Datasheet AD9222 Datasheet (ANALOG DEVICES)

Page 1
Serial LVDS 1.8 V A/D Converter
AD9222
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
Trademarks and registered trademarks are the property of their respective owners.
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.
SERIAL
LVDS
REF
SELECT
AD9222
AGND
VIN – A
VIN + A
VIN – B
VIN + B
VIN – D
VIN + D
VIN – C
VIN + C
SENSE
VREF
AVDD DRVDD
12
12
12
12
PDWN
REFT REFB
D – A
D + A
D – B
D + B
D – D
D + D
D – C
D + C
FCO –
FCO +
DCO + DCO –
CLK+
DRGND
CLK–
SERIAL PORT
INTERFACE
CSB
SCLK/
DTP
SDIO/
ODM
RBIAS
SERIAL
LVDS
SERIAL
LVDS
SERIAL
LVDS
ADC
ADC
ADC
ADC
DATA RATE
MULTIPLIER
0.5V
SERIAL
LVDS
VIN – E
VIN + E
VIN – F
VIN + F
VIN – H
VIN + H
VIN – G
VIN + G
12
12
12
12
D – E
D + E
D – F
D + F
D – H
D + H
D – G
D + G
SERIAL
LVDS
SERIAL
LVDS
SERIAL
LVDS
ADC
ADC
ADC
ADC
05967-001
Data Sheet

FEATURES

8 ADCs integrated into 1 package 114 mW ADC power per channel at 65 MSPS SNR = 70 dB (to Nyquist) ENOB = 11.3 bits SFDR = 80 dBc Excellent linearity: DNL = ±0.3 LSB (typical),
INL = ±0.4 LSB (typical)
Serial LVDS (ANSI-644, default)
Low power, reduced signal option (similar IEEE 1596.3) Data and frame clock outputs 325 MHz full-power analog bandwidth 2 V p-p input voltage range
1.8 V supply operation Serial port control
Full-chip and individual-channel power-down modes
Flexible bit orientation
Built-in and custom digital test pattern generation
Programmable clock and data alignment
Programmable output resolution
Standby mode
Octal, 12-Bit, 40/50/65 MSPS

FUNCTIONAL BLOCK DIAGRAM

APPLICATIONS

Medical imaging and nondestructive ultrasound Portable ultrasound and digital beam-forming systems Quadrature radio receivers Diversity radio receivers Tape drives Optical networking Test equipment

GENERAL DESCRIPTION

The AD9222 is an octal, 12-bit, 40/50/65 MSPS analog-to­digital converter (ADC) with an on-chip sample-and-hold circuit designed for low cost, low power, small size, and ease of use. The product operates at a conversion rate of up to 65 MSPS and is optimized for outstanding dynamic performance and low power in applications where a small package size is critical.
The ADC requires a single 1.8 V power supply and LVPECL-/ CMOS-/LVDS-compatible sample rate clock for full performance operation. No external reference or driver components are required for many applications.
The ADC automatically multiplies the sample rate clock for the appropriate LVDS serial data rate. A data clock output (DCO) for capturing data on the output and a frame clock output (FCO) for signaling a new output byte are provided. Individual-channel power-down is supported and typically consumes less than 2 mW when all channels are disabled.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog D evices.
The ADC contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. The available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user­defined test patterns entered via the serial port interface (SPI).
The AD9222 is available in an RoHS compliant, 64-l ea d L F CS P. I t i s specified over the industrial temperature range of −40°C to +85°C.

PRODUCT HIGHLIGHTS

1. Small Footprint. Eight ADCs are contained in a small,
2. Low power of 114 mW/channel at 65 MSPS.
3. Ease of Use. A data clock output (DCO) is provided that
4. User Flexibility. The SPI control offers a wide range of
5. Pin-Compatible Family. This includes the AD9212 (10-bit)
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
Figure 1.
space-saving package.
operates at frequencies of up to 390 MHz and supports double data rate (DDR) operation.
flexible features to meet specific system requirements.
and AD9252 (14-bit).
www.analog.com
Page 2
AD9222 Data Sheet

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
AC Specifications .......................................................................... 4
Digital Specifications ................................................................... 5
Switching Specifications .............................................................. 6
Timing Diagrams .............................................................................. 7
Absolute Maximum Ratings ............................................................ 9
Thermal Impedance ..................................................................... 9
ESD Caution .................................................................................. 9
Pin Configuration and Function Descriptions ........................... 10
Equivalent Circuits ......................................................................... 12
Typical Performance Characteristics ........................................... 14
Theory of Operation ...................................................................... 21

REVISION HISTORY

12/11—Rev E to Rev. F
Changes to Figure 86 ...................................................................... 41
Changes to Ordering Guide .......................................................... 59
11/11—Rev. D to Rev. E
Changes to Output Signals Section .............................................. 41
Changes to Figure 86 ...................................................................... 41
Changes to Ordering Guide .......................................................... 60
4/10—Rev. C to Rev. D
Changes to Address 16 in Table 16 ............................................... 38
Updated Outline Dimensions ....................................................... 59
Changes to Ordering Guide .......................................................... 59
1/10—Rev. B to Rev. C
Updated Outline Dimensions ....................................................... 59
Changes to Ordering Guide .......................................................... 60
7/09—Rev. A to Rev. B
Changes to Figure 5 ........................................................................ 10
Changes to Figure 61 and Figure 62 ............................................. 23
Changes to Figure 79 and Figure 80 ............................................. 31
Updated Outline Dimensions ....................................................... 59
Changes to Ordering Guide .......................................................... 59
8/07—Rev. 0 to Rev. A
Added 65 MSPS Models .................................................... Universal
Changes to Features .......................................................................... 1
Changes to Product Highlights ....................................................... 1
Analog Input Considerations ................................................... 21
Clock Input Considerations ...................................................... 24
Serial Port Interface (SPI) .............................................................. 33
Hardware Interface ..................................................................... 34
Memory Map .................................................................................. 36
Reading the Memory Map Table .............................................. 36
Reserved Locations .................................................................... 36
Default Values ............................................................................. 36
Logic Levels ................................................................................. 36
Evaluation Board ............................................................................ 40
Power Supplies ............................................................................ 40
Input Signals................................................................................ 40
Output Signals ............................................................................ 40
Default Operation and Jumper Selection Settings ................. 41
Alternative Analog Input Drive Configuration...................... 42
Outline Dimensions ....................................................................... 59
Ordering Guide .......................................................................... 59
Changes to Figure 2 to Figure 4 ....................................................... 7
Added Figure 21 to Figure 24, Figure 27, Figure 28, Figure 30, Figure 32, Figure 37, Figure 38, Figure 40, Figure 42, Figure 44,
Figure 46, Figure 48, and Figure 51 .............................................. 15
Added Figure 56 and Figure 58 .................................................... 22
Added Figure 70 ............................................................................. 25
Added Figure 72 ............................................................................. 26
Added Figure 74 ............................................................................. 27
Added Figure 76 and Figure 78 .................................................... 28
Changes to Digital Outputs and Timing Section ....................... 28
Changes to Table 9 Endnote .......................................................... 29
Added Table 10 ............................................................................... 30
Changes to RBIAS Pin Section ..................................................... 31
Deleted Figure 56 and Figure 57................................................... 27
Changes to Table 15 ....................................................................... 35
Change to Input Signals Section ................................................... 40
Change to Output Signals Section................................................ 40
Changes to Figure 86 ...................................................................... 40
Changes to Default Operation and Jumper Selection
Settings Section ............................................................................... 41
Changes to Alternative Analog Input Configuration Section ......... 42
Added Figure 88 and Figure 89 .................................................... 42
Change to Figure 92 ....................................................................... 45
Changes to Table 1 7 ....................................................................... 54
Updated Outline Dimensions ....................................................... 59
Changes to Ordering Guide .......................................................... 60
9/06—Revision 0: Initial Version
Rev. F | Page 2 of 60
Page 3
Data Sheet AD9222
AD9222-40
AD9222-50
AD9222-65
RESOLUTION
12
12
12
Bits
Differential Input Capacitance
Full 7 7 7 pF
(Including Output Drivers)

SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 1.
Parameter1 Temp Min Typ Max Min Typ Max Min Typ Max Unit
ACCURACY
No Missing Codes Full Guaranteed Guaranteed Guaranteed
Offset Error Full ±1 ±8 ±1 ±8 ±1 ±8 mV
Offset Matching Full ±3 ±8 ±3 ±8 ±3 ±8 mV
Gain Error Full ±0.4 ±1.2 ±1.5 ±2.5 ±3.5 ±5 % FS
Gain Matching Full ±0.3 ±0.7 ±0.3 ±0.7 ±0.4 ±0.8 % FS
Differential Nonlinearity (DNL) Full ±0.25 ±0.5 ±0.3 ±0.65 ±0.25 ±0.6 LSB
Integral Nonlinearity (INL) Full ±0.4 ±1 ±0.4 ±1 ±0.4 ±1 LSB
TEMPERATURE DRIFT
Offset Error Full ±2 ±2 ±2 ppm/°C
Gain Error Full ±17 ±17 ±17 ppm/°C
Reference Voltage (1 V Mode) Full ±21 ±21 ±21 ppm/°C
REFERENCE
Output Voltage Error (VREF = 1 V) Full ±2 ±30 ±2 ±30 ±2 ±30 mV
Load Regulation @ 1.0 mA (VREF = 1 V) Full 3 3 3 mV
Input Resistance Full 6 6 6 kΩ
ANALOG INPUTS
Differential Input Voltage Range
(VREF = 1 V)
Common-Mode Voltage Full AVDD/2 AVDD/2 AVDD/2 V
Full 2 2 2 V p-p
Analog Bandwidth, Full Power Full 325 325 325 MHz
POWER SUPPLY
AVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 V
DRVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 V
IAVDD Full 338 348.5 357.5 367.5 450 470 mA
IDRVDD Full 51 53.6 53.5 56.2 56.6 60.5 mA
Total Power Dissipation
Power-Down Dissipation Full 2 11 2 11 2 11 mW
Standby Dissipation2 Full 83 89 100 mW
CROSSTALK Full −90 −90 −90 dB CROSSTALK (Overrange Condition)3 Full −90 −90 −90 dB
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
This can be controlled via SPI.
3
Overrange condition is specific with 6 dB of the full-scale input range.
Full 700 722 740 760 910 950.5 mW
Rev. F | Page 3 of 60
Page 4
AD9222 Data Sheet
fIN = 2.4 MHz
Full 70.0
70.0
69.5 dB
fIN = 19.7 MHz
Full
73
85 73
84 70.5
80 dBc
fIN = 35 MHz
Full −92
−92
−90 dBc

AC SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 2.
AD9222-40 AD9222-50 AD9222-65 Parameter1 Temp Min Typ Max Min Typ Max Min Typ Max Unit
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 2.4 MHz Full 70.3 70.4 70.3 dB fIN = 19.7 MHz Full 69.5 70.3 69.5 70.3 68.5 70.0 dB fIN = 35 MHz Full 69.9 70.0 69.8 dB fIN = 70 MHz Full 68.8 69.0 69.5 dB
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)
fIN = 19.7 MHz Full 68.7 70.0 68.5 70.0 66.8 69.4 dB fIN = 35 MHz Full 69.5 69.8 69.3 dB fIN = 70 MHz Full 68.0 68.5 69 dB
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 2.4 MHz Full 11.38 11.4 11.4 Bits fIN = 19.7 MHz Full 11.25 11.38 11.25 11.38 11.1 11.34 Bits fIN = 35 MHz Full 11.32 11.33 11.30 Bits fIN = 70 MHz Full 11.14 11.17 11.25 Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 2.4 MHz Full 85 85 83 dBc
fIN = 35 MHz Full 80 83 80 dBc fIN = 70 MHz Full 76 77 75 dBc
WORST HARMONIC (Second or Third)
fIN = 2.4 MHz Full −85 −85 −83 dBc fIN = 19.7 MHz Full −85 −74 −84 −73 −80 −70.5 dBc fIN = 35 MHz Full −80 −83 −80 dBc fIN = 70 MHz Full −76 −77 −75 dBc
WORST OTHER (Excluding Second or Third)
fIN = 2.4 MHz Full −92 −92 −90 dBc fIN = 19.7 MHz Full −92 −80 −92 −80 −90 −80 dBc
fIN = 70 MHz Full −90 −90 −85 dBc
TWO-TONE INTERMODULATION DISTORTION (IMD)—
AIN1 AND AIN2 = −7.0 dBFS f
= 15 MHz, f
IN1
f
= 70 MHz, f
IN1
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
= 16 MHz 25°C 80.0 80.0 80.0 dBc
IN2
= 71 MHz 25°C 77.0 77.0 75.0 dBc
IN2
Rev. F | Page 4 of 60
Page 5
Data Sheet AD9222
Differential Input Voltage2
Full
250
250
250
mV p-p
LOGIC INPUT (SDIO/ODM)
DIGITAL OUTPUTS (D + x, D − x),
Output Offset Voltage (VOS)
Full
1.125
1.375
1.125
1.375
1.125
1.375
V

DIGITAL SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 3.
AD9222-40 AD9222-50 AD9222-65
Parameter1 Temp Min Typ Max Min Typ Max Min Typ Max Unit
CLOCK INPUTS (CLK+, CLK−)
Logic Compliance CMOS/LVDS/LVPECL CMOS/LVDS/LVPECL CMOS/LVDS/LVPECL
Input Common-Mode Voltage Full 1.2 1.2 1.2 V
Input Resistance (Differential) 25°C 20 20 20 kΩ
Input Capacitance 25°C 1.5 1.5 1.5 pF
LOGIC INPUTS (PDWN, SCLK/DTP)
Logic 1 Voltage Full 1.2 3.6 1.2 3.6 1.2 3.6 V
Logic 0 Voltage Full 0 0.3 0.3 0.3 V
Input Resistance 25°C 30 30 30 kΩ
Input Capacitance 25°C 0.5 0.5 0.5 pF
LOGIC INPUT (CSB)
Logic 1 Voltage Full 1.2 3.6 1.2 3.6 1.2 3.6 V
Logic 0 Voltage Full 0 0.3 0.3 0.3 V
Input Resistance 25°C 70 70 70 kΩ
Input Capacitance 25°C 0.5 0.5 0.5 pF
Logic 1 Voltage Full 1.2 DRVDD + 0.3 1.2 DRVDD + 0.3 1.2 DRVDD + 0.3 V
Logic 0 Voltage Full 0 0.3 0 0.3 0 0.3 V
Input Resistance 25°C 30 30 30 kΩ
Input Capacitance 25°C 2 2 2 pF
LOGIC OUTPUT (SDIO/ODM)3
Logic 1 Voltage (IOH = 800 μA) Full 1.79 1.79 1.79 V
Logic 0 Voltage (IOL = 50 μA) Full 0.05 0.05 0.05 V
(ANSI-644)1
Logic Compliance LVDS LVDS LVDS
Differential Output Voltage (VOD) Full 247 454 247 454 247 454 mV
Output Coding (Default)
DIGITAL OUTPUTS (D + x, D − x),
(Low Power, Reduced Signal
1
Option)
Offset binary Offset binary Offset binary
Logic Compliance LVDS LVDS LVDS
Differential Output Voltage (VOD) Full 150 250 150 250 150 250 mV
Output Offset Voltage (VOS) Full 1.10 1.30 1.10 1.30 1.10 1.30 V
Output Coding (Default)
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
This is specified for LVDS and LVPECL only.
3
This is specified for 13 SDIO pins sharing the same connection.
Offset binary Offset binary Offset binary
Rev. F | Page 5 of 60
Page 6
AD9222 Data Sheet
CLOCK2
Maximum Clock Rate
Full
40
50
65
MSPS
Minimum Clock Rate
Full
10
10
10
MSPS
Aperture Delay (tA)
25°C 750
750
750 ps

SWITCHING SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 4.
AD9222-40 AD9222-50 AD9222-65 Parameter1 Temp Min Typ Max Min Typ Max Min Typ Max Unit
Clock Pulse Width High (tEH) Full 12.5 10.0 7.5 ns Clock Pulse Width Low (tEL) Full 12.5 10.0 7.5 ns
OUTPUT PARAMETERS
Propagation Delay (tPD) Full 1.5 2.3 3.1 1.5 2.3 3.1 1.5 2.3 3.1 ns Rise Time (tR) (20% to 80%) Full 300 300 300 ps Fall Time (tF) (20% to 80%) Full 300 300 300 ps FCO Propagati on Delay (t DCO Propagation Delay (t
DCO to Data De lay (t
DCO to FCO Delay (t
Data to Data Skew
(t
DATA-MAX
Wake-Up Time (Standby) 25°C 600 600 600 ns Wake-Up Time (Power-Down) 25°C 375 375 375 μs Pipeline Latency Full 8 8 8 CLK
APERTURE
2, 3
) Full 1.5 2.3 3.1 1.5 2.3 3.1 1.5 2.3 3.1 ns
FCO
)4 Full t
CPD
)4 Full (t
DATA
)4 Full (t
FRAME
SAMPLE
− 300
SAMPLE
− 300
/24)
/24)
(t (t
(t
FCO
SAMPLE
SAMPLE
SAMPLE
+
t
/24) /24) (t
SAMPLE
/24)
+ 300
/24) (t
SAMPLE
/24)
+ 300
(t
SAMPLE
− 300 (t
SAMPLE
− 300
/24)
/24)
(t (t
(t
FCO
SAMPLE
SAMPLE
SAMPLE
+
t
/24) /24) (t
SAMPLE
/24)
+ 300
/24) (t
SAMPLE
/24)
+ 300
(t
SAMPLE
− 300 (t
SAMPLE
− 300
/24)
/24)
(t (t
(t
FCO
SAMPLE
SAMPLE
SAMPLE
+
Full ±50 ±200 ±50 ±200 ±50 ±200 ps
− t
)
DATA-MIN
/24) /24) (t
/24) (t
ns
/24)
SAMPLE
ps
+ 300
/24)
SAMPLE
ps
+ 300
cycles
Aperture Uncertainty (Jitter) 25°C <1 <1 <1 ps
Out-of-Range Recovery Time 25°C 1 1 1 CLK
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
This can be adjusted via the SPI interface.
3
Measurements were made using a part soldered to FR4 material.
4
t
/24 is based on the number of bits divided by 2 because the delays are based on half duty cycles.
SAMPLE
rms
cycles
Rev. F | Page 6 of 60
Page 7
Data Sheet AD9222
DCO–
DCO+
D – x
D + x
FCO–
FCO+
CLK–
CLK+
MSB N – 9
D10
N – 9D9N – 9D8N – 9D7N – 9D6N – 9D5N – 9D4N – 9D3N – 9D2N – 9D1N – 9D0N – 9
D10
N – 8
MSB N – 8
N – 1
N
t
DATA
t
FRAME
t
FCO
t
PD
t
CPD
t
EH
t
A
t
EL
05967-002
VIN ± x
DCO+
DCO–
CLK+
FCO+
FCO–
D – x
D + x
CL
K–
MSB
N – 9
N – 1
N
D8
N – 9D7N – 9
D5
N – 9
t
DATA
t
FRAME
t
FCO
t
PD
D4
N – 9
D6
N – 9
D8
N – 8D7N – 8
D5
N – 8
D6
N – 8
D3
N – 9
D1
N – 9
MSB N – 8
D0
N – 9
D2
N – 9
t
CPD
t
EH
t
A
t
EL
05967-003
VIN ± x

TIMING DIAGRAMS

Figure 2. 12-Bit Data Serial Stream, MSB First (Default)
Figure 3. 10-Bit Data Serial Stream, MSB First
Rev. F | Page 7 of 60
Page 8
AD9222 Data Sheet
DCO–
DCO+
D – x
D + x
FCO–
FCO+
VIN ± x
CLK–
CLK+
LSB N – 9
D0
N – 9D1N – 9D2N – 9D3N – 9D4N – 9D5N – 9D6N – 9D7N – 9D8N – 9D9N – 9
D10
N – 9
D0
N – 8
LSB N – 8
N – 1
t
A
N
t
DATA
t
FRAME
t
FCO
t
PD
t
CPD
t
EH
t
EL
05967-004
Figure 4. 12-Bit Data Serial Stream, LSB First
Rev. F | Page 8 of 60
Page 9
Data Sheet AD9222
Digital Outputs
DRGND
−0.3 V to +2.0 V

ABSOLUTE MAXIMUM RATINGS

Table 5.
With
Parameter
Respect To Rating
ELECTRICAL
AVDD AGND −0.3 V to +2.0 V
DRVDD DRGND −0.3 V to +2.0 V
AGND DRGND −0.3 V to +0.3 V
AVDD DRVDD −2.0 V to +2.0 V
(D + x, D − x, DCO+,
DCO−, FCO+, FCO−) CLK+, CLK− AGND −0.3 V to +3.9 V VIN + x, VIN − x AGND −0.3 V to +2.0 V SDIO/ODM AGND −0.3 V to +2.0 V PDWN, SCLK/DTP, CSB AGND −0.3 V to +3.9 V REFT, REFB, RBIAS AGND −0.3 V to +2.0 V VREF, SENSE AGND −0.3 V to +2.0 V
ENVIRONMENTAL
Operating Temperature
−40°C to +85°C
Range (Ambient) Maximum Junction
150°C
Temperature Lead Temperature
300°C
(Soldering, 10 sec) Storage Temperature
−65°C to +150°C
Range (Ambient)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE

Table 6.
Air Flow Velocity (m/s)
1
θ
θ
JA
JB
θJC
0.0 17.7°C/W
1.0 15.5°C/W 8.7°C/W 0.6°C/W
2.5 13.9°C/W
1
θ
for a 4-layer PCB with solid ground plane (simulated). Exposed pad
JA
soldered to PCB.

ESD CAUTION

Rev. F | Page 9 of 60
Page 10
AD9222 Data Sheet
05967-005
PIN 1 INDIC
ATOR
171819202122232425262728293031
32
D – G
D + G
D – F
D + F
D – E
D + E
DCO–
DCO+
FCO–
FCO+
D – D
D + D
D – C
D + C
D – B
D + B
646362616059585756
55545352515049
VIN + F
VIN – F
AVDD
VIN – E
VIN + E
AVDD
REFT
REFB
VREF
SENSE
RBIAS
VIN + D
VIN – D
AVDD
VIN – C
VIN + C
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
AVDD VIN + G VIN – G
AVDD VIN – H VIN + H
AVDD
AVDD
CLK–
CLK+
AVDD
AVDD DRGND DRVDD
D – H D + H
AVDD VIN + B VIN – B AVDD VIN – A VIN + A AVDD PDWN CSB SDIO/ODM SCLK/DTP A
VDD DRGND DRVDD D + A D – A
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
AD9222
TOP VIEW
(Not to S cale)
EXPOSED PADDLE, PIN 0 (BOTTO M OF PACKAGE )
NOTES
1. THE EXP OSED PAD MUST BE CONNECTED TO ANALOG GROUND
20
D + F
ADC F Digital Output True
25
FCO−
Frame Clock Digital Output Complement

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. 64-Lead LFCSP Pin Configuration, Top View
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
0 AGND Analog Ground (Exposed Paddle) 1, 4, 7, 8, 11,
AVDD 1.8 V Analog Supply 12, 37, 42, 45, 48, 51, 59, 62
13, 36 DRGND Digital Output Driver Ground 14, 35 DRVDD 1.8 V Digital Output Driver Supply 2 VIN + G ADC G Analog Input True 3 VIN − G ADC G Analog Input Complement 5 VIN − H ADC H Analog Input Complement 6 VIN + H ADC H Analog Input True 9 CLK− Input Clock Complement 10 CLK+ Input Clock True 15 D − H ADC H Digital Output Complement 16 D + H ADC H Digital Output True 17 D − G ADC G Digital Output Complement 18 D + G ADC G Digital Output True 19 D − F ADC F Digital Output Complement
21 D − E ADC E Digital Output Complement 22 D + E ADC E Digital Output True 23 DCO− Data Clock Digital Output Complement 24 DCO+ Data Clock Digital Output True
26 FCO+ Frame Clock Digital Output True 27 D − D ADC D Digital Output Complement 28 D + D ADC D Digital Output True 29 D − C ADC C Digital Output Complement 30 D + C ADC C Digital Output True 31 D − B ADC B Digital Output Complement 32 D + B ADC B Digital Output True
Rev. F | Page 10 of 60
Page 11
Data Sheet AD9222
40
CSB
Chip Select Bar
63
VIN − F
ADC F Analog Input Complement
Pin No. Mnemonic Description
33 D − A ADC A Digital Output Complement 34 D + A ADC A Digital Output True 38 SCLK/DTP Serial Clock/Digital Test Pattern 39 SDIO/ODM Serial Data Input-Output/Output Driver Mode
41 PDWN Power Down 43 VIN + A ADC A Analog Input True 44 VIN − A ADC A Analog Input Complement 46 VIN − B ADC B Analog Input Complement 47 VIN + B ADC B Analog Input True 49 VIN + C ADC C Analog Input True 50 VIN − C ADC C Analog Input Complement 52 VIN − D ADC D Analog Input Complement 53 VIN + D ADC D Analog Input True 54 RBIAS External Resistor to Set the Internal ADC Core Bias Current 55 SENSE Reference Mode Selection 56 VREF Voltage Reference Input/Output 57 REFB Differential Reference (Negative) 58 REFT Differential Reference (Positive) 60 VIN + E ADC E Analog Input True 61 VIN − E ADC E Analog Input Complement
64 VIN + F ADC F Analog Input True
Rev. F | Page 11 of 60
Page 12
AD9222 Data Sheet
VIN ± x
05967-006
10Ω
10kΩ
10kΩ
CLK–
10Ω
1.25V
CLK+
05967-007
SDIO/ODM
350Ω
30kΩ
05967-008
DRVDD
DRGND
D– D+
V
V
V
V
05967-009
SCLK/DTP AND PDWN
30kΩ
1kΩ
05967-010
100Ω
RBIAS
05967-011

EQUIVALENT CIRCUITS

Figure 6. Equivalent Analog Input Circuit
Figure 7. Equivalent Clock Input Circuit
Figure 9. Equivalent Digital Output Circuit
Figure 10. Equivalent SCLK/DTP and PDWN Input Circuit
Figure 8. Equivalent SDIO/ODM Input Circuit
Figure 11. Equivalent RBIAS Circuit
Rev. F | Page 12 of 60
Page 13
Data Sheet AD9222
CSB
70kΩ
1kΩ
AVDD
05967-012
SENSE
1kΩ
05967-013
VREF
6k
05967-014
Figure 12. Equivalent CSB Input Circuit
Figure 14. Equivalent VREF Circuit
Figure 13. Equivalent SENSE Circuit
Rev. F | Page 13 of 60
Page 14
AD9222 Data Sheet
05967-015
FREQUENCY (MHz)
AMPLITUDE (dBFS)
–120
0
0 20
–100
–80
–60
–40
–20
2
4 6 8 10
12 14 16 18
AIN = –0.5dBF S SNR = 70.79dB ENOB = 11.47 BITS SFDR = 84.71dBc
05967-016
FREQUENCY (MHz)
AMPLITUDE (dBFS)
–120
0
0 20
–100
–80
–60
–40
–20
2 4 6 8 10 12 14 16 18
AIN = –0.5dBF S SNR = 70.32dB ENOB = 11.39 BITS SFDR = 84.28dBc
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBF S SNR = 70.72dB ENOB = 11.45 BITS SFDR = 85.79dBc
05967-017
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBF S SNR = 70.35dB ENOB = 11.40 BITS SFDR = 83.86dBc
05967-018
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBF S SNR = 70.02dB ENOB = 11.45 BITS SFDR = 86.3dBc
05967-019
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBF S SNR = 69.25dB ENOB = 11.21 BITS SFDR = 72.85dBc
05967-020

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Single-Tone 32k FFT with f
= 2.3 MHz, AD9222-40
IN
Figure 16. Single-Tone 32k FFT with fIN = 19.7 MHz, AD9222-40
Figure 18. Single-Tone 32k FFT with f
= 35 MHz, AD9222-50
IN
Figure 19. Single-Tone 32k FFT with f
= 70 MHz, AD9222-50
IN
Figure 17. Single-Tone 32k FFT with f
= 2.3 MHz, AD9222-50
IN
Rev. F | Page 14 of 60
Figure 20. Single-Tone 32k FFT with f
= 120 MHz, AD9222-50
IN
Page 15
Data Sheet AD9222
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBFS SNR = 70.21dB ENOB = 11.31
BITS
SFDR = 82.37dBc
05967-085
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBFS SNR = 69.8dB ENO
B = 11.22 BITS
SFDR = 80.61dBc
05967-086
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBFS SNR = 69.65dB E
NOB = 11.07 BITS
SFDR = 74.79dBc
05967-087
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN = –0.5dBFS SNR =
68.67dB ENOB = 10.79 BITS SFDR = 71.49dBc
05967-088
100
90
95
85
80
75
70
65
60
10 5045403530252015
SNR/SFDR (dB)
ENCODE (MSPS)
2V p-p, SFDR
2V p-p, SNR
05967-021
90
85
80
75
70
65
60
10 5045403530252015
SNR/SFDR (dB)
ENCODE (MSPS)
2V p-p, SFDR
2V p-p, SNR
05967-022
Figure 21. Single-Tone 32k FFT with f
Figure 22. Single-Tone 32k FFT with f
= 2.3 MHz, AD9222-65
IN
= 35 MHz, AD9222-65
IN
Figure 24. Single-Tone 32k FFT with f
= 120 MHz, AD9222-65
IN
Figure 25. SNR/SFDR vs. f
, fIN = 2.61 MHz, AD9222-50
SAMPLE
Figure 23. Single-Tone 32k FFT with fIN = 70 MHz, AD9222-65
Figure 26. SNR/SFDR vs. f
, fIN = 20.1 MHz, AD9222-50
SAMPLE
Rev. F | Page 15 of 60
Page 16
AD9222 Data Sheet
SNR/SFDR (dB)
ENCODE (MSPS)
60
65
70
75
80
85
90
95
100
10 15 20 25 30 35 40 45 50 55 60 65
2V p-p, SFDR
2V p-p, SNR
05967-089
SNR/SFDR (dB)
ENCODE (MSPS)
60
65
70
75
80
85
90
10 15 20 25 30 35 40 45 50 55 60 65
2V p-p, SFDR
2V p-p, SNR
05967-090
100
90
80
70
60
50
40
30
20
10
0 –60 –50 –40 –30 –20 –10 0
SNR/SFDR (dB)
INPUT AMPLITUDE (dBFS)
80dB
REFERENCE
2V p-p, SFDR
2V p-p, SNR
05967-023
2V p-p, SNR
2V p-p, SFDR
SNR/SFDR (dB)
INPUT AMPLITUDE (dBFS)
0
10
20
30
40
50
60
70
80
90
–60 –50 –40 –30 –20 –10 0
80dB REFERENCE LINE
05967-091
100
90
80
70
60
50
40
30
20
10
0 –60 –50 –40 –30 –20 –10 0
SNR/SFDR (dB)
INPUT AMPLITUDE (dBFS)
80dB
REFERENCE
2V p-p, SFDR
2V p-p, SNR
05967-024
2V p-p, SNR
2V p-p, SFDR
SNR/SFDR (dB)
INPUT AMPLITUDE (dBFS)
0
10
20
30
40
50
60
70
80
90
–60 –50 –40 –30 –20 –10 0
80dB REFERENCE LINE
05967-092
Figure 27. SNR/SFDR vs. f
Figure 28. SNR/SFDR vs. f
, fIN = 2.3 MHz, AD9222-65
SAMPLE
, fIN = 19.7 MHz, AD9222-65
SAMPLE
Figure 30. SNR/SFDR vs. Analog Input Level, f
= 10.3 MHz, AD9222-65
IN
Figure 31. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9222-50
Figure 29. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9222-50
Figure 32. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9222-65
Rev. F | Page 16 of 60
Page 17
Data Sheet AD9222
0
–120
–100
–80
–60
–40
–20
0 2 4 6 8 10 12 14 16 18 20
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S SFDR = 89.87dB IMD2 = 96.07dBc IMD3 = 90.16dBc
05967-025
0
–120
–100
–80
–60
–40
–20
0 2 4 6 8 10 12 14 16 18 20
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S SFDR = 77.24dB IMD2 = 91.66dBc IMD3 = 77.72dBc
05967-026
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S SFDR = 84.49dB IMD2 = 85.83dBc IMD3 = 84.54dBc
05967-027
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S SFDR = 80.42dB IMD2 = 83.92dBc IMD3 = 80.60dBc
05967-032
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S
SFDR = 79.5dB IMD2 = 80.0dBc IMD3 = 84.1dBc
05967-093
0
–120
–100
–80
–60
–40
–20
0 5 10 15 20 25 30
AMPLITUDE (dBFS)
FREQUENCY (MHz)
AIN1 AND AIN2 = –7dBF S
SFDR = 75.2dB IMD2 = 79.3dBc IMD3 = 75.1dBc
05967-094
Figure 33. Two-Tone 32k FFT with f
AD9222-40
Figure 34. Two-Tone 32k FFT with f
AD9222-40
= 15 MHz and f
IN1
= 70 MHz and f
IN1
= 16 MHz,
IN2
= 71 MHz,
IN2
Figure 36. Two-Tone 32k FFT with f
Figure 37. Two-Tone 32k FFT with f
= 70 MHz and f
IN1
= 15 MHz and f
IN1
= 71 MHz, AD9222-50
IN2
= 16 MHz, AD9222-65
IN2
Figure 35. Two-Tone 32k FFT with f
= 15 MHz and f
IN1
= 16 MHz, AD9222-50
IN2
Figure 38. Two-Tone 32k FFT with f
Rev. F | Page 17 of 60
= 70 MHz and f
IN1
= 71 MHz, AD9222-65
IN2
Page 18
AD9222 Data Sheet
90
85
80
75
70
65
60
1 100010010
SNR/SFDR (dB)
ANALOG I NP UT FREQUENCY ( M Hz )
SFDR
SNR
05967-029
SNR/SFDR (dB)
FREQUENCY (MHz)
1 10 100 1000
50
55
60
65
70
75
80
85
90
2V p-p, SFDR
2V p-p, SNR
05967-095
100
90
95
85
80
75
70
65
60
–40 –20 0 20 40 60 80
SINAD/SF DR ( dB)
TEMPERATURE (°C)
2V p-p, SFDR
2V p-p, SINAD
05967-030
90
85
80
75
70
65
60
–40 –20 0 20 40 8060
SINAD/SF DR ( dB)
TEMPERATURE (°C)
2V p-p, SFDR
2V p-p, SINAD
05967-096
90
85
80
75
70
65
60
–40 –20 0 20 40 60 80
SINAD/SF DR ( dB)
TEMPERATURE (°C)
2V p-p, SFDR
2V p-p, SINAD
05967-031
90
85
80
75
70
65
60
–40 –20 0 20 40 8060
SINAD/SF DR ( dB)
TEMPERATURE (°C)
2V p-p, SFDR
2V p-p, SINAD
05967-097
Figure 39. SNR/SFDR vs. fIN, AD9222-50
Figure 40. SNR/SFDR vs. fIN, AD9222-65
Figure 42. SINAD/SFDR vs. Temperature, fIN = 2.3 MHz, AD9222-65
Figure 43. SINAD/SFDR vs. Temperature, fIN = 20.1 MHz, AD9222-50
Figure 41. SINAD/SFDR vs. Temperature, fIN = 2.61 MHz, AD9222-50
Figure 44. SINAD/SFDR vs. Temperature, fIN = 19.7 MHz, AD9222-65
Rev. F | Page 18 of 60
Page 19
Data Sheet AD9222
05967-036
CODE
INL (LSB)
–1.0
1.0
0
–0.8
–0.6
–0.4
–0.2
0
0.8
0.6
0.4
0.2
500 1000 1500 2000 2500 3000 3500 4000
CODE
INL (LSB)
–1.0
1.0
0
–0.8
–0.6
–0.4
–0.2
0
0.8
0.6
0.4
0.2
500 1000 1500 2000 2500 3000 3500 4000
05967-098
0.6
0.8
1.0
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0 4000350030002500200015001000500
DNL (LSB)
CODE
05967-099
0.6
0.8
1.0
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0 4000350030002500200015001000500
DNL (LSB)
CODE
05967-099
05967-056
FREQUENCY (MHz)
CMRR (dB)
–70
–30
0 5 10 15 20 25 30 35 40
–65
–60
–55
–50
–45
–40
–35
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
NN – 1N – 2N – 3 N + 1 N + 2 N + 3
NUMBER OF HITS (Millions)
CODE
0.27 LSB rms
05967-038
Figure 45. INL, fIN = 2.3 MHz, AD9222-50
Figure 46. INL, fIN = 35 MHz, AD9222-65
Figure 48. DNL, fIN = 35 MHz, AD9222-65
Figure 49. CMRR vs. Frequency, AD9222-50
Figure 47. DNL, fIN = 2.3 MHz, AD9222-50
Figure 50. Input-Referred Noise Histogram, AD9222-50
Rev. F | Page 19 of 60
Page 20
AD9222 Data Sheet
2.5
0
0.5
1.0
1.5
2.0
NUMBER OF HITS (Millions)
CODE
N N + 1 N + 2 N + 3N – 3 N – 2 N – 1
0.3 LSB rms
05967-100
AMPLITUDE (dBFS)
–120
0
–20
–40
–60
–80
–100
0
5 10 15 20 25
FREQUENCY (MHz)
NPR = 60.3dB NOTCH = 18.0MHz NOTCH WI DTH = 3.0MHz
05967-041
0
–11
–10
–9
–8
–7
–6
–5
–4
–3
–2
–1
0 500450400350300250200150
10050
AMPLITUDE (dBFS)
FREQUENCY (MHz)
–3dB BANDWIDT H = 325M Hz
05967-040
Figure 51. Input-Referred Noise Histogram, AD9222-65
Figure 52. Noise Power Ratio (NPR), AD9222-50
Figure 53. Full-Power Bandwidth vs. Frequency, AD9222-50
Rev. F | Page 20 of 60
Page 21
Data Sheet AD9222
S S
H
C
PAR
C
SAMPLE
C
SAMPLE
C
PAR
VIN – x
H
S S
H
VIN + x
H
05967-043

THEORY OF OPERATION

The AD9222 architecture consists of a pipelined ADC divided into three sections: a 4-bit first stage followed by eight 1.5-bit stages and a final 3-bit flash. Each stage provides sufficient overlap to correct for flash errors in the preceding stage. The quantized outputs from each stage are combined into a final 12-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample while the remaining stages operate with preceding samples. Sampling occurs on the rising edge of the clock.
Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched-capacitor DAC and an interstage residue amplifier (for example, a multiplying digital-to-analog converter (MDAC)). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The output staging block aligns the data, corrects errors, and passes the data to the output buffers. The data is then serialized and aligned to the frame and data clocks.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9222 is a differential switched-capacitor circuit designed for processing differential input signals. This circuit can support a wide common-mode range while maintaining excellent performance. An input common-mode voltage of midsupply minimizes signal-dependent errors and provides optimum performance.
The clock signal alternately switches the input circuit between sample mode and hold mode (see Figure 54). When the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor in series with each input can help reduce the peak transient current injected from the output stage of the driving source. In addition, low-Q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and therefore achieve the maximum bandwidth of the ADC. Such use of low­Q inductors or ferrite beads is required when driving the converter front end at high IF frequencies. Either a shunt capacitor or two single-ended capacitors can be placed on the inputs to provide a matching passive network. This ultimately creates a low-pass filter at the input to limit unwanted broadband noise. See the
AN-742 Application Note, the AN-827 Application Note, and the
Analog Dialogue article “Transformer-Coupled Front-End for
Wideband A/D Converters” (Volume 39, April 2005) for more
information. In general, the precise values depend on the application.
The analog inputs of the AD9222 are not internally dc-biased. Therefore, in ac-coupled applications, the user must provide this bias externally. Setting the device so that V
= AVDD /2 is
CM
recommended for optimum performance, but the device can function over a wider range with reasonable performance, as shown in Figure 55 and Figure 57.
Figure 54. Switched-Capacitor Input Circuit
Rev. F | Page 21 of 60
Page 22
AD9222 Data Sheet
90
85
80
75
70
65
60
0.2 1.61.41.21.00.80.60.4
SNR/SFDR (dB)
ANALOG INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dB)
05967-044
90
85
80
75
70
65
60
0.20 1.61.41.21.00.80.60.4
SNR/SFDR (dB)
ANALOG INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dB)
05967-101
90
85
80
75
70
65
60
0.2 1.61.41.21.00.80.60.4
SNR/SFDR (dB)
ANALOG INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dB)
05967-042
90
85
80
75
70
65
60
0.20 1.61.41.21.00.80.60.4
SNR/SFDR (dB)
ANALOG INPUT COMMON-MODE VOLTAGE (V)
SFDR (dBc)
SNR (dB)
05967-102
Figure 55. SNR/SFDR vs. Common-Mode Voltage,
f
= 2.3 MHz, AD9222-50
IN
Figure 56. SNR/SFDR vs. Common-Mode Voltage,
f
= 2.3 MHz, AD9222-65
IN
Figure 57. SNR/SFDR vs. Common-Mode Voltage,
f
= 35 MHz, AD9222-50
IN
Figure 58. SNR/SFDR vs. Common-Mode Voltage,
f
= 35 MHz, AD9222-65
IN
Rev. F | Page 22 of 60
Page 23
Data Sheet AD9222
2Vp-p
R
R
C
DIFF
1
C
1
C
DIFF
IS OPTIONAL.
49.9Ω
0.1μF
1kΩ
1kΩ
AGND
AVDD
ADT1–1WT 1:1 Z RATIO
VIN – x
ADC
AD9222
VIN + x
C
05967-046
ADC
AD9222
2Vp-p
2.2pF
1k
0.1μF
1kΩ
1kΩ
AVDD
ADT1–1WT 1:1 Z RATIO
16nH
16nH
0.1μF
16nH
33
33
499
65
VIN + x
VIN – x
05967-047
2V p-p
R
R
49.9Ω
0.1µF
0.1µF
AVDD
1kΩ
25Ω
1kΩ
1kΩ
1kΩ
AVDD
VIN – x
ADC
AD9222
VIN + x
C
DIFF
1
C
1
C
DIFF
IS OPTIONAL.
C
05967-048
05967-049
AD8334
1.0kΩ
1.0kΩ
374Ω
187Ω
R
R
C
0.1μF
187Ω
0.1μF
0.1μF
0.1μF
0.1μF 10μF
0.1μF
1V p-p
0.1μF
LNA
120nH
VGA
VOH
VIP
INH
22pF
LMD
VIN
LOP
LON
VOL
18nF
274Ω
VIN – x
ADC
AD9222
VIN + x
1kΩ
1kΩ
AVDD
For best dynamic performance, the source impedances driving VIN + x and VIN − x should be matched such that common­mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC. An internal reference buffer creates the positive and negative reference voltages, REFT and REFB, respectively, that define the span of the ADC core. The output common-mode of the reference buffer is set to midsupply, and the REFT and REFB voltages and span are defined as
REFT = 1/2 (AVDD + VREF) REFB = 1/2 (AVDD − VREF) Span = 2 × (REFT − REFB) = 2 × VREF
It can be seen from these equations that the REFT and REFB voltages are symmetrical about the midsupply voltage and, by definition, the input span is twice the value of the VREF voltage.
Maximum SNR performance is achieved by setting the ADC to the largest span in a differential configuration. In the case of the
AD9222, the largest input span available is 2 V p-p.

Differential Input Configurations

There are several ways to drive the AD9222 either actively or passively; h owever, optimum performance is achieved by driving the analog input differentially. For example, using the
AD8334 differential driver to drive the AD9222 provides
excellent performance and a flexible interface to the ADC (see Figure 62) for baseband applications. This configuration is commonly used for medical ultrasound systems.
For applications where SNR is a key parameter, differential transformer coupling is the recommended input configuration (see Figure 59 and Figure 60) because the noise performance of most amplifiers is not adequate to achieve the true performance of the AD9222.
Regardless of the configuration, the value of the shunt capacitor, C, is dependent on the input frequency and may need to be reduced or removed.
Figure 59. Differential Transformer-Coupled Configuration
for Baseband Applications
Figure 60. Differen tial Transformer-Coup led Configuration f or IF Applications

Single-Ended Input Configuration

A single-ended input may provide adequate performance in cost-sensitive applications. In this configuration, SFDR and distortion performance degrade due to the large input common­mode swing. If the application requires a single-ended input configuration, ensure that the source impedances on each input are well matched in order to achieve the best possible performance. A full-scale input of 2 V p-p can still be applied to the ADC’s VIN + x pin while the VIN − x pin is terminated. Figure 61 details a typical single-ended input configuration.
Rev. F | Page 23 of 60
Figure 62. Differential Input Configuration Using the AD8334
Figure 61. Single-Ended Input Configuration
Page 24
AD9222 Data Sheet
0.1µF
0.1µF
0.1µF0.1µF
SCHOTTKY
DIODES:
HSM2812
CLK+
50Ω
100Ω
CLK–
CLK+
ADC
AD9222
MINI-CIRCUITS
®
ADT1-1WT, 1:1Z
XFMR
05967-050
CLK+
100
0.1µF
0.1µF
0.1µF
0.1µF
240240
CLK–
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
50
1
50
1
CLK
CLK
1
50Ω RESISTORS ARE OPTIONAL.
CLK–
CLK+
ADC
AD9222
05967-051
PECL DRIVER
CLK+
CLK–
100Ω
0.1µF
0.1µF
0.1µF
0.1µF
50Ω
1
LVDS DRIVER
50Ω
1
CLK
CLK
1
50Ω RESISTORS ARE OPTIONAL.
CLK–
CLK+
ADC
AD9222
05967-052
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
CLK+
0.1µF
0.1µF
0.1µF
39k
CMOS DRIVER
50
1
OPTIONAL
100
0.1µF
CLK
CLK
1
50Ω RESISTOR IS OPTIONAL.
CLK–
CLK+
ADC
AD9222
05967-053
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
CLK+
0.1µF
0.1µF
0.1µF
CMOS DRIVER
50
1
OPTIONAL
100Ω
CLK
CLK
1
50Ω RESISTOR IS OPTIONAL.
0.1µF CLK–
CLK+
ADC
AD9222
05967-054
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515

CLOCK INPUT CONSIDERATIONS

For optimum performance, the AD9222 sample clock inputs (CLK+ and CLK−) should be clocked with a differential signal. This signal is typically ac-coupled to the CLK+ and CLK− pins via a transformer or capacitors. These pins are biased internally and require no additional biasing.
Figure 63 shows a preferred method for clocking the AD9222. The low jitter clock source is converted from a single-ended signal to a differential signal using an RF transformer. The back-to­back Schottky diodes across the secondary transformer limit clock excursions into the AD9222 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9222, and it preserves the fast rise and fall times of the signal, which are critical to low jitter performance.
In some applications, it is acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, CLK+ should be directly driven from a CMOS gate, and the CLK− pin should be bypassed to ground with a 0.1 μF capacitor in parallel with a 39 kΩ resistor (see Figure 66). Although the CLK+ input circuit supply is AVDD (1.8 V), this input is designed to withstand input voltages of up to 3.3 V, making the selection of the drive logic voltage very flexible.
Figure 63. Transformer-Coupled Differential Clock
Another option is to ac-couple a differential PECL signal to the sample clock input pins as shown in Figure 64. The AD9510/
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock
drivers offers excellent jitter performance.
Figure 64. Differential PECL Sample Cl ock
Figure 65. Differential LVDS Sample Clock
Figure 66. Single-Ended 1.8 V CMOS Sample Clock
Figure 67. Single-Ended 3.3 V CMOS Sample Clock

Clock Duty Cycle Considerations

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9222 contains a duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD9222. When the DCS is on, noise and distortion perfor­mance are nearly flat for a wide range of duty cycles. However, some applications may require the DCS function to be off. If so, keep in mind that the dynamic range performance can be affected when operated in this mode. See the Memory Map section for more details on using this feature.
The duty cycle stabilizer uses a delay-locked loop (DLL) to create the nonsampling edge. As a result, any changes to the sampling frequency require approximately eight clock cycles to allow the DLL to acquire and lock to the new rate.
Rev. F | Page 24 of 60
Page 25
Data Sheet AD9222
1 10 100 1000
16 BITS
14 BITS
12 BITS
30
40
50
60
70
80
90
100
110
120
130
0.125ps
0.25ps
0.5ps
1.0ps
2.0ps
ANALOG INPUT FREQUENCY (MHz)
10 BITS
8 BITS
RMS CLOCK JI TTER REQUI RE M E NT
SNR (dB)
05967-055
05967-057
ENCODE (MSPS)
CURRENT (A)
10 50
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
15 20 25 30 35 40 45
0.500
0.550
0.600
0.650
0.700
0.750
0.800
POWER (W)
TOTAL POWER
AVDD CURRENT
DRVDD CURRENT
ENCODE (MSPS)
CURRENT (mA)
10 605020 30 40
700
750
800
850
900
950
POWER (mW)
TOTAL POWER
AVDD CURRENT
DRVDD CURRENT
0
50
100
150
200
250
300
350
400
450
500
05967-103

Clock Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (f
) due only to aperture jitter (tJ) can be calculated by
A
SNR Degradation = 20 × log 10(1/2 × π × f
× tJ)
A
In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 68).
The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9222. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step.
Refer to the AN-501 Application Note and the AN-756 Application Note for more in-depth information about jitter performance as it relates to ADCs.

Power Dissipation and Power-Down Mode

As shown in Figure 69, the power dissipated by the AD9222 is proportional to its sample rate. The digital power dissipation does not vary much because it is determined primarily by the DRVDD supply and bias current of the LVDS output drivers.
Figure 69. Supply Current vs. f
for fIN = 10.3 MHz, AD9222- 50
SAMPLE
Figure 68. Ideal SNR vs. Input Frequency and Jitter
Figure 70. Supply Current vs. f
for fIN = 10.3 MHz, AD9222- 65
SAMPLE
Rev. F | Page 25 of 60
Page 26
AD9222 Data Sheet
CH1 500mV/DIV = F CO CH2 500mV/DIV = DCO CH3 500mV/DIV = DAT A
5.0ns/DIV
05967-058
CH1 500mV/DIV = F CO CH2 500mV/DIV = DCO CH3 500mV/DIV = DAT A
5.0ns/DIV
05967-084
By asserting the PDWN pin high, the AD9222 is placed into power-down mode. In this state, the ADC typically dissipates 11 mW. Du ri ng po we r-down, the LVDS output drivers are placed in a high impedance state. The AD9222 returns to normal operating mode when the PDWN pin is pulled low. This pin is both 1.8 V and 3.3 V tolerant.
In power-down mode, low power dissipation is achieved by shutting down the reference, reference buffer, PLL, and biasing networks. The decoupling capacitors on REFT and REFB are discharged when entering power-down mode and must be recharged when returning to normal operation. As a result, the wake-up time is related to the time spent in the power-down mode; shorter cycles result in proportionally shorter wake-up times. With the recommended 0.1 µF and 4.7 µF decoupling capacitors on REFT and REFB, approximately 1 sec is required to fully discharge the reference buffer decoupling capacitors, and approximately 375 µs is required to restore full operation.
There are several other power-down options available when using the SPI. The user can individually power down each channel or put the entire device into standby mode. The latter option allows the user to keep the internal PLL powered when fast wake-up times (~600 ns) are required. See the Memory Map section for more details on using these features.

Digital Outputs and Timing

The AD9222 differential outputs conform to the ANSI-644 LVDS standard on default power-up. This can be changed to a low power, reduced signal option (similar to the IEEE 1596.3 standard) via the SDIO/ODM pin or SPI. This LVDS standard can further reduce the overall power dissipation of the device by approximately 36 m W. See the SDIO/ODM Pin section or Tabl e 16 in the Memory Map section for more information. The LVDS driver current is derived on chip and sets the output current at each output equal to a nominal 3.5 mA. A 100 Ω differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver.
The AD9222 LVDS outputs facilitate interfacing with LVDS receivers in custom ASICs and FPGAs for superior switching performance in noisy environments. Single point-to-point net topologies are recommended with a 100 Ω termination resistor
placed as close to the receiver as possible. If there is no far-end receiver termination or there is poor differential trace routing, timing errors may result. To avoid such timing errors, it is recommended that the trace length be no longer than 24 inches and that the differential output traces be kept close together and at equal lengths. An example of the FCO and data stream with proper trace length and position is shown in Figure 71.
Figure 71. LVDS Output Timing Example in ANSI-644 Mode (Default),
AD9222-50
Figure 72. LVDS Output Timing Example in ANSI-644 Mode (Default),
AD9222-65
Rev. F | Page 26 of 60
Page 27
Data Sheet AD9222
500 400 300 200 100
–500
–400
–300
–200
–100
0
–1.0ns–1.5ns –0.5ns 0ns 0.5ns 1.0ns 1.5ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS ULS: 12071/12071
90
50
10
20
30
40
60
70
80
0
–150ps –100ps –50ps 0ps 50ps 100ps 150ps
TIE JITTER HISTOGRAM (Hits)
05967-061
600
400
200
–600
–400
–200
0
–1.0ns–1.5ns –0.5ns 0ns 0.5ns 1.0ns 1.5ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS ULS: 9596/15596
20
40
60
80
100
140
120
0
–150ps –100ps –50ps 0ps 50ps 100ps 150ps
TIE JITTER HISTOGRAM (Hits)
05967-106
60
80
90
70
50
40
20
10
100
30
0
–200ps –100ps 100ps0ps 200ps
TIE JITTER HISTOGRAM (Hits)
500 400 300 200 100
–500
–400
–300
–200
–100
0
–1.0ns –0.5ns 0ns 0.5ns 1.5ns–1.5ns 1.0ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS
ULS: 12067/12067
05967-059
An example of the LVDS output using the ANSI-644 standard (default) data eye and a time interval error (TIE) jitter histogram with trace lengths less than 24 inches on standard FR-4 material is shown in Figure 73 and Figure 74. Figure 75 and Figure 76 show examples of trace lengths exceeding 24 inches on standard FR-4 material. Notice that the TIE jitter histogram reflects the decrease of the data eye opening as the edge deviates from the ideal position. It is the user’s responsibility to determine if the waveforms meet the timing budget of the design when the trace lengths exceed 24 inches. Additional SPI options allow the user to further increase the internal termination (increasing the current) of all eight outputs in order to drive longer trace lengths (see Figure 77 and Figure 78). Even though this produces sharper rise and fall times on the data edges and is less prone to bit errors, the power dissipation of the DRVDD supply increases when this option is used.
In cases that require increased driver strength to the DCO± and FCO± outputs because of load mismatch, Register 0x15 allows the user to increase the drive strength by 2×. To do this, set the appropriate bit in Register 0x5. Note that this feature cannot be used with Bit 4 and Bit 5 in Register 0x15. Bit 4 and Bit 5 take precedence over this feature. See the Memory Map section for more details.
Figure 73. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths
Less than 24 Inches on Standard FR-4, AD9222-50
Figure 74. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths
Less than 24 Inches on Standard FR-4, AD9222-65
Figure 75. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths
Greater than 24 Inches on Standard FR-4, AD9222-50
Rev. F | Page 27 of 60
Page 28
AD9222 Data Sheet
500
400
300
200
100
–500
–400
–300
–200
–100
0
–1.0ns–1.5ns –0.5ns 0ns 0.5ns 1.0ns 1.5ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS ULS: 7591/15591
20
40
60
80
100
140
120
0
–300ps –200ps –100ps 0ps 100ps 200ps 300ps
TIE JITTER HISTOGRAM (Hits)
05967-105
400
300
200
100
–400
–300
–200
–100
0
–0.5ns 0ns 0.5ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS
ULS: 12072/12072
80
50
10
20
30
40
60
70
0
–150ps –100ps –50ps 0ps 50ps 100ps 150ps
TIE JITTER HISTOGRAM (Hits)
–1.0ns 1.5ns–1.5ns 1.0ns
05967-060
500
400
300
200
100
–500
–400
–300
–200
–100
0
–1.0ns–1.5ns –0.5ns 0ns 0.5ns 1.0ns 1.5ns
EYE DIAGRAM VOLTAGE (mV)
EYE: ALL BITS ULS: 8000/15600
20
40
60
80
100
140
120
0
–200ps –100ps 0ps 100ps 200ps 300ps
TIE JITTER HISTOGRAM (Hits)
05967-104
Figure 76. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths
Greater than 24 Inches on Standard FR-4, AD9222-65
Figure 77. Data Ey e for LVDS Outputs in ANSI-644 Mode with 100 Ω Termination
on and Trace Lengths Greater than 24 Inches on Standard FR-4, AD9222-50
Figure 78. Data Ey e for LVDS Outputs in ANSI-644 Mode with 100 Ω Termination on and Trace Lengths Greater than 24 Inches on Standard FR-4, AD9222-65
The format of the output data is offset binary by default. An example of the output coding format can be found in Table 8. To change the output data format to twos complement, see the Memory Map section.
Table 8. Digital Output Coding
(VIN + x) − (VIN − x), Input Span = 2 V p-p (V)
Code
4095 +1.00 1111 1111 1111 2048 0.00 1000 0000 0000 2047 −0.000488 0111 1111 1111 0 −1.00 0000 0000 0000
Digital Output Offset Binary (D11 ... D0)
Data from each ADC is serialized and provided on a separate channel. The data rate for each serial stream is equal to 12 bits times the sample clock rate, with a maximum of 780 Mbps (12 bits × 65 MSPS = 780 Mbps). The lowest typical conversion rate is 10 MSPS. However, if lower sample rates are required for a specific application, the PLL can be set up via the SPI to allow encode rates as low as 5 MSPS. See the Memor y Map section to enable this feature.
Rev. F | Page 28 of 60
Page 29
Data Sheet AD9222
Two output clocks are provided to assist in capturing data from the AD9222. The DCO is used to clock the output data and is equal to six times the sample clock (CLK) rate. Data is clocked out of the AD9222 and must be captured on the rising and
Table 9. Flexible Output Test Modes
Output Test Mode Bit Sequence Pattern Name Digital Output Word 1 Digital Output Word 2
0000 Off (default) N/A N/A N/A 0001 Midscale short 1000 0000 (8-bit)
10 0000 0000 (10-bit) 1000 0000 0000 (12-bit) 10 0000 0000 0000 (14-bit)
0010 +Full-scale short 1111 1111 (8-bit)
11 1111 1111 (10-bit) 1111 1111 1111 (12-bit) 11 1111 1111 1111 (14-bit)
0011 −Full-scale short 0000 0000 (8-bit)
00 0000 0000 (10-bit) 0000 0000 0000 (12-bit) 00 0000 0000 0000 (14-bit)
0100 Checkerboard 1010 1010 (8-bit)
10 1010 1010 (10-bit) 1010 1010 1010 (12-bit)
10 1010 1010 1010 (14-bit) 0101 PN sequence long1 N/A N/A Yes 0110 PN sequence short1 N/A N/A Yes 0111 One-/zero-word toggle 1111 1111 (8-bit)
11 1111 1111 (10-bit)
1111 1111 1111 (12-bit)
11 1111 1111 1111 (14-bit) 1000 User input Register 0x19 to Register 0x1A Register 0x1B to Register 0x1C No 1001 1-/0-bit toggle 1010 1010 (8-bit)
10 1010 1010 (10-bit)
1010 1010 1010 (12-bit)
10 1010 1010 1010 (14-bit) 1010 1× sync 0000 1111 (8-bit)
00 0001 1111 (10-bit)
0000 0011 1111 (12-bit)
00 0000 0111 1111 (14-bit) 1011 One bit high 1000 0000 (8-bit)
10 0000 0000 (10-bit)
1000 0000 0000 (12-bit)
10 0000 0000 0000 (14-bit) 1100 Mixed frequency 1010 0011 (8-bit)
10 0110 0011 (10-bit)
1010 0011 0011 (12-bit)
10 1000 0110 0111 (14-bit)
1
All test mode options except PN sequence short and PN sequence long can support 8- to 14-bit word lengths in order to verify data capture to the receiver.
falling edges of the DCO that supports double data rate (DDR) capturing. The FCO is used to signal the start of a new output byte and is equal to the sample clock rate. See the timing diagram shown in Figure 2 for more information.
Subject to Data Format Select
Same Yes
Same Yes
Same Yes
0101 0101 (8-bit) 01 0101 0101 (10-bit) 0101 0101 0101 (12-bit) 01 0101 0101 0101 (14-bit)
0000 0000 (8-bit) 00 0000 0000 (10-bit) 0000 0000 0000 (12-bit) 00 0000 0000 0000 (14-bit)
N/A No
N/A No
N/A No
N/A No
No
No
Rev. F | Page 29 of 60
Page 30
AD9222 Data Sheet
PN Sequence Short
0x0df
0xdf9, 0x353, 0x301
Resulting
Resulting
Resulting
Resulting
Normal
10 kΩ to AGND
Normal
Normal operation
When the SPI is used, the DCO phase can be adjusted in 60° increments relative to the data edge. This enables the user to refine system timing margins if required. The default DCO+ and DCO− timing, as shown in Figure 2, is 90° relative to the output data edge.
An 8-, 10-, and 14-bit serial stream can also be initiated from the SPI. This allows the user to implement and test compatibility with lower and higher resolution systems. When changing the resolution to an 8- or 10-bit serial stream, the data stream is shortened. See Figure 3 for the 10-bit example. However, when using the 14-bit option, the data stream stuffs two 0s at the end of the 14-bit serial data.
When the SPI is used, all of the data outputs can also be inverted from their nominal state. This is not to be confused with inverting the serial stream to an LSB-first mode. In default mode, as shown in Figure 2, the MSB is first in the data output serial stream. However, this can be inverted so that the LSB is first in the data output serial stream (see Figure 4).
There are 12 digital output test pattern options available that can be initiated through the SPI. This is a useful feature when validating receiver capture and timing. Refer to Tab l e 9 for the output bit sequencing options available. Some test patterns have two serial sequential words and can be alternated in various ways, depending on the test pattern chosen. Note that some patterns may not adhere to the data format select option. In addition, user-defined test patterns can be assigned in the 0x19, 0x1A, 0x1B, and 0x1C register addresses. All test mode options except PN sequence short and PN sequence long can support 8- to 14-bit word lengths in order to verify data capture to the receiver.
The PN sequence short pattern produces a pseudorandom bit sequence that repeats itself every 2
9
− 1 or 511 bits. A description of the PN sequence and how it is generated can be found in Section 5.1 of the ITU-T 0.150 (05/96) standard. The only difference is that the starting value must be a specific value instead of all 1s (see Table 10 for the initial values).
The PN sequence long pattern produces a pseudorandom bit sequence that repeats itself every 2
23
− 1 or 8,388,607 bits. A description of the PN sequence and how it is generated can be found in section 5.6 of the ITU-T 0.150 (05/96) standard. The only differences are that the starting value must be a specific value instead of all 1s (see Ta b l e 10 for the initial values) and the
AD9222 inverts the bit stream with relation to the ITU standard.
Table 10. PN Sequence
Sequence
Initial Value
First Three Output Samples (MSB First)

SDIO/ODM Pin

The SDIO/ODM pin is for use in applications that do not require SPI mode operation. This pin can enable a low power, reduced signal option (similar to the IEEE 1596.3 reduced range link output standard) if it and the CSB pin are tied to AVDD during device power-up. This option should only be used when the digital output trace lengths are less than 2 inches from th e LVDS receiver. When this option is used, the FCO, DCO, and outputs function normally, but the LVDS signal swing of all channels is reduced from 350 mV p-p to 200 mV p-p, allowing the user to further reduce the power on the DRVDD supply.
For applications where this pin is not used, it should be tied low. In this case, the device pin can be left open, and the 30 kΩ internal pull-down resistor pulls this pin low. This pin is only
1.8 V tolerant. If applications require this pin to be driven from a
3.3 V logic level, insert a 1 kΩ resistor in series with this pin to limit the current.
Table 11. Output Driver Mode Pin Settings
Selected ODM ODM Voltage
Normal
Operation
ODM AVDD
10 kΩ to AGND
Output Standard
ANSI-644
(default)
Low power, reduced signal option
FCO and DCO
ANSI-644
(default)
Low power, reduced signal option

SCLK/DTP Pin

The SCLK/DTP pin is for use in applications that do not require SPI mode operation. This pin can enable a single digital test pattern if it and the CSB pin are held high during device power­up. When the SCLK/DTP is tied to AVDD, the ADC channel outputs shift out the following pattern: 1000 0000 0000. The FCO and DCO function normally while all channels shift out the repeatable test pattern. This pattern allows the user to perform timing alignment adjustments among the FCO, DCO, and output data. For normal operation, this pin should be tied to AGND through a 10 kΩ resistor. This pin is both 1.8 V and 3.3 V tolerant.
Table 12. Digital Test Pattern Pin Settings
Selected DTP DTP Voltage
Operation
DTP AVDD 1000 0000 0000 Normal operation
D + x and D − x
operation
FCO and DCO
Additional and custom test patterns can also be observed when commanded from the SPI port. Consult the Memory Map section for information about the options available.
PN Sequence Long 0x29b80a 0x591, 0xfd7, 0x0a3
Consult the Memory Map section for information on how to change these additional digital output timing features through the SPI.
Rev. F | Page 30 of 60
Page 31
Data Sheet AD9222
1µF 0.1µF
VREF
SENSE
0.5V
REFT
0.1µF
0.1µF 4.7µF
0.1µF
REFB
SELECT
LOGIC
ADC
CORE
+
VIN – x
VIN + x
05967-064
1µF
1
0.1µF
1
VREF
SENSE
AVDD
0.5V
REFT
0.1µF
0.1µF 4.7µF
0.1µF
REFB
SELECT
LOGIC
ADC
CORE
+
VIN – x
VIN + x
EXTERNAL
REFERENCE
1
OPTIONAL.
05967-065

CSB Pin

The CSB pin should be tied to AVDD for applications that do not require SPI mode operation. By tying CSB high, all SCLK and SDIO information is ignored. This pin is both 1.8 V and
3.3 V tolerant.

RBIAS Pin

To set the internal core bias current of the ADC, place a resistor (nominally equal to 10.0 kΩ) to ground at the RBIAS pin. The resistor current is derived on-chip and sets the AVDD current of the ADC to a nominal 450 mA at 65 MSPS. Therefore, it is imperative that at least a 1% tolerance on this resistor be used to achieve consistent performance

Voltage Reference

A stable, accurate 0.5 V voltage reference is built into the
AD9222. This is gained up internally by a factor of 2, setting
V
to 1.0 V, which results in a full-scale differential input span
REF
of 2 V p-p. The V
is set internally by default; however, the
REF
VREF pin can be driven externally with a 1.0 V reference to improve accuracy.
When applying the decoupling capacitors to the VREF, REFT, and REFB pins, use ceramic low-ESR capacitors. These capacitors should be close to the ADC pins and on the same layer of the PCB as the AD9222. The recommended capacitor values and configurations for the AD9222 reference pin are shown in Figure 79.
The REFT and REFB pins establish their input span of the ADC core from the reference configuration. The analog input full­scale range of the ADC equals twice the voltage at the reference pin for either an internal or an external reference configuration.
If the reference of the AD9222 is used to drive multiple converters to improve gain matching, the loading of the refer­ence by the other converters must be considered. Figure 81 depicts how the internal reference voltage is affected by loading.
Figure 79. Internal Reference Configuration
Table 13. Reference Settings
Resulting Differential
Selected Mode SENSE Voltage Resulting VREF (V)
External
AVDD N/A
Span (V p-p)
2 × external
Reference
Internal,
AGND to 0.2 V 1.0 2.0
2 V p-p FSR

Internal Reference Operation

A comparator within the AD9222 detects the potential at the SENSE pin and configures the reference. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 79), setting VREF to 1 V.
reference
Figure 80. External Reference Operation
Rev. F | Page 31 of 60
Page 32
AD9222 Data Sheet
0 1.00.5 2.01.5 3.02.5 3.5
V
REF
ERROR (%)
CURRENT LOAD ( mA)
05727-083
–30
–5
–10
–15
–20
–25
5
0
0.02
–0.18
–0.14
–0.10
–0.06
–0.02
–0.16
–0.12
–0.08
–0.04
0
–40
V
REF
ERROR (%)
TEMPERATURE (°C)
05967-028
–20 0 20 40 60 80

External Reference Operation

The use of an external reference may be necessary to enhance the gain accuracy of the ADC or improve thermal drift charac­teristics. Figure 82 shows the typical drift characteristics of the internal reference in 1 V mode.
When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. The external reference is loaded with an equivalent 6 kΩ load. An internal reference buffer generates the positive and negative full-scale references, REFT and REFB, for the ADC core. Therefore, the external reference must be limited to a nominal of 1.0 V.
Figure 82. Typical V
Drift, AD9222-50
REF
Figure 81. V
Accuracy vs. Load, AD9222-50
REF
Rev. F | Page 32 of 60
Page 33
Data Sheet AD9222

SERIAL PORT INTERFACE (SPI)

The AD9222 serial port interface allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. This gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from via the port. Memory is organized into bytes that can be further divided down into fields, as doc­umented in the Memory Map section. Detailed operational information can be found in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.
There are three pins that define the SPI: SCLK, SDIO, and CSB (see Table 14). The SCLK pin is used to synchronize the read and write data presented to the ADC. The SDIO pin is a dual­purpose pin that allows data to be sent to and read from the internal ADC memory map registers. The CSB pin is an active low control that enables or disables the read and write cycles.
Table 14. Serial Port Pins
Pin Function
SCLK Serial Clock. The serial shift clock input. SCLK is used to
synchronize serial interface reads and writes.
SDIO Serial Data Input/Output. A dual-purpose pin. The
typical role for this pin is an input or output, depending on the instruction sent and the relative position in the timing frame.
CSB Chip Select Bar (Active Low). This control gates the read
and write cycles.
The falling edge of the CSB in conjunction with the rising edge of the SCLK determines the start of the framing sequence. During an instruction phase, a 16-bit instruction is transmitted followed by one or more data bytes, which is determined by Bit Field W0 and Bit Field W1. An example of the serial timing and its definitions can be found in Figure 84 and Table 15. During normal operation, CSB is used to signal to the device that SPI commands are to be received and processed. When CSB is brought low, the device processes SCLK and SDIO to process instructions. Normally,
CSB remains low until the communication cycle is complete. However, if connected to a slow device, CSB can be brought high between bytes, allowing older microcontrollers enough time to transfer data into shift registers. CSB can be stalled when transferring one, two, or three bytes of data. When W0 and W1 are set to 11, the device enters streaming mode and continues to process data, either reading or writing, until CSB is taken high to end the communication cycle. This allows complete memory transfers without requiring additional instructions. Regardless of the mode, if CSB is taken high in the middle of a byte transfer, the SPI state machine is reset and the device waits for a new instruction.
In addition to the operation modes, the SPI port configuration influences how the AD9222 operates. For applications that do not require a control port, the CSB line can be tied and held high. This places the remainder of the SPI pins into their secondary modes, as defined in the SDIO/ODM Pin and SCLK/DTP Pin sections. CSB can also be tied low to enable 2-wire mode. When CSB is tied low, SCLK and SDIO are the only pins required for communication. Although the device is synchronized during power-up, the user should ensure that the serial port remains synchronized with the CSB line when using this mode. When operating in 2-wire mode, it is recommended to use a 1-, 2-, or 3-byte transfer exclusively. Without an active CSB line, streaming mode can be entered but not exited.
In addition to word length, the instruction phase determines if the serial frame is a read or write operation, allowing the serial port to be used to both program the chip and read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the SDIO pin to change from an input to an output at the appropriate point in the serial frame.
Data can be sent in MSB- or LSB-first mode. MSB-first mode is the default at power-up and can be changed by adjusting the configuration register. For more information about this and other features, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.
Rev. F | Page 33 of 60
Page 34
AD9222 Data Sheet
05967-037
NUMBER OF SDIO PINS CO NNE CTED TOG E THER
V
OH
(V)
1.715
1.720
1.725
1.730
1.735
1.740
1.745
1.750
1.755
1.760
1.765
1.770
1.775
1.780
1.785
1.790
1.795
1.800
0 302010 40 50 60 70 80 90 100

HARDWARE INTERFACE

The pins described in Ta bl e 14 compose the physical interface between the user’s programming device and the serial port of the AD9222. The SCLK and CSB pins function as inputs when using the SPI. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.
If multiple SDIO pins share a common connection, care should be taken to ensure that proper V same load for each AD9222, Figure 83 shows the number of SDIO pins that can be connected together and the resulting V
levels are met. Assuming the
OH
level.
OH
This interface is flexible enough to be controlled by either serial PROMS or PIC mirocontrollers, providing the user with an alternative method, other than a full SPI controller, to program the ADC (see the AN-812 Application Note).
If the user chooses not to use the SPI, these dual-function pins serve their secondary functions when the CSB is strapped to AVDD during device power-up. See the Theory of Operation section for details on which pin-strappable functions are supported on the SPI pins.
Figure 83. SDIO Pin Loading
Rev. F | Page 34 of 60
Page 35
Data Sheet AD9222
DON’T CARE
DON’T CAREDON’T CARE
DON’T CARE
SDIO
SCLK
CSB
t
S
t
DH
t
HI
t
CLK
t
LO
t
DS
t
H
R/W W1 W0 A12 A11 A10 A9 A8 A7
D5 D4 D3 D2 D1 D0
05967-068
Parameter
Timing (Minimum, ns)
Description
t
10
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK rising
Figure 84. Serial Timing Details
Table 15. Serial Timing Definitions
tDS 5 Setup time between the data and the rising edge of SCLK tDH 2 Hold time between the data and the rising edge of SCLK t
40 Period of the clock
CLK
tS 5 Setup time between CSB and SCLK tH 2 Hold time between CSB and SCLK tHI 16 Minimum period that SCLK should be in a logic high state tLO 16 Minimum period that SCLK should be in a logic low state
EN_SDIO
falling edge (not shown in Figure 84)
t
10
DIS_SD IO
edge (not shown in Figure 84)
Rev. F | Page 35 of 60
Page 36
AD9222 Data Sheet

MEMORY MAP

READING THE MEMORY MAP TABLE

Each row in the memory map register table (Table 16) has eight address locations. The memory map is divided into three sections: the chip configuration register map (Address 0x00 to Address 0x02), the device index and transfer register map (Address 0x05 and Address 0xFF), and the ADC functions register map (Address 0x08 to Address 0x22).
The leftmost column of the memory map indicates the register address number, and the default value is shown in the second right­most column. The (MSB) Bit 7 column is the start of the default hexadecimal value given. For example, Address 0x09, the clock register, has a default value of 0x01, meaning Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. This setting is the default for the duty cycle stabilizer in the on condition. By writing a 0 to Bit 6 of this address, the duty cycle stabilizer turns off. For more information on this and other functions, consult the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

RESERVED LOCATIONS

Undefined memory locations should not be written to except when writing the default values suggested in this data sheet. Addresses that have values marked as 0 should be considered reserved and have a 0 written into their registers during power-up.

DEFAULT VALUES

When the AD9222 comes out of a reset, critical registers are preloaded with default values. These values are indicated in Table 16, where an X refers to an undefined feature.

LOGIC LEVELS

An explanation of various registers follows: “Bit is set” is synonymous with “bit is set to Logic 1” or “writing Logic 1 for the bit.” Similarly, “clear a bit” is synonymous with “bit is set to Logic 0” or “writing Logic 0 for the bit.”
Rev. F | Page 36 of 60
Page 37
Data Sheet AD9222
8-bit Chip ID Bits 7:0
Read
Default is unique
Clock
Clock
Data
Data
Data
Data
Bits are set to
Table 16. Memory Map Register
Addr. (Hex) Parameter Name
Chip Configuration Registers
00 chip_port_config 0
01 chip_id
02 chip_grade X
Device Index and Transfer Registers
04 device_index_2 X X X X
05 device_index_1 X X
FF device_update X X X X X X X
ADC Functions
08 modes X X X X X
09 clock X X X X X X X
0D test_io
(MSB) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Soft reset 1 = on 0 = off (default)
Data Channel G 1 = on (default) 0 = off
Channel C 1 = on (default) 0 = off
Internal power-down mode 000 = chip run (default) 001 = full power-down 010 = standby 011 = reset
User test mode 00 = off (default) 01 = on, single alternate 10 = on, single once 11 = on, alternate once
LSB first 1 = on 0 = off (default)
Child ID [6:4] (identify device variants of Chip ID)
000 = 65 MSPS 011 = 50 MSPS
001 = 40 MSPS
Soft reset 1 = on 0 = off (default)
Channel DCO 1 = on 0 = off (default)
Reset PN long gen 1 = on 0 = off (default)
1 1
(AD9222 = 0x07), (default)
Channel FCO 1 = on 0 = off (default)
Reset PN short gen 1 = on 0 = off (default)
Rev. F | Page 37 of 60
X X X X
Data Channel H 1 = on (default) 0 = off
Channel D 1 = on (default) 0 = off
Output test mode—see
Digital Outputs and Timing section
0000 = off (default) 0001 = midscale short 0010 = +FS short 0011 = −FS short 0100 = checkerboard output 0101 = PN 23 sequence 0110 = PN 9 sequence 0111 = one-/zero-word toggle 1000 = user input 1001 = 1-/0-bit toggle 1010 = 1× sync 1011 = one bit high 1100 = mixed bit frequency (format determined by output_mode)
(LSB) Bit 0
LSB first 1 = on 0 = off (default)
Data Channel F 1 = on (default) 0 = off
Channel B 1 = on (default) 0 = off
0 0x18
Data Channel E 1 = on (default) 0 = off
Channel A 1 = on (default) 0 = off
SW transfer 1 = on 0 = off (default)
Duty cycle stabilizer 1 = on (default) 0 = off
Tab le 9 in the
Default Value (Hex)
only
Read only
0x0F
0x0F
0x00
0x00
0x01
0x00
Default Notes/ Comments
The nibbles should be mirrored so that LSB- or MSB-first mode is set cor­rectly regardless of shift mode.
chip ID, different for each device. This is a read­only register.
Child ID used to differentiate graded devices.
Bits are set to determine which on-chip device receives the next write command.
determine which on-chip device receives the next write command.
Synchronously transfers data from the master shift register to the slave.
Determines various generic modes of chip operation.
Turns the internal duty cycle stabilizer on and off.
When this reg­ister is set, the test data is placed on the output pins in place of normal data.
Page 38
AD9222 Data Sheet
User-defined
Default Addr. (Hex)
14 output_mode X
15 output_adjust X X
16 output_phase X X X X
19 user_patt1_lsb B7 B6 B5 B4 B3 B2 B1 B0 0x00
1A user_patt1_msb B15 B14 B13 B12 B11 B10 B9 B8 0x00
1B user_patt2_lsb B7 B6 B5 B4 B3 B2 B1 B0 0x00
1C user_patt2_msb B15 B14 B13 B12 B11 B10 B9 B8 0x00
21 serial_control
22 serial_ch_stat X X X X X X
Parameter Name
(MSB) Bit 7
LSB first 1 = on 0 = off (default)
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
0 = LVDS ANSI-644 (default) 1 = LVDS low power, (IEEE 1596.3 similar)
X X X
X X X
Output driver termination 00 = none (default) 01 = 200 Ω 10 = 100 Ω 11 = 100 Ω
Output invert 1 = on 0 = off (default)
X X X
0011 = output clock phase adjust (0000 through 1010) 0000 = 0° relative to data edge 0001 = 60° relative to data edge 0010 = 120° relative to data edge 0011 = 180° relative to data edge (default) 0101 = 300° relative to data edge 0110 = 360° relative to data edge 1000 = 480° relative to data edge 1001 = 540° relative to data edge 1010 = 600° relative to data edge 1011 to 1111 = 660° relative to data edge
<10 MSPS, low encode rate mode 1 = on 0 = off (default)
000 = 12 bits (default, normal bit stream) 001 = 8 bits 010 = 10 bits 011 = 12 bits 100 = 14 bits
00 = offset binary (default) 01 = twos complement
Channel output reset 1 = on 0 = off (default)
(LSB) Bit 0
DCO and FCO 2× Drive Strength 1 = on 0 = off (default)
Channel power­down 1 = on 0 = off (default)
Value
(Hex)
0x00
0x00
0x03
0x00
0x00
Default Notes/ Comments
Configures the outputs and the format of the data.
Determines LVDS or other output properties. Primarily func­tions to set the LVDS span and common-mode levels in place of an external resistor.
On devices that utilize global clock divide, determines which phase of the divider output is used to supply the output clock. Internal latching is unaffected.
User-defined pattern, 1 LSB.
User-defined pattern, 1 MSB.
User-defined pattern, 2 LSB.
pattern, 2 MSB. Serial stream
control. Default causes MSB first and the native bit stream (global).
Used to power down individual sections of a converter (local).
Rev. F | Page 38 of 60
Page 39
Data Sheet AD9222
SILKSCREEN PARTITION
PIN 1 INDICATOR
05967-069

Power and Ground Recommendations

When connecting power to the AD9222, it is recommended that two separate 1.8 V supplies be used: one for analog (AVDD) and one for digital (DRVDD). If only one supply is available, it should be routed to the AVDD first and then tapped off and isolated with a ferrite bead or a filter choke preceded by decoupling capacitors for the DRVDD. The user can employ several different decoupling capacitors to cover both high and low frequencies. These should be located close to the point of entry at the PC board level and close to the parts, with minimal trace lengths.
A single PC board ground plane should be sufficient when using the AD9222. With proper decoupling and smart parti­tioning of the PC board’s analog, digital, and clock sections, optimum performance can be easily achieved.

Exposed Paddle Thermal Heat Slug Recommendations

It is required that the exposed paddle on the underside of the ADC be connected to analog ground (AGND) to achieve the best electrical and thermal performance of the AD9222. An exposed continuous copper plane on the PCB should mate to the AD9222 exposed paddle, Pin 0. The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. These vias should be solder-filled or plugged.
To maximize the coverage and adhesion between the ADC and PCB, partition the continuous copper plane by overlaying a silkscreen on the PCB into several uniform sections. This provides several tie points between the ADC and PCB during the reflow process, whereas using one continuous plane with no partitions only guarantees one tie point. See Figure 85 for a PCB layout example. For detailed information on packaging and the PCB layout of chip scale packages, see the AN-772 Application Note,
A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).
Figure 85. Typical PCB Layout
Rev. F | Page 39 of 60
Page 40
AD9222 Data Sheet
ROHDE & SCHWARZ,
SMA, 2V p-p SIGNAL SYNTHESIZER
ROHDE & SCHWARZ,
SMA, 2V p-p SIGNAL SYNTHESIZER
BAND-PASS
FILTER
XFMR INPUT
CLK
CH A TO CH H
12-BIT
SERIAL
LVDS
USB
CONNECTION
AD9222

EVALUATION BOARD

INTERPOSER
BOARD
HSC-ADC-EVALCZ
FIFO DATA
CAPTURE
BOARD
PC
RUNNING
ADC
ANALYZER
AND SPI
USER
SOFTWARE
1.8V – + +
AVDD_DUT
AVDD_3.3V
DRVDD_DUT
GND
GND
+
5.0V
GND
AVDD_5V
1.8V
6V DC
2A MAX
WALL OUTLET 100V TO 240V AC 47Hz TO 63Hz
SWITCHING
POWER SUPPLY
+
GND
3.3V – +
VCC
GND
3.3V
SPI SPISPI SPI
05967-070
EVALUATION BOARD
The AD9222 evaluation board provides all of the support cir­cuitry required to operate the ADC in its various modes and configurations. The converter can be driven differentially using a transformer (default) or an AD8334 driver. The ADC can also be driven in a single-ended fashion. Separate power pins are provided to isolate the DUT from the drive circuitry of the AD8334. Each input configuration can be selected by changing the connection of various jumpers (see Figure 90 to Figure 94). Figure 86 shows the typical bench characterization setup used to evaluate the ac performance of the AD9222. It is critical that the signal sources used for the analog input and clock have very low phase noise (<1 ps rms jitter) to realize the optimum performance of the converter. Proper filtering of the analog input signal to remove harmonics and lower the integrated or broadband noise at the input is also necessary to achieve the specified noise performance.
See Figure 90 to Figure 100 for the complete schematics and layout diagrams demonstrating the routing and grounding techniques that should be applied at the system level.

POWER SUPPLIES

This evaluation board has a wall-mountable switching power supply that provides a 6 V, 2 A maximum output. Connect the supply to the rated 100 V ac to 240 V ac wall outlet at 47 Hz to 63 Hz. The other end of the supply is a 2.1 mm inner diameter jack that connects to the PCB at P701. Once on the PC board, the 6 V supply is fused and conditioned before connecting to three low dropout linear regulators that supply the proper bias to each of the various sections on the board.
When operating the evaluation board in a nondefault condition, L701 to L704 can be removed to disconnect the switching power supply. This enables the user to bias each section of the board
individually. Use P702 to connect a different supply for each section. At least one 1.8 V supply is needed f o r AVDD _ DUT a nd DRVDD_DUT; however, it is recommended that separate supplies be used for both analog and digital signals and that each supply have a current capability of 1 A. To operate the evaluation board using the VGA option, a separate 5.0 V analog supply (AVDD_5 V) is needed. To operate the evaluation board using the SPI and alter­nate clock options, a separate 3.3 V analog supply (AVDD_3.3 V) is needed in addition to the other supplies.

INPUT SIGNALS

When connecting the clock and analog sources to the evalu­ation board, use clean signal generators with low phase noise, such as Rohde & Schwarz SMA or HP8644 signal generators or the equivalent, as well as a 1 m, shielded, RG-58, 50 Ω coaxial cable. Enter the desired frequency and amplitude from the ADC specifi­cations tables. Typically, most Analog Devices, Inc., evaluation boards can accept approximately 2.8 V p-p or 13 dBm sine wave input for the clock. When connecting the analog input source, it is recommended to use a multipole, narrow-band, band-pass filter with 50 Ω terminations. Good choices of such band-pass filters are available from TTE, Allen Avionics, and K&L Microwave, Inc. The filter should be connected directly to the evaluation board if possible.

OUTPUT SIGNALS

The default setup uses the Analog Devices HSC-ADC-FIFO5­INTZ to interface with the Analog Devices standard dual-channel FIFO data capture board (HCS-ADC-EVALCZ). Two of the eight channels can be evaluated at the same time. For more information on the channel settings and optional settings of these boards, www.analog.com/FIFO.
Figure 86. Evaluation Board Connection
Rev. F | Page 40 of 60
Page 41
Data Sheet AD9222
0
AMPLITUDE (dBFS)
FREQUENCY (MHz)
0
–18
–16
–14
–12
–10
–8
–6
–4
–2
50 100 150 200 250 300 350 400 450 500
–3dB CUTOFF = 150MHz
05967-071

DEFAULT OPERATION AND JUMPER SELECTION SETTINGS

The following is a list of the default and optional settings or modes allowed on the AD9222 Rev. A evaluation board.
POWER: Connect the switching power supply that is
provided with the evaluation kit between a rated 100 V ac to 240 V ac wall outlet at 47 Hz to 63 Hz and P701.
AIN: The evaluation board is set up for a transformer-
coupled analog input with an optimum 50 Ω impedance match of 150 MHz of bandwidth (see Figure 87). For more bandwidth response, the differential capacitor across the analog inputs can be changed or removed. The common mode of the analog inputs is developed from the center tap of the transformer or AVDD_DUT/2.
Figure 87. Evaluation Board Full-Power Bandwidth, AD9222-50
VREF: VREF is set to 1.0 V by tying the SENSE pin to ground,
R317. This causes the ADC to operate in 2.0 V p-p full-scale range. A separate external reference option using the ADR510 or ADR520 is also included on the evaluation board. Populate R312 and R313 and remove C307. Proper use of the VREF options is noted in the Voltage Reference section.
RBIAS: RBIAS has a default setting of 10 kΩ (R301) to
ground and is used to set the ADC core bias current.
CLOCK: The default clock input circuitry is derived from a
simple transformer-coupled circuit using a high bandwidth 1:1 impedance ratio transformer (T401) that adds a very low amount of jitter to the clock path. The clock input is 50 Ω terminated and ac-coupled to handle single-ended sine wave types of inputs. The transformer converts the single-ended input to a differential signal that is clipped before entering the ADC clock inputs.
Rev. F | Page 41 of 60
A differential LVPECL clock can also be used to clock the ADC input using the AD9515 (U401). Populate R406 and R407 with 0 Ω resistors and remove R215 and R216 to disconnect the default clock path inputs. In addition, populate C205 and C206 with a 0.1 μF capacitor and remove C409 and C410 to disconnect the default clock path outputs. The
AD9515 has many pin-strappable options that are set to a
default mode of operation. Consult the AD9515 data sheet for more information about these and other options.
In addition, an on-board oscillator is available on the OSC401 and can act as the primary clock source. The setup is quick and involves installing R403 with a 0 Ω resistor and setting the enable jumper (J401) to the on position. If the user wishes to employ a different oscillator, two oscillator footprint options are available (OSC401) to check the ADC performance.
PDWN: To enable the power-down feature, short J301 to
the on position (AVDD) on the PDWN pin.
SCLK/DTP: To enable the digital test pattern on the digital
outputs of the ADC, use J304. If J304 is tied to AVDD during device power-up, Test Pattern 1000 0000 0000 is enabled. See the SCLK/DTP Pin section for details.
SDIO/ODM: To enable the low power, reduced signal option
(similar to the IEEE 1595.3 reduced range link LVDS output standard), use J303. If J303 is tied to AVDD during device power-up, it enables the LVDS outputs in a low power, reduced signal option from the default ANSI-644 standard. This option changes the signal swing from 350 mV p-p to 200 mV p-p, reducing the power of the DRVDD supply. See the SDIO/ODM Pin section for more details.
CSB: To enable processing of the SPI information on the
SDIO and SCLK pins, tie J302 low in the always enable mode. To ignore the SDIO and SCLK information, tie J302 to AVDD.
Non-SPI Mode: For users who wish to operate the DUT
without using SPI, remove Jumpers J302, J303, and J304. This disconnects the CSB, SCLK/DTP, and SDIO/ODM pins from the control bus, allowing the DUT to operate in its simplest mode. Each of these pins has internal termination and will float to its respective level.
D + x, D − x: If an alternative data capture method to the setup
shown in Figure 90 is used, optional receiver terminations, R318 and R320 to R328, can be installed next to the high speed backplane connector.
Page 42
AD9222 Data Sheet
68pF
680nH 680nH
05967-107
0
–120
–100
–80
–60
–40
–20
0 5.0 7.52.5 10.0 15.0 17.512.5 20.0 22.5 25.0
AMPLITUDE (dBFS)
FREQUENCY (MHz)
05967-108
f
SAMPLE
= 50MSPS
AIN = 3.5MHz
AD8334 = MAX GAIN SE TTING

ALTERNATIVE ANALOG INPUT DRIVE CONFIGURATION

The following is a brief description of the alternative analog input drive configuration using the AD8334 dual VGA. If this drive option is in use, some components may need to be populated, in which case all the necessary components are listed in Table 17. For more details on the AD8334 dual VGA, including how it works and its optional pin settings, consult the
AD8334 data sheet.
To configure the analog input to drive the VGA instead of the default transformer option, the following components need to be removed and/or changed.
Remove R102, R115, R128, R141, R161, R162, R163, R164,
R202, R208, R218, R225, R234, R241, R252, R259, T101, T102, T103, T104, T201, T202, T203, and T204 in the default analog input path.
Populate R101, R114, R127, R140, R201, R217, R233, and
R251 with 0 Ω resistors in the analog input path.
Populate R152, R153, R154, R155, R156, R157, R158, R159,
R215, R216, R229, R230, R247, R248, R263, R264, C103, C105, C110, C112, C117, C119, C124, C126, C203, C205, C210, C212, C217, C219, C224, and C226 with 10 kΩ resistors to provide an input common-mode level to the ADC analog inputs.
Populate R105, R113, R118, R124, R131, R137, R151, R160,
R205, R213, R221, R222, R237, R238, R255, and R256 with 0 Ω resistors in the ADC analog input path to connect the VGA outputs.
Remove R515, R520, R527, R532, R615, R620, R627, and
R632 on the AD8334 analog outputs.
Remove R512, R524, R612, and R624 to set the AD8334
mode and AD8334 HILO pin low. Some applications may require this to be different. Consult the AD8334 data sheet for more information on these functions.
In this configuration, L505 to L520 and L605 to L620 are populated with 0 Ω resistors to allow signal connection and use of a filter if additional requirements are necessary.
In this example, a 16 MHz, two-pole low-pass filter was applied to the AD8334 outputs. The following components need to be removed and/or changed:
Remove L507, L508, L511, L512, L515, L516, L519, L520,
L607, L608, L611, L612, L615, L616, L619, and L620 on the
AD8334 analog outputs.
Populate L507, L508, L511, L512, L515, L516, L519, L520,
L607, L608, L611, L612, L615, L616, L619, and L620 with 680 nH inductors.
Populate C543, C547, C551, C555, C643, C647, C651, and
C655 with a 68 pF capacitor.
Figure 88. Example Filter Configured for16 MHz, Two-Pole Low-Pass Filter
Figure 89. AD9222 FFT Example Results Using 16 MHz, Two-Pole Low-Pass
Filter Applied to the AD8334 Outputs (f
AD8334 = Maximum Gain Setting, Analog Input Signal = −1.03 dBFS, SNR =
60.8 dBc, SFDR = 67.02 dBc)
= 50 MSPS, AIN = 3.5 MHz,
SAMPLE
Rev. F | Page 42 of 60
Page 43
Data Sheet AD9222
DNP
DNP
DNP
VGA Input
Ain
Ain
Ain
VGA Input
VGA Input
Connection
Connection
Connection
Connection
VGA Input
Channel C
Ain
DNP
Ain
Channel A
Ain
Ain
Channel B
Ain
Channel D
R134
33
P105
P102
R148
1k
R160
0Ω−DNP
R151
0Ω−DNP
R137
0Ω−DNP
R131
0Ω−DNP
R124
0Ω−DNP
R118
0Ω−DNP
R113
0Ω−DNP
R105
0Ω−DNP
R101
0Ω−DNP
R140
0Ω−DNP
R127
0Ω−DNP
R114
0Ω−DNP
R107
DNP
1
2 5
6
T104
1
2
3 4
3 4
5
6
T103
CM3
1
2
5
6
T101
123 4
3
4
5
6
T102
1
E102
1
E101
DNP
C127
10
FB112
10
FB111
10
FB110
10
FB109
10
FB108
10
FB107
10
FB106
10
FB105
10
FB104
DNP
C113
10
FB103
10
FB102
10
FB101
DNP
C106
2.2pF
C118
DNP
C124
VIN_D
0.1µF
C114
0.1µF
C107
VIN_D
VIN_C
VIN_B
VIN_B
AVDD_DUT
AVDD_DUT
CM2
CM1
CH_D
CH_D
CM3
CM1
INH4
INH3
INH1
CH_A
CH_A
CH_C
CM4
AVDD_DUT
AVDD_DUT
AVDD_DUT
CM4
AVDD_DUT
INH2
CH_B
CH_B
CM2
CH_C
R104
0
R116
0
R130
0
R143
0
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
DNP
C120
0.1µF
C128
0.1µF
C121
0.1µF
C101
2.2pF
C125
DNP
C117
DNP
C126
DNP
C119
DNP
C112
0.1µF
C108
0.1µF
C109
0.1µF
C116
0.1µF
C115
0.1µF
C122
0.1µF
C123
DNP
C110
2.2pF
C111
DNP
C103
2.2pF
C104
DNP
C105
0.1µF
C102
VIN_A
VIN_A
CM1
CM2
1
E103
1
E104
CM3
CM4
R135
1k
R123
1k
R109
1k
499
R164
R163
499
R162
499
499
R161
DNP
R159
DNP
R158
DNP
R157
R156
DNP
R108
33
DNP
R152
DNP
R155
DNP
R154
DNP
R153
R102
64.9
R147
33
R146
33
R145
DNP
R149
1k
R136
33
R133
DNP
R132
DNP
R125
1K
R122
33
R121
33
R111
1k
R106
DNP
R112
1k
R150
1k
R139
1k
R138
1k
R126
1k
R110
33
R141
64.9
R142
0
R128
64.9
R129
0
R115
64.9
R117
0
R103
0
R144
DNP
R120
DNP
R119
DNP
P101
P106
P108
P107
P104
P103
VIN_C
05967-072
DNP: DO NOT POPULATE.
Figure 90. Evaluation Board Schematic, DUT Analog Inputs
Rev. F | Page 43 of 60
Page 44
AD9222 Data Sheet
DNP
DNP
DNP
DNP
VGA Input
Ain
Ain
Ain
Ain
VGA Input
VGA Input
VGA Input
Ain
Connection
Connection
Connection
Connection
Channel E
DNP
Ain
Channel G
Ain
Channel H
Channel F
Ain
1
2 5
6
T204
R266
1k
10
FB212
R265
1k
10
FB209
10
FB207
R245
33
R240
DNP
1
2 5
3 4
3 4
6
T203
2.2pF
C211
R231
1k
10
FB206
10
FB203
1
2 5
6
T202
R220
0
R257
DNP
R258
DNP
R224
DNP
R223
DNP
2.2pF
C204
R207
DNP
R206
DNP
1
2 5
3 4
3 4
6
T201
10
FB201
R262
1k
R256
0Ω−DNP
R255
0Ω−DNP
R238
0Ω−DNP
R237
0Ω−DNP
R222
0Ω−DNP
R221
0Ω−DNP
R213
0Ω−DNP
R205
0Ω−DNP
R201
0Ω−DNP
R251
0Ω−DNP
R233
0Ω−DNP
R217
0Ω−DNP
CM7
1
E202
1
E201
DNP
C227
10
FB211
10
FB210
10
FB208
10
FB205
10
FB204
DNP
C213
10
FB202
DNP
C206
2.2pF
C218
DNP
C224
VIN_H
0.1µF
C214
0.1µF
C207
VIN_H
VIN_G
VIN_G
VIN_F
VIN_F
AVDD_DUT
AVDD_DUT
CM6
CM5
CH_H
CH_H
CM7
CM5
INH8
INH7
INH5
CH_E
CH_E
CH_G
CM8
AVDD_DUT
AVDD_DUT
AVDD_DUT
CM8
AVDD_DUT
INH6
CH_F
CH_F
CM6
CH_G
R204
0
R236
0
R254
0
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
DNP
C220
0.1µF
C228
0.1µF
C221
0.1µF
C201
2.2pF
C225
DNP
C217
DNP
C226
DNP
C219
DNP
C212
0.1µF
C208
0.1µF
C209
0.1µF
C216
0.1µF
C215
0.1µF
C222
0.1µF
C223
DNP
C210
DNP
C203
DNP
C205
0.1µF
C202
VIN_E
VIN_E
CM5
CM6
1
E203
1
E204
CM7
CM8
R246
1k
R228
1k
R214
1k
499
R259
R241
499
R225
499
499
R208
DNP
R263
DNP
R247
DNP
R229
R215
DNP
R209
33
DNP
R216
DNP
R264
DNP
R248
DNP
R230
R202
64.9
R261
33
R260
33
R239
DNP
R227
33
R226
33
R211
1k
R212
1k
R250
1k
R249
1k
R232
1k
R210
33
R242
33
R252
64.9
R253
0
R234
64.9k
R235
0
R218
64.9
R219
0
R203
0
P201
P202
P205
P206
P208
P207
P203
P204
05967-073
DNP: DO NOT POPULATE.
Figure 91. Evaluation Board Schematic, DUT Analog Inputs (Continued)
Rev. F | Page 44 of 60
Page 45
Data Sheet AD9222
4.7µF
CW
GND
VOUT
TRIM/NC
AD9222BCPZ-65
AVDD
CLK+
CLK−
D+B
D+C
D+D
D+E
D+F
D+G
D+H
D−B
D−C
D−D
D−E
D−F
D−G
D−H
DCO+
DCO
DRGND
DRVDD
FCO+
FCO
PDWN
AVDD
RBIAS
REFB
REFT
SCLK/DTP
SDIO/ODM
VIN+A
VIN+C
VIN+D
VIN+E
VIN+G
VIN−A
VIN−B
VIN−C
VIN−D
VIN−F
VIN−G
VREF
VIN+F
SLUG
AVDD
AVDD
AVDD
DRGND
VIN−H
D+A
D−A
VIN+B
CSB
SENSE
VIN−E
VIN+H
DRVDD
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
AVDD
A1
A10
A2
A3
A4
A5
A6
A7
A8
A9
B1
B10
B2
B3
B4
B5
B6
B7
B8
B9
C1
C10
C2
C3
C4
C5
C6
C7
C8
C9
D1
D10
D2
D3
D4
D5
D6
D7
D8
D9
GNDAB1
GNDAB10
GNDAB2
GNDAB3
GNDAB4
GNDAB5
GNDAB6
GNDAB7
GNDAB8
GNDAB9
GNDCD1
GNDCD10
GNDCD2
GNDCD3
GNDCD4
GNDCD5
GNDCD6
GNDCD7
GNDCD8
GNDCD9
Optional Output
Terminations
Digital Ou tputs
using external Vref
V
REF
= 1V
V
REF
= External
V
REF
= 0.5V
Remove C214 when
ALWAYS ENABLE SPI
ODM Enable
DTP Enable
V
REF
= 0.5V(1 + R219/R220)
Vref Select
1.0V
Reference
Decoupling
OPTIONAL
EXT REF
PWDN ENABLE
NC
Reference Circuitry
R318,R320−R328
DNP
R322
CHB
1102
3
4
5
6
7
8
9
112012
13
14
15
16
17
18
19
314032
33
34
35
36
37
38
39
415042
43
44
45
46
47
48
49
213022
23
24
25
26
27
28
29
516052
53
54
55
56
57
58
59
P301
CHB
DNP
R318
DNP
R320
DNP
R321
DNP
R323
DNP
R324
DNP
R325
DNP
R328
DNP
R326
3
2
1
J304
1
2
3
J303
1
2
3
J302
3
2
1
J301
R319
1k
AVDD_DUT
AVDD_DUT
AVDD_DUT
VIN_E
VIN_E
VIN_F
VIN_F
1
59
4
42
45
48
51
62
7109118
32
30
28
22
20
18
16
31
29
27
21
19
17
15
24
23
13 36
14 35
37
26
25
33
34
40
47
55
61
5
6
41
12
54
57
58
38
39
43
49
53
60
2
44
46
50
52
63
3
56
64
0
U301
R306 100k
R305 100k
R303
100kDNP
R304
DNP
R302
SCLK_DTP
SDIO_ODM
CSB_DUT
0.1µF
C305
4.99k
R309
1µF
C307
C301
0.1µF
C304
0.1µF
C302
0.1µF
ADR510ARTZ
U302
10k
R310
DNP
R311
R307 10k
VSENSE_DUT
470k
R308
DNP
R313
DNP
R312
0
R317
DNP
R31
DNP
R315
DNP
R314
R301 10k
0.1µF
C306
AVDD_DUT
VREF_DUT
AVDD_DUT
AVDD_DUT
DRVDD_DUT
AVDD_DUT
AVDD_DUT
AVDD_DUT
CLK
CLK
CHB
CHC
CHD
CHH
CHB
CHC
CHD
CHH
DCO
DCO
GND
DRVDD_DUT
FCO
FCO
VSENSE_DUT
VIN_H
VIN_H
VIN_C
VIN_D
VIN_G
VIN_C
VIN_D
VIN_G
VREF_DUT
CHG
CHG
CHF
CHF
CHE
CHE
AVDD_DUT
AVDD_DUT
GND
AVDD_DUT
VIN_A
VIN_A
CHA
CHA
AVDD_DUT
VIN_B
VIN_B
AVDD_DUT
AVDD_DUT
AVDD_DUT
DNP
R327
SCLK_CHA
SDI_CHA
CSB1_CHA
CSB2_CHA
SDO_CHA
SCLK_CHB
SDI_CHB
CSB3_CHB
CSB4_CHB
SDO_CHB
DCO
FCO
CHA
CHC
CHD
CHE
CHF
CHG
CHHCHH
CHG
CHF
CHE
CHD
CHC
CHA
FCO
DCO
C303
05967-074
DNP: DO NO T POPULATE.
Figure 92. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface
Rev. F | Page 45 of 60
Page 46
AD9222 Data Sheet
CRYSTAL_3
GND
OE
OUT
VCC
OE
GNDOUT
VCC
CLK
CLKB
GND
GND_PAD
OUT0
OUT0B
OUT1
OUT1B
RSET
S0
S1
S10
S2
S3
S4
S5
S6
S7
S8
S9
SYNCB
VREF
VS
SIGNAL=D NC;27 ,28
DNP
DNP
DNP
DNP
DNP
DNP
DNP
DNP
Input
Encode
Enc
Enc
Clock Circuit
DNP
DNP
DNP
DNP
DISABLE OSC401
ENABLE OSC401
Optional Clock
Oscillator
AD9515 Pin−strap settings
OPTIO NAL CL OCK DRIVE CIRCUIT
LVPECL OUTPUT
DNP: DO NOT POPULATE.
DNP
DNP
DNP
LVDS OUTPUT
CLIP SINE OUT (DEFAULT)
DNP
12
6
7
25
8
16
9
15
10
14
11
13
3
2
5
18
192322
32
1
31
33
U401
SIGNAL=AVDD_3.3V;4,17,20,21,24,26,29,30
AD9515BCPZ
0
R430
R446
0
R424
R428
0
R425
0
R427
0
1
2
3
J401
10
12 3
571
8
14
OSC401
0
R426
S0
0
R436
R437
0
10k
R413
C401
0.1µF
R401
10k
R4030DNP
0.1µF
514C
214C
0.1µF
C416
C411
0.1µF
0
R406
0
R415
10k
R402
49.9
R411
R407
0
0
R434
C405
0.1µF
DNP
0.1µF
C406
DNP
0.1µF
C407
DNP
C408
0.1µF
DNP
R444
0
0
R442
R440
0
0
R438
R432
0
0
R445
R443
0
0
R441
R439
0
R435
0
0
R433
R431
0
0
R429
S4
1
E401
AVDD_3.3V
0
R416
3
2
1
CR401
HSMS-2812-TR1G
R414
4.12k
S5
S3
S2
S1
AVDD_3.3V
R421
240
C409
0.1µF
R409
DNP
240
R420
6543
2
1
T401
0.1µF
C402
C410
0.1µF
49.9
R404
R410
10k
R412
DNP
DNP
R408
R405
0
C403
0.1µF
100
R423
R422
100
R418
0
R417
0
S0
S1S2
S3
S4S5S6S7
S8S9
S10
OPT_CLK
OPT_CLK
CLK
AVDD_3.3V
OPT_CLK
OPT_CLK
CLK
CLK
CLK
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
AVDD_3.3V
S6
S7
S8
S9
S10
C413
0.1µF0.1µF
814C4
1 4C
0.1µF0.1µF
C417
AVDD_3.3V
AVDD_3.3V
P401
P402
05967-075
0.1µF
Figure 93. Evaluation Board Schematic, Clock Circuitry
Rev. F | Page 46 of 60
Page 47
Data Sheet AD9222
CW
CW
AD8334ACPZ-REEL
INH2
LMD2
COM2X
LON2
LOP2
VIP2
VIN2
VPS2
VPS3
VIN3
VIP3
LOP3
LON3
COM3X
LMD3
INH3
COM4
INH4
LMD4
COM4X
LON4
LOP4
VIP4
VIN4
VPS4
HILO
MODE
VPS1
VIN1
VIP1
LOP1
LON1
COM1X
LMD1
INH1
COM1
NC
NC
VOL2
VOH2
COM2
VCM2
COM3
VCM3
VOL3
VOH3
VCM4
VOH4
VOL4
VOL1
VOH1
VCM1
GAIN12
CLMP12
EN12
COM12
VPS12
COM12
EN34
COM34
VPS34
COM34
CLMP34
GAIN34
EXT VG
External Variable Gain Drive
Variable Gain Circuit (01.0VDC)
HILO Pin =H=+/− 75mV
HILO Pin =LO=+/− 50mV
Rclamp Pin
EXT VG
HILO Pin =H=+/− 75mV
HILO Pin =LO=+/− 50mV
Rclamp Pin
External Variable Gain Drive
VariableGain Circuit (01.0VDC)
resistors or des ign y our own filter.
Power Down Enable
(0−1V=Disable Power)
DNP: DO NOT POPULATE.
MODE Pin
Positive Gain Slope = 0−1.0V
Negitive Gain Slope = 2.25−5.0V
Populate L505−L520 with 0Ω
0.1µF
C537
0
L519
0
L515
374
R532
374
R527
DNP
R522
DNP
R517
0.1µF
C530
0.1µF
C529
0.1µF
C528
120nH
L503
0.1µF
C524
0.1µF
C523
0.1µF
C518
374
R515
10k
R504
0.1µF
C504
62
61
60
59
58
57
56
55
54
53
52
51
50
49
333435
36
37
38
39
4142434445
46
47
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
16
15
1413121110
987654321
63
64
48
40
U501
0.1µF
C506
AVDD_5V
10k
R511
10k
R512
10k
R505
AVDD_5V
AVDD_5V
AVDD_5V
AVDD_5V
VG34
0.1µF
C538
AVDD_5V
AVDD_5V
0.1µF
C505
22pF
C503
VG12
C512 10µF
AVDD_5V
AVDD_5V
0.1µF C501
187
R513
10k
DNP
R506
10k
R501
274
R503
0.018µF
C502
1 2
JP501
120nH
L501
0.1µF
C508
0.1µF
C509
1000pF
C507
39k
R502
C510 10µF
AVDD_5V
VG12
VG12
GND
R521
DNP
0
L510
R516
DNP
C542
DNP
187
R518
187
R514
0.1µF
C545
0.1µF
C541
0.1µF
C540
0
L505
0
L511
0
L508
0
L507
0
L509
0
L506
0
L512
374
R520
187
R519
0.1µF
C544
C546
DNP
C543
DNP
C547
DNP
CH_CCH_D
CH_D
CH_C
DNP
R534
R533
DNP
0
L518
R528
DNP
C550
DNP
187
R530
187
R526
0.1µF
C553
0.1µF
C549
0.1µF
C548
0
L513
0
L516
0
L517
0
L514
0
L520
187
R531
187
R525
0.1µF
C552
C554
DNP
C551
DNP
C555
DNP
DNP
R529
CH_A
CH_B
CH_B CH_A
INH4
0.1µF
C511
22pF
C514
0.1µF C513
120nH
L502
INH3
274
R507
0.018µF
C515
0.1µF
C522
22pF
C520
0.1µF C519
274
R508
0.018µF
C521
INH2
C526 22pF
C525
0.1µF
L504
120nH
R509
274
C527
0.018µF
INH1
0.1µF0.1µF
C536C535C534C533
10µF10µF
10k
DNP
R510
0.1µF
C532
1000pF
C531
10k
R535
1
JP502
39k
R536
AVDD_5V
VG34
VG34
GND
10k
R523
10k
R524
AVDD_5V
05967-076
2
Figure 94. Evaluation Board Schematic, Optional DUT Analog Input Drive
Rev. F | Page 47 of 60
Page 48
AD9222 Data Sheet
CW
CW
AD8334ACPZ-REEL
INH2
LMD2
COM2X
LON2
LOP2
VIP2
VIN2
VPS2
VPS3
VIN3
VIP3
LOP3
LON3
COM3X
LMD3
INH3
COM4
INH4
LMD4
COM4X
LON4
LOP4
VIP4
VIN4
VPS4
HILO
MODE
VPS1
VIN1
VIP1
LOP1
LON1
COM1X
LMD1
INH1
COM1
NC
NC
VOL2
VOH2
COM2
VCM2
COM3
VCM3
VOL3
VOH3
VCM4
VOH4
VOL4
VOL1
VOH1
VCM1
GAIN12
CLMP12
EN12
COM12
VPS12
COM12
EN34
COM34
VPS34
COM34
CLMP34
GAIN34
MODE Pin
Positive Gain Slope = 0−1.0V
Negative Gain Slope = 2.25−5.0V
EXT VG
External Variable Gain Drive
Variable Gain Circuit (01.0VDC)
HILO Pin =H=+/− 75mV
HILO Pin =LO=+/− 50mV
Rclamp Pin
EXT VG
HILO Pin =H=+/− 75mV
HILO Pin =LO=+/− 50mV
Rclamp Pin
External Variable Gain Drive
VariableGain Circuit (01.0VDC)
Populate L605−L620 with 0Ω
resistors or des ign y our own filter.
Power Down Enable
(0−1V=Disable Power)
DNP: DO NOT POPULATE.
62
61
60
59
58
57
56
55
54
53
52
51
50
49
33
34
35
36
37
38
39
41424344454647
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
16151413121110
987654321
63
64
48
40
U601
374
R620
DNP
R636
374
R632
374
R627
DNP
R622
0
L619
0
L611
0.1µF
C630
0.1µF
C629
0.1µF
C628
0.1µF
C624
0.1µF
C623
0.1µF
C618
0.1µF
C616
10kΩ
R604
0.1µF
C604
10kΩ
R612
10kΩ
R624
AVDD_5V
AVDD_5V
AVDD_5V
AVDD_5V
VG78
0.1µF
C617
AVDD_5V
AVDD_5V
0.1µF
C605
22pF
C603
0.1µF
C606
VG56
C612 10µF
AVDD_5V
AVDD_5V
0.1µF C601
187
R613
10kΩ
DNP
R606
10kΩ
R601
274
R603
0.018µF
C602
1 2
JP601
L601 120nH
0.1µF
C608
0.1µF
C609
10kΩ
R605
1000pF
C607
39k
R602
C610 10µF
AVDD_5V
VG56
VG56
GND
R621
DNP
0
L610
R616
DNP
C642
DNP
374
R615
187
R618
187
R614
0.1µF
C645
0.1µF
C641
0.1µF
C640
0
L605
0
L608
0
L607
0
L609
0
L606
0
L612
187
R619
0.1µF
C644
C646
DNP
C643
DNP
C647
DNP
DNP
R617
CH_GCH_H
CH_H
CH_G
R633
DNP
0
L618
R628
DNP
C650
DNP
187
R630
187
R626
0.1µF
C653
0.1µF
C649
0.1µF
C648
0
L613
0
L616
0
L615
0
L617
0
L614
0
L620
187
R631
187
R625
0.1µF
C652
C654
DNP
C651
DNP
C655
DNP
DNP
R629
CH_E
CH_F
CH_F
CH_E
INH8
0.1µF
C611
22pF
C614
0.1µF
C613
L602 120nH
INH7
274
R607
0.018µF
C615
0.1µF
C622
22pF
C620
0.1µF C619
L603 120nH
274
R608
C621
INH6
C626 22pF
C625
0.1µF
L604
120nH
R609 274
C627
0.018µF
INH5
0.1µF0.1µF
C636
10µF
C634C633
10µF
10k
DNP
R610
0.1µF
C632
1000pF
C631
10kΩ
R634
1 2
JP602
39k
R635
AVDD_5V
VG78
VG78
GND
10kΩ
R611
AVDD_5V
10kΩ
R623
AVDD_5V
C635
05967-077
0.018µF
Figure 95. Evaluation Board Schematic, Optional DUT Analog Input Drive (Continued)
Rev. F | Page 48 of 60
Page 49
Data Sheet AD9222
NANOSMDC110F-2
S2A-TP
GP0
GP1
GP2
GP4
GP5
VDD VSS
MCLR/GP 3
PIC12F629-I/SNG
4
Y1
VCC
Y2A2
GND
A1
CON005
7.5V POWER
2.5MM JACK
P1P2P3P4P5P6P7
P8
GND
GND
GND
GND
OUT
Y1
VCC
Y2A2
GND
A1
OPTIONAL
+3.3V = NORMAL OPERATION = AVDD_3.3V
+5V = PROGRAMMING = AVDD_5V
RESET/ REPROGRAM
ISPPIC PROGRAMMING HEADER
REMOVE WHEN USING OR PROGRAMMING PIC (U402)
SPI CIRCUI TRY FROM FIF O
Power Supply Input
Input
6V, 2A max
+5.0V
DNP: DO NOT POPULATE.
+1.8V
+1.8V
+3.3V
Decoupling Capacitors
Optional Power
D702
654
321
U703
NC7WZ16P6X_NL
3.3V_AVDD
5V_AVDD
DUT_AVDD
DUT_DRVDD
L701
10µH
AVDD_5V
1
234
U707
ADP3339ZAKC−1.8-RL
AVDD_5V
AVDD_DUT
CR702
GREEN
MCLR/GP3
CR701
GREEN
4
2
3
1
ADP3339ZAKC−5-RL7
U706
1
234
U704
ADP3339ZAKC−1.8-RL
4
2
3
1
ADP3339ZAKC−3.3-RL
U705
2
4 3
1
FER701
1
2345678
P702
DNP
1
3
2
P701
1
2
3 4
5
6
NC7W207P6X_NL
U702
1k
R713
0
R709
R708
0
0
0R706
2
4
6
8
10
9
7
5
3
1
J702
1
2
3
S701
4
3
7
6
5
281
U701
0.1µF
C726
0.1µF
C742
AVDD_DUT
0.1µF
C730
D701
F701
AVDD_3.3V
0.1µF
C740
0.1µF
C741
L702
10µH
C710
0.1µF
C709
10µF
10µH
L705
R716
261
10µH
L706
L704
10µH
C715
1µF
0.1µF
C708
0.1µF
C712
C706
0.1µF
C717
1µF
C716
1µF
C714
1µF
PWR_IN
PWR_IN
10µF
C707
C705
10µF
10µF
C711
DUT_AVDD
DUT_DRVDD
0.1µF
C735
0.1µF
C734
0.1µF
C733
0.1µF
C727
0.1µF
C732
0.1µF
C731
0.1µF
C743
0.1µF
C723
0.1µF
C725
0.1µF
C724
10µH
L703
5V_AVDD
3.3V_AVDD
PWR_IN
PWR_IN
1µF
C719
1µF
C721
1µF
C722
1µF
C720
L708
10µH
L707
10µH
DRVDD_DUT
1k
R712
1k
R710
R707
C701
0.1µF
R715
10kΩ
10kΩ
R711
0.1µF
C703
R704
0Ω−DNP
0Ω−DNP
R703
0Ω−DNP
R705
261
R702
3
2
1
J701
R701
4.7k
1
E701
C702
0.1µF
10kΩ
R714
PICVCC
GP1
GP0
MCLR/GP3
PICVCC
AVDD_DUT
AVDD_3.3V AVDD_5V
AVDD_DUT
SCLK_DTP
CSB_DUT
AVDD_3.3V
GP0
CSB1_CHA
SCLK_CHA
SDI_CHA
GP1
SDO_CHA
AVDD_DUT
SDIO_ODM
PWR_IN
AVDD_3.3V
AVDD_5V
AVDD_DUT
DRVDD_DUT
0.1µF
C744
0.1µF
C748
0.1µF
C747
0.1µF
C746
0.1µF
C745
0.1µF
C752
0.1µF
C753
0.1µF
C749
0.1µF
C751
0.1µF
C750
C704
10µF
05967-078
IN
IN
OUT
OUT
OUT
SK33-TP
OUT
IN
IN
OUT
OUT
OUT
Figure 96. Evaluation Board Schematic, Power Supply Inputs and SPI Interface Circuitry
Rev. F | Page 49 of 60
Page 50
AD9222 Data Sheet
05967-079
Figure 97. Evaluation Board Layout, Primary Side
Rev. F | Page 50 of 60
Page 51
Data Sheet AD9222
05967-080
Figure 98. Evaluation Board Layout, Ground Plane
Rev. F | Page 51 of 60
Page 52
AD9222 Data Sheet
05967-081
Figure 99. Evaluation Board Layout, Power Plane
Rev. F | Page 52 of 60
Page 53
Data Sheet AD9222
05967-082
Figure 100. Evaluation Board Layout, Secondary Side (Mirrored Image)
Rev. F | Page 53 of 60
Page 54
AD9222 Data Sheet
Table 17. Evaluation Board Bill of Materials (BOM)1
Qnty. per
Item
Board
1 1 AD9222-65EBZ PCB PCB PCB 2 118 C101, C102, C107,
3 8 C104, C111, C118,
4 8 C510, C512, C533,
5 1 C303 Capacitor 603 4.7 μF, ceramic, X5R,
6 4 C507, C531, C607,
7 8 C502, C515, C521,
Reference Designator Device Pkg. Value Mfg. Mfg. Part Number
C108, C109, C114, C115, C116, C121, C122, C123, C128, C201, C202, C207, C208, C209, C214, C215, C216, C221, C222, C223, C228, C301, C302, C304, C305, C306, C401, C402, C403, C409, C410, C411, C412, C413, C414, C415, C416, C417, C418, C501, C504, C505, C506, C508, C509, C511, C513, C518, C519, C522, C523, C524, C525, C528, C529, C530, C532, C534, C536, C537, C538, C601, C604, C605, C606, C608, C609, C611, C613, C616, C617, C618, C619, C622, C623, C624, C625, C628, C629, C630, C632, C634, C636, C701, C702, C703, C706, C708, C710, C712, C723, C724, C725, C726, C727, C730, C731, C732, C733, C734, C735, C740, C741, C742, C743, C744, C745, C746, C747, C748, C749, C750, C751, C752, C753
C125, C204, C211, C218, C225
C535, C610, C612, C633, C635
C631
C527, C602, C615, C621, C627
Capacitor 402 0.1 μF, ceramic, X5R,
10 V, 10% tol
Capacitor 402 2.2 pF, ceramic, COG,
0.25 pF tol, 50 V
Capacitor 805 10 μF, 6.3 V ±10%
ceramic, X5R
6.3 V, 10% tol
Capacitor 402 1000 pF, ceramic, X7R,
25 V, 10% tol
Capacitor 402 0.018 μF, ceramic, X7R,
16 V, 10% tol
Murata GRM155R71C104KA88D
Murata GRM1555C1H2R20CZ01D
Murata GRM219R60J106KE19D
Murata GRM188R60J475KE19D
Murata GRM155R71H102KA01D
AVX 0402YC183KAT2A
Rev. F | Page 54 of 60
Page 55
Data Sheet AD9222
17 1 F701
Fuse
1210
6.0 V, 2.2 A trip-current
Tyco/Raychem
NANOSMDC110F-2
Qnty. per
Item
Board
8 8 C503, C514, C520,
9 1 C704 Capacitor 1206 10 μF, tantalum,
10 9 C307, C714, C715,
11 16 C540, C541, C544,
12 4 C705, C707, C709,
13 1 CR401 Diode SOT-23 30 V, 20 mA, dual
14 2 CR701, CR702 LED 603 Green, 4 V, 5 m candela Panasonic LNJ314G8TRA 15 1 D702 Diode DO-214AB 3 A, 30 V, SMC Micro
16 1 D701 Diode DO-214AA 5 A, 50 V, SMC Micro
Reference Designator Device Pkg. Value Mfg. Mfg. Part Number
C526, C603, C614, C620, C626
C716, C717, C719, C720, C721, C722
C545, C548, C549, C552, C553, C640, C641, C644, C645, C648, C649, C652, C653
C711
Capacitor 402 22 pF, ceramic, NPO,
5% tol, 50 V
16 V, 20% tol
Capacitor 603 1 μF, ceramic, X5R,
6.3 V, 10% tol
Capacitor 805 0.1 μF, ceramic, X7R,
50 V, 10% tol
Capacitor 603 10 μF, ceramic, X5R,
6.3 V, 20% tol
Schottky
Murata GRM1555C1H220JZ01D
Rohm TCA1C106M8R
Murata GRM188R61C105KA93D
Murata GRM21BR71H104KA01L
Murata GRM188R60J106ME47D
Avago Technologies
Commercial Co.
Commercial Co.
HSMS-2812-TR1G
SK33-TP
S2A-TP
resettable fuse
18 1 FER701 Choke coil 2020 10 μH, 5 A, 50 V, 190 Ω
@ 100 MHz
19 24 FB101, FB102,
FB103, FB104, FB105, FB106, FB107, FB108, FB109, FB110, FB111, FB112, FB201, FB202, FB203, FB204, FB205, FB206, FB207, FB208, FB209, FB210, FB211, FB212
20 4 JP501, JP502,
JP601, JP602
21 6 J301, J302, J303,
J304, J401, J701
23 1 J702 Connector 10-pin 100 mil header, male,
24 8 L701, L702, L703,
L704, L705, L706, L707, L708
25 8 L501, L502, L503,
L504, L601, L602, L603, L604
Ferrite bead 603 10 Ω, test frequency
100 MHz, 25% tol, 500 mA
Connector 2-pin 100 mil header jumper,
2-pin
Connector 3-pin 100 mil header jumper,
3-pin
2 × 5 double row straight
Ferrite bead 1210 10 μH, bead core 3.2 ×
2.5 × 1.6 SMD, 2 A
Inductor 402 120 nH, test freq
100 MHz, 5% tol, 150 mA
Murata DLW5BSN191SQ2L
Murata BLM18BA100SN1D
Samtec TSW-102-07-G-S
Samtec TSW-103-07-G-S
Samtec TSW-105-08-G-D
Murata BLM31PG500SN1L
Murata LQG15HNR12J02D
Rev. F | Page 55 of 60
Page 56
AD9222 Data Sheet
Qnty. per
Item
Board
26 32 L505, L506, L507,
27 1 OSC401 Oscillator SMT Clock oscillator,
28 9 P101, P103, P105,
29 1 P301 Connector HEADER 1469169-1, right angle
30 1 P701 Connector 0.1", PCMT RAPC722, power
31 21 R301, R307, R401,
32 18 R103, R117, R129,
33 8 R102, R115, R128,
34 8 R104, R116, R130,
35 28 R109, R111, R112,
36 16 R108, R110, R121,
Reference Designator Device Pkg. Value Mfg. Mfg. Part Number
L508, L509, L510, L511, L512, L513, L514, L515, L516, L517, L518, L519, L520, L605, L606, L607, L608, L609, L610, L611, L612, L613, L614, L615, L616, L617, L618, L619, L620
P107, P201, P203, P205, P207, P401
R402, R410, R413, R504, R505, R511, R512, R523, R524, R604, R605, R611, R612, R623, R624, R711, R714, R715
R142, R203, R219, R235, R253, R317, R405, R415, R416, R417, R418, R706, R707, R708, R709
R141, R202, R218, R234, R252
R143, R204, R220, R236, R254
R123, R125, R126, R135, R138, R139, R148, R149, R150, R211, R212, R214, R228, R231, R232, R246, R249, R250, R262, R265, R266, R319, R710, R712, R713
R122, R134, R136, R146, R147, R209, R210, R226, R227, R242, R245, R260, R261
Resistor 805 0 Ω, 1/8 W, 5% tol NIC
Components Corp.
Valphey Fisher V FAC3 H-L-50MHz
50.00 MHz, 3.3 V, ±5% duty cycle
Connector SMA Side-mount SMA for
0.063" board thickness
2-pair, 25 mm, header assembly
supply connector
Resistor 402 10 kΩ, 1/16 W,
5% tol
Resistor 402 0 Ω, 1/16 W,
5% tol
Resistor 402 64.9 Ω, 1/16 W,
1% tol
Resistor 603 0 Ω, 1/10 W,
5% tol
Resistor 402 1 kΩ, 1/16 W,
1% tol
Resistor 402 33 Ω, 1/16 W,
5% tol
Johnson Components
Tyco 6469169-1
Switchcraft RAPC722X
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NRC04Z0TRF
142-0701-851
NRC04J103TRF
NRC04Z0TRF
NRC04F64R9TRF
NRC06Z0TRF
NRC04F1001TRF
NRC04J330TRF
Rev. F | Page 56 of 60
Page 57
Data Sheet AD9222
Corp.
Qnty. per
Item
Board
37 8 R161, R162, R163,
38 3 R303, R305, R306 Resistor 402 100 kΩ, 1/16 W,
39 1 R414 Resistor 402 4.12 kΩ, 1/16W,
40 1 R404 Resistor 402 49.9 Ω, 1/16 W,
41 1 R309 Resistor 402 4.99 kΩ, 1/16 W,
42 5 R310, R501, R535,
43 1 R308 Resistor 402 470 kΩ, 1/16 W,
44 4 R502, R536, R602,
Reference Designator Device Pkg. Value Mfg. Mfg. Part Number
R164, R208, R225, R241, R259
R601, R634
R635
Resistor 402 499 Ω, 1/16 W,
1% tol
1% tol
1% tol
0.5% tol
5% tol
Potentiometer 3-lead 10 kΩ, Cermet trimmer
potentiometer, 18 turn top adjust, 10%, 1/2 W
5% tol
Resistor 402 39 kΩ, 1/16 W,
5% tol
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
Susumu RR0510R-49R9-D
NIC Components Corp.
CO PAL ELECTRONICS
NIC Components Corp.
NIC Components
NRC04F4990TRF
NRC04F1003TRF
NRC04F4121TRF
NRC04F4991TRF
CT94EW103
NRC04J474TRF
NRC04J393TRF
45 16 R513, R514, R518,
R519, R525, R526, R530, R531, R613, R614, R618, R619, R625, R626, R630, R631
46 8 R515, R520, R527,
R532, R615, R620, R627, R632
47 8 R503, R507, R508,
R509, R603, R607, R608, R609
48 11 R425,R427, R429,
R431, R433, R435, R436, R439, R441, R443, R445
49 1 R701 Resistor 402 4.7 kΩ, 1/16 W,
50 1 R702 Resistor 402 261 Ω, 1/16 W,
51 1 R716 Resistor 603 261 Ω, 1/16 W,
52 2 R420, R421 Resistor 402 240 Ω, 1/16 W,
53 2 R422, R423 Resistor 402 100 Ω, 1/16 W,
54 1 S701 Switch SMD LIGHT TOUCH,
Resistor 402 187 Ω, 1/16 W,
1% tol
Resistor 402 374 Ω, 1/16 W,
1% tol
Resistor 402 274 Ω, 1/16 W,
1% tol
Resistor 201 0 Ω, 1/20 W,
5% tol
1% tol
1% tol
1% tol
5% tol
1% tol
100GE, 5 mm
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
NIC Components Corp.
Panasonic EVQ-PLDA15
NRC04F1870TRF
NRC04F3740TRF
NRC04F2740TRF
NRC02Z0TRF
NRC04J472TRF
NRC04F2610TRF
NRC06F261OTRF
NRC04J241TRF
NRC04F1000TRF
Rev. F | Page 57 of 60
Page 58
AD9222 Data Sheet
Qnty. per
Item
Board
55 9 T101, T102, T103,
56 2 U704, U707 IC SOT-223 ADP33339AKC-1.8-RL,
57 2 U501, U601 IC CP-64-3 AD8334ACPZ-REEL,
58 1 U706 IC SOT-223 ADP3339AKC-5-RL7 Analog Devices ADP3339AKCZ-5-RL 59 1 U705 IC SOT-223 ADP3339AKC-3.3-RL Analog Devices ADP3339AKCZ-3.3-RL 60 1 U301 IC CP-64-3 AD9222BCPZ-65, octal,
61 1 U302 IC SOT-23 ADR510ARTZ, 1.0 V,
62 1 U401 IC LFCSP
63 1 U702 IC SC70,
64 1 U703 IC SC70,
65 1 U701 IC 8-SOIC Flash prog
1
This BOM is RoHS compliant.
Reference Designator Device Pkg. Value Mfg. Mfg. Part Number
T104, T201, T202, T203, T204, T401
Transformer CD542 ADT1-1WT+,
1:1 impedance ratio transformer
Mini-Circuits ADT1-1WT+
Analog Devices ADP3339AKCZ-1.8-RL
1.5 A, 1.8 V LDO regulator
Analog Devices AD8334ACPZ-REEL ultralow noise precision dual VGA
Analog Devices AD9222BCPZ-65 12-bit, 50 MSPS serial LVDS 1.8 V ADC
Analog Devices ADR510ARTZ precision low noise shunt voltage reference
CP-32-2
MAA06A
MAA06A
AD9515BCPZ, 1.6 GHz clock distribution IC
NC7WZ07P6X_NL, UHS dual buffer
NC7WZ16P6X_NL, UHS dual buffer
Analog Devices AD9515BCPZ
Fairchild NC7WZ07P6X_NL
Fairchild NC7WZ16P6X_NL
Microchip PIC12F629-I/SNG mem 1kx14, RAM size 64 × 8, 20 MHz speed, PIC12F controller series
Rev. F | Page 58 of 60
Page 59
Data Sheet AD9222
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4
0.22 MIN
TOPVIEW
8.75
BSC SQ
9.00
BSC SQ
1
64
16
17
49
48
32
33
0.50
0.40
0.30
0.50
BSC
0.20 REF
12° MAX
0.80 MAX
0.65 TYP
1.00
0.85
0.80
7.50 REF
0.05 MAX
0.02 NOM
0.60 MAX
0.60
MAX
SEATING
PLANE
PIN 1 INDICATOR
7.55
7.50 SQ
7.45
PIN 1
INDICATOR
0.30
0.23
0.18
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
02-23-2010-B
EXPOSEDPAD
(BOTTOM VIEW)
AD9222-65EBZ
Evaluation Board

OUTLINE DIMENSIONS

Figure 101. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
9 mm × 9 mm Body, Very Thin Quad
(CP-64-6)
Dimensions shown in millimeters

ORDERING GUIDE

1, 2
Model
AD9222ABCPZ-40 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6 AD9222ABCPZRL7-40 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6 AD9222ABCPZ-50 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6 AD9222ABCPZRL7-50 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6 AD9222ABCPZ-65 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6 AD9222ABCPZRL7-65 −40°C to +85°C 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6
1
Z = RoHS Compliant Part.
2
The interposer board (HSC-ADC-FIFO5-INTZ) is required to connect to the HSC-ADC-EVALCZ data capture board.
Temperature Range Package Description Package Option
Rev. F | Page 59 of 60
Page 60
AD9222 Data Sheet
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and
NOTES
registered trademarks are the property of their respective owners. D05967-0-12/11(F)
Rev. F | Page 60 of 60
Loading...