Datasheet AD5533 Datasheet (Analog Devices)

Page 1
32-Channel Infinite
a
FEATURES Infinite Sample-and-Hold Capability to 0.018% Accuracy High Integration: 32-Channel SHA in 12 12 mm Per Channel Acquisition Time of 16 s max Adjustable Voltage Output Range Output Voltage Span 10 V Output Impedance 0.5 Readback Capability DSP-/Microcontroller-Compatible Serial Interface Parallel Interface Temperature Range –40C to +85ⴗC
APPLICATIONS Level Setting Instrumentation Automatic Test Equipment Industrial Control Systems Data Acquisition Low Cost I/O
2
LFBGA
Sample-and-Hold
AD5533*
GENERAL DESCRIPTION
The AD5533 combines a 32-channel voltage translation function with an infinite output hold capability. An analog input voltage on the common input pin, V sentation transferred to a chosen DAC register. V DAC is then updated to reflect the new contents of the DAC register. Channel selection is accomplished via the parallel address inputs A0–A4 or via the serial input port. The output voltage range is determined by the offset voltage at the OFFS_IN pin and the gain of the output amplifier. It is restricted to a range from V
+ 2 V to VDD – 2 V because of the headroom of the
SS
output amplifier.
The device is operated with AV
5.25 V, V
= –4.75 V to –16.5 V and VDD = 8 V to 16.5 V and
SS
requires a stable 3 V reference on REF_IN as well as an offset voltage on OFFS_IN.
PRODUCT HIGHLIGHTS
1. Infinite Droopless Sample-and-Hold Capability.
2. The AD5533 is available in a 74-lead LFBGA package with a
body size of 12 mm × 12 mm.
, is sampled and its digital repre-
IN
= 5 V ± 5%, DVCC = 2.7 V to
CC
OUT
for this
FUNCTIONAL BLOCK DIAGRAM
DV
AV
CC
V
IN
TRACK /RESET
BUSY
GND
DAC
AGND
DGND
SER / PAR
*Protected by U.S. Patent No. 5,969,657; other patents pending.
AD5533
SCLK
ADC
INTERFACE
CONTROL
LOGIC
DIND
REF IN REF OUT
CC
OUT
DAC
DAC
DAC
SYNC/ CS
OFFS IN
ADDRESS INPUT REGISTER
A4– A0
CAL
VDDV
OFFSET SEL
SS
V
0
OUT
V
31
OUT
OFFS OUT
WR
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000
Page 2
(VDD = 8 V to 16.5 V, VSS = –4.75 V to –16.5 V; AVCC = 4.75 V to 5.25 V; DVCC = 2.7 V
AD5533–SPECIFICATIONS
V
+ 2 V to VDD – 2 V. All outputs unloaded. All specifications T
SS
Parameter
1
to 5.25 V; AGND = DGND = DAC_GND = 0 V; REF_IN = 3 V; Output Range from
to T
MIN
A Version
unless otherwise noted.)
MAX
2
Unit Conditions/Comments
ANALOG CHANNEL
V
IN
to V
Nonlinearity ±0.018 % max Input Range 100 mV to 2.96 V
OUT
±0.006 % typ After Gain and Offset Adjustment
Gain 3.46/3.6 min/max 3.52 typ Offset Error ±50 mV max
ANALOG INPUT (V
)
IN
Input Voltage Range 0 to 3 V Nominal Input Range Input Lower Deadband 70 mV max 50 mV typ. Referred to V
See Figure 5
Input Upper Deadband 40 mV max 12 mV typ. Referred to V
See Figure 5
Input Current 1 µA max 100 nA typ. V
One Channel
Input Capacitance
3
20 pF typ
Being Acquired on
IN
ANALOG INPUT (OFFS_IN)
Input Current 1 µA max 100 nA typ
VOLTAGE REFERENCE
REF_IN
Nominal Input Voltage 3.0 V Input Voltage Range
3
2.85/3.15 V min/max
Input Current 1 µA max <1 nA typ
REF_OUT
Output Voltage 3 V typ Output Impedance Reference Temperature Coefficient
ANALOG OUTPUTS (V
Output Temperature Coefficient
3
3
0–31)
OUT
3, 4
280 k typ 60 ppm/°C typ
20 ppm/°C typ
DC Output Impedance 0.5 typ Output Range V Resistive Load Capacitive Load Short-Circuit Current DC Power Supply Rejection Ratio
DC Crosstalk
ANALOG OUTPUT (OFFS_OUT)
Output Temperature Coefficient DC Output Impedance
3, 5
3, 5
3
3
3
3, 4
3
+ 2 /VDD – 2 V min/max 100 µA Output Load
SS
5kΩ min 500 pF max 10 mA typ –70 dB typ VDD = +15 V ± 5% –70 dB typ V
= –15 V ± 5%
SS
250 µV max
20 ppm/°C typ
1.3 k typ
Output Range 50 to REF_IN – 12 mV typ Output Current 10 µA max Source Current Capacitive Load 100 pF max
DIGITAL INPUTS
3
Input Current ±10 µA max 5 µA typ Input Low Voltage 0.8 V max DV
0.4 V max DV
Input High Voltage 2.4 V min DV
2.0 V min DV
= 5 V ± 5%
CC
= 3 V ± 10%
CC
= 5 V ± 5%
CC
= 3 V ± 10%
CC
Input Hysteresis (SCLK and CS Only) 200 mV typ Input Capacitance 10 pF max
DIGITAL OUTPUTS (BUSY, DOUT)
3
Output Low Voltage 0.4 V max DVCC = 5 V. Sinking 200 µA Output High Voltage 4.0 V min DV Output Low Voltage 0.4 V max DV Output High Voltage 2.4 V min DV High Impedance Leakage Current ±1 µA max D High Impedance Output Capacitance 15 pF typ D
= 5 V. Sourcing 200 µA
CC
= 3 V. Sinking 200 µA
CC
= 3 V. Sourcing 200 µA
CC
Only
OUT
Only
OUT
.
IN
.
IN
–2–
REV. 0
Page 3
AD5533
Parameter
1
A Version
2
Unit Conditions/Comments
POWER REQUIREMENTS
Power-Supply Voltages
V
DD
V
SS
AV
CC
DV
CC
Power-Supply Currents
I
DD
I
SS
AI
CC
DI
CC
Power Dissipation
NOTES
1
See Terminology.
2
A Version: Industrial temperature range –40°C to +85°C; typical at +25°C.
3
Guaranteed by design and characterization, not production tested.
4
AD780 as reference for the AD5533.
5
Ensure that you do not exceed TJ (max). See maximum ratings.
6
Outputs unloaded.
Specifications subject to change without notice.
6
6
8/16.5 V min/max –4.75/–16.5 V min/max
4.75/5.25 V min/max
2.7/5.25 V min/max
15 mA max 10 mA typ. All Channels Full Scale 15 mA max 10 mA typ. All Channels Full Scale 33 mA max 26 mA typ
1.5 mA max 1 mA typ 280 mW typ VDD = +10 V, VSS = –5 V
(VDD = 8 V to 16.5 V, VSS = –4.75 V to –16.5 V; AVCC = 4.75 V to 5.25 V; DVCC = 2.7 V to 5.25 V; AGND =
AC CHARACTERISTICS
All specifications T
Parameter A Version
Output Settling Time Acquisition Time 16 µs max OFFS_IN Settling Time Digital Feedthrough Output Noise Spectral Density @ 1 kHz AC Crosstalk
NOTES
1
A version: Industrial temperature range –40°C to +85°C; typical at 25°C.
2
Guaranteed by design and characterization, not production tested
Specifications subject to change without notice.
to T
MIN
2
unless otherwise noted.)
MAX
2
2
2
DGND = DAC_GND = 0 V; REF_IN = 3 V; Output Range from V
1
Unit Conditions/Comments
3 µs max
10 µs max 500 pF, 5 k Load; 0 V–3 V Step
2
0.2 nV-s typ 400 nV/(Hz) typ 5 nV-s typ
+ 2 V to VDD – 2 V. All outputs unloaded.
SS
REV. 0
–3–
Page 4
AD5533
TIMING CHARACTERISTICS
PARALLEL INTERFACE
Parameter
t
1
t
2
t
3
t
4
t
5
t
6
NOTES
1
See Interface Timing Diagram.
2
Guaranteed by design and characterization, not production tested.
Specifications subject to change without notice.
1, 2
Limit at T (A Version) Unit Conditions/Comments
0 ns min CS to WR Setup Time 0 ns min CS to WR Hold Time 50 ns min CS Pulsewidth Low 50 ns min WR Pulsewidth Low 20 ns min A4–A0, CAL, OFFS_SEL to WR Setup Time 0 ns min A4–A0, CAL, OFFS_SEL to WR Hold Time
SERIAL INTERFACE
Parameter
f
CLKIN
t
1
t
2
t
3
t
4
t
5
t
6
t
7
3
t
8
3
t
9
t
10
NOTES
1
See Serial Interface Timing Diagrams.
2
Guaranteed by design and characterization, not production tested.
3
These numbers are measured with the load circuit of Figure 2.
Specifications subject to change without notice.
1, 2
Limit at T (A Version) Unit Conditions/Comments
20 MHz max SCLK Frequency 20 ns min SCLK High Pulsewidth 20 ns min SCLK Low Pulsewidth 10 ns min SYNC Falling Edge to SCLK Falling Edge Setup Time 50 ns min SYNC Low Time 10 ns min DIN Setup Time 5 ns min DIN Hold Time 5 ns min SYNC Falling Edge to SCLK Rising Edge Setup Time 20 ns max SCLK Rising Edge to D 60 ns max SCLK Falling Edge to D 400 ns min 10th SCLK Falling Edge to SYNC Falling Edge for Readback
MIN
MIN
, T
, T
MAX
MAX
Valid
OUT
High Impedance
OUT
PARALLEL INTERFACE TIMING DIAGRAM
CS
WR
A4– A0, CAL,
SEL
OFFS
Figure 1. Parallel Write (SHA Mode Only)
–4–
200␮A
TO
OUTPUT
PIN
C
L
50pF
200␮A
Figure 2. Load Circuit for D
I
OL
1.6V
I
OH
Timing Specifications
OUT
REV. 0
Page 5
SERIAL INTERFACE TIMING DIAGRAMS
12345678910
t
1
t
2
t
3
t
4
t
5
t
6
MSB LSB
SCLK
SYNC
D
IN
Figure 3. 10-Bit Write (SHA Mode and Both Readback Modes)
t
1
SCLK
SYNC
D
OUT
10
t
7
t
10
2
13456789
t
2
t
4
MSB
t
8
AD5533
10
11
12 13 14
t
9
LSB
Figure 4. 14-Bit Read (Both Readback Modes)
REV. 0
–5–
Page 6
AD5533
ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +17 V
V
to AGND . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –17 V
SS
AV
to AGND, DAC_GND . . . . . . . . . . . . . –0.3 V to +7 V
CC
to DGND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
DV
CC
Digital Inputs to DGND . . . . . . . . . . –0.3 V to DV
Digital Outputs to DGND . . . . . . . . . –0.3 V to DV
REF_IN to AGND, DAC_GND . . . . . . . . . . . –0.3 V to +7 V
to AGND, DAC_GND . . . . . . . . . . . . . . . –0.3 V to +7 V
V
IN
V
0–31 to AGND . . . . . . . . . . VSS – 0.3 V to V
OUT
0–31 toVSS . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +24 V
V
OUT
OFFS_IN to AGND . . . . . . . . . . V
OFFS_OUT to AGND . . . . AGND – 0.3 V to AV
1, 2
– 0.3 V to V
SS
+ 0.3 V
CC
+ 0.3 V
CC
+ 0.3 V
DD
+ 0.3 V
DD
+ 0.3 V
CC
AGND to DGND. . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V
Operating Temperature Range
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C
Junction Temperature (T 74-Lead LFBGA Package, θ
max) . . . . . . . . . . . . . . . . . . 150°C
J
Thermal Impedance . . . 41°C/W
JA
Reflow Soldering
Peak Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C
Time at Peak Temperature . . . . . . . . . . . . 10 sec to 40 sec
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2
Transient currents of up to 100 mA will not cause SCR latch-up.
ORDERING GUIDE
Output Output Package Package
Model Function Impedance Voltage Span Description Option
AD5533ABC-1 32-Channel SHA Only 0.5 typ 10 V 74-Lead LFBGA BC-74 AD5532ABC-1* 32 DACs, 32-Channel SHA 0.5 Ω typ 10 V 74-Lead LFBGA BC-74
AD5532ABC-2* 32 DACs, 32-Channel SHA 0.5 Ω typ 20 V 74-Lead LFBGA BC-74 AD5532ABC-3* 32 DACs, 32-Channel SHA 500 typ 10 V 74-Lead LFBGA BC-74 AD5532ABC-5* 32 DACs, 32-Channel SHA 1 kΩ typ 10 V 74-Lead LFBGA BC-74
EVAL-AD5532EB AD5532/AD5533 Evaluation Board
*Separate Data Sheet.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5533 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
–6–
REV. 0
Page 7
PIN CONFIGURATION
1234567891011
AD5533
A
B
C
D
E
F
G
H
J
K
L
1234567891011
A
B
C
D
E
F
G
H
J
K
L
74-Lead LFBGA Ball Configuration
LFBGA Ball LFBGA Ball LFBGA Ball Number Name Number Name Number Name
A1 N/C C10 AVCC1 J10 VO9 A2 A4 C11 REF_OUT J11 VO11 A3 A2 D1 VO20 K1 VO17 A4 A0 D2 DAC_GND2 K2 VO15 A5 CS/SYNC D10 AVCC2 K3 VO27 A6 DVCC D11 OFFS_OUT K4 VSS3 A7 SCLK E1 VO26 K5 VSS1 A8 OFFSET_SEL E2 VO14 K6 VSS4 A9 BUSY E10 AGND1 K7 VDD2 A10 TRACK/RESET E11 OFFS_IN K8 VO2 A11 N/C F1 VO25 K9 VO10 B1 VO16 F2 VO21 K10 VO13 B2 N/C F10 AGND2 K11 VO12 B3 A3 F11 VO6 L1 N/C B4 A1 G1 VO24 L2 VO28 B5 WR G2 VO8 L3 VO29 B6 DGND G10 VO5 L4 VO30 B7 DIN G11 VO3 L5 VDD3 B8 CAL H1 VO23 L6 VDD1 B9 SER/PAR H2 VIN L7 VDD4 B10 DOUT H10 VO4 L8 VO31 B11 REF_IN H11 VO7 L9 VO0 C1 VO18 J1 VO22 L10 VO1 C2 DAC_GND1 J2 VO19 L11 N/C C6 N/C J6 VSS2
REV. 0
–7–
Page 8
AD5533
PIN FUNCTION DESCRIPTIONS
Pin Function
AGND(1–2) Analog GND Pins. AV
(1–2) Analog Supply Pins. Voltage range from 4.75 V to 5.25 V.
CC
V
(1–4) VDD Supply Pins. Voltage range from 8 V to 16.5 V.
DD
V
(1–4) VSS Supply Pins. Voltage range from –4.75 V to –16.5 V.
SS
DGND Digital GND Pins. DV
CC
DAC_GND(1–2) Reference GND Supply for All the DACs. REF_IN Reference Voltage for Channels 0–31. REF_OUT Reference Output Voltage. V
(0–31) Analog Output Voltages from the 32 Channels.
OUT
V
IN
1
A4–A1 CAL
2
, A0
1
CS/SYNC This pin is both the active low Chip Select pin for the parallel interface and the Frame Synchronization pin
1
WR
OFFSET_SEL
2
SCLK
2
D
IN
D
OUT
SER/PAR
1
1
OFFS_IN Offset Input. The user can supply a voltage here to offset the output span. OFFS_OUT can also be tied to
OFFS_OUT Offset Output. This is the acquired/programmed offset voltage which can be tied to the OFFS_IN pin
BUSY This output tells the user when the input voltage is being acquired. It goes low during acquisition and
TRACK/RESET
NOTES
1
Internal pull-down devices on these logic inputs. Therefore, they can be left floating and will default to a logic low condition.
2
Internal pull-up devices on these logic inputs. Therefore, they can be left floating and will default to a logic high condition.
Digital Supply Pins. Voltage range from 2.7 V to 5.25 V.
Analog Input Voltage. Connect this to AGND if operating in DAC mode only. Parallel Interface: 5-Address Pins for 32 Channels. A4 = MSB of Channel Address. A0 = LSB. Parallel Interface: Control input that allows all 32 channels to acquire VIN simultaneously.
for the serial interface. Parallel Interface: Write pin. Active low. This is used in conjunction with the CS pin to address the device
using the parallel interface. Parallel Interface: Offset Select Pin. Active high. This is used to select the offset channel. Serial Clock Input for Serial Interface. This operates at clock speeds up to 20 MHz. Data Input for Serial Interface. Data must be valid on the falling edge of SCLK. Output from the DAC Registers for readback. Data is clocked out on the rising edge of SCLK and is valid
on the falling edge of SCLK. This pin allows the user to select whether the serial or parallel interface will be used. If the pin is tied low,
the parallel interface will be used. If it is tied high, the serial interface will be used.
this pin if the user wants to drive this pin with the Offset Channel.
to offset the span.
returns high when the acquisition operation is complete.
2
If this input is held high, VIN is acquired once the channel is addressed. While it is held low, the input to the gain/offset stage is switched directly to V
. The addressed channel begins to acquire VIN on the rising edge
IN
of TRACK. See TRACK Input section for further information. This input can also be used as a means of resetting the complete device to its power-on-reset conditions. This is achieved by applying a low-going pulse of between 50 ns and 150 ns to this pin. See section on RESET Function for further details.
–8–
REV. 0
Page 9
AD5533
TERMINOLOGY
to V
V
IN
Nonlinearity
OUT
This is a measure of the maximum deviation from a straight line passing through the endpoints of the V
versus V
IN
OUT
transfer
function. It is expressed as a percentage of the full-scale span.
Offset Error
This is a measure of the output error when VIN = 70 mV. Ideally, with V
Offset error is a measure of the difference between V and V
= 70 mV:
IN
V
= (Gain × 70) – ((Gain – 1) × V
OUT
(ideal). It is expressed in mV and can be positive or
OUT
OFFS_IN
) mV
OUT
(actual)
negative. See Figure 5.
Gain Error
This is a measure of the span error of the analog channel. It is the deviation in slope of the transfer function. See Figure 5. It is calculated as:
Gain Error = Actual Full-Scale Output – Ideal Full-Scale Output – Offset Error
where
Ideal Full-Scale Output = Ideal Gain × 2.96 – ((Ideal Gain-1) × V
OFFS_IN
)
Ideal Gain = 3.52
Output Temperature Coefficient
This is a measure of the change in analog output with changes in temperature. It is expressed in ppm/°C.
DC Power-Supply Rejection Ratio
DC Power-Supply Rejection Ratio (PSRR) is a measure of the change in analog output for a change in supply voltage (V
DD
and VSS). It is expressed in dBs. VDD and VSS are varied ±5%.
DC Crosstalk
This the dc change in the output level of one channel in response to a full-scale change in the output of all other channels. It is expressed in µV.
Output Settling Time
This is the time taken from when BUSY goes high to when the output has settled to ±0.018%.
Acquisition Time
This is the time taken for the VIN input to be acquired. It is the length of time that BUSY stays low.
OFFS_IN Settling Time
This is the time taken from a 0 V–3 V step change in input volt­age on OFFS_IN until the output has settled to within ±0.35%.
Digital Feedthrough
This is a measure of the impulse injected into the analog outputs from the digital control inputs when the part is not being written to, i.e., CS/SYNC is high. It is specified in nV-secs and is mea­sured with a worst-case change on the digital input pins, e.g., from all 0s to all 1s and vice versa.
Output Noise Spectral Density
This is a measure of internally generated random noise. Random noise is characterized as a spectral density (voltage per root Hertz). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in nV/(Hz)
1/2
.
AC Crosstalk
This is the area of the glitch that occurs on the output of one channel while another channel is acquiring. It is expressed in nV-secs.
V
OUT
0V
LOWER
DEADBAND
OFFSET
ERROR
IDEAL
TRANSFER
FUNCTION
ACTUAL TRANSFER FUNCTION
70mV
Figure 5. SHA Transfer Function
GAIN ERROR + OFFSET ERROR
2.96
3V
UPPER
DEADBAND
V
IN
REV. 0
–9–
Page 10
AD5533
–Typical Performance Characteristics
0.0024 TA = 25ⴗC
0.0020
0.0016
0.0012
0.0008
0.0004
0.0000
ERROR – V
–0.0004
OUT
–0.0008
V
0.0012
0.0016
0.0020
0.0024
Figure 6. VIN to V
= 3V
V
REFIN
= 0V
V
OFFS_IN
0.1 2.96 – V
V
IN
Accuracy after
OUT
Offset and Gain Adjustment
5V
100
90
V
OUT
10
0%
1V
BUSY
TA = 25ⴗC V
REFIN
= 0 1.5V
V
IN
2␮s
Figure 9. Acquisition Time and Output Settling Time
= 3V
OFFSET ERROR – mV
20
15
10
5
0
–40
GAIN
OFFSET ERROR
04080
TEMPERATURE – C
3.56
3.54
3.52
3.50
3.48
Figure 7. Offset Error and Gain vs. Temperature
70k
60k
50k
40k
30k
FREQUENCY
20k
10k
0
5.2670
200
63791
TA = 25ⴗC V
REFIN
= 1.5V
V
IN
V
OFFS_IN
5.2676 5.2682
V
– V
OUT
= 3V
= 0V
1545
Figure 10. SHA Mode Repeatability (64K Acquisitions)
GAIN
3.535
TA = 25ⴗC V
REFIN
V
IN
3.530
– V
OUT
V
3.525
3.520 6
Figure 8. V Capability
= 3V
= 1V
42 –2 –4 –6
SINK/SOURCE CURRENT – mA
OUT
0
Source and Sink
–10–
REV. 0
Page 11
AD5533
FUNCTIONAL DESCRIPTION
The AD5533 can be thought of as consisting of an ADC and 32 DACs in a single package. The input voltage V
is sampled
IN
and converted into a digital word. The digital result is loaded into one of the DAC registers and is converted (with gain and offset) into an analog output voltage (V
OUT
0–V
31). Since
OUT
the channel output voltage is effectively the output of a DAC there is no droop associated with it. As long as power to the device is maintained, the output voltage will remain constant until this channel is addressed again.
To update a single channel’s output voltage, the required new voltage level is set up on the common input pin, V
. The desired
IN
channel is then addressed via the parallel port or the serial port. When the channel address has been loaded, provided TRACK is high, the circuit begins to acquire the correct code to load to the DAC in order that the DAC output matches the voltage on V
.
IN
The BUSY pin goes low and remains so until the acquisition is complete. The noninverting input to the output buffer is tied to
during the acquisition period to avoid spurious outputs while
V
IN
the DAC acquires the correct code. The acquisition is completed in 16 µs max. The BUSY pin goes high and the updated DAC output assumes control of the output voltage. The output voltage of the DAC is connected to the noninverting input of the output buffer. The held voltage will remain on the output pin indefinitely, without drooping, as long as power to the device is maintained.
On power-on, all the DACs, including the offset channel, are loaded with zeros. The outputs of the DACs are at 50 mV typical (negative full-scale). If the OFFS_IN pin is driven by the on-board offset channel, the outputs V power-on since OFFS_IN = 50 mV (V × V
= 176 mV – 126 mV = 50 mV).
OFFS_IN
OUT
0 to V
31 are also at 50 mV on
OUT
= 3.52 × V
OUT
DAC
– 3.52
Analog Input
The equivalent analog input circuit is shown in Figure 11. The Capacitor C1 is typically 20 pF and can be attributed to pin capacitance and 32 off-channels. When a channel is selected, an extra 7.5 pF (typ) is switched in. This Capacitor C2 is charged to the previously acquired voltage on that particular channel so it must charge/discharge to the new level. It is essential that the external source can charge/discharge this additional capaci­tance within 1 µs–2 µs of channel selection so that V
can be
IN
acquired accurately. For this reason a low impedance source is recommended.
ADDRESSED CHANNEL
V
IN
C1 20pF
C2
7.5pF
Figure 11. Analog Input Circuit
Large source impedances will significantly affect the performance of the ADC. This may necessitate the use of an input buffer amplifier.
Output Buffer Stage—Gain and Offset
The function of the output buffer stage is to translate the 0 V–3 V output of the DAC to a wider range. This is done by gaining up the DAC output by 3.52 and offsetting the voltage by the volt­age on OFFS_IN pin.
V
= 3.52 × V
OUT
V
is the output of the DAC.
DAC
V
is the voltage at the OFFS_IN pin.
OFFS_IN
Table I shows how the output range on V
– 2.52 × V
DAC
OFFS_IN
relates to the offset
OUT
voltage supplied by the user.
Table I. Sample Output Voltage Ranges
V
(V) V
OFFS_IN
(V) V
DAC
OUT
(V)
0.5 0 to 3 –1.26 to +9.3 1 0 to 3 –2.52 to +8.04
is limited only by the headroom of the output amplifiers.
V
OUT
must be within maximum ratings.
V
OUT
Offset Voltage Channel
The offset voltage can be externally supplied by the user at OFFS_IN or it can be supplied by an additional offset voltage channel on the device itself. The required offset voltage is set up
and acquired by the offset DAC. This offset channel’s
on V
IN
DAC output is directly connected to OFFS_OUT. By connect­ing OFFS_OUT to OFFS_IN this offset voltage can be used as the offset voltage for the 32-output amplifiers. It is important to choose the offset so that V
is within maximum ratings.
OUT
REV. 0
CONTROLLER
DAC
V
IN
BUSY
TRACK
ACQUISITION
CIRCUIT
ONLY ONE CHANNEL SHOWN FOR SIMPLICITY
Figure 12. Typical ATE Circuit Using
–11–
OUTPUT
STAGE
AD5533
V
TRACK
1
OUT
Input
PIN
DRIVER
THRESHOLD
VOLTAGE
DEVICE UNDER TEST
Page 12
AD5533
Reset Function
The reset function on the AD5533 can be used to reset all nodes on this device to their power-on-reset condition. This is imple­mented by applying a low-going pulse of between 50 ns and 150 ns to the TRACK/RESET pin on the device. If the applied pulse is less than 50 ns it is assumed to be a glitch and no operation takes place. If the applied pulse is wider than 150 ns this pin adopts its track function on the selected channel, V
is switched to the
IN
output buffer and an acquisition on the channel will not occur until a rising edge of TRACK.
TRACK Function
Normally in SHA mode of operation, TRACK is held high and the channel begins to acquire when it is addressed. However, if TRACK is low when the channel is addressed, V
is switched
IN
to the output buffer and an acquisition on the channel will not occur until a rising edge of TRACK. At this stage the BUSY pin will go low until the acquisition is complete, at which point the DAC assumes control of the voltage to the output buffer and V
is free to change again without affecting this output value.
IN
This is useful in an application where the user wants to ramp up V
until V
IN
reaches a particular level (Figure 12). VIN does
OUT
not need to be acquired continuously while it is ramping up. TRACK can be kept low and only when V
has reached its
OUT
desired voltage is TRACK brought high. At this stage, the acquisition of V
begins.
IN
In the example shown, a desired voltage is required on the out­put of the pin driver. This voltage is represented by one input to a comparator. The microcontroller/microprocessor ramps up the input voltage on V while the voltage on V
through a DAC. TRACK is kept low
IN
ramps up so that VIN is not continu-
IN
ally acquired. When the desired voltage is reached on the output of the pin driver, the comparator output switches. The µC/µP then knows what code is required to be input in order to obtain the desired voltage at the DUT. The TRACK input is now brought high and the part begins to acquire V
. BUSY goes low until V
IN
IN
has been acquired. When BUSY goes high, the output buffer is switched from V
MODES OF OPERATION
to the output of the DAC.
IN
The AD5533 can be used in three different modes. These modes are set by two mode bits, the first two bits in the serial word. The 01 option (DAC Mode) is not available for the AD5533. To avail of this mode refer to the AD5532 data sheet. If you attempt to set up DAC mode, the AD5533 will enter a test-mode and a 24-clock write will be necessary to clear this.
Table II. Modes of Operation
Mode Bit 1 Mode Bit 2 Operating Mode
0 0 SHA Mode 0 1 DAC Mode (Not Available) 1 0 Acquire and Readback 1 1 Readback
1. SHA Mode
In this standard mode a channel is addressed and that channel acquires the voltage on V to address the relevant channel (V
. This mode requires a 10-bit write
IN
OUT
0–V
31, offset channel
OUT
or all channels). MSB is written first.
2. Acquire and Readback Mode
This mode allows the user to acquire VIN and read back the data in a particular DAC register. The relevant channel is addressed (10-bit write, MSB first) and V
is acquired in 16 µs (max).
IN
Following the acquisition, after the next falling edge of SYNC the data in the relevant DAC register is clocked out onto the
line in a 14-bit serial format. During readback DIN is
D
OUT
ignored. The full acquisition time must elapse before the DAC register data can be clocked out.
3. Readback Mode
Again, this is a readback mode but no acquisition is performed. The relevant channel is addressed (10-bit write, MSB first) and on the next falling edge of SYNC, the data in the relevant DAC register is clocked out onto the D
line in a 14-bit serial format.
OUT
The user must allow 400 ns (min) between the last SCLK fall­ing edge in the 10-bit write and the falling edge of SYNC in the 14-bit readback. The serial write and read words can be seen in Figure 13.
This feature allows the user to read back the DAC register code of any of the channels. Readback is useful if the system has been calibrated and the user wants to know what code in the DAC corresponds to a desired voltage on V
INTERFACES SERIAL INTERFACE
OUT
.
The SER/PAR pin is tied high to enable the serial interface and to disable the parallel interface. The serial interface is controlled by four pins as follows:
SYNC, DIN, SCLK
Standard 3-wire interface pins. The SYNC pin is shared with the CS function of the parallel interface.
D
OUT
Data Out pin for reading back the contents of the DAC regis­ters. The data is clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.
Cal Bit
When this is high all 32 channels acquire VIN simultaneously. The acquisition time is then 45 µs (typ) and accuracy may be reduced.
Offset_Sel Bit
If this bit is set high, the offset channel is selected and Bits A4–A0 are ignored.
Test Bit
This must be set low for correct operation of the part.
A4–A0
Used to address any one of the 32 channels (A4 = MSB of address, A0 = LSB).
–12–
REV. 0
Page 13
OFFSET SEL A4 –A0
CAL00
MSB LSB
MODE BIT 1 MODE BIT 2
MODE BITS
0
TEST BIT
a. 10-Bit Input Serial Write Word (SHA Mode)
AD5533
MSB LSB
OFFSET SEL A4–A0CAL01
MODE BITS
10-BIT
SERIAL WORD
WRITTEN TO PART
TEST BIT
b. Input Serial Interface (Acquire and Readback Mode)
MSB LSB
011
OFFSET SEL A4 –A0
MODE BITS
10-BIT
SERIAL WORD
WRITTEN TO PART
TEST BIT
c. Input Serial Interface (Readback Mode)
Figure 13. Serial Interface Formats
DB13–DB0
These are used in both readback modes to read a 14-bit word from the addressed DAC register.
The serial interface is designed to allow easy interfacing to most microcontrollers and DSPs, e.g., PIC16C, PIC17C, QSPI, SPI, DSP56000, TMS320, and ADSP-21xx, without the need for any glue logic. When interfacing to the 8051, the SCLK must be inverted. The Microprocessor/Microcontroller Interface section explains how to interface to some popular DSPs and microcontrollers.
Figures 3 and 4 show the timing diagram for a serial read and write to the AD5533. The serial interface works with both a continuous and a noncontinuous serial clock. The first falling edge of SYNC resets a counter that counts the number of serial clocks to ensure the correct number of bits are shifted in and out of the serial shift registers. Any further edges on SYNC are ignored until the correct number of bits are shifted in or out. Once the correct number of bits have been shifted in or out, the SCLK is ignored. In order for another serial transfer to take place the counter must be reset by the falling edge of SYNC. In readback, the first rising SCLK edge after the falling edge of SYNC causes D data is clocked out onto the D SCLK rising edges. The D
to leave its high impedance state and
OUT
line and also on subsequent
OUT
pin goes back into a high imped-
OUT
ance state on the falling edge of the 14th SCLK. Data on the
line is latched in on the first SCLK falling edge after the
D
IN
MSBLSB
DB13 –DB00
14-BIT DATA
READ FROM PART AFTER
NEXT FALLING EDGE OF SYNC
(DB13 = MSB OF DAC WORD)
MSBLSB
0
DB13 –DB0
14-BIT DATA
READ FROM PART AFTER
NEXT FALLING EDGE OF SYNC
(DB13 = MSB OF DAC WORD)
falling edge of the SYNC signal and on subsequent SCLK falling edges. The serial interface will not shift data in or out until it receives the falling edge of the SYNC signal.
Parallel Interface
The SER/PAR bit must be tied low to enable the parallel inter­face and disable the serial interface. The parallel interface is controlled by nine pins.
CS
Active low package select pin. This pin is shared with the SYNC function for the serial interface.
WR
Active low write pin. The values on the address pins are latched on a rising edge of WR.
A4–A0
Five address pins (A4 = MSB of address, A0 = LSB). These are used to address the relevant channel (out of a possible 32).
Offset_Sel
Offset select pin. This has the same function as the Offset_Sel bit in the serial interface. When it is high, the offset channel is addressed and the address on A4–A0 is ignored.
Cal
Same functionality as the Cal bit in the serial interface. When this pin is high, all 32 channels acquire V
simultaneously.
IN
REV. 0
–13–
Page 14
AD5533
MICROPROCESSOR INTERFACING AD5533 to ADSP-21xx Interface
The ADSP-21xx family of DSPs are easily interfaced to the AD5533 without the need for extra logic.
A data transfer is initiated by writing a word to the TX register after the SPORT has been enabled. In a write sequence data is clocked out on each rising edge of the DSP’s serial clock and clocked into the AD5533 on the falling edge of its SCLK. In readback 16 bits of data are clocked out of the AD5533 on each rising edge of SCLK and clocked into the DSP on the rising edge of SCLK. DIN is ignored. The valid 14 bits of data will be cen­tered in the 16-bit RX register when using this configuration. The SPORT control register should be set up as follows:
TFSW = RFSW = 1, Alternate Framing INVRFS = INVTFS = 1, Active Low Frame Signal DTYPE = 00, Right Justify Data ISCLK = 1, Internal Serial Clock TFSR = RFSR = 1, Frame Every Word IRFS = 0, External Framing Signal ITFS = 1, Internal Framing Signal SLEN = 1001, 10-Bit Data Words (SHA Mode Write) SLEN = 1111, 16-Bit Data Words (Readback Mode)
Figure 14 shows the connection diagram.
AD5533*
*ADDITIONAL PINS OMITTED FOR CLARITY
D
OUT
SYNC
D
SCLK
IN
DR
TFS
RFS
DT
SCLK
ADSP-2101/ ADSP-2103*
Figure 14. AD5533 to ADSP-2101/ADSP-2103 Interface
AD5533 to MC68HC11
The Serial Peripheral Interface (SPI) on the MC68HC11 is configured for Master Mode (MSTR = 1), Clock Polarity Bit (CPOL) = 0 and the Clock Phase Bit (CPHA) = 1. The SPI is configured by writing to the SPI Control Register (SPCR)—see 68HC11 User Manual. SCK of the 68HC11 drives the SCLK of the AD5533, the MOSI output drives the serial data line (D of the AD5533 and the MISO input is driven from D
OUT
IN
. The
)
SYNC signal is derived from a port line (PC7). When data is being transmitted to the AD5533, the SYNC line is taken low (PC7). Data appearing on the MOSI output is valid on the fall­ing edge of SCK. Serial data from the 68HC11 is transmitted in 8-bit bytes with only eight falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. In order to trans­mit 10-data bits in SHA mode it is important to left-justify the
data in the SPDR register. PC7 must be pulled low to start a transfer. It is taken high and pulled low again before any further read/write cycles can take place. A connection diagram is shown in Figure 15.
AD5533*
*ADDITIONAL PINS OMITTED FOR CLARITY
D
OUT
SYNC
SCLK
D
IN
MC68HC11*
MISO
PC7
SCK
MOSI
Figure 15. AD5533 to MC68HC11 Interface
AD5533 to PIC16C6x/7x
The PIC16C6x Synchronous Serial Port (SSP) is configured as an SPI Master with the Clock Polarity bit = 0. This is done by writing to the Synchronous Serial Port Control Register (SSPCON). See user PIC16/17 Microcontroller User Manual. In this example I/O port RA1 is being used to pulse SYNC and enable the serial port of the AD5533. This microcontroller trans­fers only eight bits of data during each serial transfer operation; therefore, two consecutive read/write operations are needed for a 10-bit write and a 14-bit readback. Figure 16 shows the con­nection diagram.
AD5533*
SCLK
D
OUT
D
IN
SYNC
*ADDITIONAL PINS OMITTED FOR CLARITY
PIC16C6x/7x*
SCK/RC3
SDO/RC5
SDI/RC4
RA1
Figure 16. AD5533 to PIC16C6x/7x Interface
AD5533 TO 8051
The AD5533 requires a clock synchronized to the serial data. The 8051 serial interface must therefore be operated in Mode
0. In this mode serial data enters and exits through RxD and a shift clock is output on TxD. Figure 17 shows how the 8051 is connected to the AD5533. Because the AD5533 shifts data out on the rising edge of the shift clock and latches data in on the falling edge, the shift clock must be inverted. The AD5533 requires its data with the MSB first. Since the 8051 outputs the LSB first, the transmit routine must take this into account.
AD5533*
SCLK
D
OUT
D
SYNC
IN
8051*
TxD
RxD
P1.1
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 17. AD5533 to 8051 Interface
–14–
REV. 0
Page 15
AD5533
APPLICATION CIRCUITS AD5533 in a Typical ATE System
The AD5533 Infinite Sample-and-Hold is ideally suited for use in Automatic Test Equipment. Several SHAs are required to control pin drivers, comparators, active loads, and signal timing. Traditionally, sample-and-hold devices with droop were used in this application. These required refreshing to prevent the volt­age from drifting.
The AD5533 has several advantages: no refreshing is required, there is no droop, pedestal error is eliminated, and there is no need for extra filtering to remove glitches. Overall, a higher level of integration is achieved in a smaller area, see Figure 18.
STORED
DATA
AND INHIBIT
PATTERN
PERIOD
GENERATION
AND DELAY TIMING
SHAs
SHA
SHA
SHA
FORMATTER
COMPARE REGISTER
SYSTEM BUS
ACTIVE
LOAD
DRIVER
COMPARATOR
PARAMETRIC
MEASUREMENT
SHA
SHA
UNIT
SYSTEM BUS
DUT
SHA
SHA
Figure 18. AD5533 in an ATE System
Typical Application Circuit
The AD5533 can be used to set up voltage levels on 32 channels as shown in the circuit below. An AD780 provides the 3 V refer­ence for the AD5533, and for the AD5541 16-bit DAC. A simple 3-wire interface is used to write to the AD5541. The DAC out­put is buffered by an AD820. It is essential to minimize noise on
and REFIN when laying out this circuit.
V
IN
POWER SUPPLY DECOUPLING
In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5533 is mounted should be designed so that the analog and digital sections are separated, and confined to certain areas of the board. If the AD5533 is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device. For supplies with multiple pins (V
, VDD, AVCC) it is recommended to tie those pins
SS
together. The AD5533 should have ample supply bypassing of 10 µF in parallel with 0.1 µF on each supply located as close to the package as possible, ideally right up against the device. The 10 µF capacitors are the tantalum bead type. The 0.1 µF capacitor should have low Effective Series Resistance (ESR) and Effective Series Inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching.
The power supply lines of the AD5533 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals such as clocks should be shielded with digital ground to avoid radiat­ing noise to other parts of the board, and should never be run near the reference inputs. A ground line routed between the
and SCLK lines will help reduce crosstalk between them (not
D
IN
required on a multilayer board as there will be a separate ground plane, but separating the lines will help). It is essential to mini­mize noise on V
and REFIN lines.
IN
Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a double­sided board. In this technique, the component side of the board is dedicated to ground plane while signal traces are placed on the solder side.
CS
DIN
SCLK
REV. 0
AV
CC
REF
V
AD820
OUT
AD5541*
AD780*
*ADDITIONAL PINS OMITTED FOR CLARITY
V
DD
AV
V
IN
OFFS_IN
OFFS_OUT
REFIN
SCLK DIN
Figure 19. Typical Application Circuit
DV
CC
CC
AD5533*
V
SS
SYNC
V
0–31
OUT
–15–
Page 16
AD5533
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
74-Lead LFBGA
(BC-74)
0.472 (12.00) BSC
A1
0.067
(1.70)
MAX
CONTROLLING DIMENSIONS ARE IN MILLIMETERS
TOP VIEW
0.472
(12.00)
BSC
DETAIL A
0.039
(1.00)
BSC
0.010
(0.25)
0.394 (10.00) BSC
11 10 9 8 7 6 5 4 3 2 1
BOTTOM
0.039 (1.00) BSC
DETAIL A
MIN
0.024 (0.60) BSC
BALL DIAMETER
VIEW
SEATING PLANE
A B C D E F G H J K L
0.033 (0.85)
MIN
0.394
(10.00)
BSC
C3745–2.5–4/00 (rev. 0) 00940
–16–
PRINTED IN U.S.A.
REV. 0
Loading...