2.5 V to 5.5 V, 400 A, Quad Voltage Output
8-/10-/12-Bit DACs in 16-Lead TSSOP
FEATURES
AD5307: 4 Buffered 8-Bit DACs in 16-Lead TSSOP
A Version: ⴞ1 LSB INL, B Version: ⴞ0.625 LSB INL
AD5317: 4 Buffered 10-Bit DACs in 16-Lead TSSOP
A Version: ⴞ4 LSB INL, B Version: ⴞ2.5 LSB INL
AD5327: 4 Buffered 12-Bit DACs in 16-Lead TSSOP
A Version: ⴞ16 LSB INL, B Version: ⴞ10 LSB INL
Low Power Operation: 400 A @ 3 V, 500 A @ 5 V
2.5 V to 5.5 V Power Supply
Guaranteed Monotonic by Design over All Codes
Power-Down to 90 nA @ 3 V, 300 nA @ 5 V (PD Pin)
Double-Buffered Input Logic
Buffered/Unbuffered Reference Input Options
Output Range: 0 V to V
or 0 V to 2 V
REF
REF
Power-On Reset to 0 V
Simultaneous Update of Outputs (LDAC Pin)
Asynchronous Clear Facility (CLR Pin)
Low Power, SPI
®
, QSPI™, MICROWIRE™, and DSP
Compatible 3-Wire Serial Interface
SDO Daisy-Chaining Option
On-Chip Rail-to-Rail Output Buffer Amplifiers
Temperature Range –40ⴗC to +105ⴗC
APPLICATIONS
Portable Battery-Powered Instruments
Digital Gain and Offset Adjustment
Programmable Voltage and Current Sources
AD5307/AD5317/AD5327
*
Programmable Attenuators
Industrial Process Control
GENERAL DESCRIPTION
The AD5307/AD5317/AD5327 are quad 8-, 10-, and 12-bit
buffered voltage-output DACs in a 16-lead TSSOP package that
operate from a single 2.5 V to 5.5 V supply, consuming 400 mA
at 3 V. Their on-chip output amplifiers allow the outputs to
swing rail-to-rail with a slew rate of 0.7 V/ms. The AD5307/
AD5317/AD5327 utilize a versatile 3-wire serial interface that
operates at clock rates up to 30 MHz and is compatible with
standard SPI, QSPI, MICROWIRE, and DSP interface standards.
The references for the four DACs are derived from two reference pins (one per DAC pair). These reference inputs can be
configured as buffered or unbuffered inputs. The parts incorporate a power-on reset circuit, which ensures that the DAC outputs
power up to 0 V and remain there until a valid write to the device
takes place. There is also an asynchronous active low CLR pin
that clears all DACs to 0 V. The outputs of all DACs may be
updated simultaneously using the asynchronous LDAC input.
The parts contain a power-down feature that reduces the current consumption of the devices to 300 nA @ 5 V (90 nA @
3 V). The parts may also be used in daisy-chaining applications
using the SDO pin.
All three parts are offered in the same pinout, which allows users
to select the amount of resolution appropriate for their application without redesigning their circuit board.
FUNCTIONAL BLOCK DIAGRAM
AD5307/AD5317/AD5327
LDAC
INPUT
REGISTER
SCLK
SYNC
DIN
SDO
*Protected by U.S. Patent No. 5,969,657; other patents pending.
INTERFACE
LOGIC
DCEN
LDACPD
CLR
INPUT
REGISTER
INPUT
REGISTER
INPUT
REGISTER
POWER-ON
RESET
REV. A
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
0.0010.001VThis is a measure of the minimum
VDD – 0.001VDD – 0.001Vand maximum drive capability of the
output amplifier.
DC Output Impedance0.50.5W
Short Circuit Current2525mAV
1616mAV
DD
DD
= 5 V
= 3 V
Power-Up Time2.52.5msComing out of Power-Down Mode.
= 5 V
V
DD
55msComing out of Power-Down Mode.
VDD = 3 V
REV. A–2–
Page 3
AD5307/AD5317/AD5327
Parameter
1
LOGIC INPUTS
A Version
2
B Version
MinTypMaxMinTypMaxUnitConditions/Comments
6
2
Input Current± 1± 1mA
, Input Low Voltage0.80.8VVDD = 5 V ± 10%
V
IL
, Input High Voltage
V
IH
(Excluding DCEN)1.71.7VV
0.60.6VV
0.50.5VV
= 3 V ± 10%
DD
= 2.5 V
DD
= 2.5 V to 5.5 V; TTL and 1.8 V
DD
CMOS Compatible
, Input High Voltage
V
IH
(DCEN)2.42.4VV
2.12.1VV
2.02.0VV
= 5 V ± 10%
DD
= 3 V ± 10%
DD
= 2.5 V
DD
Pin Capacitance33pF
LOGIC OUTPUT (SDO)
6
VDD = 4.5 V to 5.5 V
Output Low Voltage, V
Output High Voltage, V
V
= 2.5 V to 3.6 V
DD
Output Low Voltage, V
Output High Voltage, V
OL
OL
OH
OH
0.40.4VI
VDD – 1VDD – 1VI
0.40.4VI
VDD – 0.5VDD – 0.5VI
= 2 mA
SINK
SOURCE
= 2 mA
SINK
SOURCE
= 2 mA
= 2 mA
Floating State Leakage Current± 1± 1mADCEN = GND
Floating State Output
Capacitance33pFDCEN = GND
POWER REQUIREMENTS
V
DD
(Normal Mode)
I
DD
V
= 4.5 V to 5.5 V500900500900mAAll DACs in Unbuffered Mode.
DD
8
2.55.52.55.5V
VIH = VDD and VIL = GND
In Buffered Mode, extra current is
typically x mA per DAC
= 2.5 V to 3.6 V400750400750mAwhere x = 5 mA + V
V
DD
(Power-Down Mode)VIH = VDD and VIL = GND
I
DD
= 4.5 V to 5.5 V0.310.31mA
V
DD
VDD = 2.5 V to 3.6 V0.0910.091mA
NOTES
1
See the Terminology section.
2
Temperature range (A, B Versions): –40∞C to +105∞C; typical at +25∞C.
3
DC specifications tested with the outputs unloaded, unless stated otherwise.
4
Linearity is tested using a reduced code range: AD5307 (Code 8 to 255); AD5317 (Code 28 to 1023); AD5327 (Code 115 to 4095).
5
This corresponds to x codes. x = Deadband Voltage/LSB size.
6
Guaranteed by design and characterization; not production tested.
7
For the amplifier output to reach its minimum voltage, offset error must be negative; for the amplifier output to reach its maximum voltage, V
plus gain error must be positive.
8
Interface inactive. All DACs active. DAC outputs unloa-ded.
Specifications subject to change without notice.
REF/RDAC
REF
.
= VDD and offset
REV. A
–3–
Page 4
AD5307/AD5317/AD5327
(VDD = 2.5 V to 5.5 V; RL = 2 k⍀ to GND; CL = 200 pF to GND; all specifications T
AC CHARACTERISTICS
Parameter
2
1
otherwise noted.)
A, B Versions
3
MinTypMaxUnitConditions/Comments
Output Voltage Settling TimeV
= VDD = 5 V
REF
MIN
to T
, unless
MAX
AD530768ms1/4 Scale to 3/4 Scale Change (0x40 to 0xC0)
AD531779ms1/4 Scale to 3/4 Scale Change (0x100 to 0x300)
AD5327810ms1/4 Scale to 3/4 Scale Change (0x400 to 0xC00)
Slew Rate0.7V/ms
Major-Code Change Glitch Energy12nV-s1 LSB Change around Major Carry
Digital Feedthrough0.5nV-s
SDO Feedthrough4nV-sDaisy-Chain Mode; SDO Load is 10 pF
Digital Crosstalk0.5nV-s
Analog Crosstalk1nV-s
DAC-to-DAC Crosstalk3nV-s
Multiplying Bandwidth200kHzV
Total Harmonic Distortion–70dBV
NOTES
1
Guaranteed by design and characterization; not production tested.
2
See the Terminology section.
3
Temperature range (A, B Versions): –40∞C to +105∞C; typical at +25∞C.
Specifications subject to change without notice.
1, 2, 3
TIMING CHARACTERISTICS
(VDD = 2.5 V to 5.5 V; all specifications T
= 2 V ± 0.1 V p-p. Unbuffered Mode
REF
= 2.5 V ± 0.1 V p-p. Frequency = 10 kHz
REF
to T
MIN
, unless otherwise noted.)
MAX
A, B Versions
ParameterLimit at T
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
t
11
t
12
4, 5
t
13
5
t
14
5
t
15
5
t
16
NOTES
1
Guaranteed by design and characterization; not production tested.
2
All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.
3
See Figures 2 and 3.
4
This is measured with the load circuit of Figure 1. t13 determines maximum SCLK frequency in Daisy-Chain mode.
5
Daisy-chain mode only.
Specifications subject to change without notice.
33ns minSCLK Cycle Time
13ns minSCLK High Time
13ns minSCLK Low Time
13ns minSYNC to SCLK Falling Edge Setup Time
5ns minData Setup Time
4.5ns minData Hold Time
0ns minSCLK Falling Edge to SYNC Rising Edge
50ns minMinimum SYNC High Time
20ns minLDAC Pulsewidth
20ns minSCLK Falling Edge to LDAC Rising Edge
20ns minCLR Pulsewidth
0ns minSCLK Falling Edge to LDAC Falling Edge
20ns maxSCLK Rising Edge to SDO Valid (VDD = 3.6 V to 5.5 V)
25ns maxSCLK Rising Edge to SDO Valid (V
5ns minSCLK Falling Edge to SYNC Rising Edge
8ns minSYNC Rising Edge to SCLK Rising Edge
0ns minSYNC Rising Edge to LDAC Falling Edge
MIN
, T
MAX
UnitConditions/Comments
= 2.5 V to 3.5 V)
DD
REV. A–4–
Page 5
2mA
AD5307/AD5317/AD5327
I
OL
Figure 1. Load Circuit for Digital Output (SDO) Timing Specifications
SCLK
t
t
8
SYNC
DIN
1
LDAC
2
LDAC
CLR
NOTES
ASYNCHRONOUS LDAC UPDATE MODE.
1
SYNCHRONOUS LDAC UPDATE MODE.
2
DB15
TO OUTPUT
PIN
C
L
50pF
I
2mA
OH
t
1
t
2
DB0
t
7
t
9
t
12
t
4
t
5
3
t
6
Figure 2. Serial Interface Timing Diagram
V
OH (MIN)
t
10
t
11
REV. A
SCLK
SYNC
LDAC
DIN
SDO
t
1
t
t
t
t
4
8
t
5
DB15
INPUT WORD FOR DAC NINPUT WORD FOR DAC (N+1)
3
t
6
UNDEFINEDINPUT WORD FOR DAC N
2
DB0 DB15'DB0'
t
13
DB15
t
14
DB0
t
15
t
16
t
9
Figure 3. Daisy-Chaining Timing Diagram
–5–
Page 6
AD5307/AD5317/AD5327
ABSOLUTE MAXIMUM RATINGS
(TA = 25∞C, unless otherwise noted.)
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
Digital Input Voltage to GND . . . . . . . –0.3 V to V
Digital Output Voltage to GND . . . . . –0.3 V to V
Reference Input Voltage to GND . . . . –0.3 V to V
V
OUT
A–V
D to GND . . . . . . . . . . . –0.3 V to VDD + 0.3 V
OUT
Operating Temperature Range
Industrial (A, B Versions) . . . . . . . . . . . . –40∞C to +105∞C
Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C
Time at Peak Temperature . . . . . . . . . . . . . 10 sec to 40 sec
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Transient currents of up to 100 mA will not cause SCR latch-up.
AD5307ARU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5307ARU-REEL 7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5307BRU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5307BRU-REEL–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5307BRU-REEL7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5317ARU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5317ARU-REEL7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5317BRU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5317BRU-REEL–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5317BRU-REEL7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5327ARU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5327ARU-REEL7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5327BRU–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5327BRU-REEL–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
AD5327BRU-REEL7–40∞C to +105∞CThin Shrink Small Outline Package (TSSOP)RU-16
JA
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although the
AD5307/AD5317/AD5327 feature proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions
are recommended to avoid performance degradation or loss of functionality.
REV. A–6–
Page 7
PIN CONFIGURATION
AD5307/AD5317/AD5327
V
V
LDAC
V
OUT
V
OUT
V
OUT
REF
REF
CLR
V
AB
CD
DD
1
2
3
4
A
5
B
(Not to Scale)
6
C
7
8
AD5307/
AD5317/
AD5327
TOP VIEW
16
SDO
15
SYNC
14
SCLK
13
DIN
12
GND
11
V
D
OUT
10
PD
DCEN
9
PIN FUNCTION DESCRIPTIONS
Pin No.MnemonicFunction
1CLRActive Low Control Input that Loads All Zeros to All Input and DAC Registers. Therefore, the outputs
also go to 0 V.
2LDACActive Low Control Input that Transfers the Contents of the Input Registers to their Respective DAC
Registers. Pulsing this pin low allows any or all DAC registers to be updated if the input registers have
new data. This allows simultaneous update of all DAC outputs. Alternatively, this pin can be tied
permanently low.
3V
DD
Power Supply Input. These parts can be operated from 2.5 V to 5.5 V, and the supply should be decoupled
with a 10 mF capacitor in parallel with a 0.1 mF capacitor to GND.
4V
5V
6V
7V
ABuffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
OUT
BBuffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
OUT
CBuffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.
OUT
ABReference Input Pin for DACs A and B. It may be configured as a buffered or an unbuffered input to each or
REF
both of the DACs, depending on the state of the BUF bits in the serial input words to DACs A and B. It
in unbuffered mode and from 1 V to VDD in buffered mode.
DD
8V
CDReference Input Pin for DACs C and D. It may be configured as a buffered or an unbuffered input to each or
REF
has an input range from 0.25 V to V
both of the DACs, depending on the state of the BUF bits in the serial input words to DACs C and D. It
has an input range from 0.25 V to V
in unbuffered mode and from 1 V to VDD in buffered mode.
DD
9DCENThis pin is used to enable the daisy-chaining option. This should be tied high if the part is being used in a
daisy chain. The pin should be tied low if it is being used in standalone mode.
10PDActive low control input that acts as a hardware power-down option. All DACs go into power-down
mode when this pin is tied low. The DAC outputs go into a high impedance state and the current consumption of the part drops to 300 nA @ 5 V (90 nA @ 3 V).
11V
DBuffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
OUT
12GNDGround Reference Point for All Circuitry on the Part.
13DINSerial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling
edge of the serial clock input. The DIN input buffer is powered down after each write cycle.
14SCLKSerial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock
input. Data can be transferred at rates up to 30 MHz. The SCLK input buffer is powered down after
each write cycle.
15SYNCActive Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes
low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in
on the falling edges of the following 16 clocks. If SYNC is taken high before the 16th falling edge, the
rising edge of SYNC acts as an interrupt and the write sequence is ignored by the device.
16SDOSerial Data Output. Can be used for daisy-chaining a number of these devices together or for reading
back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge
of SCLK and is valid on the falling edge of the clock.
REV. A
–7–
Page 8
AD5307/AD5317/AD5327
TERMINOLOGY
Relative Accuracy
For the DAC, relative accuracy or integral nonlinearity (INL) is
a measure of the maximum deviation, in LSB, from a straight
line passing through the endpoints of the DAC transfer function.
Typical INL versus code plots can be seen in TPCs 1, 2, and 3.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ± 1 LSB
maximum ensures monotonicity. This DAC is guaranteed
monotonic by design. Typical DNL versus code plots can be
seen in TPCs 4, 5, and 6.
Offset Error
This is a measure of the offset error of the DAC and the output
amplifier. (See Figures 4 and 5.) It can be negative or positive.
It is expressed in mV.
Gain Error
This is a measure of the span error of the DAC. It is the deviation in slope of the actual DAC transfer characteristic from the
ideal expressed as a percentage of the full-scale range.
Offset Error Drift
This is a measure of the change in offset error with changes in
temperature. It is expressed in (ppm of full-scale range)/∞C.
Gain Error Drift
This is a measure of the change in gain error with changes in
temperature. It is expressed in (ppm of full-scale range)/∞C.
DC Power Supply Rejection Ratio (PSRR)
This indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in V
OUT
to a change in VDD for full-scale output of the DAC. It is measured in dB. V
DC Crosstalk
is held at 2 V and VDD is varied ± 10%.
REF
This is the dc change in the output level of one DAC in response
to a change in the output of another DAC. It is measured with a
full-scale output change on one DAC while monitoring another
DAC. It is expressed in mV.
Reference Feedthrough
This is the ratio of the amplitude of the signal at the DAC output
to the reference input when the DAC output is not being updated
(i.e., LDAC is high). It is expressed in dB.
Channel-to-Channel Isolation
This is the ratio of the amplitude of the signal at the output of
one DAC to a sine wave on the reference input of another DAC.
It is measured in dB.
Major-Code Transition Glitch Energy
Major-code transition glitch energy is the energy of the impulse
injected into the analog output when the code in the DAC
register changes state. It is normally specified as the area of the
glitch in nV-s and is measured when the digital code is changed
by 1 LSB at the major carry transition (011 . . . 11 to 100 . . .
00 or 100 . . . 00 to 011 . . . 11).
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into the
analog output of a DAC from the digital input pins of the device,
but is measured when the DAC is not being written to the (SYNC
held high). It is specified in nV-s and is measured with a fullscale change on the digital input pins, i.e., from all 0s to all 1s
or vice versa.
Digital Crosstalk
This is the glitch impulse transferred to the output of one DAC
at midscale in response to a full-scale code change (all 0s to all
1s and vice versa) in the input register of another DAC. It is
measured in standalone mode and is expressed in nV-s.
Analog Crosstalk
This is the glitch impulse transferred to the output of one DAC
due to a change in the output of another DAC. It is measured
by loading one of the input registers with a full-scale code change
(all 0s to all 1s and vice versa) while keeping LDAC high. Then
pulse LDAC low and monitor the output of the DAC whose
digital code was not changed. The area of the glitch is expressed
in nV-s.
DAC-to-DAC Crosstalk
This is the glitch impulse transferred to the output of one DAC
due to a digital code change and subsequent output change of
another DAC. This includes both digital and analog crosstalk. It
is measured by loading one of the DACs with a full-scale code
change (all 0s to all 1s and vice versa) with LDAC low and
monitoring the output of another DAC. The energy of the glitch
is expressed in nV-s.
Multiplying Bandwidth
The amplifiers within the DAC have a finite bandwidth. The
multiplying bandwidth is a measure of this. A sine wave on the
reference (with full-scale code loaded to the DAC) appears on
the output. The multiplying bandwidth is the frequency at which
the output amplitude falls to 3 dB below the input.
Total Harmonic Distortion
This is the difference between an ideal sine wave and its attenuated
version using the DAC. The sine wave is used as the reference
for the DAC, and the THD is a measure of the harmonics present
on the DAC output. It is measured in dB.
REV. A–8–
Page 9
OUTPUT
VOLTAGE
NEGATIVE
OFFSET
ERROR
AMPLIFIER
FOOTROOM
NEGATIVE
OFFSET
ERROR
LOWER
DEADBAND
CODES
DAC CODE
GAIN ERROR
OFFSET ERROR
ACTUAL
IDEAL
AD5307/AD5317/AD5327
GAIN ERROR
+
+
OUTPUT
VOLTAGE
POSITIVE
OFFSET
ERROR
DAC CODE
Figure 5. Transfer Function with Positive Offset
(V
TPC 8. AD5307 INL Error and
DNL Error vs. Temperature
–1.0
10000
2000
CODE
30004000
TPC 6. AD5327 Typical DNL Plot
TPC 9. AD5307 Offset Error and
Gain Error vs. Temperature
REV. A–10–
Page 11
AD5307/AD5317/AD5327
0.2
TA = 25ⴗC
0.1
–0.1
–0.2
–0.3
ERROR (% FSR)
–0.4
–0.5
–0.6
= 2V
V
REF
0
013
GAIN ERROR
OFFSET ERROR
25
VDD (V)
46
TPC 10. Offset Error and Gain
Error vs. V
600
500
400
300
(A)
DD
I
200
DD
–40ⴗC
+25ⴗC
+105ⴗC
5
5V SOURCE
3V SOURCE
3
(V)
OUT
V
2
1
0
013446
SINK/SOURCE CURRENT (mA)
TPC 11. V
5V SINK
25
Source and Sink
OUT
3V SINK
Current Capability
0.5
0.4
0.3
(A)
DD
I
0.2
–40ⴗC
+25ⴗC
600
500
400
300
(A)
DD
I
200
100
0
ZERO SCALE
CODE
TPC 12. Supply Current vs.
DAC Code
800
DECREASING
700
INCREASING
600
(A)
DD
I
500
VDD = 5V
TA = 25ⴗC
= 5V
V
DD
= 2V
V
REF
FULL SCALE
TA = 25ⴗC
100
0
3.03.54.04.55.05.5
2.5
VDD (V)
TPC 13. Supply Current vs.
Supply Voltage
T
= 25ⴗC
A
5µs
= 5V
V
DD
= 5V
V
REF
CH1
V
A
OUT
SCLK
CH2
CH1 1V, CH2 5V, TIME BASE= 1s/DIV
TPC 16. Half-Scale Settling (1/4 to
3/4 Scale Code Change)
0.1
0
2.53.0
4.0
VDD (V)
+105ⴗC
4.55.53.55.0
TPC 14. Power-Down Current vs.
Supply Voltage
TA = 25ⴗC
= 5V
V
DD
= 2V
V
REF
CH1
V
DD
V
CH2
CH1 2.00V, CH2 200mV, TIME BASE = 200s/DIV
OUT
A
TPC 17. Power-On Reset to 0 V
400
300
01
INCREASING
DECREASING
VDD = 3V
23 4
V
(V)
LOGIC
TPC 15. Supply Current vs. Logic
Input Voltage for SCLK and DIN
Increasing and Decreasing
TA = 25ⴗC
= 5V
V
DD
= 2V
V
REF
CH1
V
A
OUT
CH2
PD
CH1 500mV, CH2 5.00V, TIME BASE = 1s/DIV
TPC 18. Exiting Power-Down to
Midscale
5
REV. A
–11–
Page 12
AD5307/AD5317/AD5327
V
= 3V
DD
V
FREQUENCY
350400500550450600
IDD (A)
TPC 19. IDD Histogram with
V
= 3 V and VDD = 5 V
DD
0.02
VDD = 5V
= 25ⴗC
T
A
0.01
0
DD
= 5V
2.50
2.49
(V)
OUT
V
2.48
2.47
1s/DIV
TPC 20. AD5327 Major-Code
Transition Glitch Energy
1mV/DIV
10
0
–10
–20
dB
–30
–40
–50
–60
10
1001k10k 100k1M10M
FREQUENCY (Hz)
TPC 21. Multiplying Bandwidth
(Small-Signal Frequency Response)
–0.01
FULL-SCALE ERROR (V)
–0.02
013
25
V
46
(V)
REF
TPC 22. Full-Scale Error vs. V
REF
150ns/DIV
TPC 23. DAC-to-DAC Crosstalk
REV. A–12–
Page 13
AD5307/AD5317/AD5327
TO OUTPUT
AMPLIFIER
R
R
R
R
R
FUNCTIONAL DESCRIPTION
The AD5307/AD5317/AD5327 are quad resistor-string DACs
fabricated on a CMOS process with resolutions of 8, 10, and
12 bits respectively. Each contains four output buffer amplifiers
and is written to via a 3-wire serial interface. They operate from
impedance it presents to the voltage source driving it. However, if the unbuffered mode is used, the user can have a
reference voltage as low as 0.25 V and as high as V
DD
since
there is no restriction due to headroom and footroom of the
reference amplifier.
single supplies of 2.5 V to 5.5 V, and the output buffer amplifiers
provide rail-to-rail output swing with a slew rate of 0.7 V/ms.
DACs A and B share a common reference input, V
DACs C and D share a common reference input, V
REF
REF
AB.
CD.
Each reference input may be buffered to draw virtually no
current from the reference source, or unbuffered to give a
reference input range from 0.25 V to V
. The devices have a
DD
power-down mode in which all DACs may be turned off
completely with a high impedance output.
Digital-to-Analog Section
The architecture of one DAC channel consists of a resistor-string
DAC followed by an output buffer amplifier. The voltage at the
pin provides the reference voltage for the corresponding
V
REF
DAC. Figure 6 shows a block diagram of the DAC architecture.
Since the input coding to the DAC is straight binary, the ideal
output voltage is given by
VD
¥
V
OUT
REF
=
N
2
where:
D = decimal equivalent of the binary code that is loaded to the
DAC register:
0–255 for AD5307 (8 bits)
0–1023 for AD5317 (10 bits)
0–4095 for AD5327 (12 bits)
N = DAC resolution
V
AB
REF
REFERENCE
BUF
BUFFER
GAIN MODE
(GAIN = 1 OR 2)
If there is a buffered reference in the circuit (e.g., REF192), there
is no need to use the on-chip buffers of the AD5307/AD5317/
AD5327. In unbuffered mode, the input impedance is still large
at typically 90 kW per reference input for 0 V to V
45 kW for 0 V to 2 V
The buffered/unbuffered option is controlled by the BUF bit in
the data-word. The BUF bit setting applies to whichever DAC
is selected.
Output Amplifier
The output buffer amplifier is capable of generating output
voltages to within 1 mV of either rail. Its actual range depends
on the value of V
If a gain of 1 is selected (GAIN = 0), the output range is 0.001 V
to V
.
REF
If a gain of 2 is selected (GAIN = 1), the output range is 0.001 V
to 2 V
. Because of clamping, however, the maximum output
REF
is limited to V
The output amplifier is capable of driving a load of 2 kW to
GND or V
DD
Figure 7. Resistor String
mode and
mode.
REF
, GAIN, offset error, and gain error.
REF
– 0.001 V.
DD
REF
, in parallel with 500 pF to GND or VDD. The
source and sink capabilities of the output amplifier can be seen
INPUT
REGISTER
DAC
REGISTER
RESISTOR
STRING
OUTPUT
BUFFER AMPLIFIER
V
OUT
Figure 6. Single DAC Channel Architecture
Resistor String
The resistor string section is shown in Figure 7. It is simply a
string of resistors, each of value R. The digital code loaded to
the DAC register determines at which node on the string the
voltage is tapped off to be fed into the output amplifier. The
voltage is tapped off by closing one of the switches connecting
the string to the amplifier. Because it is a string of resistors, it is
guaranteed monotonic.
DAC Reference Inputs
There is a reference pin for each pair of DACs. The reference
inputs are buffered but can also be individually configured as
unbuffered. The advantage with the buffered input is the high
in the plot in TPC 11.
A
The slew rate is 0.7 V/ms with a half-scale settling time to ±0.5 LSB
(at eight bits) of 6 ms.
POWER-ON RESET
The AD5307/AD5317/AD5327 are provided with a power-on
reset function so that they power up in a defined state. The
power-on state is
∑ Normal operation
∑ Reference inputs unbuffered
∑ 0 V to V
output range
REF
∑ Output voltage set to 0 V
Both input and DAC registers are filled with zeros and remain
so until a valid write sequence is made to the device. This is
particularly useful in applications where it is important to know
the state of the DAC outputs while the device is powering up.
REV. A
–13–
Page 14
AD5307/AD5317/AD5327
SERIAL INTERFACE
The AD5307/AD5317/AD5327 are controlled over a versatile
3-wire serial interface that operates at clock rates up to 30 MHz
and is compatible with SPI, QSPI, MICROWIRE, and DSP
interface standards.
Input Shift Register
The input shift register is 16 bits wide. Data is loaded into the
device as a 16-bit word under the control of a serial clock input,
SCLK. The timing diagram for this operation is shown in
Figure 2. The 16-bit word consists of four control bits followed
by 8, 10, or 12 bits of DAC data, depending on the device type.
Data is loaded MSB first (Bit 15), and the first two bits determine
whether the data is for DAC A, DAC B, DAC C, or DAC D.
Bits 13 and 12 control the operating mode of the DAC. Bit 13
is GAIN, which determines the output range of the part. Bit 12
is BUF, which controls whether the reference inputs are
buffered or unbuffered.
Table I. Address Bits for the AD53x7
A1 (Bit 15)A0 (Bit 14)DAC Addressed
00 DAC A
01 DAC B
10 DAC C
11 DAC D
Control Bits
GAIN Controls the output range of the addressed DAC.
0: Output range of 0 V to V
1: Output range of 0 V to 2 V
REF
.
REF
.
BUF Controls whether reference of the addressed DAC
is buffered or unbuffered.
0: Unbuffered reference.
1: Buffered reference.
The AD5327 uses all 12 bits of DAC data; the AD5317 uses 10
bits and ignores the 2 LSB. The AD5307 uses eight bits and
ignores the last four bits. The data format is straight binary,
with all 0s corresponding to 0 V output and all 1s corresponding
to full-scale output (V
– 1 LSB).
REF
The SYNC input is a level-triggered input that acts as a frame
synchronization signal and chip enable. Data can be transferred
into the device only while SYNC is low. To start the serial data
transfer, SYNC should be taken low, observing the minimum
SYNC to SCLK falling edge setup time, t
. After SYNC goes low,
4
serial data will be shifted into the device’s input shift register on
the falling edges of SCLK for 16 clock pulses. In standalone
mode (DCEN = 0), any data and clock pulses after the 16th falling
edge of SCLK will be ignored and no further serial data transfer
will occur until SYNC is taken high and low again.
SYNC may be taken high after the falling edge of the 16th SCLK
pulse, observing the minimum SCLK falling edge to SYNC
rising edge time, t
.
7
After the end of serial data transfer, data will automatically be
transferred from the input shift register to the input register of
the selected DAC. If SYNC is taken high before the 16th falling
edge of SCLK, the data transfer will be aborted and the DAC
input registers will not be updated.
BIT 15
(MSB)
A1BUF
GAINA0
D7 D6 D5 D4 D3 D2 D1 D0 XXXX
DATA BITS
Figure 8. AD5307 Input Shift Register Contents
BIT 15
(MSB)
A1BUF
GAINA0
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
DATA BITS
Figure 9. AD5317 Input Shift Register Contents
BIT 15
(MSB)
A1BUF
GAINA0D9 D8 D7 D6 D5 D4 D3 D2 D1 D0D10D11
DATA BITS
Figure 10. AD5327 Input Shift Register Contents
BIT 0
(LSB)
BIT 0
(LSB)
XX
BIT 0
(LSB)
REV. A–14–
Page 15
AD5307/AD5317/AD5327
When data has been transferred into the input register of a
DAC, the corresponding DAC register and DAC output can be
updated by taking LDAC low. CLR is an active low, asynchronous clear that clears the input registers and DAC registers to
all 0s.
Low Power Serial Interface
To minimize the power consumption of the device, the interface
powers up fully only when the device is being written to, i.e., on
the falling edge of SYNC. The SCLK and DIN input buffers
are powered down on the rising edge of SYNC.
Daisy-Chaining
For systems that contain several DACs, or where the user wishes
to read back the DAC contents for diagnostic purposes, the
SDO pin may be used to daisy-chain several devices together
and provide serial readback.
By connecting the DCEN (daisy-chain enable) pin high, the
daisy-chain mode is enabled. It is tied low in the case of standalone mode. In daisy-chain mode, the internal gating on SCLK is
disabled. The SCLK is continuously applied to the input shift
register when SYNC is low. If more than 16 clock pulses are
applied, the data ripples out of the shift register and appears on
the SDO line. This data is clocked out on the rising edge of
SCLK and is valid on the falling edge. By connecting this line to
the DIN input on the next DAC in the chain, a multi-DAC
interface is constructed. Sixteen clock pulses are required for
each DAC in the system. Therefore, the total number of clock
cycles must equal 16N, where N is the total number of devices
in the chain. When the serial transfer to all devices is complete,
SYNC should be taken high. This prevents any further data
from being clocked into the input shift register.
A continuous SCLK source may be used if it can be arranged
that SYNC is held low for the correct number of clock cycles.
Alternatively, a burst clock containing the exact number of
clock cycles may be used and SYNC may be taken high some
time later.
When the transfer to all input registers is complete, a common
LDAC signal updates all DAC registers and all analog outputs
are updated simultaneously.
Double-Buffered Interface
The AD5307/AD5317/AD5327 DACs have double-buffered
interfaces consisting of two banks of registers: input registers and
DAC registers. The input registers are connected directly to the
input shift register and the digital code is transferred to the relevant
input register on completion of a valid write sequence. The DAC
registers contain the digital code used by the resistor strings.
Access to the DAC registers is controlled by the LDAC pin.
When the LDAC pin is high, the DAC registers are latched and
the input registers may change state without affecting the contents
of the DAC registers. When LDAC is brought low, however, the
DAC registers become transparent and the contents of the input
registers are transferred to them.
The double-buffered interface is useful if the user requires simultaneous updating of all DAC outputs. The user may write to three
of the input registers individually and then, by bringing LDAC
low when writing to the remaining DAC input register, all outputs
will update simultaneously.
These parts contain an extra feature whereby a DAC register is
not updated unless its input register has been updated since the
last time LDAC was brought low. Normally, when LDAC is
brought low, the DAC registers are filled with the contents of the
input registers. In the case of the AD5307/AD5317/AD5327,
the part will update the DAC register only if the input register
has been changed since the last time the DAC register was
updated, thereby removing unnecessary digital crosstalk.
Load DAC Input (LDAC)
LDAC transfers data from the input registers to the DAC registers
(and, therefore, updates the outputs). Use of the LDAC function
enables double-buffering of the DAC data, GAIN, and BUF.
There are two LDAC modes:
Synchronous Mode: In this mode, the DAC registers are
updated after new data is read in on the falling edge of the 16th
SCLK pulse. LDAC can be tied permanently low or pulsed as
in Figure 2.
Asynchronous Mode: In this mode, the outputs are not updated
at the same time that the input registers are written to. When
LDAC goes low, the DAC registers are updated with the contents of the input register.
POWER-DOWN MODE
The AD5307/AD5317/AD5327 have low power consumption,
typically dissipating 1.2 mW with a 3 V supply and 2.5 mW
with a 5 V supply. Power consumption can be further reduced
when the DACs are not in use by putting them into powerdown mode, which is selected by taking the PD pin low.
When the PD pin is high, all DACs work normally with a typical
power consumption of 500 mA at 5 V (400 mA at 3 V). However,
in power-down mode, the supply current falls to 300 nA at 5 V
(90 nA at 3 V) when all DACs are powered down. Not only
does the supply current drop, but the output stage is also internally switched from the output of the amplifier, making it an
open circuit. This has the advantage that the output is threestate while the part is in power-down mode and provides a defined
input condition for whatever is connected to the output of the
DAC amplifier. The output stage is illustrated in Figure 11.
The bias generator, the output amplifiers, the resistor string,
and all other associated linear circuitry are shut down when the
power-down mode is activated. However, the contents of the
registers are unaffected when in power-down. In fact, it is possible to load new data to the input registers and DAC registers
during power-down. The DAC outputs will update as soon as
PD goes high. The time to exit power-down is typically 2.5 ms
= 5 V and 5 ms when VDD = 3 V. This is the time from
for V
DD
the rising edge of PD to when the output voltage deviates from
its power-down voltage. See TPC 18 for a plot.
AMPLIFIER
RESISTOR
STRING DAC
POWER-DOWN
CIRCUITRY
Figure 11. Output Stage during Power-Down
V
OUT
REV. A
–15–
Page 16
AD5307/AD5317/AD5327
MICROPROCESSOR INTERFACING
ADSP-2101/ADSP-2103 to AD5307/AD5317/AD5327 Interface
Figure 12 shows a serial interface between the AD5307/AD5317/
AD5327 and the ADSP-2101/ADSP-2103. The ADSP-2101/
ADSP-2103 should be set up to operate in the SPORT transmit
alternate framing mode. The ADSP-2101/ADSP-2103 sport
is programmed through the SPORT control register and should
be configured as follows: internal clock operation, active low
framing, 16-bit word length. Transmission is initiated by writing
a word to the Tx register after the SPORT has been enabled.
The data is clocked out on each rising edge of the DSP’s serial
clock and clocked into the AD5307/AD5317/AD5327 on the
falling edge of the DAC’s SCLK.
ADSP-2101/
ADSP-2103*
TFS
DT
SCLK
*ADDITIONAL PINS OMITTED FOR CLARITY
AD5307/
AD5317/
AD5327*
SYNC
DIN
SCLK
Figure 12. ADSP-2101/ADSP-2103 to AD5307/
AD5317/AD5327 Interface
68HC11/68L11 to AD5307/AD5317/AD5327 Interface
Figure 13 shows a serial interface between the AD5307/AD5317/
AD5327 and the 68HC11/68L11 microcontroller. SCK of the
68HC11/68L11 drives the SCLK of the AD5307/AD5317/
AD5327, while the MOSI output drives the serial data line
(DIN) of the DAC. The SYNC signal is derived from a port
line (PC7). The setup conditions for correct operation of this
interface are as follows: the 68HC11/68L11 should be configured so that its CPOL bit is a 0 and its CPHA bit is a 1. When
data is being transmitted to the DAC, the SYNC line is taken
low (PC7). When the 68HC11/68L11 is configured as above,
data appearing on the MOSI output is valid on the falling edge
of SCK. Serial data from the 68HC11/68L11 is transmitted in
8-bit bytes with only eight falling clock edges occurring in the
transmit cycle. Data is transmitted MSB first. To load data to the
AD5307/AD5317/AD5327, PC7 is left low after the first eight bits
are transferred, and a second serial write operation is performed
to the DAC; PC7 is taken high at the end of this procedure.
80C51/80L51 to AD5307/AD5317/AD5327 Interface
Figure 14 shows a serial interface between the AD5307/AD5317/
AD5327 and the 80C51/80L51 microcontroller. The setup for
the interface is as follows: TxD of the 80C51/80L51 drives
SCLK of the AD5307/AD5317/AD5327, while RxD drives the
serial data line of the part. The SYNC signal is again derived
from a bit programmable pin on the port. In this case, port line
P3.3 is used. When data is to be transmitted to the AD5307/
AD5317/AD5327, P3.3 is taken low. The 80C51/80L51 transmits data only in 8-bit bytes; thus only eight falling clock edges
occur in the transmit cycle. To load data to the DAC, P3.3 is
left low after the first eight bits are transmitted, and a second
write cycle is initiated to transmit the second byte of data. P3.3
is taken high following the completion of this cycle. The 80C51/
80L51 outputs the serial data in a format that has the LSB first.
The AD5307/AD5317/AD5327 requires its data with the MSB
as the first bit received. The 80C51/80L51 transmit routine
should take this into account.
80C51/80L51*
P3.3
TxD
RxD
*ADDITIONAL PINS OMITTED FOR CLARITY
AD5307/
AD5317/
AD5327*
SYNC
SCLK
DIN
Figure 14. 80C51/80L51 to AD5307/AD5317/AD5327
Interface
MICROWIRE to AD5307/AD5317/AD5327 Interface
Figure 15 shows an interface between the AD5307/AD5317/
AD5327 and any MICROWIRE compatible device. Serial data
is shifted out on the falling edge of the serial clock, SK, and is
clocked into the AD5307/AD5317/AD5327 on the rising edge
of SK, which corresponds to the falling edge of the DAC’s SCLK.
MICROWIRE*
CS
SK
SO
AD5307/
AD5317/
AD5327*
SYNC
SCLK
DIN
68HC11/68L11*
PC7
SCK
MOSI
*ADDITIONAL PINS OMITTED FOR CLARITY
AD5307/
AD5317/
AD5327*
SYNC
SCLK
DIN
Figure 13. 68HC11/68L11 to AD5307/AD5317/
AD5327 Interface
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 15. MICROWIRE to AD5307/AD5317/AD5327
Interface
REV. A–16–
Page 17
AD5307/AD5317/AD5327
APPLICATIONS
Typical Application Circuit
The AD5307/AD5317/AD5327 can be used with a wide range
of reference voltages where the devices offer full, one-quadrant
multiplying capability over a reference range of 0.25 V to V
DD
.
More typically, these devices are used with a fixed, precision
reference voltage. Suitable references for 5 V operation are the
AD780 and REF192 (2.5 V references). For 2.5 V operation, a
suitable external reference would be the AD589, a 1.23 V band
gap reference. Figure 16 shows a typical setup for the AD5307/
AD5317/AD5327 when using an external reference.
= 2.5V TO 5.5V
V
DD
V
IN
V
OUT
EXT
REF
AD780/REF192
WITH VDD = 5V
OR AD589 WITH
= 2.5V
V
DD
0.1F
1F
SERIAL
INTERFACE
10F
V
AB
REF
V
REF
AD5307/AD5317/
SCLK
DIN
SYNC
CD
AD5327
GND
V
V
A
OUT
B
OUT
V
C
OUT
V
D
OUT
Figure 16. AD5307/AD5317/AD5327 Using a 2.5 V
External Reference
Driving VDD from the Reference Voltage
If an output range of 0 V to VDD is required when the reference
inputs are configured as unbuffered, the simplest solution is to
connect the reference input to V
. As this supply may be noisy
DD
and not very accurate, the AD5307/AD5317/AD5327 may be
powered from the reference voltage, for example, using a 5 V
reference such as the REF195. The REF195 will output a steady
supply voltage for the AD5307/AD5317/AD5327. The typical
current required from the REF195 is 500 mA supply current andª 112 mA into the reference inputs (if unbuffered). This is with
no load on the DAC outputs. When the DAC outputs are loaded,
the REF195 also needs to supply the current to the loads. The
total current required (with a 10 kW load on each output) is
6124 5102 6mAVkmA+
()
=/.W
The load regulation of the REF195 is typically 2 ppm/mA, which
results in an error of 5.2 ppm (26 mV) for the 2.6 mA current
drawn from it. This corresponds to a 0.0013 LSB error at eight
bits and 0.021 LSB error at 12 bits.
Bipolar Operation Using the AD5307/AD5317/AD5327
The AD5307/AD5317/AD5327 have been designed for singlesupply operation, but a bipolar output range is also possible
using the circuit in Figure 17. This circuit will give an output
voltage range of ± 5 V. Rail-to-rail operation at the amplifier
output is achievable using an AD820 or an OP295 as the output
amplifier.
The output voltage for any input code can be calculated as
follows:
È
REFINDRR
()
OUT
Í
=
Í
RREFINRR
121–/
Î
V
N
¥
¥+
212
()
¥
()
˘
˙
˙
˚
where:
D is the decimal equivalent of the code loaded to the DAC.
N is the DAC resolution.
REFIN is the reference voltage input.
with
REFIN = 5 V, R1 = R2 = 10 kW:
5V
V
DD
AD5327
AB
CD
SCLK
SERIAL
INTERFACE
N
R1
10k⍀
V
OUT
V
OUT
V
OUT
V
OUT
SYNC
R2
10k⍀
+5V
A
–5V
B
C
D
AD820/
OP295
ⴞ5V
V
IN
REF195
V
GND
6V TO 16V
10F
OUT
VDV
=¥
1025/–
()
OUT
0.1F
AD5307/AD5317/
V
1F
REF
V
REF
GND
DIN
Figure 17. Bipolar Operation with the AD5307/
AD5317/AD5327
REV. A
–17–
Page 18
AD5307/AD5317/AD5327
Opto-Isolated Interface for Process Control Applications
The AD5307/AD5317/AD5327 have a versatile 3-wire serial
interface, making them ideal for generating accurate voltages in
process control and industrial applications. Due to noise, safety
requirements, or distance, it may be necessary to isolate the
AD5307/AD5317/AD5327 from the controller. This can easily
be achieved by using opto-isolators that will provide isolation in
excess of 3 kV. The actual data rate achieved may be limited by
the type of optocouplers chosen. The serial loading structure of
the AD5307/AD5317/AD5327 makes them ideally suited for use
in opto-isolated applications. Figure 18 shows an opto-isolated
interface to the AD5307/AD5317/AD5327 where DIN, SCLK,
and SYNC are driven from optocouplers. The power supply to the
part also needs to be isolated. This is done by using a transformer.
On the DAC side of the transformer, a 5 V regulator provides
the 5 V supply required for the AD5307/AD5317/AD5327.
5V
POWER
SCLK
SYNC
DIN
10k⍀
10k⍀
10k⍀
REGULATOR
V
DD
SCLK
V
DD
SYNC
V
DD
DIN
DCEN
AD5307
V
DD
GND
10F
0.1F
V
AB
REF
V
CD
REF
A
V
OUT
V
B
OUT
V
C
OUT
V
D
OUT
Figure 18. AD5307 in an Opto-Isolated Interface
Decoding Multiple AD5307/AD5317/AD5327s
The SYNC pin on the AD5307/AD5317/AD5327 can be used
in applications to decode a number of DACs. In this application,
all the DACs in the system receive the same serial clock and
serial data, but only the SYNC to one of the devices will be
active at any one time, allowing access to four channels in this
16-channel system. The 74HC139 is used as a 2-to-4 line decoder
to address any of the DACs in the system. To prevent timing
errors from occurring, the enable input should be brought to
its inactive state while the coded address inputs are changing
state. Figure 19 shows a diagram of a typical setup for decoding
multiple AD5307 devices in a system.
AD5307
V
SCLK
DIN
ENABLE
CODED
ADDRESS
1G
1A
1B
V
DD
V
CC
74HC139
DGND
1Y0
1Y1
1Y2
1Y3
SYNC
DIN
SCLK
SYNC
DIN
SCLK
SYNC
DIN
SCLK
AD5307
AD5307
A
OUT
V
B
OUT
V
C
OUT
V
D
OUT
V
A
OUT
V
B
OUT
V
C
OUT
V
D
OUT
V
A
OUT
V
B
OUT
V
C
OUT
V
D
OUT
AD5307
V
A
OUT
V
B
SYNC
DIN
SCLK
OUT
V
C
OUT
V
D
OUT
Figure 19. Decoding Multiple AD5307 Devices in a System
AD5307/AD5317/AD5327 as a Digitally Programmable
Window Detector
A digitally programmable upper/lower limit detector using two
of the DACs in the AD5307/AD5317/AD5327 is shown in
Figure 20. The upper and lower limits for the test are loaded to
DACs A and B, which, in turn, set the limits on the CMP04. If
the signal at the V
input is not within the programmed window,
IN
an LED will indicate the fail condition. Similarly, DACs C and D
can be used for window detection on a second V
V
REF
SYNC
DIN
SCLK
5V
0.1F10F
V
AB
REF
V
CD
REF
AD5307/AD5317/
AD5327
SYNC
DIN
SCLK
GND
V
IN
V
DD
A
V
OUT
1/2
CMP04
B
V
OUT
signal.
IN
1k⍀
FAIL
PASS/FAIL
1/6 74HC05
1k⍀
PASS
Figure 20. Window Detection
REV. A–18–
Page 19
AD5307/AD5317/AD5327
Daisy-Chaining
For systems that contain several DACs, or where the user wishes
to read back the DAC contents for diagnostic purposes, the
SDO pin may be used to daisy-chain several devices together
and provide serial readback. Figure 3 shows the timing diagram
for daisy-chain applications. The daisy-chain mode is enabled by
connecting DCEN high. See Figure 21.
68HC11*
MOSI
SCK
PC7
PC6
MISO
DIN
SCLK
SYNC
LDAC
SCLK
SYNC
LDAC
SCLK
SYNC
LDAC
AD5307*
DCEN
SDO
DIN
AD5307*
DCEN
SDO
DIN
AD5307*
DCEN
SDO
Power Supply Bypassing and Grounding
In any circuit where accuracy is important, careful consideration
of the power supply and ground return layout helps to ensure
the rated performance. The printed circuit board on which the
AD5307/AD5317/AD5327 is mounted should be designed so
that the analog and digital sections are separated and confined
to certain areas of the board. If the AD5307/AD5317/AD5327
is in a system where multiple devices require an AGND-to-DGND
connection, the connection should be made at one point only.
The star ground point should be established as close as possible
to the device. The AD5307/AD5317/AD5327 should have
ample supply bypassing of 10 mF in parallel with 0.1 mF on the
supply located as close to the package as possible, ideally right
up against the device. The 10 mF capacitors are the tantalum
bead type. The 0.1 mF capacitor should have low effective series
resistance (ESR) and effective series inductance (ESI), like the
common ceramic types that provide a low impedance path to
ground at high frequencies to handle transient currents due to
internal logic switching.
The power supply lines of the AD5307/AD5317/AD5327 should
use as large a trace as possible to provide low impedance paths
and reduce the effects of glitches on the power supply line. Fast
switching signals such as clocks should be shielded with digital
ground to avoid radiating noise to other parts of the board, and
should never be run near the reference inputs. Avoid crossover
of digital and analog signals. Traces on opposite sides of the
board should run at right angles to each other. This reduces the
effects of feedthrough through the board. A microstrip technique is
by far the best, but is not always possible with a double-sided
board. In this technique, the component side of the board is
dedicated to ground plane while signal traces are placed on the
solder side.
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 21. AD5307 in Daisy-Chain Mode
REV. A
–19–
Page 20
AD5307/AD5317/AD5327
Table II. Overview of AD53xx Serial Devices
No. ofSettling
Part No.ResolutionDACsDNLInterfaceTime (s)PackagePins