11
12
D4_C
P11
P12
D4_T
D3_C
D3_C
9
P9
P10
10
D3_T
C78
0.1μF
C77
0.1μF
C82
0.1μF
C76
0.1μF
GND
GND
P6
C40MS
05490-062
A1Y
VCC1
A1B
D15_C/D14_Y
39
40
VCC2
GND1
A2B
A2A
D14_T/D13_Y
D14_C/D12_Y
DOR_C
DRGND
37
P37
P39
P38
P40
38
DRGND
DOR_T/DOR_Y
ENA
A3A
D13_T/D11_Y
35
36
A3B
D13_C/D10_Y
GND
U8
A1A
SN75LVDS386
D15_T/D14_Y
D15_C/D14_Y
P35
P36
D15_T/D15_Y
A4A
D12_T/D9_Y
33
34
A4B
987654321
D12_C/D8_Y
D14_C/D12_Y
P33
P34
D14_T/D13_Y
B1A
D11_T/D7_Y
D13_C/D10_Y
31
P31
P32
32
D13_T/D11_Y
ENB
B2A
B1B
11
10
D10_T/D5_Y
D11_C/D6_Y
D12_C/D8_Y
29
P29
P30
30
D12_T/D9_Y
GND2
B4A
B3B
B3A
B2B
15
14
13
12
D9_T/D3_Y
D8_T/D1_Y
D9_C/D2_Y
D10_C/D4_Y
D10_C/D4_Y
D11_C/D6_Y
25
27
P25
P27
P26
P28
26
28
D10_T/D5_Y
D11_T/D7_Y
B4Y
B3Y
B2Y
B1Y
A4Y
A3Y
A2Y
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Figure 64. AD9446 Evaluation Board Schematic (Continued)
Rev. 0 | Page 33 of 36
Page 34
AD9446
www.BDTIC.com/ADI
Table 11. AD9446 Customer Evaluation Board Bill of Material
Reference
Item Qty.
1 7
2 44
3 2 C30, C58 Capacitor 201 0.01 F Digi-Key Corporation 445-1796-1-ND 4 4 C39, C56, C64, C65 Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2 5 1 C51 Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND 6 1 CR1 Diode SOT23M5 Digi-Key Corporation
7 1 CR2 Diode SOT23M5 Digi-Key Corporation
8 20
9 2 J1, J4 SMA SMA Digi-Key Corporation ARFX1231-ND 10 1 L1 Inductor 0603A 10 nH Coilcraft, Inc. 0603CS-10NXGBU 11 3 L3, L4, L5
12 1 P4 PJ-002A PJ-002A Digi-Key Corporation CP-002A-ND 13 1 P7 Header C40MS Samtec, Inc.
14 1 R3 Resistor 402 3.74 kΩ Digi-Key Corporation P3.74KLCT-ND 15 1 R8 Resistor 402 50 Ω Digi-Key Corporation P49.9LCT-ND 16 4 R10, R19, R39, L2 Resistor 402 0 Ω Digi-Key Corporation P0.0JCT-ND 17 1 R11 BRES402 402 1 kΩ Digi-Key Corporation P1.0KLCT-ND 18 2 R28, R35 Resistor 402 33 Ω Digi-Key Corporation P33JCT-ND 19 2 RZ4, RZ5 Resistor array 16PIN 22 Ω Digi-Key Corporation
20 2 T3, T5 Transformer ADT1-1WT Mini-Circuits ADT1-1WT 21 1 U1 AD9445BSVZ-125 SV-100-3 Analog Devices, Inc. AD9445BSVZ-100 22 1 U14 ADP3338-5
23 2 U3, U7 ADP3338-3.3
24 1 U8 SN75LVDT386 TSSOP64 Arrow Electronics, Inc. SN75LVDT386 25 1 U15 SN75LVDT390 SOIC16PW Arrow Electronics, Inc. SN75LVDT390 26 2 R4, R6 Resistor 402 36 Ω Digi-Key Corporation P36JCT-ND 27 2 C1, C44, C55 28 23
29 1 C98
Designa
C4, C6, C33, C34, C87, C88, C89
C2, C3, C5, C7, C8, C9, C10, C11, C1 C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97
E1, E2, E3, E4, E5, E6, E9, E10, E14, E20, E24, E25, E26, E27, E30, E31, E36, E41
C13, C14, C16, C17, C18, C19, C29, C C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C110
tor Description Package Value Manufacturer Mfg. P
2,
E18, E19,
1
31,
1
1
art No.
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
Capacitor 402 0.1 F Digi-Key Corporation PCC2146CT-ND
MA3X71600LCT­ND
MA3X71600LCT­ND
Header EHOLE Mouser Elec
EMIFIL® BLM31PG500SN1L
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2 CAP402 402 XX
Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND
1206MIL Mouser Electronics 81-BLM31P500S
SOT­223HS
SOT­223HS
Analog Devices, Inc. ADP3338-5
Analog Devices, Inc. ADP3338-33
tronics 517-6111TG
TSW-120-08-L-D­RA
742C163220JCT­ND
Rev. 0 | Page 34 of 36
Page 35
AD9446
www.BDTIC.com/ADI
Reference
Item Qty.
30 E15 31 J5 32 P6
33 2 R1, R2 34 3 R5, R7, R9 35 1 U2 36 4 H1, H2, H3, H4 37 2 T1, T2 38 2 P21, P22
1
Parts not populated.
Designator Description Package Value Manufacturer Mfg. Part No.
1
1
1
1
1
1
1
1
1
Header EHOLE Mouser Electronics 517-6111TG SMA SMA Digi-Key Corporation ARFX1231-ND Header C40MS Samtec, Inc.
TSW-120-08-L-D-
RA BRES402 402 XX BRES402 402 XX ECLOSC DIP4(14) MTHOLE6 MTHOLE6 Balun transformer SM-22 M/A-COM ETC1-1-13 Term strip PTMICRO4 Newark Electronics
Rev. 0 | Page 35 of 36
Page 36
AD9446
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

0.75
0.60
0.45
1.20
MAX
16.00 BSC SQ
1
PIN 1
14.00 BSC SQ
76100
76 100
75
75
1
1.05
1.00
0.95
0.15
SEATING
0.05
PLANE
VIEW A
ROTATED 90° CCW
TOP VIEW
(PINS DOWN)
0° MIN
0.20
0.09 7°
3.5° 0°
0.08 MAX COPLANARITY
NOTES
1. CENTER FIGURES ARE TY P ICAL UNLESS O THERWISE NOTED.
2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPER ATIO N OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EX P OSED ON THE BO TTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECO M M E NDED THAT NO PCB SIGNAL TRACES OR VI AS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHI CH MAY BE BENEFICIAL IN HIGH TEMPE RATURE ENVIRONM E NTS.
25
26 49
VIEW A
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD
50
51
EXPOSED
BOTTO M V IEW
0.50 BSC
LEAD PITCH
PAD
(PINS UP)
0.27
0.22
0.17
9.50 SQ
25
2650
Figure 65. 100-Lead Thin Quad Flat Packag
e, Exposed Pad [TQFP_EP]
(SV-100-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
AD9446BSVZ-80 AD9446BSVZ-100 AD9446-100LVDS/PCB AD9446-100 LVDS Mode Evaluation Board AD9446-80LVDS/PCB AD9446-80 LVDS Mode Evaluation Board
1
Z = Pb-free part.
1
1
–40°C to +85°C 100-Lead TQFP_EP SV-100-3 –40°C to +85°C 100-Lead TQFP_EP SV-100-3
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05490–0–10/05(0)
Rev. 0 | Page 36 of 36
Loading...