Datasheet AD10226 Datasheet (Analog Devices)

Page 1
Dual-Channel, 12-Bit 125 MSPS
a
FEATURES Two Independent 12-Bit, 125 MSPS ADCs Channel-to-Channel Isolation, > 80 dB AC-Coupled Signal Conditioning Included Gain Flatness up to Nyquist, < 0.1 dB Input VSWR 1.1:1 to Nyquist 80 dB Spurious-Free Dynamic Range Two’s Complement Output Format
3.3 V or 5 V CMOS-Compatible Output Levels
1.5 W Per Channel Single-Ended or Differential Input 350 MHz Input Bandwidth
APPLICATIONS Wireless and Wired Broadband Communications Base Stations and “Zero-IF” or Direct IF Sampling
Subsystems Wireless Local Loop (WLL) Local Multipoint Distribution Service (LMDS) Radar and Satellite Subsystems
IF Sampling A/D Converter
AD10226
PRODUCT DESCRIPTION
The AD10226 offers two complete ADC channels with on-module signal conditioning for improved dynamic performance. Each wide dynamic range ADC has a transformer coupled front end optimized for direct-IF sampling. The AD10226 has on-chip track-and-hold circuitry and utilizes an innovative architecture to achieve 12-bit, 125 MSPS performance. The AD10226 uses innovative high density circuit design to achieve exceptional performance, while still maintaining excellent isolation and pro­viding for board area savings.
The AD10226 operates with 5.0 V analog supply and 3.3 V digital supply. Each channel is completely independent, allowing opera­tion with independent ENCODE and analog inputs. The AD10226 is available in a 35 mm square 385-lead BGA package.
PRODUCT HIGHLIGHTS
1. Guaranteed sample rate of 125 MSPS
2. Input signal conditioning included with full-power bandwidth to 350 MHz
3. Industry-leading IF sampling performance
D0A
(LSB)
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
(MSB)
DFS_A
SFDR_A
12
ENCODEA
FUNCTIONAL BLOCK DIAGRAM
AINA2
AINA1 AINB1
T1A
50
T/H T/H
ADC
12
OUTPUT
RESISTORS
TIMING
ENCODEA
REF
REF_A_OUT
AD10226
REF_B_OUT
AINB2
50
ADC
REF
T1B
12 12
OUTPUT
RESISTORS
TIMING
ENCODEB
ENCODEB
D0B (LSB)
D1B
D2B
D3B
D4B
D5B
D6B
D7B
D8B
D9B
D10B D11B
(MSB)
DFS_B
SFDR_B
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002
Page 2
AD10226–SPECIFICATIONS
1
(V
ELECTRICAL CHARACTERISTICS
= 3.3 V, V
DD
Parameter Temp Level Min Typ Max Unit
RESOLUTION 12 Bits
DC ACCURACY
Differential Nonlinearity Integral Nonlinearity No Missing Codes Full IV Guaranteed Gain Error
3
2
2
Full IV –0.99 ±0.3 +0.99 LSB Full IV –1.3 ± 0.75 +1.3 LSB
25°CI –9 ± 1+9% FS Output Offset 25°CI –12 +2 +12 LSB Gain Tempco Full V 100 ppm/°C Offset Tempco Full V –50 ppm/°C
ANALOG INPUT
Input Voltage Range 25°CV 1.84 V p-p Input Impedance 25°CV 50 Input VSWR
4
Full V 1.1:1 1.25:1 Ratio Analog Input Bandwidth, High Full IV 300 350 MHz Analog Input Bandwidth, Low Full IV 1 MHz
ANALOG REFERENCE
Output Voltage 25°CV 2.5 V Load Current 25°CV 5 mA Tempco Full V ±80 ppm/°C
SWITCHING PERFORMANCE
5
Maximum Conversion Rate Full VI 125 MSPS Minimum Conversion Rate Full IV 10 MSPS Duty Cycle Full IV 45 50 55 % Aperture Delay (t Aperture Uncertainty (Jitter) 25°CV 0.25 ps rms Output Valid Time (t Output Propagation Delay (t Output Rise Time (t
)25°CV 2.1 ns
A
6
)
V
)25°CV 3.5 ns
R
PD
6
)
Full IV 3.0 4.5 ns
Full IV 4.5 6.0 ns
Output Fall Time (tF)25°CV 3.3 ns
DIGITAL INPUTS
ENCODE Input Common-Mode Full IV 3.75 V Differential Input (ENC, ENC) Full IV 500 mV Logic “1” Voltage Full IV 2.0 V Logic “0” Voltage Full IV 0.8 V Input Resistance Full IV 3 6 k Input Capacitance 25°CV 3 pF
DIGITAL OUTPUTS
Logic “1” Voltage Logic “0” Voltage
6
6
Full IV 3.1 3.3 V
Full IV 0 0.2 V Output Coding Two’s Complement
POWER SUPPLY
Power Dissipation
7
8
Full VI 3040 3300 mW Power Supply Rejection Ratio Full IV ± 0.5 ± 5.0 mV/V Total I (DV
) Current Full VI 40 60 mA
DD
Total I (AVCC) Current Full VI 540 650 mA
= 5.0 V; ENCODE = 125 MSPS, unless otherwise noted.)
CC
Test
–2–
REV. 0
Page 3
AD10226
Test
Parameter Temp Level Min Typ Max Unit
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio (SNR)9 (Without Harmonics)
f
= 10.3 MHz 25°CI 66.5 68.5 dBFS
IN
f
= 49 MHz 25°CV 67 dBFS
IN
= 71 MHz 25°CI 63 66 dBFS
f
IN
f
= 121 MHz 25°CV 64 dBFS
IN
f
= 250 MHz 25°CV 60 dBFS
IN
Signal-to-Noise Ratio (SINAD)
= 10.3 MHz 25°CI 65.5 68 dBFS
f
IN
f
= 49 MHz 25°CV 66.5 dBFS
IN
f
= 71 MHz 25°CI 62.5 65 dBFS
IN
= 121 MHz 25°CV 62.5 dBFS
f
IN
f
= 250 MHz 25°CV 59.5 dBFS
IN
Spurious-Free Dynamic Range
fIN = 10 MHz 25°CI 76.5 82 dBFS
= 41 MHz 25°CV 77 dBFS
f
IN
f
= 71 MHz 25°CI 66 72 dBFS
IN
f
= 121 MHz 25°CV 71 dBFS
IN
= 250 MHz 25°CV 70 dBFS
f
IN
Two-Tone Intermodulation
Distortion f
IN
f
IN
12
(IMD)
= 29.3 MHz; fIN = 30.3 MHz 25°CV 78 dBc
= 150 MHz; fIN = 151 MHz 25°CV 70 dBc
Channel-to-Channel Isolation
fIN = 121 MHz Full IV 85 dB
10
(With Harmonics)
11
13
NOTES
1
All ac specifications tested by driving ENCODE and ENCODE differentially, with the analog input applied to AINX1 and AINX2 tied to ground.
2
SFDR enabled (SFDR = 1) for DNL and INL specifications.
3
Gain error measured at 10.3 MHz.
4
Input VSWR, see TPC 14.
5
See Figure 1, Timing Diagram.
6
tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of ± 40 A.
7
Supply voltages should remain stable within ± 5% for normal operation.
8
Power dissipation measures with encode at rated speed.
9
Analog input signal power at –1 dBFS; signal-to-noise (SNR) is the ratio of signal level to total noise (first six harmonics removed). ENCODE = 125 MSPS, SFDR mode = 1. SNR is reported in dBFS, related back to converter full-scale.
10
Analog input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. ENCODE = 125 MSPS. SINAD is reported in dBFS, related back to converter full-scale.
11
Analog input signal equals –1 dBFS; SFDR is ratio of converter full-scale to worst spur.
12
Both input tones at –7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product.
13
Channel-to-channel isolation tested with A channel/50 terminated (AINA2) grounded and a full-scale signal applied to B channel (AINB2).
Specifications subject to change without notice.
REV. 0
–3–
Page 4
AD10226
WARNING!
ESD SENSITIVE DEVICE
ABSOLUTE MAXIMUM RATINGS*
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
CC
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . 5 V p-p (18 dBm)
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to V
+ 0.5 V
DD
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Operating Temperature (Ambient) . . . . . . . –55°C to +125°C
Storage Temperature (Ambient) . . . . . . . . . –65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C
*Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
THERMAL CHARACTERISTICS
385-Lead BGA Package: The typical θ
of the module as determined by an IR scan is
JA
26.25°C/W.
EXPLANATION OF TEST LEVELS
Test Level
I 100% production tested II 100% production tested at 25°C and sample tested at specific
temperatures III Sample tested only IV Parameter is guaranteed by design and characterization
testing V Parameter is a typical value only VI 100% production tested at 25°C; guaranteed by design and
characterization testing for industrial temperature range
Table I. Output Coding (V
= 2.5 V) (Two’s Complement)
REF
Code AIN (V) Digital Output
+2047 +0.875 0111 1111 1111
·· ·
·· · 00 0000 0000 0000 –1 –0.000427 1111 1111 1111
·· ·
·· · –2048 –0.875 1000 0000 0000
SAMPLE Nⴚ1SAMPLE N SAMPLE N10 SAMPLE Nⴙ11
AIN
SAMPLE Nⴙ9SAMPLE Nⴙ1
1/f
ENCODE
ENCODE
D11D0
t
PD
DATA N11 DATA Nⴚ10 Nⴚ9 DATA Nⴚ1 DATA N DATA N ⴙ 1
N2
S
t
V
Figure 1. Timing Diagram
ORDERING GUIDE
Model Temperature Range Package Description Package Option
AD10226AB –25°C to +85°C (Ambient) 385-Lead BGA (35 mm  35 mm) B-385 AD10226/PCB 25°CEvaluation Board with AD10226AB
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD10226 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
–4–
REV. 0
Page 5
PIN CONFIGURATION
25 23 21 19 17 15 13 11 9 7 5 3 1
24 22 20 18 16 14 12 10 8 6 4 2
A B C D E F G H
J
K
L M N
P R
T U
V
W
Y
AA AB AC AD AE
AD10226
35mm SQUARE
BOTTOM VIEW
PIN FUNCTION DESCRIPTIONS
Mnemonic Function
AGNDA A Channel Analog Ground. A and B grounds should be connected as close to the device as possible.
REF_A_OUT A Channel Internal Voltage Reference
NC No connection
A1 Analog Input for A side ADC (– input)
A
IN
A2 Analog Input for A side ADC (+ input)
A
IN
A Analog Positive Supply Voltage (nominally 5.0 V)
AV
CC
DGNDA A Channel Digital Ground
D11A–D0A Digital Outputs for ADC A. D0 (LSB) ENCODEA Complement of ENCODE
ENCODEA Data conversion initiated on the rising edge of ENCODE input.
A Digital Positive Supply Voltage (nominally 3.3 V)
DV
CC
DGNDB B Channel Digital Ground
D11B–D0B Digital Outputs for ADC B. D0 (LSB)
AGNDB B Channel Analog Ground. A and B grounds should be connected as close to the device as possible.
B Digital Positive Supply Voltage (nominally 3.3 V)
DV
CC
ENCODEB Complement of ENCODE
ENCODEB Data conversion initiated on rising edge of ENCODE input.
REF_B_OUT B Channel Internal Voltage Reference
B1 Analog Input for B side ADC (– input)
A
IN
B2 Analog Input for B side ADC (+ input)
A
IN
B Analog Positive Supply Voltage (nominally 5.0 V)
AV
CC
DFS Data format select. Low = Two’s Complement, High = Binary.
SFDR Mode CMOS control pin that enables (SFDR MODE = 1) a proprietary circuit that may improve the spurious free dynamic
range (SFDR) performance. It is useful in applications where the dynamic range of the system is limited by discrete spurious frequency content caused by nonlinearities in the ADC transfer function. SFDR Mode = 0 for normal operation.
REV. 0
–5–
Page 6
AD10226
385-LEAD BGA PINOUT
Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal No. Name No. Name No. Name No. Name No. Name No. Name
A1 AGNDA A2 AGNDA A3 AGNDA A4 AGNDA A5 AGNDA A6 AGNDA A7 DNC A8 DNC A9 AGNDA A10 AV
CC
A A11 REF_A_OUT A12 AGNDA A13 DNC A14 AGNDB A15 AGNDB A16 AV
CC
B A17 AGNDB A18 AV
CC
B A19 DNC A20 DNC A21 AGNDB A22 AGNDB A23 AGNDB A24 AGNDB A25 AGNDB B1 AGNDA B2 AGNDA B3 AGNDA B4 AGNDA B5 AGNDA B6 AGNDA B7 DNC B8 DNC B9 AGNDA B10 AV
CC
A B11 REF_A_OUT B12 AGNDA B13 DNC B14 AGNDB B15 AGNDB B16 AV
CC
B B17 AGNDB B18 AV
CC
B B19 DNC B20 DNC B21 AGNDB B22 AGNDB B23 AGNDB B24 AGNDB B25 AGNDB C1 AGNDA C2 AGNDA C3 AGNDA C4 AGNDA C5 AGNDA C6 AGNDA C7 DNC C8 DNC C9 AGNDA C10 AV
CC
A C11 REF_A_OUT C12 AGNDA C13 DNC C14 AGNDB C15 AGNDB
C16 AV
CC
B C17 AGNDB C18 AV
CC
B C19 DNC C20 DNC C21 AGNDB C22 AGNDB C23 AGNDB C24 AGNDB C25 AGNDB D1 AGNDA D2 AGNDA D3 AGNDA D4 AGNDA D5 AGNDA D6 AGNDA D7 A D8 A
A2
IN
A1
IN
D9 AGNDA D10 AV
CC
A D11 REF_A_OUT D12 AGNDA D13 DNC D14 AGNDB D15 AGNDB D16 AV
CC
B D17 AGNDB D18 AV D19 A D20 A
B
CC
B2
IN
B1
IN
D21 AGNDB D22 AGNDB D23 AGNDB D24 AGNDB D25 AGNDB E1 AGNDA E2 AGNDA E3 AGNDA E4 AGNDA E22 AGNDB E23 AGNDB E24 AGNDB E25 AGNDB F1 AGNDA F2 AGNDA F3 AGNDA F4 AGNDA F22 AGNDB F23 AGNDB F24 AGNDB F25 AGNDB G1 AGNDA G2 AGNDA G3 AGNDA G4 AGNDA G22 AGNDB G23 AGNDB G24 AGNDB G25 AGNDB H1 AGNDA H2 AGNDA H3 AGNDA H4 AGNDA H22 AGNDB H23 AGNDB
H24 AGNDB H25 AGNDB J1 AV J2 AV J3 AV J4 AV
CC
CC
CC
CC
A A A
A J22 REF_B_OUT J23 REF_B_OUT J24 REF_B_OUT J25 REF_B_OUT K1 AGNDA K2 AGNDA K3 AGNDA K4 AGNDA K10 SFDR_MODE_A K11 AGNDA K12 AGNDA K13 DNC K14 AGNDB K15 AGNDB K16 SFDR_MODE_B K22 AGNDB K23 AGNDB K24 AGNDB K25 AGNDB L1 AGNDA L2 AGNDA L3 AGNDA L4 AGNDA L10 DFS_A L11 AGNDA L12 AGNDA L13 DNC L14 AGNDB L15 AGNDB L16 DFS_B L22 ENCBB L23 ENCBB L24 ENCBB L25 ENCBB M1 ENCAB M2 ENCAB M3 ENCAB M4 ENCAB M10 AGNDA M11 AGNDA M12 AGNDA M13 DNC M14 AGNDB M15 AGNDB M16 AGNDB M22 ENCB M23 ENCB M24 ENCB M25 ENCB N1 ENCA N2 ENCA N3 ENCA N4 ENCA N10 GAIN_A N11 AGNDA N12 AGNDA N13 DNC N14 AGNDB N15 AGNDB
N16 AGNDB N22 AGNDB N23 AGNDB N24 AGNDB N25 AGNDB P1 AGNDA P2 AGNDA P3 AGNDA P4 AGNDA P10 AGNDA P11 AGNDA P12 AGNDA P13 DNC P14 AGNDB P15 AGNDB P16 AGNDB P22 DV P23 DV P24 DV P25 DV P25 DV R1 DV R2 DV R3 DV R4 DV
CC
CC
CC
CC
CC
CC
CC
CC
CC
B B B B B A A A
A R10 AGNDA R11 AGNDA R12 AGNDA R13 DNC R14 AGNDB R15 AGNDB R16 AGNDB R22 DB0 R23 DB0 R24 DB0 R25 DB0 T1 DA11 T2 DA11 T3 DA11 T4 DA11 T10 AV
CC
A T11 AGNDA T12 AGNDA T13 DNC T14 AV
CC
B T15 GAIN_B T16 AGNDB T22 DB1 T23 DB1 T24 DB1 T25 DB1 U1 DA10 U2 DA10 U3 DA10 U4 DA10 U22 DB2 U23 DB2 U24 DB2 U25 DB2 V1 DA9 V2 DA9 V3 DA9 V4 DA9 V22 DB3 V23 DB3
V24 DB3 V25 DB3 W1 DA8 W2 DA8 W3 DA8 W4 DA8 W22 DB4 W23 DB4 W24 DB4 W25 DB4 Y1 DA7 Y2 DA7 Y3 DA7 Y4 DA7 Y22 DB5 Y23 DB5 Y24 DB5 Y25 DB5 AA1 DGNDA AA2 DGNDA AA3 DGNDA AA4 DGNDA AA22 DGNDB AA23 DGNDB AA24 DGNDB AA25 DGNDB AB1 OVRA AB2 OVRA AB3 OVRA AB4 OVRA AB5 DGNDA AB6 DA6 AB7 DA5 AB8 DA4 AB9 DA3 AB10 DA2 AB11 DA1 AB12 DA0 AB13 DGNDA AB14 DGNDB AB15 DB11 AB16 DB10 AB17 DB9 AB18 DB8 AB19 DB7 AB20 DB6 AB21 DGNDB AB22 OVRB AB23 OVRB AB24 OVRB AB25 OVRB AC1 DGNDA AC2 DGNDA AC3 DGNDA AC4 DGNDA AC5 DGNDA AC6 DA6 AC7 DA5 AC8 DA4 AC9 DA3 AC10 DA2 AC11 DA1 AC12 DA0
AC13 DGNDA AC14 DGNDB AC15 DB11 AC16 DB10 AC17 DB9 AC18 DB8 AC19 DB7 AC20 DB6 AC21 DGNDB AC22 DGNDB AC23 DGNDB AC24 DGNDB AC25 DGNDB AD1 DGNDA AD2 DGNDA AD3 DGNDA AD4 DGNDA AD5 DGNDA AD6 DA6 AD7 DA5 AD8 DA4 AD9 DA3 AD10 DA2 AD11 DA1 AD12 DA0 AD13 DGNDA AD14 DGNDB AD15 DB11 AD16 DB10 AD17 DB9 AD18 DB8 AD19 DB7 AD20 DB6 AD21 DGNDB AD22 DGNDB AD23 DGNDB AD24 DGNDB AD25 DGNDB AE1 DGNDA AE2 DGNDA AE3 DGNDA AE4 DGNDA AE5 DGNDA AE6 DA6 AE7 DA5 AE8 DA4 AE9 DA3 AE10 DA2 AE11 DA1 AE12 DA0 AE13 DGNDA AE14 DGNDB AE15 DB11 AE16 DB10 AE17 DB9 AE18 DB8 AE19 DB7 AE20 DB6 AE21 DGNDB AE22 DGNDB AE23 DGNDB AE24 DGNDB AE25 DGNDB
–6–
REV. 0
Page 7
1
2
AGN DA
AGN DA
A
A
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AV
CC
AGN DA
AGN DA
ENCAB
ENCA
AGN DA
DV
CC
DA11
DA10
DA9
DA8
DA7
DGNDA
OVR A
DGNDA
DGNDA
DGNDA
A
A
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
ENCAB
AGN DA
DV
DGNDA
DGNDA
DGNDA
DGNDA
AA
AB
AC
AD
AE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AV
CC
AGN DA
AGN DA
ENCAB
ENCA
AGN DA
DV
CC
DA11
DA10
DA9
DA8
DA7
DGNDA
OVR A
DGNDA
DGNDA
DGNDA
DNC = DO NOT CONNECT
AV
CC
ENCA
CC
DA11
DA10
DA9
DA8
DA7
OVR A
AD10226
385-LEAD BGA PINOUT (Top View, PCB Footprint)
22
23
24
ENCB
CC
DB0
DB1
DB2
DB3
DB4
DB5
OVRB
B
25
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
OVRB
DGNDB
DGNDB
DGNDB
B
3
4
5
6
7
8
A
A
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AV
CC
AGN DA
AGN DA
ENCAB
ENCA
AGN DA
DV
CC
DA11
DA10
DA9
DA8
DA7
DGNDA
OVR A
DGNDA
DGNDA
DGNDA
A
A
AGN DA
AGN DA
AGN DA
AGN DA
DGNDA
DGNDA
DGNDA
DGNDA
AGN DA
AGN DA
AGN DA
AGN DA
DA6
DA6
DA6
DA6
A
DNC
DNC
DNC
IN
DA5
DA5
DA5
DA5
9
10
DNC
AGN DA
AVCCA
REF_A_OUT
DNC
AGN DA
AV
REF_A_OUT
A
CC
DA3
DA3
DA3
DA3
AV
CC
AV
CC
SFDR
Mode A
DFS_A
AGN DA
AGN DA
AGN DA
AGN DA
AV
CC
DA2
DA2
DA2
DA2
A
REF_A_OUT
A
REF_A_OUT
B
DNC
AGN DA
A2
A1
A
AGN DA
IN
DA4
DA4
DA4
DA4
11
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
DA1
DA1
DA1
DA1
12
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
AGN DA
DA0
DA0
DA0
DA0
13
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DGNDA
DGNDA
DGNDA
DGNDA
14
AGNDB
AGNDB
AGNDB
AGNCB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AV
CC
DGNDB
DGNDB
DGNDB
DGNDB
B
15
AGNDB
AGNDB
AGNDB
AGNCB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
DB11
DB11
DB11
DB11
16
AVCCB
AV
CC
AV
CC
AV
CC
SFDR
Mode B
DFS_B
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
DB10
DB10
DB10
DB10
B
B
B
17
AGNDB
AGNDB
AGNDB
AGNCB
DB9
DB9
DB9
DB9
18
AVCCB
AV
CC
AV
CC
AV
CC
DB8
DB8
DB8
DB8
19
DNC
DNC
B
DNC
B
B
AINB2
DB7
DB7
DB7
DB7
20
DNC
DNC
DNC
AINB1
DB6
DB6
DB6
DB6
21
AGNDB
AGNDB
AGNDB
AGNDB
DGNDB
DGNDB
DGNDB
DGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
OVRB
DGNDB
DGNDB
DGNDB
B
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
REF_B_OUT
AGNDB
ENCBB
ENCB
AGNDB
DV
CC
DB0
DB1
DB2
DB3
DB4
DB5
DGNDB
OVRB
DGNDB
DGNDB
DGNDB
B
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
AGNDB
REF_B_OUT
AGNDB
ENCBB
AGNDB
DV
DGNDB
DGNDB
DGNDB
DGNDB
REV. 0
–7–
Page 8
AD10226
– Typical Performance Characteristics
0
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
5101520253035404550
0
FREQUENCY – MHz
TPC 1. Single Tone @ 10.3 MHz
0
ENCODE = 125MSPS
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
= 49MHz (–1dBFS)
A
IN
SNR = 67.12dBFS SFDR = 83.09dBFS
51015202530354045 50
0
FREQUENCY – MHz
ENCODE = 125MSPS
= 10.3MHz (–1dBFS)
A
IN
SNR = 68.19dBFS SFDR = 85.13dBFS
55 60
55 60
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
0
5101520253035404550
0
FREQUENCY – MHz
ENCODE = 125MSPS A SNR = 63.66dBFS SFDR = 79.28dBFS
TPC 4. Single Tone @ 121 MHz
0
5101520253035404550
0
FREQUENCY – MHz
= 121MHz (–1dBFS)
IN
55 60
ENCODE = 125MSPS
= 240MHz (–1dBFS)
A
IN
SNR = 59.06dBFS SFDR = 74.56dBFS
55 60
0
ENCODE = 125MSPS
10
A
IN
SNR = 66.2dBFS
20
SFDR = 82.02dBFS
30
40
50
60
dB
70
80
90
100
110
120
130
0
TPC 2. Single Tone @ 49 MHz
= 71MHz (–1dBFS)
51015202530354045 50
FREQUENCY – MHz
TPC 3. Single Tone @ 71 MHz
55 60
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
TPC 5. Single Tone @ 240 MHz
0
5101520253035404550
0
FREQUENCY – MHz
ENCODE = 125MSPS
= 29.3MHz AND 30.3MHz
A
IN
SFDR = 79.03dBFS
TPC 6. Two Tone @ 29/30 MHz
55 60
–8–
REV. 0
Page 9
AD10226
3.0
3.0
LSB
0.0
0
1.0
2.0
512 1024 1536 2048 2560 3072 3584 4096
2.0
1.0
ENCODE = 125MSPS INL MIN = 0.610 INL MAX = 0.702
OUTPUT CODES
0
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
5101520253035404550
0
FREQUENCY – MHz
TPC 7. Two Tone @ 150/151 MHz
0
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
5101520253035404550
0
FREQUENCY – MHz
ENCODE = 125MSPS
= 150MHz AND 151MHz
A
IN
SFDR = 75.38dBFS
ENCODE = 125MSPS
= 240MHz AND 241MHz
A
IN
SFDR = 67dBFS
55 60
55 60
0
1
2
3
GAIN – dB
4
5
6
10
TPC 10. Integral Nonlinearity
100 1000
FREQUENCY – MHz
TPC 8. Two Tone @ 240/241 MHz
3.0
ENCODE = 125MSPS DNL MIN = 0.530
2.5
DNL MAX = 0.369
2.0
1.5
1.0
LSB
0.5
0.0
0.5
1.0
512 1024 1536 2048 2560 3072 3584 4096
0
OUTPUT CODES
TPC 9. Differential Nonlinearity
TPC 11. Frequency Response
0
1
GAIN – dB
2
10
100 1000
FREQUENCY – MHz
TPC 12. Gain Flatness*
*Gain flatness measurement is performed by
applying a constant voltage at the device input.
REV. 0
–9–
Page 10
AD10226
10MHz = 52.22 – j0.421 50MHz = 50.69 – j2.84 100MHz = 47.50 – j3.58 150MHz = 44.61 – j0.970 200MHz = 43.70 + j3.70 250MHz = 46.41 + j9.48 300MHz = 53.09 + j14.76
10
9
8
7
6
5
GAIN – dB
4
3
2
1
0
0.1
1MHz = 1.010 10MHz = 1.028 50MHz = 1.045 100MHz = 1.066 140MHz = 1.090 160MHz = 1.126 200MHz = 1.170
1
10
FREQUENCY – MHz
100 1000
TPC 13. Input Impedance S11
Equivalent Circuits
8k
ENCODE
24k
Test Circuit 1. Equivalent ENCODE Input
V
CC
V
CC
100
8k
24k
DIGITAL OUTPUT
ENCODE
TPC 14. Voltage Standing Wave Ratio (VSWR)
V
CC
OUTPUT
Q1 NPN
V
CC
V
REF
Test Circuit 3. Equivalent Voltage Reference Output
V
CC
3.75k
AIN2
50
AIN1
15k
3.75k
15k
Test Circuit 2. Equivalent Digital Output
DEFINITION OF TERMS Analog Bandwidth
The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.
Aperture Delay
The delay between the 50% point on the rising edge of the ENCODE command and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter)
The sample-to-sample variation in aperture delay.
–10–
Test Circuit 4. Equivalent Analog Input
Differential Nonlinearity
The deviation of any code from an ideal 1 LSB step.
ENCODE Pulsewidth/Duty Cycle
Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in logic “1” state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. At a given clock rate, these specs define an acceptable ENCODE duty cycle.
REV. 0
Page 11
AD10226
Harmonic Distortion
The ratio of the rms signal amplitude to the rms value of the worst harmonic component.
Integral Nonlinearity
The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a “best straight line” determined by a least square curve fit.
Minimum Conversion Rate
The ENCODE rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.
Maximum Conversion Rate
The ENCODE rate at which parametric testing is performed.
Output Propagation Delay
The delay between the 50% point of the rising edge of ENCODE command and the time when all output data bits are within valid logic levels.
Power Supply Rejection Ratio
The ratio of a change in output offset voltage to a change in power supply voltage.
Signal-to-Noise-and-Distortion (SINAD)
The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).]
Signal-to-Noise Ratio (without Harmonics)
The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).]
Spurious-Free Dynamic Range
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full-scale).]
Two-Tone Intermodulation Distortion Rejection
The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc.
Voltage Standing Wave Ratio (VSWR)
The ratio of the amplitude of the electric field at a voltage maximum to that at an adjacent voltage minimum.
APPLICATION NOTES Theory of Operation
The AD10226 is a high-dynamic-range dual 12-bit, 125 MHz subrange pipeline converter that uses switched capacitor archi­tecture. The analog input section uses A
A2/B2 at 1.84 V p-p
IN
with an input impedance of 50 . The analog input includes an ac-coupled wideband 1:1 transformer, which provides high dynamic range and SNR while maintaining VSWR and gain flatness. The ADC includes a high bandwidth linear track/hold that gives excel­lent spurious performance up to and beyond the Nyquist rate. The high bandwidth track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR and SFDR performance. AC-coupled differen­tial PECL/ECL encode inputs are recommended for optimum performance.
REV. 0
–11–
USING THE AD10226 ENCODE Input
Any high speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A track/hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD10226, and the user is advised to give commensurate thought to the clock source.
The monolithic converter has an internal clock duty cycle stabiliza­tion circuit that locks to the rising edge of ENCODE (falling edge of ENCODE if driven differentially), and optimizes timing inter­nally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. This circuit is always on and cannot be dis­abled by the user.
The ENCODE and ENCODE inputs are internally biased to 3.75 V (nominal) and support either differential or single-ended signals. For best dynamic performance, a differential signal is recommended. Good performance is obtained using an MC10EL16 in the circuit to directly drive the encode inputs, as illustrated in Figure 2.
AD10226
ENCODE
ENCODE
PECL GATE
510
GND
510
0.1F
0.1F
Figure 2. Using PECL to Drive ENCODE Inputs
Often, the cleanest clock source is a crystal oscillator producing a pure, single-ended sine wave. In this configuration, or with any roughly symmetrical, single-ended clock source, the signal can be ac-coupled to the ENCODE input. To minimize jitter, the signal amplitude should be maximized within the input range described in the Table II.
Table II. ENCODE Inputs
Description Min Nom Max
Differential Signal
Amplitude (V
) 200 mV 750 mV 5.5 V
ID
Input Voltage
Range (V
HID, VILD, VHIS
) –5 V V
+ 0.5 V
CC
Internal Common-Mode
Voltage (V
)3.75 V
ICM
External Common-Mode
Bias (V
) 2.0 V 4.25 V
ECM
50
SINE
SOURCE
0.1F
0.1F
50 50 50
ENCODE
ENCODE
AD10226
Figure 3. Single-Ended 50 Sine Encode Circuit
The 10 kresistors to ground at each of the inputs, in parallel with the internal bias resistors, set the common-mode voltage to ~ 2.5 V,
Page 12
AD10226
allowing the maximum swing at the input. The ENCODE input should be bypassed with a capacitor to ground to reduce noise. This ensures that the internal bias voltage is centered on the encode signal (Figure 3). For best dynamic performance, imped­ances at ENCODE and ENCODE should match.
Figure 4 shows another preferred method for clocking the AD10226. The clock source (low jitter) is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the transformer secondary limit clock excursions into the AD10226 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to the other portions of the AD9433, and limits the noise presented to the ENCODE inputs. A crystal clock oscillator can also be used to drive the RF transformer if an appropriate limiting resistor (typically 100 ) is placed in the series with the primary.
CLOCK
SOURCE
0.1F
100
AD10226
ENCODE
ENCODE
Figure 4. Double-Ended 50 Sine Encode Circuit
ENCODE Voltage Level Definition
The voltage level definitions for driving ENCODE and ENCODE in differential mode is shown in Figure 6.
V
V
IHS VILS
V
IHS VILS
IHD
V
ID
V
ILD
V
IHS
V
ILS
ENCODE
ENCODE
ENCODE
ENCODE
0.1F
Figure 5. Differential Input Levels
Analog Input
The analog input is a single-ended ac-coupled high performance 1:1 transformer with an input impedance of 50 to 350 MHz. The nominal full scale input is 1.87 V p-p.
Special care was taken in the design of the analog input section of the AD10226 to prevent damage and corruption of data when the input is overdriven.
SFDR Optimization
The SFDR MODE pin enables (SFDR MODE = 1) a proprietary circuit that may improve the spurious-free dynamic range (SFDR) performance of the AD10226. It is useful in applications where the dynamic range of the system is limited by discrete spurious frequency content caused by nonlinearities in the ADC transfer function.
Enabling this circuit will give the circuit a dynamic transfer function, meaning that the voltage threshold between two adjacent output codes may change from clock cycle to clock cycle. While improv­ing spurious frequency content, this dynamic aspect of the transfer function may be inappropriate for some time domain applications of the converter. Connecting the SFDR Mode pin to ground will disable this function. The Typical Performance Characteristics section of the data sheet illustrates the improvement in the linearity of the converter and its effect on spurious-free dynamic range.
–12–
Digital Outputs
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOS­compatible for lower power consumption. The output data format is selectable through the data format select (DFS) CMOS input. DFS = 1 selects offset binary coding (Table III); DFS = 0 se­lects Two’s Complement coding (Table IV).
Table III. Offset Binary Output Coding (DFS = 1, V
A
– AIN (V) Digital
IN
= 2.5 V)
REF
Code Range = 2 V p-p Output
4095 +0.92 1111 1111 1111
••
••
2048 0 1000 0000 0000 2047 –0.00045 0111 1111 1111
••
••
0 –0.92 0000 0000 0000
Table IV. Two’s Complement Output Coding
(DFS = 0, V
A
– AIN (V) Digital
IN
= 2.5 V)
REF
Code Range = 2 V p-p Output
+2047 +0.92 0111 1111 1111
••
••
00 0000 0000 0000 –1 –0.00045 1111 1111 1111
••
••
–2048 –0.92 1000 0000 0000
Voltage Reference
A stable and accurate 2.5 V voltage reference is designed into the AD10226 (V
). An external voltage reference is not required.
REFOUT
Timing
The AD10226 provides latched data outputs, with 10 pipeline delays. Data outputs are available one propagation delay (t
PD
) after the rising edge of the ENCODE command (see Figure 1). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD10226; these transients can detract from the converter’s dynamic performance.
The minimum guaranteed conversion rate of the AD10226 is 10 MSPS. At internal clock rates below 10 MSPS, dynamic perfor­mance may degrade. Therefore, input clock rates below 10 MHz should be avoided.
GROUNDING AND DECOUPLING Analog and Digital Grounding
Proper grounding is essential in any high-speed, high resolution system. Multilayer printed circuit boards (PCBs) are recommended to provide optimal grounding and power schemes. The use of ground and power planes offers distinct advantages:
1. The minimization of the loop area encompassed by a signal
and its return path.
2. The minimization of the impedance associated with ground
and power paths.
3. The inherent distributed capacitor formed by the powerplane,
PCB insulation, and ground plane.
REV. 0
Page 13
AD10226
These characteristics result in both a reduction of electromagnetic interference (EMI) and an overall improvement in performance.
It is important to design a layout that prevents noise from coupling to the input signal. Digital signals should not be run in parallel with input signal traces and should be routed away from the input circuitry. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance path and manage the power and ground currents. The ground plane should be removed from the area near the input pins to reduce stray capacitance.
Solder Reflow Profile
The Solder Reflow Profile for the AD10226 is shown in Figure 6.
250
200
150
100
TEMPERATURE – ⴗC
50
0
050
100 150 200 250 300 350 400
TIME – Seconds
Figure 6. Typical Solder Reflow Profile
LAYOUT INFORMATION
The schematic of the evaluation board (Figures 7a–7d) represents a typical implementation of the AD10226. The pinout of the AD10226 is very straightforward and facilitates ease of use and the implementation of high-frequency/high resolution design prac­tices. It is recommended that high quality ceramic chip capacitors be used to decouple each supply pin to ground directly at the device. All capacitors can be standard high quality ceramic chip capacitors.
Care should be taken when placing the digital output runs. Because the digital outputs have such a high slew rate, the capacitive load­ing on the digital outputs should be minimized. Circuit traces for the digital outputs should be kept short and connect directly to the receiving gate. Internal circuitry buffers the outputs of the AD9433 ADC through a resistor network to eliminate the need to externally isolate the device from the receiving gate.
EVALUATION BOARD
The AD10226 evaluation board (Figures 7a–7d) is designed to provide optimal performance for evaluation of the AD10226 analog-to-digital converter. The board encompasses everything needed to ensure the highest level of performance for evaluating the AD10226. The board requires an analog input signal, an ENCODE clock and power supply inputs. The clock is buffered on-board to provide clocks for the latches. The digital outputs and out clocks are available at the standard 40-pin connectors J1 and J2. Power to the analog supply pins is connected via banana jacks. The analog supply powers the associated components and analog section of the AD10226. The digital outputs of the AD10226 are also powered via banana jacks with 3.3 V. Contact the factory if additional layout or application assistance is required.
BILL OF MATERIALS LIST FOR AD10226 EVALUATION BOARD
Quantity Reference Designator Value Description Part Number
2 U16, U17 IC, Low Voltage 16-Bit D-Type Flip-Flop 74LCX16374MTD
with 5 V Tolerant Inputs and Outputs (Fairchild) 1U1 IC, BGA 35 35 385 AD10226AB 2 U14, U15 IC, Precision Low Dropout any CAP ADP3330ART-3.3-RL7
Voltage Regulator (Analog) 4 R38, R39, R56, R58 33 k RES 33 k 1/10W 0.1% 0805 SMD ERA-6YEB333V (Panasonic) 8 R1, R7, R8, R41, R60, R61, R71, R72 51 RES 51 1/10W 5% 0805 SMD ERJ-6GEYJ510V (Panasonic) 32 R3, R4, R9–R18, R23–R30, R35, 100 RES 100 1/10W 1% 0805 SMD ERJ-6ENF1000V
R36, R40, R42–R46, R63–R66 (Panasonic)
23 C1, C2, C5–C10, C12, C16–C18, 0.1 µF CAP 0.1 µF 50 V Ceramic Y5V 0805 ECJ-2VF1H104Z
C20–C26, C28, C33–C35 (Panasonic) 2 C13, C27 0.47 µF CAP 0.47 µF 25 V Ceramic Y5V 0805 ECJ-2YF1E474Z (Panasonic) 2 J1, J2 2 20 Male Connector Strip, 100 Centers TSW-120-08G-D (Samtec) 4 L1, L2, L3, L4 47 SMT Ferrite Bead 2743019447 (Fair Rite) 4 U2, U3, U9, U11 IC, 3.3 V/5 V ECL Differential MC10EP16D
Receiver/Driver (Motorola) 8 E3–E6, E25, E26, E33, E34 Power Jack, Banana Plug 108-0740-001 (Johnson Company) 2 U4, U10 3.3 V Dual Differential SY100ELT23L
LVPECL-to-LVTTL Translator (Micrel-Synergy) 10 C3, C4, C11, C14, C15, C19, 10 µF Solid Tantalum Chip Capacitor, T491C106M016AS
C29, C30–C32 10 µF, 16 V, 20% (KEMET)
8 J3–J7, J10–J12 SMA PLUG 200Mil STR GOLD 142-0801-201
(Johnson Components Inc.) 4 Spacer Aluminum, Hex M–F (Standoff) 4 Nut Hex Stl #4-40 UNC-2B 1 AD10201/AD10226 Evaluation Board GS03983 Rev. A (PCB) 2 C36, C37 CAP 0.047 µF 25 V Ceramic Y5V 0603 ECJ-1VB1C473K 6 JP3, JP4, JP6, JP8, JP9, JP12 0 RES 0 1/16 W 5% 0402 ER J-2GEOR00
REV. 0
–13–
Page 14
AD10226
LATCHA
R7
51
MSB D11A
D10A
D9A D8A D7A D6A D5A D4A
D3A D2A D1A
LSB D0A
DGNDA
U16
25
CP2
24
OE2
26
I15
27
I14
29
I13
30
I12
32
I11
33
I10
35
I9
36
I8
48
CP1
1
OE1
37
I7
38
I6
40
I5
41
I4
43
I3
44
I2
46
I1
47
I0
28
GND
34
GND
39
GND
45
GND
74LCX16374MTD
DUT_3.3VDA
VCC VCC VCC VCC
O15 O14 O13 O12 O11 O10
O9 O8
O7 O6 O5 O4 O3 O2 O1
O0 GND GND GND GND
42 31 7 18 23 22 20 19 17 16 14 13
12 11 9 8 6 5 3 2 21 15 10 4
DGNDA
R18
100
R17
100
R16
100
R40
100
R44
100
R45
100
R46
100
R15
100
R14
100
R13
100
R24
100
R23
100
B11A MSB
B10A
B9A
B8A
B7A
B6A
B5A
B4A
B3A
B2A
B1A
B0A LSB
3.3VDA
C15
+
10F 16V
DGNDA
BUFLATA
1
MSB B11A
R71 51
LSB B0A
2 3
B10A
4
B9A
5
B8A
6
B7A
7
B6A
8
B5A
9
B4A
10 11 12
B3A
13
B2A
14
B1A
15 16 17 18 19 20
DGNDA DGNDA
J1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40
40
39
39
38
38
37
37
36
36
35
35
34
34
33
33
32
32
31
31
30
30
29
29
28
28
27
27
26
26
25
25
24
24
23
23
22
22
21
21
LATCHB
R8
51
MSB D11B
D10B
D9B D8B D7B D6B D5B D4B
D3B D2B D1B
LSB D0B
DGNDB
U17
25
CP2
24
OE2
26
I15
27
I14
29
I13
30
I12
32
I11
33
I10
35
I9
36
I8
48
CP1
1
OE1
37
I7
38
I6
40
I5
41
I4
43
I3
44
I2
46
I1
47
I0
28
GND
34
GND
39
GND
45
GND
74LCX16374MTD
R11
DUT_3.3VDB
VCC VCC VCC VCC
O15 O14 O13 O12 O11 O10
O9
O8
O7
O6
O5
O4
O3
O2
O1
O0 GND GND GND GND
42 31 7 18 23 22 20 19 17 16 14 13
12 11 9 8 6 5 3 2 21 15 10 4
DGNDB
100
R10
100
R30
100
R29
100
R28
100
R27
100
R26
100
R12
100
100
R25
100
R36
100
R35
100
B11B MSB
B10B
B9B
B8B
B7B
B6B
B5B
B4B
R9
B3B
B2B
B1B
B0B LSB
Figure 7a. Evaluation Board Schematic
3.3VDB
C14
+
10F 16V
DGNDB
BUFLATB
1
MSB B11B
R72 51
LSB B0B
2 3
B10B
4
B9B
5
B8B
6
B7B
7
B6B
8
B5B
9
B4B
10 11 12
B3B
13
B2B
14
B1B
15 16 17 18 19 20
DGNDB DGNDB
J2
40
40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
39
39
38
38
37
37
36
36
35
35
34
34
33
33
32
32
31
31
30
30
29
29
28
28
27
27
26
26
25
25
24
24
23
23
22
22
21
21
–14–
REV. 0
Page 15
AD10226
E4
E6
E5
E34
E25
E3
AGNDA
5VAA
AGNDA
AGNDB
5VAB
AGNDB
DGNDA
3.3VDA
L3
12
47 @ 100MHz
C3
++
10F 16V
L4
12
47 @ 100MHz
C4
++
10F 16V
C29
++
10F 16V
C20
0.1F
C21
0.1F
L1
12
47 @ 100MHz
C12
0.1F
AGNDA
AGNDB
5VAA
C11 10F 16V
5VAB
C19 10F 16V
DUT_3.3VDA
C31 10F 16V
A
IN
AINA2
AINB2
A
IN
A1
AGNDA
AGNDA
AGNDB
B1
J3
J4
J7
J6
JP1
JP2
AINA 1
AINA 2
AINB 2
AINB 1
STITCHES TO TIE GROUNDS TOGETHER
DGNDA DGNDB DGNDA DGNDB DGNDA AGNDA AGNDA AGNDB
DGNDB AGNDB
E78 E77 E7 E12 E10 E9 E8 E11 E1 E2
E41E42 E43E44 E47E48 E65E66 E68E67 E69E70 E71E72 E74E73 E75E76 E82E81
E30E29 E35E36 E37E38 E39E40 E46E45 E80E79 E83E84
AGNDADGNDA
E33
E26
L2
12
DGNDA
DGNDB
DUT_3.3VDB
C32 10F 16V
DGNDA
DGNDB
3.3VDB
47 @ 100MHz
C30
++
10F 16V
DGNDB
C16
0.1F
AGNDB
5VAA
AGNDA
C34
0.1F
DUT_3.3VDA
C10
0.1F
DGNDA
DUT_3.3VDB
C9
0.1F
C18
0.1F
Figure 7b. Evaluation Board Schematic
DGNDB
C17
0.1F
DGNDB
AGNDB
REV. 0
–15–
Page 16
AD10226
ENCODE
ENCA
J5
AGNDA
J12
AGNDA
R1 51
AGNDA
R41 51
AGNDA
C1
0.1F
C2
0.1F
3.3VA
3.3VDA
5VAA
R56
33k
R58
33k
NR
ERR
5
3
8
7
6
5
AGNDA
8
7
6
5
DGNDA
3.3VA
3.3VDA
C13
0.1F 25V
C6
0.1F
U14
21
IN OUT
6
SD
GND
4
AGNDA
U2
1
NC VCC
2
DQ
3
DQ
4
VBB VEE
MC10EP16D
U3
1
NC VCC
2
DQ
3
DQ
4
VBB VEE
MC10EP16D
R42
R43
100
100
AGNDA
R3 100R4100
DGNDA
U4
1
D0 VCC
2
D0
3
D1
4
D1 GND
SY100EPT23L
Q
Q
8
7
6
5
DGNDA
C7
0.1F
C8
0.1F
3.3VDA
C5
0.1F
ENCAB
ENCA
LATCHA
E23
E19
BUFLATA
ENCODE
ENCB
J10
AGNDB
J11
AGNDB
R60 51
AGNDB
R61 51
AGNDB
C22
0.1F
C23
0.1F
3.3VB
3.3VDB
5VAB
R38
33k
R39
33k
NR
ERR
5
3
8
7
6
5
AGNDB
8
7
6
5
DGNDB
3.3VB
3.3VDB
C27
0.47F 25V
C25
0.1F
R63 100
R65 100
AGNDB
DGNDB
R64 100
R66 100
U15
21
IN OUT
6
SD
GND
4
AGNDB
U11
1
NC VCC
2
DQ
3
DQ
4
VBB VEE
MC10EP16D
U9
1
NC VCC
2
DQ
3
DQ
4
VBB VEE
MC10EP16D
Figure 7c. Evaluation Board Schematic
U10
1
D0 VCC
2
D0
3
D1
4
D1 GND
SY100EPT23L
Q
Q
DGNDB
8
7
6
5
C24
0.1F
C28
0.1F
3.3VDB
C26
0.1F
ENCBB
ENCB
LATCHB
E24
E22
BUFLATB
–16–
REV. 0
Page 17
AGN DA
+5VAA
+5VAA
AGN DA
0.047␮F
JP4
AGN DA
DGNDA
DGNDB
C36
AB13
AC13
AD13
AE13
AA22 AA23 AA24 AA25 AB14 AB21 AC14 AC21 AC22 AC23 AC24 AC25 AD14 AD21 AD22 AD23 AD24 AD25 AE14 AE21 AE22 AE23 AE24 AE25
AD10226
C33
0.1␮F
AGN DA
AINA1
AINA2
OVR A
D0A
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
ENCA
ENCAB
AB4
AB3
AB2
AB1
AE12
AD12
AC12
AB12
AE11
AD11
AC11
AB11
AE10
AD10
AC10
AB10
AE9
AD9
AC9
AB9
AE8
AD8
AC8
AB8
AE7
AD7
AC7
AB7
AE6
AD6
AC6
A1
AGNDA
A2
AGNDA
A3
OVRA
AGNDA
A4
AGNDA
A5
AGNDA
A6
AGNDA
A9
AGNDA
A12
AGNDA
B1
AGNDA
B2
AGNDA
B3
AGNDA
B4
AGNDA
B5
AGNDA
B6
AGNDA
B9
AGNDA
B12
AGNDA
C1
AGNDA
C2
AGNDA
C3
AGNDA
C4
AGNDA
C5
AGNDA
C6
AGNDA
C9
AGNDA
C12
AGNDA
D1
AGNDA
D2
AGNDA
D3
AGNDA
D4
AGNDA
D5
AGNDA
D6
AGNDA
D9
AGNDA
D12
AGNDA
E1
AGNDA
E2
AGNDA
E3
AGNDA
E4
AGNDA
F1
AGNDA
F2
AGNDA
F3
AGNDA
F4
AGNDA
G1
AGNDA
G2
AGNDA
G3
AGNDA
G4
AGNDA
H1
AGNDA
H2
AGNDA
H3
AGNDA
H4
AGNDA
K1
AGNDA
K2
AGNDA
K3
AGNDA
K4
AGNDA
K10 K11
AGNDA
K12
AGNDA
L1
AGNDA
L2
AGNDA
L3
AGNDA
L4
AGNDA
L10 L11
AGNDA
L12
AGNDA
M10
AGNDA
M11
AGNDA
M12
AGNDA
N10 N11
AGNDA
N12
AGNDA
P1
AGNDA
P2
AGNDA
P3
AGNDA
P4
AGNDA
P10
AGNDA
P11
AGNDA
P12
AGNDA
R10
AGNDA
R11
AGNDA
R12
AGNDA
T10 T11
AGNDA
T12
AGNDA
AA1
DGNDA
AA2
DGNDA
AA3
DGNDA
AA4
DGNDA
AB5
DGNDA DGNDA
AC1
DGNDA
AC2
DGNDA
AC3
DGNDA
AC4
DGNDA
AC5
DGNDA DGNDA
AD1
DGNDA
AD2
DGNDA
AD3
DGNDA
AD4
DGNDA
AD5
DGNDA DGNDA
AE1
DGNDA
AE2
DGNDA
AE3
DGNDA
AE4
DGNDA
AE5
DGNDA DGNDA
DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB
OVRB
AB25
OVRA
OVRA
AGN DA
AGN DA
OVRB
OVRB
AB24
AB23
OVRA
OVRB
AB22
AE15
D0A (LSBA)
JP3
JP6
D11B (MSBB)
AD15
D0A (LSBA)
D0A (LSBA)
+5VAA
+5VAA
D11B (MSBB)
D11B (MSBB)
AC15
AB15
D1A
D1A
D1A
D1A
D2A
D2A
D2A
D2A
D3A
D3A
D3A
D3A
D4A
D4A
D4A
D4A
D0A (LSBA)
D11B (MSBB)
D10B
D10B
D10B
D10B
D9B
D9B
D9B
D9B
D8B
D8B
D8B
D8B
D7B
D7B
D7B
AC16
AC17
AC18
AB17
AE18
AD18
AB18
AE19
AD19
AC19
AB19
AE16
AD16
AB16
AE17
AD17
AB6Y4Y3Y2Y1W4W3W2W1V4V3V2V1U4U3U2U1T4T3T2T1N4N3N2N1M4M3M2M1D7C7B7A7D8C8B8A8
D5A
D5A
D5A
D5A
D6A
D6A
D6A
D6A
D7A
D7A
D7A
D7A
D8A
D8A
D8A
D8A
D9A
D9A
D9A
D9A
D10A
D10A
D10A
D10A
D11A (MSBA)
D11A (MSBA)
D11A (MSBA)
AD10226
+5VAB
JP8
AGNDB
D7B
D6B
D6B
D6B
D6B
D5B
D5B
D5B
D5B
D4B
D4B
D4B
D4B
D3B
D3B
D3B
D3B
D2B
D2B
D2B
D2B
D1B
D1B
D1B
D1B
D0B (LSBB)
D0B (LSBB)
D0B (LSBB)
T25
T24
T23
AE20
AD20
Y25
Y24
Y23
Y22
V25
V24
V23
V22
W25
W24
W23
AC20
AB20
W22
T22
U25
U24
U23
U22
R25
R24
R23
R22
ENCA
ENCA
D11A (MSBA)
C37
0.047␮F
D0B (LSBB)
ENCB
ENCB
M25
M24
ENCA
ENCA
AINA2
AINA2
AINA2
AINA2
AINA1
ENCAB
ENCAB
AINA1
ENCAB
ENCAB
+5VAB
JP9
AGNDB
+5VAB
JP12
AGNDB
ENCB
ENCB
ENCBB
ENCBB
ENCBB
ENCBB
REF_B
REF_B
REF_B
REF_B
AINB1
AINB1
J25
J24
J23
J22
L25
L24
L23
L22
D20
C20
M23
M22
B20
AINA1
AINB1
A20
D11
AINA1
AINB1
D19
C11
REF_A
REF_A
5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA
3.3VDA
3.3VDA
3.3VDA
3.3VDA
SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD
3.3VDB
3.3VDB
3.3VDB
3.3VDB
5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB
AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB
AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB
AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB
AGNDB
AINB2
C19
B11
AINB2
B19
A11
REF_A
REF_A
AINB2
AINB2
A19
J1 J2 J3 J4 A10 B10 C10 D10
R1 R2 R3 R4
A13 B13 C13 D13 K13 L13 M13 N13 P13 R13 T13
P22 P23 P24 P25
A16 B16 C16 D16 A18 B18 C18 D18
A14 A15 A17 A21 A22 A23 A24 A25 B14 B15 B17 B21 B22 B23 B24 B25 C14 C15 C17 C21 C22 C23 C24 C25 D14 D15 D17 D21 D22 D23 D24 D25 E22 E23 E24 E25 F22 F23 F24 F25 G22 G23 G24 G25 H22 H23 H24 H25 K14 K15 K16 K22 K23 K24 K25 L14 L15 L16 M14 M15 M16 N14 N15 N16 N22 N23 N24 N25 P14 P15 P16 R14 R15 R16 T14 T15 T16
E49
+5VAA
DUT_3.3VDA
DUT_3.3VDB
+5VAB
+5VAB
REV. 0
D4B
D5B
D6B
D7B
D8B
D9B
D10B
D11B
OVR B
Figure 7d. Evaluation Board Schematic
–17–
D3B
D2B
D1B
D0B
AGNDB
ENCB
C35
0.1␮F
ENCBB
E50
AINB2
AINB1
AGNDB
Page 18
AD10226
+5VAB
E5
+
C19
E39
E11
E8
GS03983 REV: A AD10201/ AD10206 EVALUATION BOARD
J7
GND TIEGND TIE
E47
L3
+
C3
+
+5V
AA
E6
Figure 8a. Mechanical Layout Top View
C4
L4
+
REF_A
J4
AINB2
C11
E3
E49
E4
JP1
AINA2
AGNDB
ENCB
JP2
ENCA
AGNDA
J2
GND TIE
E19 E23
L2
E77
E78
+
DGNDA
E26
+3.3VDB
C16
C30
+
+
R11
R10
R30
R29
R28
R27
R26
R12
R9
R25
R36
R35
E12
GND TIE
E7
J1
R18
R17
R16
R40
R44
R45
R46
R15
R14
R13
R24
R23
C31
L1
C29
+
C12
E25
+3.3VDA
E33 DGNDB
E38
E37
E29
E30
E1
E2
E35
E36
C32
J10
ENCB
E50
REF_B
J6
AINB1
AINA1
J3
GND TIES
E80
E79
E46
E45
E22
J11
E83
BUFLATB
E84
LATCHB E24
U1
ENCA
E82
E65
E9
J12
J5
E41
E43
E68
E74
E71
E69
E75
BUFLATA
LATCHA
E81
E66
E10
E42
E44
GND TIES
E67
E73
E72
E70
E76
E34
Figure 8c. Top View
+
C14
GND TIE
R72
C26
C17
R8
U17
GND TIE
U16
C15
C9
R7
R71
GND TIES
R39
C6
U9
R64
C18 C24
JP12
+5V
JP6
C10
C7
R42
U3
R58
GND TIES
R61
C23
U11
R38
R63
U15
C28
C35
JP9
C37
JP8 JP3
C36
JP4
C20
C8
R43
C34
C13
U14
U2
C2
R41
R60
C27
C22
C21
C33
R56
C1 R1
U10
R66
R65 C25
R4 R3
U4
C5
Figure 8b. Mechanical Layout Bottom View
GND TIE
GND TIE
Figure 8d. Layer 2
–18–
REV. 0
Page 19
AD10226
Figure 8e. Layer 3
Figure 8g. Ground View 2
REV. 0
Figure 8f. Ground View 1
–19–
Page 20
AD10226
37.00
35.00 BSC SQ
33.00
DETAIL C
AD10201AB
XXXX
OUTLINE DIMENSIONS
Dimensions shown in millimeters (mm).
385-Lead Ball Grid Array (BGA)
(B-385)
30.48 BSC SQ
DETAIL A
DETAIL B
1.27 TYP
24681012141618202224
135791113151719212325
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
C02927–0–5/02(0)
COMPONENT
VOL UME
DETAIL A
0.75
0.60
0.50
3.20 MAX
1.15
1.02
0.89
DETAIL B
0.90
0.75
0.60
AD10201AB
XXXX
DETAIL C
–20–
PRINTED IN U.S.A.
REV. 0
Loading...