Datasheet AD15252 Datasheet (ANALOG DEVICES)

Page 1
A
www.BDTIC.com/ADI
12-Bit, 65 MSPS, Dual ADC

FEATURES

12-bit, 65 MSPS dual ADC Differential input with 100 Ω input impedance Full-scale analog input: 296 mV p-p 170 MHz, 3 dB bandwidth SNR (−9 dBFS): 64 dBFS (70 MHz AIN), 64 dBFS (140 MHz AIN) SFDR (−9 dBFS): 77 dBFS (70 MHz AIN), 73 dBFS (140 MHz AIN) 435 mW per channel Dual parallel output buses Out-of-range indicators Independent clocks Duty cycle stabilizer
OBSOLETE
Twos complement or offset binary data format

APPLICATIONS

Antijam GPS receivers Wireless and wired broadband communications Communications test equipment
OTR_A
PDWN
OEB_A
PDWNB
OEB_B OTR_B

FUNCTIONAL BLOCK DIAGRAM

CLKA
INA
DFS
CLKB
INB
LPF
LPF
Figure 1.
AD15252
AD15252
DATA BUS A
DATA BUS B
05154-001

GENERAL DESCRIPTION

The AD15252 is a dual, 12-bit, 65 MSPS, analog-to-digital converter (ADC). It features a differential front-end amplification circuit followed by a sample-and-hold amplifier and multistage pipeline ADC. It is designed to operate with a
3.3 V analog supply and a 2.5 V/3.3 V digital supply. Each input is fully differential, ac-coupled, and terminated in 100 Ω input impedances. The full-scale differential signal input range is 296 mV p-p.
Two parallel, 12-bit digital output buses provide data flow from t
he ADCs. The digital output data is presented in either straight binary or twos complement format. Out-of-range (OTR) signals indicate an overflow condition, which can be used with the most significant bit to determine low or high overflow. Dual single-ended clock inputs control all internal conversion cycles. A duty cycle stabilizer allows wide variations in the clock duty cycle while maintaining excellent performance. The AD15252 is optimized for applications in antijam global positioning receivers and is well suited for communications applications.

PRODUCT HIGHLIGHTS

1. Dual 12-bit, 65 MSPS ADC with integrated analog signal
conditioning optimized for antijam global positioning system receiver (AJ-GPS) applications.
perates from a single 3.3 V power supply and features a
2. O
separate digital output driver supply to accommodate 2.5 V and 3.3 V logic families.
ackaged in a space-saving 8 mm × 8 mm chip scale
3. P
package ball grid array (CSP_BGA) and is specified over the industrial temperature range (–40°C to +85°C).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
Page 2
AD15252
www.BDTIC.com/ADI
TABLE OF CONTENTS
Electrical Characteristics................................................................. 3
Clock Input and Considerations .............................................. 11
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics ............................................. 8
Theory of Operation ...................................................................... 11
Analog Input ............................................................................... 11
Volt a ge R e fe r e nc e ....................................................................... 11
OBSOLETE
REVISION HISTORY
8/05—Revision 0: Initial Version
Power Dissipation and Standby Mode .................................... 11
Digital Outputs........................................................................... 12
Timing ......................................................................................... 12
Data Format ................................................................................ 12
PCB and Evaluation Board............................................................ 13
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
Rev. 0 | Page 2 of 20
Page 3
AD15252
www.BDTIC.com/ADI

ELECTRICAL CHARACTERISTICS

AVDD = 3.3 V, DRVDD = 2.5 V, encode = 65 MSPS, CLK_A = CLK_B, AIN = −9 dBFS differential input, TA= 25°C, unless otherwise noted.
Table 1.
Parameter Temp Test Level Min Typ Max Unit
RESOLUTION 12 Bits ACCURACY
No Missing Codes 25°C IV Guaranteed Offset Error 25°C I −6 ±1.7 +6 % FSR Gain Error 25°C I −12.5 ±2.0 +12.5 % FSR Differential Nonlinearity (DNL) Full V ±0.35 LSB Integral Nonlinearity (INL) Full V ±0.8 LSB
TEMPERATURE DRIFT
Offset Error Full V ±9 ppm/°C Gain Error Full V ±172 ppm/°C
MATCHING CHARACTERISTICS
OBSOLETE
Offset Error Full V ±2.0 % FSR Gain Error Full V ±1.0 % FSR Input Referred Noise Full V 0.87 LSB rms
ANALOG INPUT
Input Range Full IV 296 mV p-p Input Resistance (RIN) Input Capacitance (CIN)
CLOCK INPUTS
High Level Input Voltage (VIH) Full IV 2.0 V Low Level Input Voltage (V High Level Input Current (IIH) Full IV −10 +10 μA Low Level Input Current (IIL) Full IV −10 +10 μA Input Capacitance (CIN) Full V 2 pF
LOGIC OUTPUTS
High Level Output Voltage (VOH) Full IV 2.49 V Low Level Output Voltage (VOL) Full IV 0.2 V
INTERFACE TIMING
Maximum Conversion Rate Full VI 65 MSPS Minimum Conversion Rate Full IV 1 MSPS Clock Period (tC) Full V 15.4 ns Clock Width High (tCH) Full IV 6.2 ns Clock Width Low (tCL) Full IV 6.2 ns Clock to Data (tOD) Full IV 2 6 ns Pipeline Delay (Latency) Full V 7 Cycles
POWER SUPPLIES
Supply Voltages
AVDD Full IV 3.0 3.3 3.6 V DRVDD Full IV 2.25 2.5 3.6 V
Supply Currents
AVDD Full VI 254 280 mA DRVDD Full VI 12 15 mA
Total Power Dissipation Full VI 0.87 1.0 W
1
1
IL)
25°C V 100 Ω 25°C V 1.8 pF
Full IV 0.8 V
Rev. 0 | Page 3 of 20
Page 4
AD15252
www.BDTIC.com/ADI
Parameter Temp Test Level Min Typ Max Unit
SIGNAL-TO-NOISE RATIO (SNR)
f
= 70 MHz 25°C I 62.7 64.2 dBFS
INPUT
f
= 110 MHz 25°C V 64.1 dBFS
INPUT
f
= 140 MHz 25°C I 62.5 64 dBFS
INPUT
SINAD
f
= 70 MHz 25°C I 62.4 63.9 dBFS
INPUT
f
= 110 MHz 25°C V 63.7 dBFS
INPUT
f
= 140 MHz 25°C I 61.9 63.3 dBFS
INPUT
THD
f
= 70 MHz Full V −76 dBFS
INPUT
f
= 110 MHz Full V −74 dBFS
INPUT
f
= 140 MHz Full V −72 dBFS
INPUT
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
f
= 70 MHz 25°C I 72.7 77.8 dBFS
INPUT
f
= 110 MHz 25°C V 75.9 dBFS
INPUT
f
= 140 MHz 25°C I 68 73.8 dBFS
INPUT
OBSOLETE
CROSSTALK 25°C V −70 dB
1
Input resistance and capacitance shown as differential.
Table 2. Explanation of Test Levels
Test Level Description
I 100% production tested. II 100% production tested at 25°C, and sample tested at specified temperatures. III Sample tested only. IV Parameter is guaranteed by design and characterization testing. V Parameter is a typical value only. VI
All devices are 100% production tested at 25°C, guaranteed by design and characterization testing for industrial
ature range; 100% production tested at temperature extremes for military devices.
temper
Rev. 0 | Page 4 of 20
Page 5
AD15252
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
AVDD to AGND −0.3 V, +3.9 V DRVDD to DRGND −0.3 V, +3.9 V DRGND to AGND −0.3 V, +0.3 V DRVDD to AVDD −3.9 V, +3.9 V Analog Inputs −0.3 V, AVDD + 0.3 V Digital Outputs −0.3 V, DRVDD + 0.3 V CLK −0.3 V, AVDD + 0.3 V Operational Case Temperature −40°C to 85°C Storage Temperature Range −65°C to 150°C Lead Temperature: Infrared, 15 sec 230°C
OBSOLETE

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. 0 | Page 5 of 20
Page 6
AD15252
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

87654321
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
A1 VINA Analog Input Pin (+) for Channel A.
OBSOLETE
A2 VINA Analog Input Pin (−) for Channel A. H1 VINB
H2
B4 CLK_A
G4 CLK_B Clock Input Pin for Channel B.
C4 PDWN_A Power-Down Function Selection for Channel A (Active High).
F4 PDWN_B Power-Down Function Selection for Channel B (Active High).
A4 OTR_A Out-of-Range Indicator for Channel A.
E8 OTR_B Out-of-Range Indicator for Channel B.
A3 VCM_A Channel A Common Mode.
H3 VCM_B Channel B Common Mode.
D4 OEB_A Output Enable for Channel A. Logic 0 enables Data Bus A; Logic 1 sets outputs to high-Z.
E4 OEB_B Output Enable for Channel B. Logic 0 enables Data Bus B; Logic 1 sets outputs to high-Z.
C5 D11_A(MSB) Channel A Data Output Bit 11 (MSB).
A5 D10_A Channel A Data Output Bit 10.
B5 D09_A Channel A Data Output Bit 9.
A6 D08_A
B6 D07_A Channel A Data Output Bit 7.
A7 D06_A
B7 D05_A
A8 D04_A
C6 D03_A
B8 D02_A
C7 D01_A Channel A Data Output Bit 1.
C8 D00_A(LSB)
E3 DFS
E7 D11_B(MSB)
F8 D10_B Channel B Data Output Bit 10.
F7 D09_B
G8 D08_B Channel B Data Output Bit 8.
VINB
Analog Input Pin (+) for Channel B.
Analog Input Pin (−) for Channel B.
Clock Input Pin for Channel A.
Channel A Data Output Bit 8.
Channel A Data Output Bit 6.
Channel A Data Output Bit 5.
Channel A Data Output Bit 4.
Channel A Data Output Bit 3.
Channel A Data Output Bit 2.
Channel A Data Output Bit 0 (LSB).
Data Output Format Select Bit (Logic 0 for offset binary, Logic 1 for twos complement).
Channel B Data Output Bit 11 (MSB).
Channel B Data Output Bit 9.
BOTTOM VIEW
(Not to Scale)
A B C D E F G H
05154-003
Rev. 0 | Page 6 of 20
Page 7
AD15252
www.BDTIC.com/ADI
Pin No. Mnemonic Description
F6 D07_B Channel B Data Output Bit 7.
H8 D06_B Channel B Data Output Bit 6.
G7 D05_B Channel B Data Output Bit 5.
H7 D04_B Channel B Data Output Bit 4.
G6 D03_B Channel B Data Output Bit 3.
H6 D02_B Channel B Data Output Bit 2.
G5 D01_B Channel B Data Output Bit 1.
H5 D00_B Channel B Data Output Bit 0 (LSB).
C1 to C3, F1 to F3 AVDD Analog Power Supply.
B1 to B3, D3, G1 to G3 AGND Analog Ground.
D6, E6 DRVDD Digital Output Driver Supply.
D5, E5 DRGND Digital Output Ground.
E1 REFT Differential Reference (+).
E2 REFB Differential Reference (−).
OBSOLETE
D1 VREF Voltage Reference.
D2 REF_RTN Voltage Reference Return
H4, F5, D7, D8 DNC1 to DNC4 No Connect.
Rev. 0 | Page 7 of 20
Page 8
AD15252
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

0 –1 –2 –3 –4 –5 –6 –7 –8
ATTENUATION (dB)
–9
–10 –11 –12
10
OBSOLETE
Figure 3. Gain Flatness
100
FREQUENCY (MHz)
05154-004
1000
90
85
80
75
SFDR (dBFS)
70
65
60
–15
–14–13–12–11–10–9–8–7–6–5–4–3–2–1
INPUT AMPLITUDE (dBFS)
Figure 6. Single-Tone SFDR vs. AIN with fIN = 70 MHz
0
05154-007
0
–0.25 –0.50 –0.75 –1.00 –1.25 –1.50 –1.75
30MHz FLATNESS (dB)
–2.00 –2.25 –2.50 –2.75
125 130 135 140 145 150 155
120 160
FREQUENCY (MHz)
Figure 4. Gain Flatness fIN =125MHz to 155 MHz
0
–10
–20
–30
–40
–50
–60
CROSSTALK (dBFS)
–70
–80
–90
1
10 100
FREQUENCY (MHz)
Figure 5. Typical Crosstalk
90
85
80
75
SFDR (dBFS)
70
65
05154-005
60
–16
14–12–10–8–6–4–2
INPUT AMPLITUDE (dBFS)
Figure 7. Single-Tone SFDR vs. AIN with fIN = 110 MHz
90
85
80
75
SFDR (dBFS)
70
65
05154-006
1000
60
–16 0–14 –12 –10 –8 –6 –4 –2
Figure 8. Single-Tone SFDR vs. AIN with f
INPUT AMPLITUDE (dBFS)
= 140 MHz
IN
0
05154-008
05154-009
Rev. 0 | Page 8 of 20
Page 9
AD15252
www.BDTIC.com/ADI
85
80
SFDR
75
70
SFDR/SNR (dBFS)
65
60
70
110
FREQUENCY (MHz)
Figure 9. Single-Tone SNR/SFDR vs. f
SNR
140
05154-010
IN
OBSOLETE
64.6
64.4
64.2
64.0
63.8
SINAD (dBFS)
63.6
63.4
63.2
63.0 70
110
FREQUENCY (MHz)
Figure 10. Single-Tone SINAD vs. f
140
IN
05154-011
–68
–70
–72
–74
–76
THD (dBFS)
–78
–80
–82
–84
70
110
FREQUENCY (MHz)
Figure 11. Single-Tone THD vs. f
140
IN
05154-012
0.4
0.3
0.2
0.1
0
(DNL)
–0.1
–0.2
–0.3
–0.4
0 4096
512 1024 1536 2048 2560 3072 3584
CODE
Figure 12. Typical DNL
0.7
0.6
0.5
0.4
0.3
0.2
0.1 0
(INL)
–0.1 –0.2 –0.3 –0.4 –0.5 –0.6 –0.7
0
512 1024 1536 2048 2560 3072 3584
CODE
Figure 13. Typical INL
MAGNITUDE (dB)
–100
–110 –120 –130
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
1
2 3
0 32.50
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25 FREQUENCY (MHz)
4
Figure 14. Single-Tone FFT of Channel A Digitizing f
While Channel B Digitizes f
= 70 MHz @ −9 dBFS
IN
4096
5
= 70 MHz @ −9 dBFS
IN
6
05154-014
05154-019
05154-023
Rev. 0 | Page 9 of 20
Page 10
AD15252
www.BDTIC.com/ADI
MAGNITUDE (dB)
–100 –110 –120 –130
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
1
2
0 32.50
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25
3
FREQUENCY (MHz)
4
Figure 15. Single-Tone FFT of Channel B Digitizing f
While Channel A Digitizes f
= 70 MHz @ −9 dBFS
IN
6
5
= 70 MHz @ −9 dBFS
IN
05154-024
Figure 18. Single-Tone FFT of Channel A Digitizing f
0 –10 –20 –30 –40 –50 –60 –70
MAGNITUDE (dB)
–80 –90
–100
–110 –120 –130
6
0
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25
While Channel B Digitizes f
1
5
FREQUENCY (MHz)
= 140 MHz @ −9 dBFS
IN
2
4
= 140 MHz @ −9 dBFS
IN
3
32.50
05154-021
OBSOLETE
0 –10 –20 –30 –40 –50 –60 –70 –80
MAGNITUDE (dB)
–90
–100 –110 –120 –130
0 32.50
3
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25
6
4
FREQUENCY (MHz)
1
2
5
05154-025
Figure 16. Single-Tone FFT of Channel A Digitizing fIN = 110 MHz @ −9 dBFS
While Channel B Digitizes f
= 110 M z @ −9 dBFS
IN
0 –10 –20 –30 –40 –50 –60 –70
MAGNITUDE (dB)
–100 –110 –120 –130
–80 –90
6
0 32.50
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25
1
2
5
FREQUENCY (MHz)
Figure 19. Single-Tone FFT of Channel B Digitizing f
While Channel A Digitizes f
= 140 MHz @ −9dBFS
IN
4
= 140 MHz @ −9 dBFS
IN
3
05154-022
0 –10 –20 –30 –40 –50 –60 –70 –80
MAGNITUDE (dB)
–90
–100 –110 –120 –130
0 32.50
3
3.25 6.50 9.75 13.00 16.25 19.50 22.75 26.00 29.25
4
6
FREQUENCY (MHz)
1
Figure 17. Single-Tone FFT of Channel B Digitizing f
While Channel A Digitizes f
= 110 MHz @ −9 dBFS
IN
2
5
= 110 MHz @ −9 dBFS
IN
05154-026
Rev. 0 | Page 10 of 20
Page 11
AD15252
www.BDTIC.com/ADI

THEORY OF OPERATION

The AD15252 consists of two high performance ADC channels. The dual ADC paths are independent, except for a shared internal band gap reference source, VREF. Each path consists of a differential front end amplification circuit followed by a sample-and-hold amplifier and multistage pipeline ADC.
The output-staging block aligns the data, carries out the error
rrection, and passes the data to the output buffers. The output
co buffers are powered from a separate supply, allowing adjustment of the output voltage swing.

ANALOG INPUT

Each analog input is fully differential, allowing sampling of differential input signals. The differential input signals are ac­coupled and terminated in 100 Ω input impedances. The full­scale differential signal input range is 296 mV p-p.
OBSOLETE

VOLTAGE REFERENCE

The internal voltage reference of the ADC is pin strapped to a fixed value of 0.5 V. A 10 μF capacitor should be used between REFT and REFB.

CLOCK INPUT AND CONSIDERATIONS

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, can be sensitive to clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics.
The AD15252 provides separate clock inputs for each channel.
ptimum performance is achieved with the clocks operated
The o at the same frequency and phase. Clocking the channels asynchronously can significantly degrade performance. In some applications, it is desirable to skew the clock timing of adjacent channels. The AD15252’s separate clock inputs allow clock timing skew (typically ±1 ns) between the channels without significant performance degradation.
The AD15252 contains two internal clock duty cycle stabilizers (D
CS), one for each converter, which retime the nonsampling edge, providing an internal clock with a nominal 50% duty cycle. Input clock rates of over 40 MHz can use the DCS so that a wide range of input clock duty cycles can be accommodated. Maintaining a 50% duty cycle clock is particularly important in high speed applications, when proper track-and-hold times for the converter are required to maintain high performance.
The duty cycle stabilizer uses a delay-locked loop to create the n
onsampling edge. As a result, any change to the sampling frequency requires approximately 2 μs to 3 μs to allow the DLL to acquire and settle to the new rate.
High speed, high resolution ADCs are sensitive to the quality of
he clock input. The degradation in SNR at a given full-scale
t input frequency (f calculated by
SNR Degradation = 20 × log 10
In the equation, the rms aperture jitter, t sum square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification.
Undersampling applications are particularly sensitive to jitter.
For optimal performance, especially in cases where aperture
tter can affect the dynamic range of the AD15252, it is
ji important to minimize input clock jitter. The clock input circuitry should use stable references, for example, using analog power and ground planes to generate the valid high and low digital levels for the AD15252 clock input. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step.
) due only to aperture jitter (tJ) can be
INPUT
(1/2 × p × f
, represents the root-
J
INPUT
× tJ)

POWER DISSIPATION AND STANDBY MODE

The power dissipated by the AD15252 is proportional to its sampling rates. The digital (DRVDD) power dissipation is determined primarily by the strength of the digital drivers and the load on each output bit. The digital drive current can be calculated by
I
= V
DRVDD
where:
he number of bits changing.
N is t
is the average load on the digital pins that changed.
C
LOAD
The analog circuitry is optimally biased so that each speed g
rade provides excellent performance while affording reduced power consumption. Each speed grade dissipates a baseline power at low sample rates that increase with clock frequency.
Either channel of the AD15252 can be placed into standby mode inde
pendently by asserting the PDWN_A or PDWN_B pins.
The minimum standby power is achieved when both channels
re placed into full power-down mode using PDWN_A =
a PDWN_B = high. Under this condition, the internal references are powered down. When either or both of the channel paths are enabled after a power-down, the wake-up time is directly related to the recharging of the REFT and REFB decoupling capacitors and to the duration of the power-down. Typically, it takes approximately 5 ms to restore full operation with fully discharged 10 μF decoupling capacitors on REFT and REFB.
DRVDD
× C
LOAD
× f
CLOCK
× N
Rev. 0 | Page 11 of 20
Page 12
AD15252
www.BDTIC.com/ADI
A single channel can be powered down for moderate power savings. The powered-down channel shuts down internal circuits, but both the reference buffers and shared reference remain powered. Because the buffer and voltage reference remain powered, the wake-up time is reduced to several clock cycles.
When using only one channel of the AD15252, the clock for the
abled channel should also be disabled, or distortion occurs in
dis the channel in use.

DIGITAL OUTPUTS

The AD15252 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. The output drivers are sized to provide sufficient output current to drive a wide variety of logic families. However, large drive currents tend to cause current glitches on the supplies, which can affect converter
OBSOLETE
performance. Applications requiring the ADC to drive large capacitive loads or large fan-outs can require external buffers or latches.
The data format can be selected for either offset binary or twos
mplement. This is discussed later in the Data Format section.
co

TIMING

The AD15252 provides latched data outputs with a pipeline delay of seven clock cycles. Data outputs are available one propagation delay (t Refer to
Figure 20 for a detailed timing diagram.
) after the rising edge of the clock signal.
PD
The length of the output data lines and the loads placed on
em should be minimized to reduce transients within the
th AD15252. These transients can detract from the converter’s dynamic performance.
The lowest typical conversion rate of the AD15252 is 1 MSPS.
t clock rates below 1 MSPS, dynamic performance can degrade.
A

DATA FORMAT

The AD15252 data output format can be configured for either twos complement or offset binary. This is controlled by the data format select pin (DFS). Connecting DFS to AGND produces offset binary output data. Conversely, connecting DFS to AVDD formats the output data as twos complement.
A
A
–1
B
–1
Figure 20. Example of Multiplexed Data Format Using the Channel A Output and the Same Clock Tied to CLK_A, CLK_B, and MUX_SELECT
0
B
0
B
–8
t
ODF
A
1
B
1
A
B
–7
–7
A
2
B
2
A
B–6A
–6
A
3
B
3
B–5A–4B–4A–3B
–5
t
ODR
A–2B
A
6
B
6
–2
A
4
B
4
A
5
B
5
–3
A
7
B
7
A
B
–1
–1
A
B
A
B
0
0
8
8
A
1
ANALOG INPUT ADC A
ANALOG INPUT ADC B
CLK_A = CLK_B = MUX_SELECT
D0_A –D11_A
05154-002
Rev. 0 | Page 12 of 20
Page 13
AD15252
www.BDTIC.com/ADI

PCB AND EVALUATION BOARD

OBSOLETE
05154-027
Figure 21. AD15252 Evaluation Board Top Silk
Figure 23. AD15252 Evaluation Board Top Mask
05154-029
05154-028
Figure 22. AD15252 Evaluation Board Top Paste
Rev. 0 | Page 13 of 20
Figure 24. AD15252 Evaluation Board Top Signal
05154-030
Page 14
AD15252
www.BDTIC.com/ADI
OBSOLETE
05154-033
Figure 25. AD15252 Evaluation Board Power Plane
05154-031
Figure 27. AD15252 Evaluation Board Bottom Signal
05154-032
Figure 26. AD1
5252 Evaluation Board Ground Plane
Rev. 0 | Page 14 of 20
Figure 28. AD15252 Evaluation Board Bottom Mask
05154-034
Page 15
AD15252
www.BDTIC.com/ADI
OBSOLETE
05154-035
Figure 29. AD15252 Evaluation Board Bottom Paste
Rev. 0 | Page 15 of 20
Page 16
AD15252
www.BDTIC.com/ADI
SHUNT
ON = GND
OFF = +3.3V
AGND
DGND
DRVDD
+VCC
E2
JP9
JP10
E1
+VDD
AVDD
AGND
OBSOLETE
DRVDD DUTDRVDD
AVDD DUTAVDD
+3.3V
ANALOG
+VCC
+2.5V
DIGITAL
+VDD
+VDD
DGND
DRVDD
DGND
123
4
J6
DGND
E4
E6
E8
E3
E5
E7
AGND DGND
AGND DGND
AGND
DGND
C20
0.1μF
C15
10μF
21
L4 ++
C2
10μF
AGND
C8
0.1μF
C13
10μF
21
L3 ++
C9
10μF
C31
0.1μF
C10
10μF
21
L2
AGND AGND
++
C30
10μF
C29
0.1μF
C7
10μF
21
L1
DGND DGND
++
C28
10μF
+VCC
AGND
AVDD
123
J5
Z5.531.3425.0
DGND
E10
E12
E9
E11
AGND DGND
AGND
AGND
4
Z5.531.3425.0
C1
0.1μF
AGND
DUTAVDD
DUTDVDD
DGND
C27
0.1μF
C26
0.1μF
AGND
DUTAVDD
DFS
OEB_A
+3.3V
ANALOG
LSB_A
C8
U1
AD15252
DFS
REF_RTN
E3
DFS
AGND
JP3
Ω
R5
5.1k
CLK_B
OEB_B
E4
G4
OEB_B
DUTCLK_B
JP4
OEB_B
ANALOG
OEB_B
+3.3V
R3
Ω
5.1k
PDWN_B
PDWN_B
+3.3V
ANALOG
MSB_B
E7
E8
D11_B D11_B
D10_B D10_BF8D09_B D09_BF7D08_B D08_BG8D07_B D07_BF6D06_B D06_BH8D05_B D05_BG7D04_B D04_BH7D03_B D03_BG6D02_B D02_BH6D01_B D01_BG5D00_B D00_B
OTR_B OTR_B
PDWN_B
F4
PDWN_B
R9
VIN+B
0Ω
T4
= 50Ω
O
Z
J2
VCM_BH3REFTE1REFB
VINB
VINB
H2
H1
VIN–B
VIN+B
VIN–B
R12
100Ω
0Ω
R10
1
SECPRI
3
4
6
R4
DNI
C4
10μF
C24
R97
DNI
6
413
TC1-1-13M
AGND
0.1μF
T3
R2
E2
D7
AGND
AGND
JP5
Ω
5.1k
DFS
DNC
DNC
D8
F5
LSB1_A
LSB0_A
SEC PRI
TC1-1-13M
LSB_B
H5
DRGND DRGND AGND AGND AGND AGND AGND AGND AGND
DNC
DNC
H4
LSB1_B
LSB0_B
E5 D5 G3 G2 G1 D3 B3 B2 B1
AGND
DGNDAGND
05154-036
ANALOG
JP1
PDWN_A
Ω
R81
5.1k
+3.3V
PDWN_A
ANALOG
JP2
Ω
R6
5.1k
+3.3V
OEB_A
MSB_A
C5
A4
D11_A D11_A
D10_A D10_AA5D09_A D09_AB5D08_A D08_AA6D07_A D07_AB6D06_A D06_AA7D05_A D05_AB7D04_A D04_AA8D03_A D03_AC6D02_A D02_AB8D01_A D01_AC7D00_A D00_A
OTR_A OTR_A
DRVDD
D6
DRVDD
E6
AVDD
F3
AVDD
F2
AVDD
F1
AVDD
C3
AVDD
C2
AVDD
C1
CLK_A
OEB_A
PDWN_A
VINA
VCM_AA3VREF
VINA
D1
C3
C23
TC1-1-13M
D2
10μF
0.1μF
AGND
SEC PRI
B4
OEB_A
DUTCLK_A
R11
100Ω
R8
1
SECPRI
6
R1
DNI
C4
PDWN_A
VIN–A
0Ω
3
4
TC1-1-13M
A1
R96
AGND
VIN+A
DNI
6
VIN–A
AGND
T2
413
D4
VIN+A
R7
0Ω
T1
= 50Ω
O
Z
J1
A2
Figure 30. AD15252 Evaluation Board Schematic: Analog Front End ADC
Rev. 0 | Page 16 of 20
Page 17
AD15252
A
B
www.BDTIC.com/ADI
1
OE1
19
OE2
DATACLK_
OTR_A
D06_A D07_A D08_A D09_A D10_A D11_A
LSB0_A LSB1_A
D00_A D01_A D02_A D03_A
OBSOLETE
D04_A D05_A
D05_B D06_B D07_B D08_B D09_B D10_B D11_B
OTR_B
LSB1_B
D00_B D01_B D02_B D03_B D04_B
LSB0_B
DATACLK_
R13 150Ω R14 150Ω R20 150Ω R19 150Ω R18 150Ω R17 150Ω R16 150Ω R15 150Ω
R28 DNI R27 DNI R26 150Ω R25 150Ω R24 150Ω R23 150Ω R22 150Ω R21 150Ω
R36 150Ω R35 150Ω R34 150Ω R33 150Ω R32 150Ω R31 150Ω R30 150Ω R29 150Ω
R42 DNI R41 150Ω R40 150Ω R39 150Ω R38 150Ω R37 150Ω R43 DNI R44 0Ω
LSB0_AX
LSB0_AX
LSB1_AX
LSB1_AX
DGND
2
IN0
3
IN1
4
IN2
5
IN3
6
IN4
7
IN5
8
IN6
9
IN7
10
GND
74VHC541MTC
1
OE1
19
OE2
2
IN0
3
IN1
4
IN2
5
IN3
6
IN4
7
IN5
8
IN6
9
IN7
10
GND
74VHC541MTC
1
OE1
19
OE2
2
IN0
3
IN1
4
IN2
5
IN3
6
IN4
7
IN5
8
IN6
9
IN7
10
GND
74VHC541MTC
1
OE1
19
OE2
2
IN0
3
IN1
4
IN2
5
IN3
6
IN4
7
IN5
8
IN6
9
IN7
10
GND
74VHC541MTC
DIGITAL
C16
+2.5V
U2
20
VCC
18
O0
17
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
U3
20
VCC
18
O0
17
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
U4
20
VCC
18
O0
17
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
U5
20
VCC
18
O0
17
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
DIGITAL
+2.5V
DIGITAL
+2.5V
DIGITAL
+2.5V
0.1μF
DGND
C17
0.1μF
DGND
0.1μF
DGND
C25
0.1μF
DGND
C22
R45 22.1Ω R46 22.1Ω R52 22.1Ω R51 22.1Ω R50 22.1Ω R49 22.1Ω R48 22.1Ω R47 22.1Ω
R60 22.1Ω R59 22.1Ω R58 22.1Ω R57 22.1Ω R56 22.1Ω R55 22.1Ω R54 22.1Ω R53 22.1Ω
R68 22.1Ω R67 22.1Ω R66 22.1Ω R65 22.1Ω R64 22.1Ω R63 22.1Ω R62 22.1Ω R61 22.1Ω
R74 22.1Ω R73 22.1Ω R72 22.1Ω R71 22.1Ω R70 22.1Ω R69 22.1Ω R75 22.1Ω R76 22.1Ω
DATACLK_A2 OTR_A2 D06_A2 D07_A2 D08_A2 D09_A2 D10_A2 D11_A2
LSB0_A2 LSB1_A2 D00_A2 D01_A2 D02_A2 D03_A2 D04_A2 D05_A2
DATACLK_B2 OTR_B2 D06_B2 D07_B2 D08_B2 D09_B2 D10_B2 D11_B2
LSB0_B2 LSB1_B2 D00_B2 D01_B2 D02_B2 D03_B2 D04_B2 D05_B2
TP5
TP6
DGND
DATACLK_A2
DGND D11_A2 D10_A2 D09_A2 D08_A2 D07_A2 D06_A2 D05_A2 D04_A2 D03_A2 D02_A2 D01_A2 D00_A2
LSB1_A2 LSB0_A2
OTR_A2
DGND
DGND
DATACLK_B2
DGND
D11_B2 D10_B2 D09_B2 D08_B2 D07_B2 D06_B2 D05_B2 D04_B2 D03_B2 D02_B2 D01_B2
D00_B2 LSB1_B2 LSB0_B2
OTR_B2
DGND
TSW-140-08-S-D-RA
79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41
J7:C
TSW-140-08-S-D-RA
39 37 35 33 31 29 27 25 23 21 19 17 15 13 11
9 7 5 3 1
J7:A
R77
0Ω
R79
0Ω
DGND
DGND
DGND
TSW-140-08-S-D-RA
80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42
J7:D
TSW-140-08-S-D-RA
40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10
8 6 4 2
J7:B
LSB0_AXLSB1_AX
R78 0Ω
LSB0_BXLSB1_BX
R80 0Ω
Figure 31. AD15252 Evaluation Board Schematic: Digital Outputs
Rev. 0 | Page 17 of 20
DGND
05154-037
Page 18
AD15252
www.BDTIC.com/ADI
U6:C
56
74VHC04MTC 74VHC04MTC
AGND
ANALOG
+3.3V
C11
0.1μF
R90
C5
R83
R83
49.9Ω
49.9Ω
C6
R84
49.9Ω
100kΩ
R98 100kΩ
C21
0.1μF
ANALOG
+3.3V
R100 1kΩ
R99 1kΩ
AGND
C12
0.1μF
AGND
J3
0.1μF
ANALOG
+3.3V
C14
0.1μF
OBSOLETE
XTAL A = ENABLE B = DISABLE
JP8
AGND
A B
VF140SHHL-65MHz
AGND
Y1
14
1
8
7
J4
0.1μF
AGND
AGND
R94
0Ω
R82
DNI
AGND
R82
0Ω
CLK_B
CLK_A
U6:B
34
74VHC04MTC 74VHC04MTC
ANALOG
+3.3V
C18
0.1μF
14
U6:A U6:F
V
CC
12
GND
74VHC04MTC
7
AGND
ANALOG
+3.3V
C19
0.1μF
14
U7:A U7:F
V
CC
12
GND
74VHC04MTC
7
AGND
U7:B
34
74VHC04MTC 74VHC04MTC
U7:C
56
74VHC04MTC 74VHC04MTC
AGND
U6:D
9
U6:E
11 10
DATACLK_A DELAY A = 1 DELAY B = 2 DELAY
AGND
13 12
74VHC04MTC
AGND
13 12
74VHC04MTC
U7:E
11 10
DATACLK_B DELAY A = 1 DELAY B = 2 DELAY
U7:D
9
8
TP7
R93
JP6
22.1Ω
A B
R85
0Ω
R87 DNI
JP7
R95 DNI
A B
8
R92 DNI
R88 0Ω
R91 DNI
TP10
DUTCLK_A
AGND
DUTCLK_A
TP8
TP9
DUTCLK_B
DUTCLK_B
DATACLK_A
DATACLK_B
R89 0Ω
05154-038
Figure 32. AD15252 Evaluation Board Schematic: Encode
Rev. 0 | Page 18 of 20
Page 19
AD15252
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

5.60
BSC SQ
BSC
0.34 NOM
0.25 MIN
(BC-64-1)
87654321
0.80
BOTTOM VIEW
DETAIL A
0.55
0.50
0.45
BALL DIAMETER
SEATING PLANE
A
B
C D E F
G H
1.31
1.21
1.10
COPLANARITY
0.12
8.10
8.00 SQ
7.90
BALL A1 CORNER
TOP VIEW
1.70
1.55
1.35
DETAIL A
OBSOLETE
COMPLIANT TO JEDEC STANDARDS MO-205-BA
Figure 33. 64-Lead Chip Scale Package Ball Grid Array [CSP_BGA]
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
AD15252BBC −40°C to +85°C 64-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-64-1 AD15252/PCB Evaluation Board
Rev. 0 | Page 19 of 20
Page 20
AD15252
www.BDTIC.com/ADI
NOTES
OBSOLETE
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05154–0-–8/05(0)
Rev. 0 | Page 20 of 20
Loading...