Datasheet AD5545 Datasheet (Analog Devices)

Page 1
Current Output, Parallel Input, 16-/14-Bit
Multiplying DACs with 4-Quadrant Resistors

FEATURES

16-bit resolution 14-bit resolution 2- or 4-quadrant multiplying DAC ±1 LSB DNL ±1 LSB INL or ±2 LSB INL Operating supply voltage: 2.7 V to 5.5 V Low noise: 12 nV/√Hz Low power: I
0.5 µs settling time Built-in RFB facilitates current-to-voltage conversion Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,
or ±10 V outputs 2 mA full-scale current ±20%, with V Automotive operating temperature: –40°C to +125°C Compact TSSOP-28 package

APPLICATIONS

Automatic test equipment Instrumentation Digitally controlled calibration Digital waveform generation
= 10 µA
DD
= 10 V
REF
AD5546/AD5556

FUNCTIONAL BLOCK DIAGRAM

R1R
R1R
WR
AD5546/
DD
AD5556
V
LDAC
DB0–DB15
Figure 1. AD5546/AD5556 Simplified Block Diagram

GENERAL DESCRIPTION

The AD5546/AD5556 are precision 16-/14-bit, multiplying, low power, current output, parallel input D/A converters. They operate from a single 2.7 V to 5.5 V supply with ±10 V multi­plying references for 4-quadrant outputs. Built-in 4-quadrant resistors facilitate the resistance matching and temperature tracking that minimize the number of components needed for multiquadrant applications. The feedback resistor (R fies the I-V conversion with an external buffer. The AD5546/ AD5556 are packaged in compact TSSOP-28 packages with operating temperatures from –40°C to +125°C.
COM
2
CONTROL
LOGIC
POR
MSB RS
REF R
OFS
R
OFSRFB
16/14
REGISTER
DAC
DAC
R
FB
I
OUT
GND
03810-0-001
) simpli-
FB
5V
2
VIN
U3
ADR03
TRIM
VOUT
GND
4
5V VDD
16/14 DATA
LDAC
MSB
5 6
AD5546/AD5556
WRWRLDAC
+
U2A
OP2177
C1
–VREF +VREF
RCOMR1
R
1
U1
RSRSMSB
REF
R2
Figure 2. 16-/14-Bit, 4-Quadrant Multiplying DAC with a Minimum of External Components
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
ROF
RFB
ROFS
RFB
C2
16/14-BIT
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
IOUT
GND
U2B
OP2177
+
–VREF TO +VREF
VOUT
03810-0-002
www.analog.com
Page 2
AD5546/AD5556
TABLE OF CONTENTS
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 5
Pin Configurations and Functional Descriptions ........................ 6
Typical Performance Characteristics ............................................. 8
Circuit Operation ...........................................................................11
D/A Converter Section .............................................................. 11
Digital Section............................................................................. 12
ESD Protection Circuits............................................................. 12
Amplifier Selection..................................................................... 12
REVISION HISTORY
Revision 0: Initial Version
Reference Selection .................................................................... 12
Applications..................................................................................... 13
Unipolar Mode ........................................................................... 13
Bipolar Mode .............................................................................. 14
AC Reference Signal Attenuator ............................................... 15
System Calibration ..................................................................... 15
Outline Dimensions....................................................................... 16
Ordering Guide .......................................................................... 16
Rev. 0 | Page 2 of 16
Page 3
AD5546/AD5556

SPECIFICATIONS

Table 1. Electrical Characteristics. VDD = 2.7 V to 5.5 V, I temperature range, unless otherwise noted.
Parameter Symbol Conditions Min Typ Max Unit
STATIC PERFORMANCE
Resolution N
Resolution N
1
AD5546, 1 LSB = V V
= 10 V
REF
AD5556, 1 LSB = V
= 10 V
V
REF
Relative Accuracy INL Grade: AD5556C ±1 LSB
Relative Accuracy INL Grade: AD5546B ±2 LSB
Differential Nonlinearity DNL Monotonic ±1 LSB
Output Leakage Current I
Output Leakage Current I
Full-Scale Gain Error G
Bipolar Mode Gain Error G
Bipolar Mode Zero-Scale
OUT
OUT
FSE
E
G
ZSE
Data = zero scale, TA = 25°C 10 nA Data = zero scale, TA = TA maximum 20 nA Data = full scale ±1 ±4 mV Data = full scale ±1 ±4 mV Data = full scale ±1 ±2.5 mV
Error
Full-Scale Tempco2 TCV
FS
1 ppm/°C
REFERENCE INPUT
V
Range V
REF
REF
–18 +18 V REF Input Resistance REF 4 5 6 kΩ R1 and R2 Resistance R1 and R2 4 5 6 kΩ R1-to-R2 Mismatch ∆(R1 to R2) ±0.5 ±1.5
R
Feedback and Offset Resistance
Input Capacitance
2
, R
FB
OFS
C
REF
5 pF
ANALOG OUTPUT
Output Current I Output Capacitance2 C
OUT
OUT
Data = full scale 2 mA
Code dependent 200 pF
LOGIC INPUT AND OUTPUT
Logic Input Low Voltage V Logic Input Low Voltage V Logic Input High Voltage V Logic Input High Voltage V Input Leakage Current I
IL
IL
IH
IH
IL
VDD = 5 V 0.8 V
VDD = 3 V 0.4 V
VDD = 5 V 2.4 V
VDD = 3 V 2.1 V
10 µA Input Capacitance2 CIL 10 pF
, 3
INTERFACE TIMING
Data to WR Setup Time V Data to WR Hold Time V WR Pulse Width
V LDAC Pulse Width t V RS Pulse Width V WR to LDAC Delay Time V
2
t
t
t
t
t
DS
DH
WR
LDAC
RS
LWD
VDD = 5 V 20 ns
= 3 V 35 ns
DD
VDD = 5 V 0 ns
= 3 V 0 ns
DD
VDD = 5 V 20 ns
= 3 V 35 ns
DD
VDD = 5 V 20 ns
= 3 V 35 ns
DD
VDD = 5 V 20 ns
= 3 V 35 ns
DD
VDD = 5 V 0 ns
= 3 V 0 ns
DD
= virtual GND, GND = 0 V, V
OUT
/216 = 153 µV at
REF
/214 = 610 µV at
REF
= –10 V to 10 V, TA = full operating
REF
16 Bits
14 Bits
8 10 12 kΩ
Rev. 0 | Page 3 of 16
Page 4
AD5546/AD5556
Parameter Symbol Condition Min Typ Max Unit
SUPPLY CHARACTERISTICS
Power Supply Range V Positive Supply Current I Power Dissipation P Power Supply Sensitivity P
AC CHARACTERISTICS
4
Output Voltage Settling
DD RANGE
DD
DISS
SS
t
S
Time Reference Multiplying BW BW V DAC Glitch Impulse Q V Multiplying Feedthrough
V
OUT/VREFVREF
Error Digital Feedthrough Q
D
Total Harmonic Distortion THD V Output Noise Density e
N
1
All static performance tests (except I
tied to the amplifier output. The op amp +IN is grounded and the DAC I
2
These parameters are guaranteed by design and not subject to production testing.
3
All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V), and timed from a voltage level of 1.5 V.
4
All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier.
) are performed in a closed-loop system, using an external precision OP97 I-V converter amplifier. The AD554x RFB terminal is
OUT
2.7 5.5 V Logic inputs = 0 V 10 µA Logic inputs = 0 V 0.055 mW ∆VDD = ±5% 0.003 %/%
To ±0.1% of full scale, data cycles from zero scale to full scale
0.5 µs
to zero scale
= 5 V p-p, data = full scale 4 MHz
REF
= 0 V, midscale to midscale minus 1 7 nV-s
REF
= 100 mV rms, f = 10 kHz –65 dB
WR = 1, LDAC toggles at 1MHz
= 5 V p-p, data = full-scale, f = 1 KHz –85 dB
REF
f = 1 kHz, BW = 1 Hz 12
7 nV-s
nV/rt Hz
is tied to the op amp –IN. Typical values represent average readings measured at 25°C.
OUT
Rev. 0 | Page 4 of 16
Page 5
AD5546/AD5556

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
VDD to GND –0.3 V, +8 V
RFB, R
, R1, R
OFS
Logic Inputs to GND –0.3 V, +8 V
V(I
) to GND –0.3 V, VDD + 0.3 V
OUT
Input Current to Any Pin except Supplies ±50 mA
Thermal Resistance (θJA) 128°C
Maximum Junction Temperature (TJ
Operating Temperature Range –40°C to +125°C
Storage Temperature Range –65°C to +150°C
Lead Temperature:
Vapor Phase, 60 s 215°C Infrared, 15 s 220°C
Package Power Dissipation (T
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
, and REF to GND –18 V, 18 V
COM
) 150°C
MAX
J MAX
– TA)/θ
JA
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. 0 | Page 5 of 16
Page 6
AD5546/AD5556

PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

D5
1
D7 D6
2
D5
3 4
D4 D3
5
D2
6
AD5546
D1
7
TOP VIEW
(Not to Scale)
8
D0
R
9
OFS
R
10
FB
11
R1
R
12
COM
REF
13 14
I
OUT
28
V
DD
D8
27
D9
26 25
D10 D11
24
D12
23
D13
22 21
D14 D15
20
GND
19 18
RS MSB
17
WR
16 15
LDAC
03810-0-003
Figure 3.AD5546 Pin Configuration
1 2
D4 D3
3 4
D2 D1
5
D0
6
AD5556
7
NC
TOP VIEW
(Not to Scale)
NC
8 9
R
OFS
10
R
FB
R1
11 12
R
COM
REF
13 14
I
OUT
NC = NO CONNECT
Figure 4. AD5556 Pin Configuration
Table 3. AD5546 Functional Descriptions
Pin No. Mnemonic Description
1–8 D7 to D0 Digital Input Data Bits D7 to D0. Signal level must be ≤ V 9 R
OFS
Bipolar Offset Resistor. Accepts up to ±18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and
+ 0.3 V.
DD
external reference.
10 R
FB
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion. 11 R1 4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to R 12 R
COM
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the
reference amplifier. In 2-quadrant mode, shorts to REF pin. 13 REF
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external
reference amplifier. 14 I
OUT
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion. 15 LDAC Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V. 16
WR Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level
must be ≤ V
+ 0.3 V.
DD
17 MSB Power-On Reset State. MSB = 0 resets at zero scale, MSB = 1 resets at midscale. Signal level must be ≤ VDD + 0.3 V. 18
RS Reset in Active Low. Resets to zero scale if MSB = 0, and resets to midscale if MSB = 1. Signal level must be
≤ V
+ 0.3 V.
DD
19 GND Analog and Digital Grounds. 20–21 D15 to D14 Digital Input Data Bits D15 to D14. Signal level must be ≤ V
+ 0.3 V.
DD
22–27 D13 to D8 Digital Input Data Bits D13 to D8. Signal level must be ≤ VDD + 0.3 V. 28 V
DD
Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V.
Table 4. AD5556 Functional Descriptions
Pin No. Mnemonic Description
1–6 D5 to D0
Digital Input Data Bits D5 to D0. Signal level must be ≤ V
+0.3 V.
DD
7–8 NC No Connection. User should not connect anything other than dummy pads on these terminals. 9 R
OFS
Bipolar Offset Resistor. Accepts up to ±18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and
external reference. 10 R
FB
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion. 11 R1 4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to R 12 R
COM
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the
reference amplifier. In 2-quadrant mode, shorts to REF pin. 13 REF
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external
reference amplifier. 14 I
OUT
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.
28
V
DD
27
D6 D7
26 25
D8 D9
24
D10
23 22
D11 D12
21 20
D13 GND
19
RS
18 17
MSB WR
16
LDAC
15
03810-0-004
.
OFS
.
OFS
Rev. 0 | Page 6 of 16
Page 7
AD5546/AD5556
Pin No. Mnemonic Description
15 LDAC 16
WR Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level
17 MSB 18
RS Reset in Active Low. Resets to zero-scale if MSB = 0 and resets to midscale if MSB = 1. Signal level must be
19 GND Analog and Digital Grounds. 20–27 D13 to D6 28 V
DD
Table 5. AD5546 Parallel Input Data Format
MSB LSB Bit Position B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Data Word D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Table 6. AD5556 Parallel Input Data Format
MSB LSB Bit Position B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Data Word D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Table 7. Control Inputs
RS WR
LDAC Register Operation
0 X X Reset output to 0, with MSB pin = 0. Midscale with MSB pin = 1. 1 0 0 Load input register with data bits. 1 1 1 Load DAC register with the contents of the input register. 1 0 1 Input and DAC registers are transparent. 1
1 1 0 No register operation.
Digital Input Load DAC Control. Signal level must be ≤ V
must be ≤ V
+ 0.3 V.
DD
+ 0.3 V.
DD
Power On Reset State. MSB = 0 resets at zero-scale, MSB = 1 resets at midscale. Signal level must be ≤ V
VDD + 0.3 V.
Digital Input Data Bits D13 to D6. Signal level must be ≤ V
+ 0.3 V.
DD
Positive power supply input. Specified range of operation: 2.7 V to 5.5 V.
DH
t
LWD
t
LDAC
t
RS
03810-0-005
WR
DATA
LDAC
RS
When LDAC and
t
WR
t
DS
Figure 5. AD5546/AD5556 Timing Diagram
t
WR are tied together and programmed as a pulse, the data bits are loaded into the input register on
the falling edge of the pulse, and then loaded into the DAC register on the rising edge of the pulse.
+ 0.3 V.
DD
Rev. 0 | Page 7 of 16
Page 8
AD5546/AD5556

TYPICAL PERFORMANCE CHARACTERISTICS

1.0
0.8
0.6
0.4
0.2
0
INL (LSB)
–0.2
–0.4
–0.6
–0.8
–1.0
0 8192 16384 24576 32768 40960 49152 57344 65536
CODE (Decimal)
Figure 6. AD5546 Integral Nonlinearity Error
03810-0-006
1.0
0.8
0.6
0.4
0.2
0
DNL (LSB)
–0.2
–0.4
–0.6
–0.8
–1.0
0 0248 4096 6144 8192 10240 12288 14336 16384
CODE (Decimal)
Figure 9. AD5556 Differential Nonlinearity Error
03810-0-009
1.0
0.8
0.6
0.4
0.2
0
DNL (LSB)
–0.2
–0.4
–0.6
–0.8
–1.0
0 8192 16384 24576 32768 40960 49152 57344 65536
CODE (Decimal)
Figure 7. AD5546 Differential Nonlinearity Error
1.0
0.8
0.6
0.4
0.2
0
INL (LSB)
–0.2
–0.4
–0.6
–0.8
–1.0
0 2048 4096 6144 8192 10240 12288 14336 16384
CODE (Decimal)
Figure 8. AD5556 Integral Nonlinearity Error
03810-0-007
03810-0-008
1.5 V
=2.5V
REF
=25°C
T
A
1.0
0.5
INL
0
–0.5
LINEARITY ERROR (LSB)
–1.0
–1.5
24
SUPPLY VOLTAGE VDD (V)
Figure 10. Linearity Error vs. V
5
V
=5V
DD
T
=25° C
A
4
(LSB)
DD
3
2
SUPPLY CURRENT I
1
0
0 0.5 1.0 1.5 2.0 3.0 3.52.5 4.0 4.5 5.0
LOGIC INPUT VOLTAGE VIH (V)
DNL
GE
68
DD
Figure 11. Supply Current vs. Logic Input Voltage
03810-0-010
10
03810-0-011
Rev. 0 | Page 8 of 16
Page 9
AD5546/AD5556
3.0
2.5
LDAC (5V/DIV)
2.0
1.5
0x5555
0x8000
VDD=5V V
=10V
REF
CODES 0x8000 0x7FFF
1.0
SUPPLY CURRENT (mA)
0.5
0
10k 100k 1M 10M 100M
CLOCK FREQUENCY (Hz)
Figure 12. AD5546 Supply Current vs. Clock Frequency
90
80
70
60
50
40
PSSR (–dB)
30
20
10
0
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
Figure 13. Power Supply Rejection Ratio vs. Frequency
0xFFFF 0x0000
03810-0-012
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME (µ s)
V
OUT
03810-0-015
(50mV/DI V)
Figure 15. AD5546 Midscale Transition and Digital Feedthrough
VDD=5V± 10%
=10V
V
REF
0xFFFF
0x8000 0x4000 0x2000 0x1000 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040 0x0020 0x0010 0x0008 0x0004 0x0002 0x0001
REF LEVEL
0.000dB
0x0000
03810-0-013
10 100 1k 100k10k 1M 10M
START 10.000Hz STOP 50 000 000.000Hz
Figure 16. AD5546 Unipolar Reference Multiplying Bandwidth
/DIV
12.000dB
MARKER 4 41 677.200Hz MAG (A/R) –2.939db
–12dB
–24dB
–36dB
–48dB
–60dB –72dB
–84dB –96dB
–108dB
03810-0-016
1
2
CH1 5.00V CH2 2.00V M 200ns A CH1 2.70V
B CH1 –6.20V
400.00ns
Figure 14. Settling Time from Full Scale to Zero Scale
LDAC
V
OUT
03810-0-014
Rev. 0 | Page 9 of 16
REF LEVEL
0.000dB
0
–12
–24
–36
–48
–60
–72
–84
ALL BITS ON D15 AND D14 ON D15 AND D13 ON D15 AND D12 ON D15 AND D11 ON D15 AND D10 ON D15 AND D9 ON D15 AND D8 ON D15 AND D7 ON D15 AND D6 ON D15 AND D5 ON D15 AND D4 ON D15 AND D3 ON D15 AND D2 ON D15 AND D1 ON
/DIV
12.000dB
–96
D15 AND D0 ON
–108
D15 ON
–120
10 100 1k 100k10k 1M 10M
START 10.000Hz STOP 10 000 000.000Hz
Figure 17. AD5546 Bipolar Reference Multiplying Bandwidth
(Codes from Midscale to Full Scale)
03810-0-017
Page 10
AD5546/AD5556
REF LEVEL
0.000dB
0
ALL BITS OFF D14 ON
–12
D14 AND D13 ON D14 AND D12 ON
–24
D14 AND D11 ON D14 AND D10 ON
–36
D14 AND D9 ON D14 AND D8 ON
–48
D14 AND D7 ON D14 AND D6 ON
–60
D14 AND D5 ON D14 AND D4 ON
–72
D14 AND D3 ON D14 AND D2 ON
–84
D14 AND D1 ON
–96
D14 AND D0 ON
–108
D14 ON
–120
10 100 1k 100k10k 1M 10M
START 10.000Hz STOP 10 000 000.000Hz
/DIV
12.000dB
Figure 18. AD5546 Bipolar Reference Multiplying Bandwidth
(Codes from Midscale to Zero Scale)
03810-0-018
Rev. 0 | Page 10 of 16
Page 11
AD5546/AD5556

CIRCUIT OPERATION

D/A CONVERTER SECTION

The AD5546/AD5556 are 16-/14-bit multiplying, current out­put, and parallel input DACs. The devices operate from a single
R
40k
80k
, or
REF
40k
2R
80k
2.7 V to 5.5 V supply, and provide both unipolar 0 V to –V 0 V to +V
, and bipolar ±V
REF
output ranges from a –18 V to
REF
+18 V reference. In addition to the precision conversion RFB commonly found in current output DACs, there are three addi­tional precision resistors for 4-quadrant bipolar applications.
The AD5546/AD5556 consist of two groups of precision R-2R ladders, which make up the 12/10 LSBs, respectively. Further­more, the four MSBs are decoded into 15 segments of resistor value 2R. Figure 19 shows the architecture of the 16-bit AD5546. Each of the 16 segments in the R-2R ladder carries an equally weighted current of one-sixteenth of full scale. The feedback resistor, R
, and 4-quadrant resistor, R
FB
, have values
OFS
of 10 kΩ. Each 4-quadrant resistor, R1 and R2, equals 5 kΩ. In 4-quadrant operation, R1, R2, and an external op amp work together to invert the reference voltage and apply it to the REF input. With R output can swing from –V
and RFB connected as shown in Figure 2, the
OFS
REF
to +V
REF
.
REF
RCOM
R1
5k
5k
R2
R1
2R
80k2R80k2R80k
R
R
40k
40k
2R
2R
80k
80k
R
2R
The reference voltage inputs exhibit a constant input resistance of 5 kΩ ±20%. The DAC output, I
, impedance is code depen-
OUT
dent. External amplifier choice should take into account the variation of the AD5546/AD5556 output impedance. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. To maintain good analog performance, it is recommended to bypass the power supply with a 0.01 µF to 0.1 µF ceramic or chip capacitor in parallel with a 1 µF tantulum capacitor. Also, to minimize gain error, PCB metal traces between V
and RFB should match.
REF
Every code change of the DAC corresponds to a step function; gain peaking at each output step may occur if the op amp has limited GBP and excessive parasitic capacitance present at the op amp inverting node. A compensation capacitor, therefore, may be needed between the I-V op amp inverting and output nodes to smooth the step transition. Such a compensation capacitor should be found empirically, but a 20 pF capacitor is generally adequate for the compensation.
The V
power is used primarily by the internal logic and to
DD
drive the DAC switches. Note that the output precision degrades if the operating voltage falls below the specified voltage. Users should also avoid using switching regulators because device power supply rejection degrades at higher frequencies.
2R
80k
4 MSB 15 SEGMENTS
R
40k
2R
80k
R
40k
80k
2R
R
40k
2R
80k
R
40k
80k
2R
2R
80k
8-BIT R2R
RA
R
R
R
R
2R
2R
2R
2R
80k
2R
80k
4-BIT R2R
RS
RS
10k10k
RS
LDAC
WR
RB
80k
80k
80k
16 8 4
ADDRESS DECODER
LDAC
WR
D15 D14 D0
DAC REGISTER
INPUT REGISTER
Figure 19. 16-Bit AD5546 Equivalent R-2R DAC Circuit with Digital Section
ROFS RFB
IOUT GND
03810-0-019
Rev. 0 | Page 11 of 16
Page 12
AD5546/AD5556
V

DIGITAL SECTION

The AD5546/AD5556 have 16-/14-bit parallel inputs. The devices are double-buffered with 16-/14-bit registers. The double-buffered feature allows the update of several AD5546/ AD5556 simultaneously. For AD5546, the input register is loaded directly from a 16-bit controller bus when the
brought low. The DAC register is updated with data from the input register when LDAC is brought high. Updating the DAC register updates the DAC output with the new data (see Figure 19). To make both registers transparent, tie
LDAC high. The asynchronous
pin resets the part to zero
RS
scale if MSB pin = 0, and midscale if MSB pin = 1.

ESD PROTECTION CIRCUITS

All logic input pins contain back-biased ESD protection Zeners connected to ground (GND) and V a result, the voltage level of the logic input should not be greater than the supply voltage.
DD
DIGITAL INPUTS
5k
Figure 20. Equivalent ESD Protection Circuits
, as shown in Figure 20. As
DD
DGND
03810-0-020
WR
WR
pin is
low and

AMPLIFIER SELECTION

In addition to offset voltage, the bias current is important in op amp selection for precision current output DACs. An input bias current of 30 nA in the op amp contributes to 1 LSB in the AD5546’s full-scale error. Op amps OP1177 and AD8628 are good candidates for the I-V conversion.

REFERENCE SELECTION

The initial accuracy and the rated output of the voltage refer­ence determine the full span adjustment. The initial accuracy is usually a secondary concern in precision, as it can be trimmed. Figure 25 shows an example of a trimming circuit. The zero scale error can also be minimized by standard op amp nulling techniques.
The voltage reference temperature coefficient and long-term drift are primary considerations. For example, a 5 V reference with a TC of 5 ppm/ per degree Celsius. As a result, the reference that operates at
o
C contributes an additional 750 µV full-scale error.
55
Similarly, the same 5 V reference with a ±50 ppm long-term drift means that the output may change by ±250 µV over time. Therefore, it is practical to calibrate a system periodically to maintain its optimum precision.
o
C means that the output changes by 25 µV
Rev. 0 | Page 12 of 16
Page 13
AD5546/AD5556

APPLICATIONS

UNIPOLAR MODE

2-Quadrant Multiplying Mode, V
The AD5546/AD5556 DAC architecture uses a current-steering R-2R ladder design that requires an external reference and op amp to convert the unipolar mode of output voltage to
= –V
V
OUT
V
= –V
OUT
× D/65,536 (AD5546) (1)
REF
× D/16,384 (AD5556) (2)
REF
where D is the decimal equivalent of the input code.
The output voltage polarity is opposite to the V this case (see Figure 21). Table 8 shows the negative output versus code for the AD5546.
Table 8. AD5546 Unipolar Mode Negative Output vs. Code
D in Binary V
OUT
1111 1111 1111 1111 –V 1000 0000 0000 0000 –V 0000 0000 0000 0001 –V 0000 0000 0000 0000 0
+5V
0.1µF
C2
0.1µF
16/14 DATA
C1
1µF
= 0 V to –V
OUT
(V)
(65,535/65,536)
REF
/2
REF
(1/65,536)
REF
2
VIN
U3
ADR03
5
TRIM
VOUT
GND
4
C3
REF
polarity in
REF
RCOMR1
R
1
VDD
U1
AD5546/AD5556
R2
REF
2-Quadrant Multiplying Mode, V
The AD5546/AD5556 are designed to operate with either positive or negative reference voltages. As a result, positive output can be achieved with an additional op amp, (see Figure 22), and the output becomes
V
= +V
OUT
= +V
V
OUT
× D/65,536 (AD5546) (3)
REF
× D/16,384 (AD5556) (4)
REF
Table 9 shows the positive output versus code for the AD5546.
Table 9. AD5546 Unipolar Mode Positive Output vs. Code
D in Binary V
1111 1111 1111 1111 +V 1000 0000 0000 0000 +V 0000 0000 0000 0001 +V
OUT
REF
REF
REF
0000 0000 0000 0000 0
ROFS
ROFS
16/14-BIT
RFB
RFB
GND
IOUT
C6
2.2pF
AD8628
+
V+
U2
V–
0.1µF
= 0 V to +V
OUT
(V)
(65,535/65,536) /2 (1/65,536)
VOUT
–2.5V TO 0V
C4
REF
WRWRLDAC
LDAC
MSB
Figure 21. Unipolar 2-Quadrant Multiplying Mode, V
RSRSMSB
= 0 to –V
OUT
C5
1µF
–5V
03810-0-021
REF
Rev. 0 | Page 13 of 16
Page 14
AD5546/AD5556
+5V
C1
1µF
0.1µF
C2
2
VIN
U3
ADR03
TRIM
VOUT
GND
4
C3
0.1µF
16/14 DATA
5
+2.5V
6
R
1
VDD
AD5546/AD5556
+
AD8628
RCOMAR1A
U1
V+
V–
–5V
U2A
0.1µF
C7
R2
C8
C9
1µF
REFA
–2.5V
ROFSA
ROFS
16/14-BIT
RFBA
RFB
GND
IOUT
C6
AD8628
+
+5V
V+
V–
U2B
C4
1µF
C5
0.1µF
VOUT
0V TO +2.5V
WRWRLDAC
LDAC
MSB
RSRSMSB
Figure 22. Unipolar 2-Quadrant Multiplying Mode, V
+15V
1µF
C2
C1
0.1µF
+5V
C3
0.1µF
2
VIN
U3
ADR01
TRIM
VOUT
GND
4
+
U2A
AD8512
5 6
VDD
RCOMR1
R
1
U1
AD5546/AD5556
16/14 DATA
WRWRLDAC
LDAC
MSB
RSRSMSB
Figure 23. 4-Quadrant Multiplying Mode, V

BIPOLAR MODE

4-Quadrant Multiplying Mode, V
The AD5546/AD5556 contain on-chip all the 4-quadrant resistors necessary for the precision bipolar multiplying operation. Such a feature minimizes the number of exponent components to only a voltage reference, dual op amp, and compensation capacitor (see Figure 23). For example, with a
OUT
= –V
REF
to +V
REF
03810-0-022
= 0 to +V
OUT
REF
REF
+10V–10V
ROF
ROFS
16/14-BIT
OUT
RFB
RFB
= –V
GND
REF
IOUT
to +V
REF
C9
AD8512
+
+15V
V+
U2B
V–
–15V
C4
1µF
C5
0.1µF
C6
0.1µF
C7
1µF
VOUT
–10V TO +10V
03810-0-023
C8
R2
10 V reference, the circuit yields a precision, bipolar –10 V to +10 V output.
V
= (D/32768 − 1) × V
OUT
= (D/16384 − 1) × V
V
OUT
(AD5546) (5)
REF
(AD5556) (6)
REF
Rev. 0 | Page 14 of 16
Page 15
AD5546/AD5556
Table 10 shows some of the results for the 16-bit AD5546.
Table 10. AD5546 Output vs. Code
D in Binary V
1111 1111 1111 1111 +V 1000 0000 0000 0001 +V
OUT
(32,767/32,768)
REF
(1/32,768)
REF
1000 0000 0000 0000 0 0111 1111 1111 1111 –V 0000 0000 0000 0000 –V
(1/32,768)
REF
REF

AC REFERENCE SIGNAL ATTENUATOR

Besides handling digital waveforms decoded from parallel input data, the AD5546/AD5556 handle equally well low frequency
+
U2A
OP2177
C7
RCOMAR1A
VREFA
R2R1
U1
RSRSMSB
Figure 24. Signal Attenuator with AC Reference
+
U4
AD5170
10k
B
R7 1k
+2.5V
VDD
AD5546/AD5556
AD8628
RCOMAR1A
U1
V+ U2A
V–
–5V
+5V
1µF
+10V
–10V
+5V
1µF
C1
0.1µF
VDD
C2
AD5546/AD5556
16/14 DATA
WRWRLDAC
LDAC
MSB
2
VIN
C1
C2
0.1µF
U3
ADR03
TRIM
VOUT
GND
4
R3
470k
5 6
C3
0.1µF
16/14 DATA
0.1µF
R2R1
C8
C9
1µF
C7
ac reference signals for signal attenuation, channel equalization, and waveform generation applications. The maximum signal range can be up to ±18 V (see Figure 24).

SYSTEM CALIBRATION

The initial accuracy of the system can be adjusted by trimming the voltage reference ADR0x with a digital potentiometer (see Figure 25). The AD5170 provides an OTP (one time program­mable), 8-bit adjustment that is ideal and reliable for such cali­bration. ADI’s OTP digital potentiometer comes with program­mable software that simplifies the factory calibration process.
ROFSA
ROFS
VREFA
RFBA
16/14-BIT
–2.5V
ROFSA
RFB
ROFS
16/14-BIT
IOUT
GND
RFBA
RFB
GND
IOUT
+15V
C6
OP2177
+
–15V
V+
U2B
V–
C4
1µF
C5
0.1µF
C8
1µF
C9
0.1µF
C6
+5V
V+
U2B
AD8628
V–
+
C4
1µF
C5
0.1µF
VOUT
03810-0-024
0V TO +2.5V
VOUT
LDAC
MSB
WRWRLDAC
RSRSMSB
Figure 25. Full Span Calibration
Rev. 0 | Page 15 of 16
03810-0-025
Page 16
AD5546/AD5556

OUTLINE DIMENSIONS

9.80
9.70
9.60
28
PIN 1
0.65
0.15
0.05
COPLANARITY
0.10
BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153AE
Figure 26. 28-Lead Thin Shrink Small Outline Package [TSSOP]
1.20 MAX
SEATING
PLANE
15
4.50
4.40
4.30
0.20
0.09
6.40 BSC
8° 0°
0.75
0.60
0.45
141
RU-28
Dimensions shown in millimeters

ORDERING GUIDE

Temperature
Model RES (Bit) DNL (LSB) INL (LSB)
Range (°C)
AD5546BRU 16 ±1 ±2 –40 to +125 50 TSSOP-28 RU-28 AD5546BRU-REEL7 16 ±1 ±2 –40 to +125 1000 TSSOP-28 RU-28 AD5556CRU 14 ±1 ±1 –40 to +125 50 TSSOP-28 RU-28 AD5556CRU-REEL7 14 ±1 ±1 –40 to +125 1000 TSSOP-28 RU-28
Ordering Quantity
Package Description
Package Option
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D03810-0-1/04(0)
Rev. 0 | Page 16 of 16
Loading...