Datasheet AD1939 Datasheet (ANALOG DEVICES)

Page 1
4 ADC/8 DAC with PLL,
A

FEATURES

PLL generated or direct master clock Low EMI design 112 dB DAC/107 dB ADC dynamic range and SNR
−94 dB THD + N Single 3.3 V supply Tolerance for 5 V logic inputs Supports 24-bits and 8 kHz to 192 kHz sample rates Differential ADC input Differential DAC output Log volume control with autoramp function SPI controllable for flexibility Software-controllable clickless mute Software power-down Right-justified, left-justified, I Master and slave modes up to 16-channel input/output 64-lead LQFP package Qualified for automotive applications

APPLICATIONS

Automotive audio systems Home Theater Systems Set-top boxes Digital audio effects processors
2
S, and TDM modes
192 kHz, 24-Bit Codec
AD1939

GENERAL DESCRIPTION

The AD1939 is a high performance, single-chip codec that provides four analog-to-digital converters (ADCs) with differential input, and eight digital-to-analog converters (DACs) with differential output using the Analog Devices, Inc. patented multibit sigma-delta (Σ-Δ) architecture. An SPI port is included, allowing a microcontroller to adjust volume and many other parameters. The AD1939 operates from 3.3 V digital and analog supplies. The AD1939 is available in a 64-lead (differential output) LQFP package.
The AD1939 is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the master clock from the LR clock or from an external crystal, the AD1939 eliminates the need for a separate high frequency master clock and can also be used with a suppressed bit clock. The DACs and ADCs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 3.3 V supplies, power consumption is minimized, further reducing emissions.

FUNCTIONAL BLOCK DIAGRAM

DIGITAL AUDIO INPUT/OUTPUT
AD1939
ADC
NALOG
AUDIO
INPUTS
ADC
ADC
ADC
PRECISION
VOLTAGE
REFERENCE
DIGITAL
FILTER
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SERIAL DATA PORT
SDATA
OUT
TIMING MANAGEMENT
AND CONTROL
(CLOCK AND PLL )
CONTROL P ORT
CONTROL DAT A
INPUT/OUTPUT
DAC
SDATA
IN
CLOCKS
SPI
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.
DIGITAL
FILTER
AND
VOLUME
CONTROL
DAC DAC DAC DAC DAC DAC DAC
ANALOG AUDIO OUTPUTS
06071-001
Page 2
AD1939

TABLE OF CONTENTS

Features.............................................................................................. 1
Analog-to-Digital Converters (ADCs).................................... 13
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Test Conditions............................................................................. 3
Analog Performance Specifications........................................... 3
Crystal Oscillator Specifications................................................. 4
Digital Input/Output Specifications........................................... 5
Power Supply Specifications........................................................ 5
Digital Filters................................................................................. 6
Timing Specifications .................................................................. 6
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Digital-to-Analog Converters (DACs).................................... 13
Clock Signals............................................................................... 13
Reset and Power-Down............................................................. 14
Serial Control Port ..................................................................... 14
Power Supply and Voltage Reference....................................... 15
Serial Data Ports—Data Format............................................... 15
Time-Division Multiplexed (TDM) Modes............................ 15
Daisy-Chain Mode..................................................................... 19
Control Registers............................................................................ 24
Definitions................................................................................... 24
PLL and Clock Control Registers............................................. 24
DAC Control Registers.............................................................. 25
ADC Control Registers.............................................................. 27
Additional Modes....................................................................... 29
Application Circuits ....................................................................... 30
Pin Configuration and Function Descriptions............................. 9
Typical Performance Characteristics ........................................... 11
Theory of Operation ...................................................................... 13

REVISION HISTORY

7/11—Rev. C to Rev. D
Changes to Pin 15, Pin 18, Pin 19, and Pin 20 Descriptions ...... 9
Changes to Pin 26 and Pin 27 Descriptions................................ 10
9/10—Rev. B to Rev. C
Added Qualified for Automotive Applications to the Features
Section................................................................................................ 1
Changed Case Temperature from 130°C to 125°C ...................... 4
Changed T Changed T
Changes to Ordering Guide.......................................................... 31
Added Automotive Products Section .......................................... 31
3/10—Rev. A to Rev. B
Changes to Ordering Guide.......................................................... 31
6/07—Rev. 0 to Rev. A
from −40°C to +130°C to −40°C to +105°C ........... 5
A
from −40°C to +130°C to −40°C to +105°C ........... 7
A
Outline Dimensions....................................................................... 31
Ordering Guide .......................................................................... 31
Automotive Products................................................................. 31
Deleted I
Change to Figure 1 ............................................................................1
Changes to Figure 2...........................................................................9
Changes to Table 10 ..........................................................................9
Changes to Table 11 ....................................................................... 14
Changes to Table 12 ....................................................................... 16
Changes to Figure 24 and Figure 25............................................. 22
Changes to Table 13 ....................................................................... 23
Change to Figure 26....................................................................... 23
Changes to Table 15 and Table 16 ................................................ 24
Changes to Figure 27 and Figure 28............................................. 29
Change to Figure 30....................................................................... 30
Updated Outline Dimensions....................................................... 31
Changes to Ordering Guide.......................................................... 31
7/06—Revision 0: Initial Version
2
C References.......................................................Universal
Rev. D | Page 2 of 32
Page 3
AD1939

SPECIFICATIONS

TEST CONDITIONS

Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.
Supply voltages (AVDD, DVDD) 3.3 V
Temperature range
Master clock 12.288 MHz (48 kHz fS, 256 × fS mode)
Input sample rate 48 kHz
Measurement bandwidth 20 Hz to 20 kHz
Word width 24 bits
Load capacitance (digital output) 20 pF
Load current (digital output) ±1 mA or 1.5 kΩ to ½ DVDD supply
Input voltage high 2.0 V
Input voltage low 0.8 V
1
Functionally guaranteed at −40°C to +125°C case temperature.

ANALOG PERFORMANCE SPECIFICATIONS

Specifications guaranteed at an ambient temperature of 25°C.
Table 1.
Parameter Conditions/Comments Min Typ Max Unit
ANALOG-TO-DIGITAL CONVERTERS
ADC Resolution All ADCs 24 Bits Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 96 102 dB
With A-Weighted Filter (RMS) 98 105 dB Total Harmonic Distortion + Noise −1 dBFS −96 −87 dB Full-Scale Input Voltage (Differential) 1.9 V rms Gain Error −10 +10 % Interchannel Gain Mismatch −0.25 +0.25 dB Offset Error −10 0 +10 mV Gain Drift 100 ppm/°C Interchannel Isolation −110 dB CMRR 100 mV rms, 1 kHz 55 dB 100 mV rms, 20 kHz 55 dB Input Resistance 14 kΩ Input Capacitance 10 pF Input Common-Mode Bias Voltage 1.5 V
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 102 107 dB
With A-Weighted Filter (RMS) 105 110 dB
With A-Weighted Filter (Average) 112 dB Total Harmonic Distortion + Noise 0 dBFS
Two channels running −94 dB
Eight channels running −86 −76 dB Full-Scale Output Voltage 1.76 (4.96) V rms (V p-p) Gain Error −10 +10 % Interchannel Gain Mismatch −0.2 +0.2 dB Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C Interchannel Isolation 100 dB
1
As specified in Tab le 1 and Ta ble 2
Rev. D | Page 3 of 32
Page 4
AD1939
Parameter Conditions/Comments Min Typ Max Unit
Interchannel Phase Deviation 0 Degrees Volume Control Step 0.375 dB Volume Control Range 95 dB De-emphasis Gain Error ±0.6 dB Output Resistance at Each Pin 100 Ω
REFERENCE
Internal Reference Voltage FILTR pin 1.50 V External Reference Voltage FILTR pin 1.32 1.50 1.68 V Common-Mode Reference Output CM pin 1.50 V
REGULATOR
Input Supply Voltage VSUPPLY pin 4.5 5 5.5 V Regulated Output Voltage VSENSE pin 3.19 3.37 3.55 V
Specifications measured at a case temperature of 125°C.
Table 2.
Parameter Conditions/Comments Min Typ Max Unit
ANALOG-TO-DIGITAL CONVERTERS
ADC Resolution All ADCs 24 Bits Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 93 102 dB
With A-Weighted Filter (RMS) 96 104 dB Total Harmonic Distortion + Noise −1 dBFS −96 −87 dB Full-Scale Input Voltage (Differential) 1.9 V rms Gain Error −10 +10 % Interchannel Gain Mismatch −0.25 +0.25 dB Offset Error −10 0 +10 mV
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 101 107 dB
With A-Weighted Filter (RMS) 104 110 dB
With A-Weighted Filter (Average) 112 dB Total Harmonic Distortion + Noise 0 dBFS
Two channels running −94 dB
Eight channels running −86 −70 dB Full-Scale Output Voltage 1.76 (4.96) V rms (V p-p) Gain Error −10 +10 % Interchannel Gain Mismatch −0.2 +0.2 dB Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C
REFERENCE
Internal Reference Voltage FILTR pin 1.50 V External Reference Voltage FILTR pin 1.32 1.50 1.68 V Common-Mode Reference Output CM pin 1.50 V
REGULATOR
Input Supply Voltage VSUPPLY pin 4.5 5 5.5 V Regulated Output Voltage VSENSE pin 3.2 3.43 3.65 V

CRYSTAL OSCILLATOR SPECIFICATIONS

Table 3.
Parameter Min Typ Max Unit
Transconductance 3.5 mmhos
Rev. D | Page 4 of 32
Page 5
AD1939

DIGITAL INPUT/OUTPUT SPECIFICATIONS

−40°C < TA < +105°C, DVDD = 3.3 V ± 10%.
Table 4.
Parameter Conditions/Comments Min Typ Max Unit
High Level Input Voltage (VIH) 2.0 V MCLKI/XI pin 2.2 V Low Level Input Voltage (VIL) 0.8 V Input Leakage IIH @ VIH = 2.4 V 10 μA I High Level Output Voltage (VOH) IOH = 1 mA DVDD − 0.60 V Low Level Output Voltage (VOL) IOL = 1 mA 0.4 V Input Capacitance 5 pF

POWER SUPPLY SPECIFICATIONS

Table 5.
Parameter Conditions/Comments Min Typ Max Unit
SUPPLIES
Voltage DVDD 3.0 3.3 3.6 V AVDD 3.0 3.3 3.6 V VSUPPLY 4.5 5.0 5.5 V Digital Current Master clock = 256 f
Normal Operation fS = 48 kHz 56 mA
f f
Power-Down fS = 48 kHz to 192 kHz 2.0 mA
Analog Current
Normal Operation 74 mA Power-Down 23 mA
DISSIPATION
Operation Master clock = 256 fS, 48 kHz
All Supplies 429 mW Digital Supply 185 mW Analog Supply 244 mW
Power-Down, All Supplies 83 mW
POWER SUPPLY REJECTION RATIO
Signal at Analog Supply Pins 1 kHz, 200 mV p-p 50 dB 20 kHz, 200 mV p-p 50 dB
@ VIL = 0.8 V 10 μA
IL
S
= 96 kHz 65 mA
S
= 192 kHz 95 mA
S
Rev. D | Page 5 of 32
Page 6
AD1939

DIGITAL FILTERS

Table 6.
Parameter Mode Factor Min Typ Max Unit
ADC DECIMATION FILTER
Pass Band 0.4375 f Pass-Band Ripple ±0.015 dB Transition Band 0.5 f Stop Band 0.5625 f Stop-Band Attenuation 79 dB Group Delay 22.9844/f
DAC INTERPOLATION FILTER
Pass Band 48 kHz mode, typical @ 48 kHz 0.4535 f 96 kHz mode, typical @ 96 kHz 0.3646 f 192 kHz mode, typical @ 192 kHz 0.3646 f Pass-Band Ripple 48 kHz mode, typical @ 48 kHz ±0.01 dB 96 kHz mode, typical @ 96 kHz ±0.05 dB 192 kHz mode, typical @ 192 kHz ±0.1 dB Transition Band 48 kHz mode, typical @ 48 kHz 0.5 f 96 kHz mode, typical @ 96 kHz 0.5 f 192 kHz mode, typical @ 192 kHz 0.5 f Stop Band 48 kHz mode, typical @ 48 kHz 0.5465 f 96 kHz mode, typical @ 96 kHz 0.6354 f 192 kHz mode, typical @ 192 kHz 0.6354 f Stop-Band Attenuation 48 kHz mode, typical @ 48 kHz 70 dB 96 kHz mode, typical @ 96 kHz 70 dB 192 kHz mode, typical @ 192 kHz 70 dB Group Delay 48 kHz mode, typical @ 48 kHz 25/f
96 kHz mode, typical @ 96 kHz 11/f 192 kHz mode, typical @ 192 kHz 8/f
All modes, typical @ 48 kHz
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
21 kHz
24 kHz 27 kHz
479 μs
22 kHz 35 kHz 70 kHz
24 kHz 48 kHz 96 kHz 26 kHz 61 kHz 122 kHz
521 μs 115 μs 42 μs

TIMING SPECIFICATIONS

−40°C < TA < +105°C, DVDD = 3.3 V ± 10%.
Table 7.
Parameter Condition Comments Min Max Unit
INPUT MASTER CLOCK (MCLK) AND RESET
t
MH
t
MH
f
MCLK
f
MCLK
t
PDR
t
PDRR
PLL
Lock Time MCLK and LRCLK input 10 ms 256 fS VCO Clock, Output Duty Cycle,
MCLKO/XO Pin
MCLK duty cycle
DAC/ADC clock source = PLL clock @ 256 f
, 512 fS, and 768 f
f
S
S
S
DAC/ADC clock source = direct MCLK @ 512 f
, 384
40 60 %
40 60 %
S
(bypass on-chip PLL) MCLK frequency PLL mode, 256 fS reference 6.9 13.8 MHz Direct 512 fS mode 27.6 MHz Low 15 ns Recovery Reset to active output 4096 t
MCLK
40 60 %
Rev. D | Page 6 of 32
Page 7
AD1939
Parameter Condition Comments Min Max Unit
SPI PORT See Figure 11
t
CCH
t
CCL
f
CCLK
t
CDS
t
CDH
t
CLS
t
CLH
t
CLHIGH
t
COE
t
COD
t
COH
t
COTS
DAC SERIAL PORT See Figure 24
t
DBH
t
DBL
t
DLS
t
DLH
t
DLS
t
DDS
t
DDH
ADC SERIAL PORT See Figure 25
t
ABH
t
ABL
t
ALS
t
ALH
t
ALS
t
ABDD
AUXILIARY INTERFACE
t
AXDS
t
AXDH
t
DXDD
t
XBH
t
XBL
t
DLS
t
DLH
CCLK high 35 ns CCLK low 35 ns CCLK frequency f
CCLK
= 1/t
CCP
; only t
shown in Figure 11 10 MHz
CCP
CIN setup To CCLK rising 10 ns CIN hold From CCLK rising 10 ns CLATCH CLATCH
CLATCH
setup hold high
To CCLK rising 10 ns From CCLK falling 10 ns Not shown in Figure 11 10 ns
COUT enable From CCLK falling 30 ns COUT delay From CCLK falling 30 ns COUT hold From CCLK falling, not shown in Figure 11 30 ns COUT tristate From CCLK falling 30 ns
DBCLK high Slave mode 10 ns DBCLK low Slave mode 10 ns DLRCLK setup To DBCLK rising, slave mode 10 ns DLRCLK hold From DBCLK rising, slave mode 5 ns DLRCLK skew From DBCLK falling, master mode −8 +8 ns DS DATA setup To DBCLK risin g 10 ns DSDATA hold From DBCLK rising 5 ns
ABCLK high Slave mode 10 ns ABCLK low Slave mode 10 ns ALRCLK setup To ABCLK rising, slave mode 10 ns ALRCLK hold From ABCLK rising, slave mode 5 ns ALRCLK skew From ABCLK falling, master mode −8 +8 ns ASDATA delay From ABCLK falling 18 ns
AAUXDATA s etu p To AUXBCLK risi n g 10 ns AAUXDATA hold From AUXBCLK rising 5 ns DAUXDATA delay From AUXBCLK falling 18 ns AUXBCLK high 10 ns AUXBCLK low 10 ns AUXLRCLK setup To AUXBCLK rising 10 ns AUXLRCLK hold From AUXBCLK rising 5 ns
Rev. D | Page 7 of 32
Page 8
AD1939

ABSOLUTE MAXIMUM RATINGS

Table 8.
Parameter Rating
Analog (AVDD) −0.3 V to +3.6 V Digital (DVDD) −0.3 V to +3.6 V VSUPPLY −0.3 V to +6.0 V Input Current (Except Supply Pins) ±20 mA Analog Input Voltage (Signal Pins) –0.3 V to AVDD + 0.3 V Digital Input Voltage (Signal Pins) −0.3 V to DVDD + 0.3 V Operating Temperature Range (Case) −40°C to +125°C Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA represents thermal resistance, junction-to-ambient; θ All characteristics are for a 4-layer board.
Table 9. Thermal Resistance
Package Type θ
64-Lead LQFP 47 11.1 °C/W

ESD CAUTION

represents the thermal resistance, junction-to-case.
JC
JA
θ
JC
Unit
Rev. D | Page 8 of 32
Page 9
AD1939

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1
AGND
AGND
AVDD
OL3P
OL3N
OR3P
OR3N
OL4P
OL4N
OR4P
OR4N
PD/RST
DGND
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
MCLKI/XI
MCLKO/XO
DSDATA4
NC = NO CONNECT
NC64NC63AVDD62LF61ADC2RN60ADC2RP59ADC2LN58ADC2LP57ADC1RN56ADC1RP55ADC1LN54ADC1LP53CM52AVDD51NC50NC
AD1939
TOP VIEW
(Not to Scale)
DIFFERENTIAL
OUTPUT
17
DVDD
20
DSDATA318DSDATA219DSDATA1
21
22
23
24
25
27
28
29
DBCLK
DLRCLK
VDRIVE
VSENSE
VSUPPLY
ASDATA226ASDATA1
ABCLK
ALRCLK
49
30
32
CIN
COUT31DVDD
Figure 2. 64-Lead LQFP, Differential Output, Pin Configuration
Table 10. Pin Function Descriptions
Pin No. In/Out Mnemonic Description
1 I AGND Analog Ground. 2 I MCLKI/XI Master Clock Input/Crystal Oscillator Input. 3 O MCLKO/XO 4 I AGND 5 I AVDD 6 O OL3P 7 O OL3N 8 O OR3P 9 O OR3N 10 O OL4P 11 O OL4N 12 O OR4P 13 O OR4N 14 I
PD
/RST
15 I/O DSDATA4
Master Clock Output/Crystal Oscillator Output. Analog Ground. Analog Power Supply. Connect to analog 3.3 V supply. DAC 3 Left Positive Output. DAC 3 Left Negative Output. DAC 3 Right Positive Output. DAC 3 Right Negative Output. DAC 4 Left Positive Output. DAC 4 Left Negative Output. DAC 4 Right Positive Output. DAC 4 Right Negative Output Power-Down Reset (Active Low).
DAC Serial Data Input 4. Data input to DAC4 data in/TDM DAC2 data out (dual-line
mode)/AUX DAC2 data out (to external DAC2). 16 I DGND 17 I DVDD 18 I/O DSDATA3
Digital Ground.
Digital Power Supply. Connect to digital 3.3 V supply.
DAC Serial Data Input 3. Data input to DAC3 data in/TDM DAC2 data in (dual-line
mode)/AUX ADC2 data in (from external ADC2). 19 I/O DSDATA2
DAC Serial Data Input 2. Data input to DAC2 data in/TDM DAC data out/AUX ADC1
data in (from external ADC1). 20 I DSDATA1 21 I/O DBCLK
DAC Serial Data Input 1. Data input to DAC1 data in/TDM DAC data in/TDM data in.
Bit Clock for DACs. 22 I/O DLRCLK LR Clock for DACs.
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
AGND
FILTR
AGND
AVDD
AGND
OR2N
OR2P
OL2N
OL2P
OR1N
OR1P
OL1N
OL1P
CLATCH
CCLK
DGND
06071-021
Rev. D | Page 9 of 32
Page 10
AD1939
Pin No. In/Out Mnemonic Description
23 I VSUPPLY 5 V Input to Regulator, Emitter of Pass Transistor. 24 I VSENSE 3.3 V Output of Regulator, Collector of Pass Transistor. 25 O VDRIVE Drive for Base of Pass Transistor. 26 I/O ASDATA2
27 O ASDATA1 ADC Serial Data Output 1. Data Output from ADC1/TDM ADC data out/TDM data out. 28 I/O ABCLK Bit Clock for ADCs. 29 I/O ALRCLK LR Clock for ADCs. 30 I CIN Control Data Input (SPI). 31 I/O COUT Control Data Output (SPI). 32 I DVDD Digital Power Supply. Connect to digital 3.3 V supply. 33 I DGND Digital Ground. 34 I CCLK Control Clock Input (SPI). 35 I
36 O OL1P DAC 1 Left Positive Output. 37 O OL1N DAC 1 Left Negative Output. 38 O OR1P DAC 1 Right Positive Output. 39 O OR1N DAC 1 Right Negative Output. 40 O OL2P DAC 2 Left Positive Output. 41 O OL2N DAC 2 Left Negative Output. 42 O OR2P DAC 2 Right Positive Output. 43 O OR2N DAC 2 Right Negative Output. 44 I AGND Analog Ground. 45 I AVDD Analog Power Supply. Connect to analog 3.3 V supply. 46 I AGND Analog Ground. 47 O FILTR Voltage Reference Filter Capacitor Connection. Bypass with 10 μF||100 nF to AGND. 48 I AGND Analog Ground. 49 NC No Connect. 50 NC No Connect. 51 I AVDD Analog Power Supply. Connect to analog 3.3 V supply. 52 O CM
53 I ADC1LP ADC1 Left Positive Input. 54 I ADC1LN ADC1 Left Negative Input. 55 I ADC1RP ADC1 Right Positive Input. 56 I ADC1RN ADC1 Right Negative Input. 57 I ADC2LP ADC2 Left Positive Input. 58 I ADC2LN ADC2 Left Negative Input. 59 I ADC2RP ADC2 Right Positive Input. 60 I ADC2RN ADC2 Right Negative Input. 61 O LF PLL Loop Filter, Return to AVDD. 62 I AVDD Analog Power Supply. Connect to analog 3.3 V supply. 63 NC No Connect. 64 NC No Connect.
CLATCH
ADC Serial Data Output 2. Data Output from ADC2/TDM ADC data in/AUX DAC1 data out (to external DAC1).
Latch Input for Control Data (SPI).
Common-Mode Reference Filter Capacitor Connection. Bypass with 47 μF||100 nF to AGND.
Rev. D | Page 10 of 32
Page 11
AD1939
6

TYPICAL PERFORMANCE CHARACTERISTICS

0.10
0.08
0.06
0.04
0.02
0
–0.02
MAGNITUDE (d B)
–0.04
–0.06
–0.08
–0.10
01161412108642
FREQUENCY (kHz)
Figure 3. ADC Pass-Band Filter Response, 48 kHz
8
06071-002
0
–50
MAGNITUDE (dB)
–100
–150
0412 24 36
FREQUENCY (kHz)
Figure 6. DAC Stop-Band Filter Response, 48 kHz
8
06071-005
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (d B)
–70
–80
–90
–100
045 101520253035
FREQUENCY (kHz)
Figure 4. ADC Stop-Band Filter Response, 48 kHz
0.0
0.04
0.02
0
MAGNITUDE (d B)
–0.02
0.10
0.05
0
MAGNITUDE (d B)
–0.05
0
06071-003
–0.10
09724824
Figure 7. DAC Pass-Band Filter Response, 96 kHz
0
–50
MAGNITUDE (dB)
–100
FREQUENCY (kHz)
6
06071-006
–0.04
–0.06
024168
FREQUENCY (kHz)
Figure 5. DAC Pass-Band Filter Response, 48 kHz
06071-004
–150
0924 48 72
FREQUENCY (kHz)
Figure 8. DAC Stop-Band Filter Response, 96 kHz
6
06071-007
Rev. D | Page 11 of 32
Page 12
AD1939
0.5
0.4
0.3
0.2
0.1
0
–0.1
MAGNITUDE (d B)
–0.2
–0.3
–0.4
–0.5
0681632
FREQUENCY (kHz)
Figure 9. DAC Pass-Band Filter Response, 192 kHz
0
–2
–4
–6
MAGNITUDE (dB)
–8
–10
4
06071-008
48 9664 80
Figure 10. DAC Stop-Band Filter Response, 192 kHz
FREQUENCY (kHz)
06071-009
Rev. D | Page 12 of 32
Page 13
AD1939

THEORY OF OPERATION

ANALOG-TO-DIGITAL CONVERTERS (ADCS)

There are four analog-to-digital converter (ADC) channels in the AD1939 configured as two stereo pairs with differential inputs. The ADCs can operate at a nominal sample rate of 48 kHz, 96 kHz, or 192 kHz. The ADCs include on-board digital anti­aliasing filters with 79 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 128 (48 kHz, 96 kHz, and 192 kHz modes). Digital outputs are supplied through two serial data output pins (one for each stereo pair) and a common frame clock (ALRCLK) and bit clock (ABCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line.
The ADCs must be driven from a differential signal source for best performance. The input pins of the ADCs connect to internal switched capacitors. To isolate the external driving op amp from the glitches caused by the internal switched capacitors, each in­put pin should be isolated by using a series-connected external 100  resistor together with a 1 nF capacitor connected from each input to ground. This capacitor must be of high quality, for example, ceramic NP0 or polypropylene film.
The differential inputs have a nominal common-mode voltage of 1.5 V. The voltage at the common-mode reference pin (CM) can be used to bias external op amps to buffer the input signals (see the Power Supply and Voltage Reference section). The inputs can also be ac-coupled and do not need an external dc bias to CM.
A digital high-pass filter can be switched in line with the ADCs under serial control to remove residual dc offsets. It has a 1.4 Hz, 6 dB per octave cutoff at a 48 kHz sample rate. The cutoff fre­quency scales directly with sample frequency.

DIGITAL-TO-ANALOG CONVERTERS (DACS)

The AD1939 digital-to-analog converter (DAC) channels are arranged as differential, four stereo pairs giving eight analog outputs for improved noise and distortion performance. The DACs include on-board digital reconstruction filters with 70 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 4 (48 kHz or 96 kHz modes) or 2 (192 kHz mode). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through four serial data input pins (one for each stereo pair) and a common frame clock (DLRCLK) and bit clock (DBCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line.
Each output pin has a nominal common-mode dc level of 1.5 V and swings ±1.27 V for a 0 dBFS digital input signal. A single op amp, third-order, external, low-pass filter is recommended to remove high frequency noise present on the output pins, as well as to provide differential-to-single-ended conversion in the case of the differential output. Note that the use of op amps with low
Rev. D | Page 13 of 32
slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care in selecting these components.
The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section).

CLOCK SIGNALS

The on-chip phase-locked loop (PLL) can be selected to reference the input sample rate from either of the LRCLK pins or 256, 384, 512, or 768 times the sample rate, referenced to the 48 kHz mode from the MCLKI/XI pin. The default at power-up is 256 × f clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2. In 192 kHz mode, the actual multiplication rate is divided by 4. For example, if a device in the AD1939 family is programmed in 256 × f frequency of the master clock input is 256 × 48 kHz = 12.288 MHz. If the AD1939 is then switched to 96 kHz operation (by writing to the SPI port), the frequency of the master clock should remain at 12.288 MHz, which is 128 × f 192 kHz mode, this becomes 64 × f
The internal clock for the ADCs is 256 × f The internal clock for the DACs varies by mode: 512 × f mode), 256 × f default, the on-board PLL generates this internal master clock from an external clock. A direct 512 × f mode) master clock can be used for either the ADCs or DACs if selected in the PLL and Clock Control 1 register.
Note that it is not possible to use a direct clock for the ADCs set to the 192 kHz mode. It is required that the on-chip PLL be used in this mode.
The PLL can be powered down in the PLL and Clock Control 0 register. To ensure reliable locking when changing PLL modes, or if the reference clock is unstable at power-on, power down the PLL and then power it back up when the reference clock stabilizes.
The internal master clock (MCLK) can be disabled in the PLL and Clock Control 0 register to reduce power dissipation when the AD1939 is idle. The clock should be stable before it is enabled. Unless a standalone mode is selected (see the Serial Control Port section), the clock is disabled by reset and must be enabled by writing to the SPI port for normal operation.
To maintain the highest performance possible, limit the clock jitter of the internal master clock signal to less than a 300 ps rms time interval error (TIE). Even at these levels, extra noise or tones can appear in the DAC outputs if the jitter spectrum contains large spectral peaks. If the internal PLL is not used, it is best to use an independent crystal oscillator to generate the
from the MCLKI/XI pin. In 96 kHz mode, the master
S
mode, the
S
in this example. In
S
.
S
for all clock modes.
S
(48 kHz
S
(96 kHz mode), or 128 × fS (192 kHz mode). By
S
(referenced to 48 kHz
S
Page 14
AD1939
C
master clock. In addition, it is especially important that the clock signal not pass through an FPGA, CPLD, or other large digital chip (such as a DSP) before being applied to the AD1939. In most cases, this induces clock jitter due to the sharing of common power and ground connections with other unrelated digital output signals. When the PLL is used, jitter in the reference clock is attenuated above a certain frequency depending on the loop filter.

RESET AND POWER-DOWN

The function of the default settings. To avoid pops, reset does not power down the analog outputs. After lock condition, an initialization routine runs inside the AD1939. This initialization lasts for approximately 256 master clock cycles.
The power-down bits in the PLL and Clock Control 0, DAC Control 1, and ADC Control 1 registers power down the respective sections. All other register settings are retained. To guarantee proper startup, the an external resistor.
Table 11. Standalone Mode Selection
ADC Clocks CIN COUT CCLK
Slave 0 0 0 0 Master 0 1 0 0
RST
pin sets all the control registers to their
RST
is deasserted and the PLL acquires
RST
pin should be pulled low by

SERIAL CONTROL PORT

The AD1939 has an SPI control port that permits programming and reading back of the internal control registers for the ADCs, DACs, and clock system. A standalone mode is also available for operation without serial control; it is configured at reset using the serial control pins. All registers are set to default, except the internal MCLK enable is set to 1 and ADC BCLK and LRCLK master/slave is set by the COUT pin. Standalone mode only supports stereo mode with an I rate. Refer to Tabl e 11 for details. It is recommended to use a weak pull-up resistor on microcontroller. This pull-up resistor ensures that the AD1939 recognizes the presence of a microcontroller.
The SPI control port of the AD1939 is a 4-wire serial control port. The format is similar to the Motorola SPI format except the input data-word is 24 bits wide. The serial bit clock and latch can be completely asynchronous to the sample rate of the ADCs and DACs. Figure 11 shows the format of the SPI signal. The first byte is a global address with a read/write bit. For the AD1939, the address is 0x04, shifted left one bit due to the R/ bit. The second byte is the AD1939 register address and the third byte is the data.
2
S data format and 256 fS MCLK
CLATCH
in applications that have a
CLATCH
W
t
LATCH
CCLK
CIN
COUT
CLS
t
CCP
D22D23 D9
t
COE
t
CCHtCCL
t
CDStCDH
D8
D8
D9
t
COD
Figure 11. Format of the SPI Signal
t
CLH
t
COTS
D0
D0
06071-010
Rev. D | Page 14 of 32
Page 15
AD1939

POWER SUPPLY AND VOLTAGE REFERENCE

The AD1939 is designed for 3.3 V supplies. Separate power supply pins are provided for the analog and digital sections. To minimize noise pickup, these pins should be bypassed with 100 nF ceramic chip capacitors placed as close to the pins as possible. A bulk aluminum electrolytic capacitor of at least 22 F should also be provided on the same PC board as the codec. For critical applications, improved performance is obtained with separate supplies for the analog and digital sections. If this is not possible, it is recommended that the analog and digital supplies be isolated by means of a ferrite bead in series with each supply. It is important that the analog supply be as clean as possible.
The AD1939 includes a 3.3 V regulator driver that only requires an external pass transistor and bypass capacitors to make a 5 V to 3.3 V regulator. If the regulator driver is not used, connect VSUPPLY, VDRIVE, and VSENSE to DGND.
All digital inputs are compatible with TTL and CMOS levels. All outputs are driven from the 3.3 V DVDD supply and are compatible with TTL and 3.3 V CMOS levels.
The ADC and DAC internal voltage reference (V out on FILTR and should be bypassed as close as possible to the chip with a parallel combination of 10 F and 100 nF. Any external current drawn should be limited to less than 50 A.
) is brought
REF
polarity of DBCLK and DLRCLK is programmable according to the DAC Control 1 register. The ADC serial formats and serial clock polarity are programmable according to the ADC Control 1 register. Both DAC and ADC serial ports are programmable to become the bus masters according to DAC Control 1 register and ADC Control 2 register. By default, both ADC and DAC serial ports are in the slave mode.

TIME-DIVISION MULTIPLEXED (TDM) MODES

The AD1939 serial ports also have several different TDM serial data modes. The first and most commonly used configurations are shown in Figure 12 and Figure 13. In Figure 12, the ADC serial port outputs one data stream consisting of four on-chip ADCs followed by four unused slots. In Figure 13, the eight on­chip DAC data slots are packed into one TDM stream. In this mode, both DBCLK and ABCLK are 256 f
LRCLK
BCLK
DATA
32 BCLKs
SLOT 1
LEFT 1
SLOT 2
SLOT 3
RIGHT 1
LEFT 2
MSB MSB–1 MSB–2 DATA
Figure 12. ADC TDM (8-Channel I
256 BCLKs
SLOT 4
SLOT 5 SLOT 6 SLOT 7 SLOT 8
RIGHT 2
LRCLK
BCLK
.
S
2
S Mode)
06071-016
The internal reference can be disabled in the PLL and Clock Control 1 register and FILTR can be driven from an external source. This can be used to scale the DAC output to the clipping level of a power amplifier based on its power supply voltage. The ADC input gain varies by the inverse ratio. The total gain from ADC input to DAC output remains constant.
The CM pin is the internal common-mode reference. It should be bypassed as close as possible to the chip, with a parallel combination of 47 F and 100 nF. This voltage can be used to bias external op amps to the common-mode voltage of the input and output signal pins. The output current should be limited to less than 0.5 mA source and 2 mA sink.

SERIAL DATA PORTS—DATA FORMAT

The eight DAC channels use a common serial bit clock (DBCLK) and a common left-right framing clock (DLRCLK) in the serial data port. The four ADC channels use a common serial bit clock (ABCLK) and left-right framing clock (ALRCLK) in the serial data port. The clock signals are all synchronous with the sample rate. The normal stereo serial modes are shown in Figure 23.
The ADC and DAC serial data modes default to I can also be programmed for left-justified, right-justified, and TDM modes. The word width is 24 bits by default and can be programmed for 16 or 20 bits. The DAC serial formats are programmable according to the DAC Control 0 register. The
2
S. The ports
Rev. D | Page 15 of 32
LRCLK
BCLK
DATA
32 BCLKs
SLOT 1 LEFT 1
SLOT 2
SLOT 3
RIGHT 1
LEFT 2
MSB MSB–1 MS B–2 D ATA
Figure 13. DAC TDM (8-Channel I
256 BCLKs
SLOT 4
RIGHT 2
SLOT 5 LEFT 3
RIGHT 3
LRCLK
BCLK
SLOT 6
2
S Mode)
SLOT 7
LEFT 4
SLOT 8
RIGHT 4
The I/O pins of the serial ports are defined according to the serial mode that is selected. For a detailed description of the function of each pin in TDM and AUX modes, see Table 12 .
The AD1939 allows systems with more than eight DAC channels to be easily configured by the use of an auxiliary serial data port. The DAC TDM-AUX mode is shown in Figure 14. In this mode, the AUX channels are the last four slots of the TDM data stream. These slots are extracted and output to the AUX serial port. It should be noted that due to the high DBCLK frequency, this mode is available only in the 48 kHz/44.1 kHz/32 kHz sample rate.
The AD1939 also allows system configurations with more than four ADC channels as shown in Figure 15 (using 8 ADCs) and Figure 16 (using 16 ADCs). Again, due to the high ABCLK fre­quency, this mode is available only in the 48 kHz/44.1 kHz/32 kHz sample rate.
06071-017
Page 16
AD1939
(
(
Combining the AUX ADC and DAC modes results in a system configuration of 8 ADCs and 12 DACs. The system, then, con­sists of two external stereo ADCs, two external stereo DACs,
Table 12. Pin Function Changes in TDM and AUX Modes
Pin Mnemonic Stereo Modes TDM Modes AUX Modes
ASDATA1 ADC1 Data Out ADC TDM Data Out TDM Data Out ASDATA2 ADC2 Data Out ADC TDM Data In AUX Data Out 1 (to Ext. DAC 1) DSDATA1 DAC1 Data In DAC TDM Data In TDM Data In DSDATA2 DAC2 Data In DAC TDM Data Out AUX Data In 1 (from Ext. ADC 1) DSDATA3 DAC3 Data In DAC TDM Data In 2 (Dual-Line Mode) AUX Data In 2 (from Ext. ADC 2) DSDATA4 DAC4 Data In DAC TDM Data Out 2 (Dual-Line Mode) AUX Data Out 2 (to Ext. DAC 2) ALRCLK ADC LRCLK In/ADC LRCLK Out ADC TDM Frame Sync In/ADC TDM Frame Sync Out TDM Frame Sync In/TDM Frame Sync Out ABCLK ADC BCLK In/ADC BCLK Out ADC TDM BCLK In/ADC TDM BCLK Out TDM BCLK In/TDM BCLK Out DLRCLK DAC LRCLK In/DAC LRCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out AUX LRCLK In/AUX LRCLK Out DBCLK DAC BCLK In/DAC BCLK Out DAC TDM BCLK In/DAC TDM BCLK Out AUX BCLK In/AUX BCLK Out
ALRCLK
ABCLK
and one AD1939. This mode is shown in Figure 17 (combined AUX DAC and ADC modes).
DSDATA1
(TDM_IN)
DLRCLK
(AUX PORT)
DBCLK
(AUX PORT)
ASDATA2
AUX1_OUT)
DSDATA4
AUX2_OUT)
AUXILIARY DAC CHANNEL S
APPEAR AT
EMPTY EMPTY EMPTY EM PTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L 4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2
8 ON-CHIP DAC CHANNELS
32 BITS
MSB
LEFT RIGHT
MSB MSB
MSB MSB
AUX DAC PORTSUNUSED SLOTS
Figure 14. 16-Channel DAC TDM-AUX Mode
6071-051
Rev. D | Page 16 of 32
Page 17
AD1939
ALRCLK
ABCLK
8 ON-CHIP DAC CHANNELS
DSDATA1
(TDM_IN)
ASDATA1
(TDM_OUT)
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L 4 DAC R4
4 ON-CHIP ADC CHANNELS 4 AUX ADC CHANNELS
ADC L1 ADC R1 ADC L2 ADC R2 AUX L1 AUX R1 AUX L2 AUX R2
32 BITS
MSB
DLRCLK
(AUX PORT)
DBCLK
(AUX PORT)
DSDATA2 (AUX1_IN)
DSDATA3 (AUX2_IN)
ALRCLK
ABCLK
ASDATA1
(TDM_OUT)
LEFT RIGHT
MSB MSB
MSB MSB
Figure 15. 8-Channel AUX ADC Mode
4 ON-CHIP ADC CHANNELS AUXI LIARY ADC CHANNELS UNUSED SLOTS
ADC L1 ADC R1 ADC L2 ADC R2 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UN USED UNUSEDUNUSED UNUSED UNUSED UNUSED
32 BITS
MSB
6071-050
DLRCLK
(AUX PORT)
DBCLK
(AUX PORT)
DSDATA2 (AUX1_IN)
DSDATA3 (AUX2_IN)
LEFT RIGHT
MSB MSB
MSB MSB
Figure 16. 16-Channel AUX ADC Mode
Rev. D | Page 17 of 32
06071-052
Page 18
AD1939
(
(
ALRCLK
ABCLK
AUXILIARY DAC CHANNEL S
APPEAR AT
AUX DAC PORTSUNUSED SLOTS
6071-053
DSDATA1
(TDM_IN)
ASDATA1
(TDM_OUT)
DLRCLK
(AUX PORT)
DBCLK
(AUX PORT)
DSDATA2
(AUX1_IN)
DSDATA3
(AUX2_IN)
ASDATA2
AUX1_OUT)
DSDATA4
AUX2_OUT)
EMPTY EMPTY EMPTY EM PTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 D AC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2
8 ON-CHIP DAC CHANNELS
4 ON-CHIP ADC CHANNELS AUXILIARY ADC CHANNEL S UNUSED SLO TS
ADC L1 ADC R1 ADC L2 ADC R2 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED UNUSED UNUSED UNUSEDUNUSED UNUSED UNUSED UNUSED
LEFT RIGHT
MSB MSB
MSB MSB
MSB MSB
MSB MSB
Figure 17. Combined AUX DAC and ADC Mode
Rev. D | Page 18 of 32
Page 19
AD1939

DAISY-CHAIN MODE

The AD1939 also allows a daisy-chain configuration to expand the system to 8 ADCs and 16 DACs (see Figure 18). In this mode, the DBCLK frequency is 512 f DAC TDM data stream belong to the first AD1939 in the chain and the last eight slots belong to the second AD1939. The second AD1939 is the device attached to the DSP TDM port.
To accommodate 16 channels at a 96 kHz sample rate, the AD1939 can be configured into a dual-line, TDM mode as shown in Figure 19. This mode allows a slower DBCLK than normally required by the one-line TDM mode.
Again, the first four channels of each TDM input belong to the first AD1939 in the chain and the last four channels belong to the second AD1939.
The dual-line TDM mode can also be used to send data at a 192 kHz sample rate into the AD1939 as shown in Figure 20.
DLRCLK
. The first eight slots of the
S
There are two configurations for the ADC port to work in daisy-chain mode. The first one is with an ABCLK at 256 f
S
shown in Figure 21. The second configuration is shown in Figure 22. Note that in the 512 f
ABCLK mode, the ADC
S
channels occupy the first eight slots; the second eight slots are empty. The TDM_IN of the first AD1939 must be grounded in all modes of operation.
The I/O pins of the serial ports are defined according to the serial mode selected. See Tab le 1 3 for a detailed description of the function of each pin. See Figure 26 for a typical AD1939 configuration with two external stereo DACs and two external stereo ADCs.
Figure 23 through Figure 25 show the serial mode formats. For maximum flexibility, the polarity of LRCLK and BCLK are programmable. In these figures, all of the clocks are shown with their normal polarity. The default mode is I
2
S.
DBCLK
DSDATA1 (TDM_IN)
OF THE SE COND AD1939
DSDATA2 (TDM_OUT )
OF THE SE COND AD1939
THIS IS THE TDM
TO THE FIRST AD1939
Figure 18. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain)
8 DAC CHANNELS OF T HE FIRST I C IN THE CHAI N
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4
8 UNUSED SLOTS
FIRST
AD1939
SECOND
AD1939
DSP
8 DAC CHANNELS OF T HE SECOND IC I N THE CHAIN
DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4
32 BITS
MSB
06071-054
Rev. D | Page 19 of 32
Page 20
AD1939
DLRCLK
DBCLK
DSDATA1
(IN)
DSDATA2
(OUT)
DSDATA3
(IN)
DSDATA4
(OUT)
DAC L1 DAC R1 DAC L2 DAC R2 DAC L1 DAC R1 DAC L2 DAC R2
DAC L3 DAC R3 DAC L4 DAC R4 DAC L3 DAC R3 DAC L4 DAC R4
32 BITS
MSB
FIRST
AD1939
SECOND
AD1939
DSP
8 DAC CHANNELS OF T HE SECOND IC I N THE CHAIN8 DAC CHANNELS OF T HE FIRST I C IN THE CHAI N
DAC L1 DAC R1 DAC L2 DAC R2
DAC L3 DAC R3 DAC L4 DAC R4
06071-055
Figure 19. Dual-Line DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two-AD1939 Daisy Chain); DSDATA3 and DSDATA4 Are th e Daisy Chain
DLRCLK
DBCLK
DSDATA1
DAC L1 DAC R1 DAC L2 DAC R2
DSDATA2
ALRCLK
ABCLK
ASDATA1 (TDM_O UT
OF THE SECOND AD1939
OF THE SECOND AD1939
IN THE CHAIN)
ASDATA2 (TDM_I N
IN THE CHAIN)
FIRST
AD1939
DAC L3 DAC R3 DAC L4 DAC R4
32 BITS
MSB
Figure 20. Dual-Line DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode)
4 ADC CHANNELS OF F IRST IC I N THE CHAIN4 ADC CHANNELS OF SE COND IC IN THE CHAIN
ADC L1 ADC R1 ADC L2 ADC R2 ADC L1 ADC R1 ADC L2 ADC R2
ADC L1 ADC R1 ADC L2 ADC R2
32 BITS
SECOND
AD1939
DSP
Figure 21. ADC TDM Daisy-Chain Mode (256 f
MSB
ABCLK, Two-AD1939 Daisy Chain)
S
06071-058
06071-056
Rev. D | Page 20 of 32
Page 21
AD1939
A
A
A
A
ALRCLK
ABCLK
ASDATA1 (TDM_O UT
OF THE SECOND AD1939
IN THE CHAIN)
ASDATA2 (TDM_I N
OF THE SECOND AD1939
IN THE CHAIN)
FIRST
AD1939
LRCLK
BCLK
SDAT
LRCLK
BCLK
SDAT
MSB MSB
4 ADC CHANNELS OF
SECOND IC IN THE CHAIN
ADC L1 ADC R1 ADC L2 AD C R2 ADC L1 ADC R1 ADC L 2 ADC R2
ADC L1 ADC R1 ADC L2 AD C R2
SECOND
AD1939
DSP
4 ADC CHANNELS OF
FIRST IC IN THE CHAIN
Figure 22. ADC TDM Daisy-Chain Mode (512 f
LEFT CHANNEL RIGHT CHANNEL
LSB LSB
LEFT-JUSTIFIE D MODE—16 BIT S TO 24 BIT S PER CHANNEL
LEFT CHANNEL
MSB
I2S-JUSTIF IED MODE—16 BITS TO 24 BITS PER CHANNEL
LSB
32 BITS
MSB
ABCLK, Two-AD1939 Daisy Chain)
S
RIGHT CHANNEL
MSB
LSB
06071-057
LRCLK
BCLK
SDAT
LRCLK
BCLK
SDAT
NOTES
1. DSP MODE DO ES NOT I DENTIFY CHANNEL.
2. LRCLK NORM ALLY OPERATES AT
3. BCLK FREQ UENCY IS NORMAL LY 64 × LRCL K BUT MAY BE OP ERATED IN BURST MODE.
MSB MSB
LEFT CHANNEL RIGHT CHANNEL
MSB MSB
RIGHT-JUST IFIED MODE—SELECT NUMBER OF BI TS PER CHANNEL
DSP MODE—16 BITS TO 24 BI TS PER CHANNEL
f
EXCEPT FOR DSP MODE, WHICH IS 2 ×fS.
S
LSB LSB
LSB LSB
1/
f
S
Figure 23. Stereo Serial Modes
06071-013
Rev. D | Page 21 of 32
Page 22
AD1939
LEFT-JUSTIFIED
DSDATAx
2
I
S-JUSTIFIED
RIGHT-JUST IFIED
DBCLK
DLRCLK
DSDATAx
MODE
MODE
DSDATAx
MODE
ABCLK
ALRCLK
t
t
DBH
ABH
t
DBL
t
DDS
t
t
DDH
DLH
06071-014
t
DLS
t
DDS
MSB
t
DDH
t
DDS
MSB–1
MSB
t
DDH
t
DDS
MSB LSB
t
DDH
Figure 24. DAC Serial Timing
t
ABL
t
t
ALS
ALH
ASDATAx
LEFT-JUSTIFIED
ASDATAx
2
I
S-JUSTIFIED
ASDATAx
RIGHT-JUST IFIED
MODE
MODE
MODE
t
ABDD
MSB
t
ABDD
MSB–1
MSB
Figure 25. ADC Serial Timing
t
ABDD
MSB
LSB
6071-015
Rev. D | Page 22 of 32
Page 23
AD1939
Table 13. Pin Function Changes in TDM and AUX Modes (Replication of Table 12)
Pin Mnemonic Stereo Modes TDM Modes AUX Modes
ASDATA1 ADC1 Data Out ADC TDM Data Out TDM Data Out ASDATA2 ADC2 Data Out ADC TDM Data In AUX Data Out 1 (to Ext. DAC 1) DSDATA1 DAC1 Data In DAC TDM Data In TDM Data In DSDATA2 DAC2 Data In DAC TDM Data Out AUX Data In 1 (from Ext. ADC 1) DSDATA3 DAC3 Data In DAC TDM Data In 2 (Dual-Line Mode) AUX Data In 2 (from Ext. ADC 2) DSDATA4 DAC4 Data In DAC TDM Data Out 2 (Dual-Line Mode) AUX Data Out 2 (to Ext. DAC 2) ALRCLK ADC LRCLK In/ADC LRCLK Out ADC TDM Frame Sync In/ADC TDM Frame Sync Out TDM Frame Sync In/TDM Frame Sync Out ABCLK ADC BCLK In/ADC BCLK Out ADC TDM BCLK In/ADC TDM BCLK Out TDM BCLK In/TDM BCLK Out DLRCLK DAC LRCLK In/DAC LRCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out AUX LRCLK In/AUX LRCLK Out DBCLK DAC BCLK In/DAC BCLK Out DAC TDM BCLK In/DAC TDM BCLK Out AUX BCLK In/AUX BCLK Out
SHARC IS RUNNING IN SLAVE MODE (INTERRUPT-DRIVEN)
TxDATA
LRCLK
BCLK
DATA
MCLK
LRCLK
BCLK
DATA
MCLK
AUX
DAC 1
AUX
DAC 2
06071-019
AUX
ADC 1
AUX
ADC 2
LRCLK
BCLK
DATA
MCLK
LRCLK
BCLK
DATA
MCLK
30MHz
12.288MHz
FSYNC-TDM (RFS)
ASDATA1
DBCLK
DLRCLK
DSDATA2
DSDATA3
MCLKI/XI
SHARC
RxCLK
RxDATA
TFS (NC)
ALRCLK ABCLK DSDATA1
AD1939
TDM MASTER AUX MASTER
®
TxCLK
ASDATA2
DSDATA4
Figure 26. Example of AUX Mode Connection to SHARC (AD1939 as TDM Master/AUX Master Shown)
Rev. D | Page 23 of 32
Page 24
AD1939

CONTROL REGISTERS

DEFINITIONS

The global address for the AD1939 is 0x04, shifted left one bit due to the R/W bit. All registers are reset to 0, except for the DAC volume registers that are set to full volume.
Note that the first setting in each control register parameter is the default setting.
Table 14. Register Format
Global Address R/W Register Address Data
Bit
Table 15. Register Addresses and Functions
Address Function
0 PLL and Clock Control 0 1 PLL and Clock Control 1 2 DAC Control 0 3 DAC Control 1 4 DAC Control 2 5 DAC individual channel mutes 6 DAC L1 volume control 7 DAC R1 volume control 8 DAC L2 volume control 9 DAC R2 volume control 10 DAC L3 volume control 11 DAC R3 volume control 12 DAC L4 volume control 13 DAC R4 volume control 14 ADC Control 0 15 ADC Control 1 16 ADC Control 2
23:17 16 15:8 7:0

PLL AND CLOCK CONTROL REGISTERS

Table 16. PLL and Clock Control 0 Register
Bit Value Function Description
0 0 Normal operation PLL power-down 1 Power-down 2:1 00 INPUT 256 (× 44.1 kHz or 48 kHz) MCLKI/XI pin functionality (PLL active), master clock rate setting 01 INPUT 384 (× 44.1 kHz or 48 kHz) 10 INPUT 512 (× 44.1 kHz or 48 kHz) 11 INPUT 768 (× 44.1 kHz or 48 kHz) 4:3 00 XTAL oscillator enabled MCLKO/XO pin, master clock rate setting 01 256 × fS VCO output 10 512 × fS VCO output 11 Off 6:5 00 MCLKI/XI PLL input 01 DLRCLK 10 ALRCLK 11 Reserved 7 0 Disable: ADC and DAC idle Internal master clock enable 1 Enable: ADC and DAC active
Rev. D | Page 24 of 32
Page 25
AD1939
Table 17. PLL and Clock Control 1 Register
Bit Value Function Description
0 0 PLL clock DAC clock source select 1 MCLK 1 0 PLL clock ADC clock source select 1 MCLK 2 0 Enabled On-chip voltage reference 1 Disabled 3 0 Not locked PLL lock indicator (read only) 1 Locked 7:4 0000 Reserved

DAC CONTROL REGISTERS

Table 18. DAC Control 0 Register
Bit Value Function Description
0 0 Normal Power-down 1 Power-down 2:1 00 32 kHz/44.1 kHz/48 kHz Sample rate 01 64 kHz/88.2 kHz/96 kHz 10 128 kHz/176.4 kHz/192 kHz 11 Reserved 5:3 000 1 SDATA delay (BCLK periods) 001 0 010 8 011 12 100 16 101 Reserved 110 Reserved 111 Reserved 7:6 00 Stereo (normal) Serial format 01 TDM (daisy chain) 10 DAC AUX mode (ADC-, DAC-, TDM-coupled) 11 Dual-line TDM
Table 19. DAC Control 1 Register
Bit Value Function Description
0 0 Latch in mid cycle (normal) BCLK active edge (TDM in) 1 Latch in at end of cycle (pipeline) 2:1 00 64 (2 channels) BCLKs per frame 01 128 (4 channels) 10 256 (8 channels) 11 512 (16 channels) 3 0 Left low LRCLK polarity 1 Left high 4 0 Slave LRCLK master/slave 1 Master 5 0 Slave BCLK master/slave 1 Master 6 0 DBCLK pin BCLK source 1 Internally generated 7 0 Normal BCLK polarity 1 Inverted
Rev. D | Page 25 of 32
Page 26
AD1939
Table 20. DAC Control 2 Register
Bit Value Function Description
0 0 Unmute Master mute 1 Mute 2:1 00 Flat De-emphasis (32 kHz/44.1 kHz/48 kHz mode only) 01 48 kHz curve 10 44.1 kHz curve 11 32 kHz curve 4:3 00 24 Word width 01 20 10 Reserved 11 16 5 0 Noninverted DAC output polarity 1 Inverted 7:6 00 Reserved
Table 21. DAC Individual Channel Mutes
Bit Value Function Description
0 0 Unmute DAC 1 left mute 1 Mute 1 0 Unmute DAC 1 right mute 1 Mute 2 0 Unmute DAC 2 left mute 1 Mute 3 0 Unmute DAC 2 right mute 1 Mute 4 0 Unmute DAC 3 left mute 1 Mute 5 0 Unmute DAC 3 right mute 1 Mute 6 0 Unmute DAC 4 left mute 1 Mute 7 0 Unmute DAC 4 right mute 1 Mute
Table 22. DAC Volume Controls
Bit Value Function Description
7:0 0 No attenuation DAC volume control 1 to 254 −3/8 dB per step 255 Full attenuation
Rev. D | Page 26 of 32
Page 27
AD1939

ADC CONTROL REGISTERS

Table 23. ADC Control 0 Register
Bit Value Function Description
0 0 Normal Power-down 1 Power down 1 0 Off High-pass filter 1 On 2 0 Unmute ADC 1L mute 1 Mute 3 0 Unmute ADC 1R mute 1 Mute 4 0 Unmute ADC 2L mute 1 Mute 5 0 Unmute ADC 2R mute 1 Mute 7:6 00 32 kHz/44.1 kHz/48 kHz Output sample rate 01 64 kHz/88.2 kHz/96 kHz 10 128 kHz/176.4 kHz/192 kHz 11 Reserved
Table 24. ADC Control 1 Register
Bit Value Function Description
1:0 00 24 Word width 01 20 10 Reserved 11 16 4:2 000 1 SDATA delay (BCLK periods) 001 0 010 8 011 12 100 16 101 Reserved 110 Reserved 111 Reserved 6:5 00 Stereo Serial format 01 TDM (daisy chain) 10 ADC AUX mode (ADC-, DAC-, TDM-coupled) 11 Reserved 7 0 Latch in mid cycle (normal) BCLK active edge (TDM in) 1 Latch in at end of cycle (pipeline)
Rev. D | Page 27 of 32
Page 28
AD1939
Table 25. ADC Control 2 Register
Bit Value Function Description
0 0
1 Pulse (32 BCLKs per channel) 1 0 Drive out on falling edge (DEF) BCLK polarity 1 Drive out on rising edge 2 0 Left low LRCLK polarity 1 Left high 3 0 Slave LRCLK master/slave 1 Master 5:4 00 64 BCLKs per frame 01 128 10 256 11 512 6 0 Slave BCLK master/slave 1 Master 7 0 ABCLK pin BCLK source 1 Internally generated
50/50 (allows 32, 24, 20, or 16 bit clocks (BCLKs) per channel)
LRCLK format
Rev. D | Page 28 of 32
Page 29
AD1939
T

ADDITIONAL MODES

The AD1939 offers several additional modes for board level design enhancements. To reduce the EMI in board level design, serial data can be transmitted without an explicit BCLK. See Figure 27 for an example of a DAC TDM data transmission mode that does not require high speed DBCLK. This configura­tion is applicable when the AD1939 master clock is generated by the PLL with the DLRCLK as the PLL reference frequency.
DLRCLK
32 BITS
INTERNAL
DBCLK
DSDATAx
DLRCLK
To relax the requirement for the setup time of the AD1939 in cases of high speed TDM data transmission, the AD1939 can latch in the data using the falling edge of DBCLK. This effec­tively dedicates the entire BCLK period to the setup time. This mode is useful in cases where the source has a large delay time in the serial data driver. Figure 28 shows this pipeline mode of data transmission.
Both the BCLK-less and pipeline modes are available on the ADC serial data port.
INTERNAL
DBCLK
DM-DSDATAx
06071-059
Figure 27. Serial DAC Data Transmission in TDM Format Without DBCLK
(Applicable Only If PLL Locks to DLRCLK, This Mode Is Also Available in the ADC Serial Data Port)
DLRCLK
DBCLK
DATA MUST BE VALID AT THI S BCLK EDGE
DSDATAx
MSB
Figure 28. I
2
S Pipeline Mode in DAC Serial Data Transmission
6071-060
(Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission,
This Mode Is Also Available in the ADC Serial Data Port)
Rev. D | Page 29 of 32
Page 30
AD1939
A
K
A
O

APPLICATION CIRCUITS

Typical application circuits are shown in Figure 29 through Figure 32. Figure 29 shows a typical ADC input filter circuit. Recommended loop filters for LR clock and master clock as the PLL reference are shown in Figure 30. Output filters for the DAC outputs are shown in Figure 31 and a regulator circuit is shown in Figure 32.
120pF
UDIO
INPUT
600Z
100pF
5.76k
5.76k
2
1
OP275
3
+
5.76k 237
120pF
5.76k
6
7
OP275
5
+
4.7µF
4.7µF
+
1nF
NPO
1nF
NPO
237
+
100pF
Figure 29. Typical ADC Input Filter Circuit
VDD2
LRCL
LF
39nF
+
2.2nF
3.32k
AVDD2
MCLK
LF
5.6nF 390pF
562
06071-030
Figure 30. Recommended Loop Filters for LRCLK or MCLK PLL Reference
ADCxN
ADCxP
270pF NPO
560pF NPO
68pF NPO
2
3
OP275
+
604
1
2.2nF NPO
AUDIO OUTPUT
06071-031
11k
DAC
UTN
DAC
OUTP
06071-029
3.01k11k
1.50k5.62k
5.62k
Figure 31. Typical DAC Output Filter Circuit (Differential)
100nF
VSUPPLY 5V
1k
VDRIVE
VSENSE 3.3V
100nF
10µF
+
E
B
FZT953
C
+
10µF
06071-032
Figure 32. Recommended 3.3 V Regulator Circuit
Rev. D | Page 30 of 32
Page 31
AD1939

OUTLINE DIMENSIONS

12.20
PIN 1
12.00 SQ
11. 80
4964
48
0.75
0.60
0.45
1.60 MAX
1
10.20
10.00 SQ
9.80
33
32
051706-A
1.45
1.40
1.35
0.15
SEATING
0.05
PLANE
VIEW A
ROTATED 90° CCW
0.20
0.09 7°
3.5° 0°
0.08 COPLANARIT Y
COMPLIANT TO JEDEC STANDARDS MS-026-BCD
16
17
VIEW A
LEAD PITCH
0.50 BSC
TOP VIEW
(PINS DOWN)
0.27
0.22
0.17
Figure 33. 64-Lead Low Profile Quad Flat Package [LQFP]
(ST-64-2)
Dimensions shown in millimeters

ORDERING GUIDE

1, 2
Model
AD1939YSTZ –40°C to +105°C 64-Lead LQFP ST-64-2 AD1939YSTZRL –40°C to +105°C 64-Lead LQFP, 13” Tape and Reel ST-64-2 AD1939WBSTZ –40°C to +105°C 64-Lead LQFP ST-64-2 AD1939WBSTZ-RL –40°C to +105°C 64-Lead LQFP, 13” Tape and Reel ST-64-2 EVAL-AD1939AZ Evaluation Board
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.
Temperature Range Package Description Package Option

AUTOMOTIVE PRODUCTS

The AD1939W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.
Rev. D | Page 31 of 32
Page 32
AD1939
NOTES
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06071-0-7/11(D)
Rev. D | Page 32 of 32
Loading...