Datasheet ACS8515 Datasheet (Semtech Corporation)

Page 1
ACS8515 LC/P
Line Card Protection Switch
for SONET or SDH Network Elements
ADVANCED COMMUNCIATIONS
Description Features
The ACS8515 is a highly integrated, single-chip solution for hit-less protection switching of SEC clocks from Master and Slave SETS clockcards in a SONET or SDH Network Element. The ACS8515 has fast activity monitors on the in­puts and will implement automatic system pro­tection switching against master clock failure. A further input is provided for an optional standby SEC clock. The ACS8515 is fully compliant with the required specifications and standards.
The ACS8515 can perform frequency translation from a SEC input clock distributed along a back plane to a different local line card clock, e.g. 8 kHz distributed on the back plane and 19.44 MHz generated on the line cards.
An SPI serial port is incorporated, providing ac­cess to the configuration and status registers for device setup.
The ACS8515 can utilise either a low cost XO oscillator module, or a TCXO with full tempera­ture calibration - as required by the application.
Block Diagram
Suitable for Stratum 3, 4E and 4 SONET or SDH Equipment Clock (SEC) applications Meets AT&T, ITU-T, ETSI and Telcordia specifications Three SEC input clocks, from 2 kHz to 155.52 MHz Generates two SEC output clocks, up to 311.04 MHz Frequency translation of SEC input clock to a different local line card clock Robust input clock source frequency and activity monitoring on all inputs Supports Free-Run, Locked and Holdover modes of operation Automatic hit-less source switchover on loss of input External force fast switch between SEC inputs Phase build-out for output clock phase continuity during input switchover SPI compatible serial microprocessor interface Programmable wander and jitter tracking/ attenuation 0.1 Hz to 20 Hz Single 3.3 v operation. 5 v I/O compatible Operating temperature (ambient) -40°C to +85°C Available in 64 pin LQFP package
FINAL
3 x SEC Input Master/Slave + Standby: N x 8kH z
1.544MH z
2.048MH z
6.48M Hz
19.44MH z
38.88MH z
51.84MH z
77.76MH z
155.52MHz Plus:
MFrSync
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com
3xSEC
Input Ports
MFrSync
Chip Clock
Ge nerator
TCXO or XO
Monitors
Priority
Priority
Table
Table
Frequency Synthesis
Register
Register
Set
Set
DPLL
SPI Compatible Serial
Microproces s o r Port
APLL
Frequency
Dividers
2xSEC
Output
Ports
FrSync
MFrSync
2 x S EC Output
inclu ding:
1.544/2.048MHz
3.088/4.096MHz
6.176/8.192MHz
12.352/16.384MHz
19.44MHz
38.88MHz
155.5 2M Hz
311.0 4M Hz Plus:
2kHz M F rSyn c
8kH z FrSy nc
Page 2
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
FINAL
Table of Contents
Pin diagram................................................................................................................................................3
Pin descriptions.........................................................................................................................................4
Functional description...............................................................................................................................6
Local oscillator clock..........................................................................................................................................................6
Input Interfaces..................................................................................................................................................................7
Input reference clock ports................................................................................................................................................7
Input wander and jitter tolerance......................................................................................................................................9
Output clock ports...........................................................................................................................................................10
Output wander and jitter..................................................................................................................................................11
Phase variation.................................................................................................................................................................13
Phase build-out.................................................................................................................................................................15
Microprocessor interface................................................................................................................................................15
Interrupt enable and clear...............................................................................................................................................16
Register map.....................................................................................................................................................................17
Register map description.................................................................................................................................................20
Selection of input reference clock sources...................................................................................................................27
Activity monitoring...........................................................................................................................................................28
Modes of operation..........................................................................................................................................................30
Power on reset - PORB.....................................................................................................................................................31
Electrical specification............................................................................................................................33
Absolute maximum range...............................................................................................................................................33
Operating conditions.......................................................................................................................................................33
TTL DC characterisitics...................................................................................................................................................33
PECL DC characteristics..................................................................................................................................................35
LVDS DC characteristics..................................................................................................................................................36
Jitter characteristics........................................................................................................................................................37
Microprocessor interface timing characteristics.......................................................................................41
Serial mode.......................................................................................................................................................................41
Package information................................................................................................................................43
Application information............................................................................................................................45
Simplified application schematic...................................................................................................................................45
Revision History.......................................................................................................................................46
Order information....................................................................................................................................47
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com2
Page 3
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Pin Diagram
1 AGND 2IC 3 AGND 4 VA1+ 5 INTREQ 6 REFCLK 7 DGND 8 VD+ 9 VD+ 10 DGND 11 DGND 12 VD+ 13 SRCSW 14 VA2+ 15 AGND 16 IC 17 FrSync 18 MFrSync 19 O1POS 20 O1NEG 21 GND_DIFF 22 VDD_DIFF 23 SEC1_POS 24 SEC1_NEG 25 SEC2_POS 26 SEC2_NEG 27 VDD5 28 Sync2k 29 SEC1 30 SEC2 31 DGND 32 VDD
1
ACS85 15
LC/P
Rev 2.0
FINAL
64 SONSDHB 63 IC 62 IC 61 IC 60 IC 59 NC 58 DGND 57 VDD 56 O2 55 NC 54 VDD 53 DGND 52 SDO 51 IC 50 IC 49 IC 48 PORB 47 SCLK 46 VDD 45 VDD 44 CSB 43 SDI 42 CLKE 41 IC 40 DGND 39 VDD 38 VDD 37 IC 36 VDD 35 IC 34 SEC3 33 IC
Top view of 64 pin LQFP package.
NC - Not Connected, IC - Internally Connected
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com3
Page 4
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Pin Descriptions
Power
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
21,9,8+DVP-
22FFID_DDVP-
725DDVP-
,83,63,23 ,64,54,93
75,45
4+1AVP-
41+2AVP- egatlovylppuS %01-/+.stloV3.3+,LLPAtuptuootylppusgolanA:
,11,01,7
,35,04,13
85
DDVP- :egatlovylppuS %01-/+.stloV3.3+,cigolotylppuslatigiD
DNGDP- dnuorGylppuS cigolrofdnuorglatigiD:
FINAL
:egatlovylppuS 3.3+,noitcesgolananisetagotylppuslatigiD
%01-/+.stloV
:egatlovylppuS &91sniptuptuolaitnereffidrofylppuslatigiD
%01-/+.stloV3.3+,02
5DDV tcennoC.sniptupniotecnarelotstloV5+rofylppuslatigiD:
rofDDVottcennoC.v5+otgnipmalcrof)%01-/+(stlov5+ot
sniptupni,gnipmalconrofgnitaolfevaeL.v3.3+otgnipmalc
.v5.5+otputnarelot
:egatlovylppuS 3.3+,LLPAgniypitlumkcolcotylppusgolanA
%01-/+.stloV
12FFID_DNGP-
51,3,1DNGAP- dnuorGylppuS dnuorggolanA:
No connections
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
95,55CN-- detcennoCtoN taolFotevaeL:
,06,61,2
36,26,16
73CI--
14CI--
94CI--
05CI--
15CI--
CI-- detcennoCyllanretnI taolFotevaeL:
dnuorGylppuS &91sniptuptuolaitnereffidrofdnuorglatigiD:
02
:detcennocyllanretnI lortnocGATJrofdevreseR.taolFotevaeL
noisivertxennotupniteser
:detcennocyllanretnI edomtsetGATJrofdevreseR.taolFotevaeL
noisivertxennotupnitceles
:detcennocyllanretnI GATJrofdevreseR.taolFotevaeL
noisivertxennotupnikcolcnacsyradnuob
:detcennocyllanretnI tsetlairesGATJrofdevreseR.taolFotevaeL
noisivertxennotuptuoatad
:detcennocyllanretnI tsetlairesGATJrofdevreseR.taolFotevaeL
noisivertxennotupniatad
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com4
Page 5
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Others
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
5QERTNIO- :tseuqertpuretnI elbanetpurretnIerawtfoS
6KLCFERILTT
31WSCRSILTT
71cnySrFOLTT
81cnySrFMOLTT
91 02
32 42
52 62
SOP1O GEN1O
SOP_1CES GEN_1CES
SOP_2CES GEN_2CES
O
I
I
D
SDVL/
LCEP
SDVL/
LCEP
/LCEP
SDVL
FINAL
:kcolcecnerefeR lacoLdedaehnoitcesotrefer(zHM8.21
)kcolCrotallicsO
:gnihctiwsecruoS 2CESdna1CESnognihctiwsecruostsafecroF
:ecnerefertuptuO oitarecaps/kram05:05,cnySemarFzHk8
tuptuo
2:ecnerefertuptuO ecaps/kram05:05,cnySemarF-itluMzHk
tuptuooitar
:ecnerefertuptuO SDVLzHM88.83tluafed,elbammargorP
:ecnerefertupnI SDVLzHM44.91tluafed,elbammargorP
:ecnerefertupnI LCEPzHM44.91tluafed,elbammargorP
82k2cnySILTT
921CESILTT
032CESILTT
D
D
D
33CI--
433CESILTT
D
53CI--
24EKLCILTT
34IDSILTT
44BSCILTT
74KLCSILTT
84BROPILTT
D
D
U
D
U
:zHk2cnySemarF-itluM tupnicnySemarF-itluM
:ecnerefertupnI zHk8tluafed,elbammargorP
:ecnerefertupnI zHk8tluafed,elbammargorP
:detcennocyllanretnI -itluMevalSrofdevreseR.DNGottcennoC
.noisivertxennotupnizHk2cnysemarf
:ecnerefertupnI ,ecruoskcolcecnereferybdnatslanretxE
zHM44.91tluafed,elbammargorp
:detcennocyllanretnI lanretxerofdevreseR.DNGottcennoC
.noisivertxennotupnicnysemarf-itluMzHk2ybdnats
:tcelesegdeKLCS stceles1=EKLC,tcelesegdeevitcaKLCS
evitcaebotKLCSfoegdegnillaf
:sserddaecafretnirossecorporciM tupniatadlaireS
:)wolevitca(tcelespihC ehtybwoLdetressasinipsihT
ecafretnirossecorporcimehtelbaneotrossecorporcim
:elbanEhctaLsserddA nipsihtnehW.kcolcatadlaireStluafed
dehctalerastupnisubsserddaeht,wolothgihmorfsnoitisnart
sretsigerlanretniehtotni
:tesernorewoP lanretnilla,woLdecrofsiBROPfI.teserretsaM
seulavtluafedotkcabtesererasetats
Note: I = input, O = output, P = power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com5
Page 6
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
25ODSOLTT
652OOLTT :ecnerefertuptuO dexifzHM44.91
46BHDSNOSILTT
Functional description
The ACS8515 is a highly integrated, single-chip solution for hit-less protection switching of SEC clocks from Master and Slave SETS clock cards in a SONET or SDH Network Element. The ACS8515 has fast activity monitors on the inputs and will implement automatic system protection switching for Master/Slave SEC clock failure. The standby SEC clock will be selected if both the Master and Slave input clocks fail. The selection of the Master/Slave input can also be forced by a Force Fast Switch pin.
The ACS8515 can perform frequency translation from a SEC input clock distributed along a back plane to a different local line card - e.g. 8 kHz distributed on the back plane and 19.44 MHz generated on the line cards.
The ACS8515 has three SEC clock inputs (Master, Slave and Standby) and a single Multi­Frame Sync input, for synchronising the frame and multi-frame sync outputs.
The ACS8515 generates two SEC clock outputs via PECL/LVDS and TTL ports, with spot frequencies from 1.544/2.048 MHz up to
311.04 MHz. The ACS8515 also provides an 8 kHz Frame Sync and 2 kHz Multi-Frame Sync output clock.
D
D
FINAL
:sserddaecafretnirossecorporciM tuptuoatadlaireS
:BHDSTENOS laitiniehtstes:tcelesycneuqerfHDSroTENOS
HDS/TENOSehtfo)BROParetfaetatsro(etatspurewop
.5tib,83rddadna2tib,h43rdda,sretsigernoitcelesycneuqerf
tesnehwdna)ctezHM840.2(detceleserasetarHDSwolnehW
setatsretsigerehT.)ctezHM445.1(detceleserasetarTENOShgih
erawtfosybpurewopretfadegnahcebnac
programmable (0.1 Hz up to 20 Hz cut-off points).
The ACS8515 includes an SPI compatible serial microprocessor port, providing access to the configuration and status registers for device setup.
Local Oscillator Clock
The Master system clock on the ACS8515 should be provided by an external clock oscillator of frequency 12.80 MHz. The exact clock specification is dependent on the quality of Holdover performance required in the application.
In most Line Card protection switching applications where there is a high chance that at least one SEC reference input will be available, the long term stability requirement for Holdover is not appropriate and an inexpensive crystal local oscillator can be used. In other applications where there may be a requirement for longer term Holdover stability to meet the ITU standards for Stratum 3, a higher quality oscillator can be used.
Please contact Semtech for information on crystal oscillator suppliers.
The ACS8515 has a high tolerance to input jitter and wander. The output jitter and wander are low, where the wander transfer is
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com6
Crystal Frequency Calibration
The absolute crystal frequency accuracy is less
Page 7
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. +/- 50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8 bit register locations. The setting of the conf_nominal_frequency register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321. The minimum being 0 and the maximum 65535, gives a +500 ppm to -700 ppm adjustment range of the output frequencies.
For example, if the crystal was oscillating at
12.8 MHz + 5ppm, then the calibration value in the register to give a -5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be : 39321 - (5 /
0.02) = 39071 (decimal).
Input Interfaces
The ACS8515 supports up to three individual input reference clock sources via TTL/CMOS and PECL/LVDS technologies. These interface technologies support 3.3 V and 5 V operation.
Input Reference Clock Ports
The input reference clock ports are arranged in groups. Group one comprises a TTL port (SEC1) and a PECL/LVDS port (SEC1POS and SEC1NEG). Group two comprises a TTL port (SEC2) and a PECL/LVDS port (SEC2POS and SEC2NEG). Group three comprises a TTL port (SEC3). For group one and group two, only one of the two input ports types must be active at any time, the other must not be driven by a reference input. Unused PECL/LVDS differential inputs should be fixed with one input high (VDD) and the other low (GND), or set in LVDS mode
FINAL
and left floating (in which case one input is internally pulled high and the other low).
SDH and SONET networks use different default frequencies; the network type is selectable using the config_mode register 34 Hex, bit 2. For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex, bit 2 = 0. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin
64). Specific frequencies and priorities are set by configuration.
The TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. Clock speeds above 100 MHz should not be applied to the TTL ports. The PECL/LVDS ports support the full range of clock speeds, up to 155.52 MHz.
The actual spot frequencies supported are; 8 kHz (and N x 8 kHz), 1.544 MHz/2.048 MHz,
6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz,
51.84 MHz, 77.76 MHz, and 155.52 MHz. The frequency selection is programmed via the cnfg_ref_source_frequency register. The internal DPLL will normally lock to the selected input at the frequency of the input, eg. 19.44 MHz will lock the DPLL phase comparisons at
19.44 MHz. It is, however, possible to utilise an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways;
(i) any of the supported spot frequencies can be divided to 8 kHz by setting the "lock8K" bit (bit 6) in the appropriate cnfg_ref_source_frequency register location
(ii) any multiple of any supported frequency can be supported by using the "DivN" feature (bit 7 of the cnfg_ref_source_frequency register). Any reference input can be set to lock at 8 kHz independently of the
frequencies and configurations of the other inputs.
Any reference input with the "DivN" bit set in the cnfg_ref_source_frequency register will employ the internal pre-divider prior to the DPLL
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com7
Page 8
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
emaNtroP
1CESSOMC/LTT
2CESSOMC/LTT
1CES
2CES
3CESSOMC/LTT
1CNYSSOMC/LTTcnySemarFitluMzHk2--
SDVLtluafed
troPtupnI
ygolonhceT
LCEP/SDVL
SDVL/LCEP
tluafedLCEP
zHM001otpU)1etoN(
zHM001otpU)1etoN(
zHM001otpU)1etoN(
zHM25.551otpU)2etoN(
zHM25.551otpU)2etoN(
8:)HDS(tluafeDkzH
detroppuSseicneuqerFpuorGecruoSCES
zHk8:)TENOS(tluafeD
zHk8:)TENOS(tluafeD zHk8:)HDS(tluafeD
zHM44.91:)TENOS(tluafeD zHM44.91:)HDS(tluafeD
zHM44.91:)TENOS(tluafeD zHM44.91:)HDS(tluafeD
zHM44.91:)TENOS(tluafeD zHM44.91:)HDS(tluafeD
FINAL
tluafeD
ytiroirP
)3etoN(
11)4(
2)5(3
1)6(2
2)7(4
3)01(5
Table 1: Input Reference Source Selection and Group allocation
Notes for Table 1.
Note 1. TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies are 8 kHz (N x 8 kHz), 1.544/2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz,
38.88 MHz, 51.84 MHz and 77.76 MHz.
Note 2. PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz. There are different output clock frequencies available for SONET and SDH applications. F1/F2 means that the output frequency is F1 for SONET mode selection and F2 for SDH mode selection.
Note 3. The default priority values in brackets are the default numbers reported in the register map, which match up with the ACS8510.
On power up, or by reset, the default will be set by the SONSDHB pin. Specific frequencies and priorities are set by configuration. For SONET, config_mode register 34 Hex, bit 2 = 1. For SDH config_mode register 34 Hex, bit 2 = 0.
locking. The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by (N+1) where 0<N<214-1. The cnfg_ref_source_frequency register must be set to the closest supported spot frequency to the input frequency, but must be lower than the input frequency. When using the DivN feature the post-divider frequency must be 8 kHz, which is indicated by setting the lock8k bit high (bit 6 in cnfg_ref_source_frequency register). Any
input set to DivN must have the frequency monitors disabled (if the frequency monitors are disabled, they are disabled for all inputs regardless of the input configurations, in this case only activity monitoring will take place). Whilst any number of inputs can be set to use the DivN feature, only one N can be programmed, hence all inputs using the DivN feature must require the same division to get to 8 kHz.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com8
Page 9
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz. The choice of PECL or LVDS compatibility is programmed via the cnfg_differential_inputs register.
Unused PECL/LVDS differential inputs should be fixed with one input high (VDD) and the other input low (GND), or set in LVDS mode and left floating, in which case one input is internally pulled high and the other low.
Input Wander and Jitter Tolerance
The ACS8515 is compliant to the requirements of all relevant standards, principally ITU Recommendation G.825, ANSI T1.101-1994 and ETS 300 462-5 (1997).
All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pull­in, hold-in and pull-out ranges are specified for each input port in Table 2. Minimum jitter tolerance masks are specified in Figures 1 and 2, and Tables 3 and 4, respectively. The ACS8515 will tolerate wander and jitter
FINAL
components greater than those shown in Figure 1 and Figure 2, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the eye-closure caused by jitter (the input source will be rejected if the offset pushes the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). The 8klocking mode should be engaged for high jitter tolerance according to these masks.
All reference clock ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause rearrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to
rettiJ
ecnareloT
307.G
387.G
328.G
EROC-4421-RG
Table 2: Input Reference Source Jitter Tolerance.
Notes for Table 2.
Note 1. The frequency acceptance and generation range will be +/-4.6 ppm around the required frequency when the external crystal frequency accuracy is within a tolerance of +/- 4.6 ppm.
Note 2. The fundamental acceptance range and generation range is +/- 9.2 ppm with an exact external crystal frequency of 12.8 MHz.
Note 3. The power up default PDLL range is as stated in note 2, but the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com9
rotinoMycneuqerF
egnaRecnatpeccA
mpp6.61-/+
ycneuqerF
egnaRecnatpeccA
)ni-lluP(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
ycneuqerF
ecnatpeccA
)ni-dloH(egnaR
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
ycneuqerF
)tuo-lluP(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
egnaRecnatpeccA
Page 10
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
an acceptable level.
The registers reg sts_curr_inc_offset (address 0C, 0D, 07) report the frequency of the DPLL with respect to the external TCXO frequency. This is a 19 bit signed number with one LSB representing 0.0003 ppm (range of +/- 80 ppm). Reading this regularly can show how the currently locked source is varying in value e.g. due to wander on its input.
The ACS8515 performs automatic frequency monitoring with an acceptable input frequency offset range of +/- 16.6 ppm. The ACS8515 DPLL has a programmable frequency limit of +/- 80 ppm. If the range is programmed to be > 16.6 ppm, the activity monitors should be
FINAL
disabled so the input reference source is not automatically rejected as out of frequency range.
Output Clock Ports
The ACS8515 supports two SEC output clocks on both TTL and PECL/LVDS ports and a pair of secondary output clocks, Frame-Sync and Multi-Frame-Sync. The two output clocks are individually controllable. The Frame-Sync and Multi-Frame-Sync are derived from the main SEC clock. The frequencies of the output clock are selectable from a range of pre-defined spot frequencies, and a variety of output technologies are supported, as defined in Table
5.
$
$
$
$
$
$
$
$
$
$
I I I I I I I
I I I I I I I
Figure 1: Minimum Input Jitter Tolerance for inputs supporting G.783 compliant sources
edutilpmakaepotkaeP
MTS
level
0A1A2A3A4A0F1F2F3F4F5F6F7F8F9F
1-MTS0082113935.151.0u21u871m6.1m6.51521.03.91005k5.6k56m3.1
)lavretnItinu(
-LWW HUDQGZDQGHUI UHTX H QF\ ORJ VFDOH 
-LWW HUDQGZDQGHUI UHTX H QF\ ORJ VFDOH 
I I
I I
)zH(ycneuqerF
Table 3: Amplitude and Frequency values for Jitter Tolerance for inputs supporting G.783 compliant sources
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com10
Page 11
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
3HDNWRSHDNMLWWHUDQGZ DQGHUDPSOLWXGHORJ
3HDNWRSHDNMLWWHUDQGZ DQGHUDPSOLWXGHORJ VFDOH
VFDOH
$
$
$
$
I I I I
I I I I
Figure 2: Minimum Input Jitter Tolerance for inputs supporting G.703 compliant sources
epyT.cepS
-LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH
-LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH
edutilpmA
)kp-kpIU(
1A2A1F2F3F4F
ycneuqerF
)zH(
FINAL
1SDEROC-4421-RG 51.001005k8k04
1E328.GUTI 5.12.002k4.2k81k001
Table 4: Amplitude and Frequency values for Jitter Tolerance for inputs supporting G.703 compliant sources
Low-speed Output Clock
The O2 SEC clock is supplied on a TTL port with a fixed frequency of 19.44 MHz.
High-speed Output Clock
The O1 SEC clock is supplied on a PECL/LVDS port with spot frequencies of 19.44 MHz, 38.88 MHz, 155.52 MHz, 311.04 MHz and Dig 1 (where Dig 1 is 1.544/2.048 MHz and multiples
Frame Sync and Multi-Frame Sync Clocks
Frame Sync (8 kHz) and Multi-Frame Sync (2 kHz) clocks will be provided on outputs FrSync and MFrSync. The FrSync and MFrSync clocks have a 50:50 mark space ratio.
Output Wander and Jitter
Wander and jitter present on the output clocks are dependent on:
of 2, 4 and 8 depending on SONET/SDH mode setting). The actual frequency is selectable via the cnfg_differential_outputs register. The O1 port can also support 311.04 MHz, which is enabled via the cnfg_T0_output_enable
The magnitude of wander and jitter on the selected input reference clock (in locked mode);
The internal wander and jitter transfer characteristic (in locked mode);
register. The O1 port can be made LVDS or PECL compatible via the cnfg_differential_outputs register.
The jitter on the local oscillator clock;
The wander on the local oscillator clock (in Hold-Over mode).
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com11
Page 12
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit the application and operating state. Wander and jitter attenuation is performed by using a digital phase locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole. It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be gradually tightened again to remove wander. Since wander represents a relatively long-term deviation from the nominal operating frequency, it affects the rate of supply of data to the network element. Strong wander attenuation limits the rate of consumption of data to within a smaller range, so a larger buffer store is required to prevent data loss. But, since any buffer store potentially increases latency, wander may often only need to be removed at
FINAL
specific points within a network where buffer stores are acceptable, such as at digital cross connects. Otherwise, wander is sometimes not required to be attenuated and can be passed through transparently. The ACS8515 has programmable wander transfer characteristics in a range from 0.1 Hz to 20 Hz. The wander and jitter transfer characteristic is shown in Figure 3.
Wander on the local oscillator clock will not have significant effect on the output clock whilst in locked mode, so long as the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal. In free-running or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects must be limited by careful selection of a suitable component for the local oscillator, as specified in the section Local Oscillator Clock.
troP
emaN
1O
2OSOMC/LTTdexifzHM44.91
cnySrFSOMC/LTToitarecaps/kram05:05.zHk8,cnySrF
cnySrFMSOMC/LTToitarecaps/kram05:05.zHk2,cnySrFM
Notes for Table 5.
Note 1. There are different output clock frequencies available for SONET and SDH applications. Dig 1 can be configured for either frequency F1/F2, where the output frequency is F1 when the SONET mode is selected, and F2 when the SDH mode is selected.
On power up, or by reset, the default will be set by the SONSDHB pin. Specific frequencies and priorities are set by configuration. For SONET, config_mode register 34 Hex, bit 2 = 1. For SDH config_mode register 34 Hex, bit 2 = 0.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com12
troPtuptuO
ygolonhceT
LCEP/SDVL
tluafedSDVL
Table 5: Output Reference Source Selection table
detroppuSseicneuqerF
)1etoN(
1giD,zHM40.113,zHM25.551,)tluafed(zHM88.83,zHM44.91
8dna4,2foselpitlumdnazHM840.2/zHM445.1si1giD
Page 13
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
3HDNWRSHDNMLWWHUDQGZ DQGHUDPSOLWXGH ORJVFDOH
8,#I
G%
G%
Figure 3: Wander and Jitter Transfer Characteristsics
FINAL
-LWWHUFXWRIIORZIUHTXHQF\ +]
-LWWHUFXWRIIKLJKIUHTXHQF\ +]
-LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH
Phase Variation
There will be a phase shift across the ACS8515 between the selected input reference source and the output clock. This phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterised using two parameters, MTIE (Maximum Time Interval Error), and TDEV (Time Deviation), which, although being specified in all relevent specifications, differ in acceptable limits in each one. Typical measurements for the ACS8515 are shown in Figures 4 and 5, for locked mode operation. Figure 6 shows a typical measurement of Phase Error accumulation in Holdover mode operation.
The required performance for phase variation during Holdover is specified in several ways depending upon the particular circumstances pertaining:
1. ETSI 300 462-5, Section 9.1, requires that the short­term phase error during switchover (i.e., Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval.
2. ETSI 300 462-5, Section 9.2, requires that the long­term phase error in the Holdover mode should not exceed {(a1+a2)S+0.5bS2+c}, where
a1 = 50 ns/s (allowance for initial frequency offset)
a2 = 2000 ns/s (allowance for temperature variation)
b = 1.16x10
c = 120 ns (allowance for entry into Holdover mode).
3. ANSI Tin1.101-1994, Section 8.2.2, requires that the phase variation be limited so that no more than 255 slips (of 125 µs each) occur during the first day of Holdover. This requires a frequency accuracy better than:
((24x60x60)+(255x125µs))/(24x60x60) = 0.37 ppm.
Temperature variation is not restricted, except to within the normal bounds of 0 to 50 Celsius.
4. Bellcore GR.1244.CORE, Section 5.2. Table 4. shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects.
5. ITU G.822, Section 2.6, requires that the slip rate
-4
ns/s2 (allowance for ageing)
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com13
Page 14
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
G.813 option 1, constant temperature wander limit
MTIE measurement on 155 MHz output, 19.44 MHz i/p (8kHz locking),
1
Vectron 6664 xtal
0.01
0.1
Figure 4: Maximum Time Interval Error of T
G.813 option 1 constant temperature wander limit
1
Time
(ns)
0.01
Time
(ns)
100
10
0.1
10
FINAL
1
10
100
1000
Observation interval (s)
output port
OUT0
10000
0.1
0.01
0.01
TDEV m easurement on 155 M Hz output, 19.44 MHz i/p (8kHz locking),
Vectron 6664 xtal
0.1
1
Figure 5: Time Deviation of T
10000000
1000000
100000
Phase Error (ns)
10000
1000
100
Permitted Phase Error Limit
1000
Figure 6: Phase error accumulation of T
10
Typical measurement, 25°C constant temperature
OUT0
100
O bser v a tio n in te r va l (s )
output port
OUT0
10000
1000
100000
output port in Holdover mode
10000
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com14
Page 15
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
during category(b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125 µs each) per hour
((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm.
Phase Build Out
Phase Transient response and Holdover
Phase Build Out (PBO) is the function to minimise phase transients on the output SEC clock during input reference switching or mode switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference), the second, next highest priority reference source will be selected. During this transition, the Lost_Phase mode is entered.
The typical phase disturbance on clock reference source switching will be less than 10 ns on the ACS8515. For clock reference switching caused by the main input failing or being disconnected, then the phase disturbance on the output will still be less than the 120 ns allowed for in the G.813 spec. The actual value is dependant on the frequency being locked to.
The PBO requirement, as specified in Telcordia GR1244-CORE, Section 5.7, in that a phase transient of greater than 3.5 µs occuring in less than 0.1 seconds should be absorbed, will be implemented on a future version. ITU-T G.813 states that the max allowable short term phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1 µs over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm.
FINAL
is enabled. When PBO is enabled, it can also be frozen, which will disable the PBO operation on the next input reference switch, but will remain with the current offset. If PBO is disabled while the device is in the Locked mode, there will be a phase jump on the output SEC clocks as the DPLL locks back to 0 degree phase error.
Micro-Processor Interface
The ACS8515 incorporates a serial microprocessor interface that is compatible with the Serial Peripheral Interface (SPI) for device setup.
Register Set
All registers are 8-bits wide, organised with the most-significant bit positioned in the left-most bit, with bit-significance decreasing towards the right-most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g., flags) upwards. Several data fields are spread across multiple registers; their organisation is shown in the register map.
Configuration Registers
Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pin­settable. All configuration registers can be read out over the microprocessor port.
Status Registers
The Status Registers contain readable registers. They may all be read from outside the chip but are not writable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location.
On the ACS8515, PBO can be enabled, disabled or frozen using the µP interface. By default, it
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com15
Page 16
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Register Access
Most registers are of one of two types, configuration registers or status registers, the exceptions being the Chip_revision register. Configuration registers may be written to or read from at any time (the complete 8-bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the sts_interrupts register), any individual data field may be cleared by writing a "1" into each bit of the field (writing a "0" value into a bit will not affect the value of the bit). Details of each register are given in the Register Map and Register Description sections.
Interrupt Enable and Clear
Interrupt requests are flagged on pin INTREQ (active High).
Bits in the interrupt status register are set (high) by the following conditions;
(i) any reference source becoming valid or going invalid
(ii) a change in the operating state (eg. Locked, Holdover etc.)
(iii) brief loss of the currently selected reference source
All interrupt sources are maskable via the mask register (cnfg_interrupt_mask), each one being enabled by writing a '1' to the appropriate bit.
FINAL
Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted (high).
All interrupts are cleared by writing a '1' to the bit(s) to be cleared in the status register.
When all pending unmasked interrupts are cleared the interrupt pin will go inactive (low).
The loss of the currently selected reference source will eventually cause the input to be considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependant on the leaky bucket configuration of the activity monitors. The very fastest leaky bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. Some applications require the facility to switch downstream devices based on the status of the reference sources. In order to provide extra flexibility, it is possible to flag the "main reference failed" interrupt (addr 06, bit 6) on the pin TDO. This is simply a copy of the status bit in the interrupt register and is independent of the mask register settings. The bit is reset by writing to the interrupt status register in the normal way. This feature can be enabled and disabled by writing to bit 6 of register 48Hex.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com16
Page 17
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
FINAL
Register map
Shaded areas in the map are dont care and writing either 0 or 1 will not affect any function of the device.
Bits labelled Set to 0 or Set to 1 must be set as stated during initialisation of the device, either following power up, or after a power on reset (POR). Failure to correctly set these bits may result in the device operating in an unexpected way.
Some registers do not appear in this list, for example 07 and 08. These are either not used, or have test functionality. Do not write to any undefined registers as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values.
.rddA
)xeH(
20noisiver_pihc
)ylnodaer(
301lortnoc_gfnc
)etirw/daer(
402lortnoc_gfnc
)etirw/daer(
50stpurretni_sts
)etirw/daer(
60gnitarepO
90edom_gnitarepo_sts
)ylnodaer(
A0elbat_ytiroirp_sts
)ylnodaer(
B0
emaNretemaraPtiBataD
)bsm(7 654321 )bsl(0
'0'otteS
FFID2CESFFID1CES2CES1CES
edom
3
ferniaM
deliaf
ecruosdilavytiroirptsehgiH ecruosecnereferdetcelesyltnerruC
dr
ecruosdilavytiroirptsehgih2
)0:7(rebmunnoisiverpihC
golanA
cnysvid
'0'otteS'0'otteS'0'otteS'0'otteS
timilgalfssolesahP'0'otteS'1'otteS'0'otteS
dn
3CES
)0:2(edomgnitarepO
ecruosdilavytiroirptsehgih
C0tesffo_cni_rruc_sts
D0
70
E0dilav_secruos_sts
F0
11secruos_ecnerefer_sts
21
41
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com17
)ylnodaer(
)ylnodaer(
)etirw/daer(
>2CES<sutats>1CES<sutats
>FFID2CES<sutats >FFID1CES<sutats
)0:7(tesffotnemercnitnerruC
)8:51(tesffotnemercnitnerruC
)61:81(tesffotnemercnitnerruC
FFID2CESFFID1CES2CES1CES
3CES
>3CES<sutats
Page 18
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
81ytiroirp_noitceles_fer_gfnc
)etirw/daer(
91
A1
B1
C1
D1
E1
22ycneuqerf_ecruos_fer_gfnc
)etirw/daer(
32
42
52
82
emaNretemaraPtiBataD
)bsm(7 654321 )bsl(0
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
'0'otteS'0'otteS'0'otteS'0'otteS>3CES<ytiroirp_demmargorp
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
nvidk8kcol)0:1(>1CES<di_tekcub )0:3(>1CES<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>2CES<di_tekcub )0:3(>2CES<ycneuqerf_ecruos_ecnerefer
nvidk8kcol
nvidk8kcol
nvidk8kcol)0:1(>3CES<di_tekcub )0:3(>3CES<ycneuqerf_ecruos_ecnerefer
>2CES<ytiroirp_demmargorp >1CES<ytiroirp_demmargorp
>FFID2CES<ytiroirp_demmargorp >FFID1CES<ytiroirp_demmargorp
di_tekcub
)0:1(>FFID1CES<
di_tekcub
)0:1(>FFID2CES<
FINAL
)0:3(>FFID1CES<ycneuqerf_ecruos_ecnerefer
)0:3(>FFID2CES<ycneuqerf_ecruos_ecnerefer
23edom_gnitarepo_gfnc
33noitceles_fer_gfnc
43edom_gfnc
533lortnoc_gfnc
63stupni_laitnereffid_gfnc
83elbane_tuptuo_gfnc
93seicneuqerf_tuptuo_1O_gfnc
A3tuptuo_laitnereffid_gfnc
B3htdiwdnab_gfnc
C3ycneuqerf_lanimon_gfnc
D3
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
otuA
lanretxe
elbanek2
40.113 1OnozHM
w/botuA
hctiws
kcol/qca
esahP
mrala
tuoemit
elbane
kcolC egde
'0'otteS'0'otteS
TENOS=1
HDS=0
1giDrof
revodloH tesffo elbane
'0'otteS'0'otteS2O'0'otteS'0'otteS
1latigiD
noitcelesycneuqerf1O'0'otteS'0'otteS
htdiwdnabnoitsiuqcA'0'otteShtdiwdnabdekcol/lamroN
k2lanretxE
elbanecnyS
)0:7(ycneuqerflanimoN
)8:51(ycneuqerflanimoN
/TENOS
P/IHDS
edomgnitarepodecroF
ecruos_ecnerefer_tceles_ecrof
noisrever
edom
FFID2CES
LCEP
SDVL1O
elbane
FFID1CES
LCEP
LCEP1O
elbane
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com18
Page 19
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
E3tesffo_revodloh_gfnc
)etirw/daer(
F3
04otuA
14timil_qerf_gfnc
)etirw/daer(
24
34ksam_tpurretni_gfnc
)etirw/daer(
44
54
64nvid_qerf_gfnc
)etirw/daer(
74
emaNretemaraPtiBataD
)bsm(7654321)bsl(0
revodloH gnigarevA
'0'otteS'0'otteS
edom.repOferniaM'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
FINAL
)0:7(tesfforevodloH
)8:51(tesfforevodloH
)61:81(tesfforevodloH
)0:7(timiltesffoycneuqerFLLPD
tesffoycneuqerFLLPD
)8:9(timil
sutats
FFID2CES
sutats
FFID1CES
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
sutats
2CES
)0:7(oitarn-yb-tupni-ediviD
sutats
1CES
)8:31(oitarn-yb-tupni-ediviD
'0'otteS'0'otteS
sutats
3CES
84srotinom_gfnc
050dlohserht_reppu_vitca_gfnc
150dlohserht_rewol_vitca_gfnc
250ezis_tekcub_gfnc
350etar_yaced_gfnc
451dlohserht_reppu_vitca_gfnc
551dlohserht_rewol_vitca_gfnc
651ezis_tekcub_gfnc
751etar_yaced_gfnc
852dlohserht_reppu_vitca_gfnc
952dlohserht_rewol_vitca_gfnc
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
tsolfergalF
ODTno
tsaf-artlU
gnihctiws
lanretxE ecruos hctiws elbane
ezeerF
esahp
tuodliub
esahP
tuodliub
elbane
)0:7(dlohserhttesmralaytivitcA:0noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:0noitarugifnoC
)0:7(ezistekcubmralaytivitcA:0noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:1noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:1noitarugifnoC
)0:7(ezistekcubmralaytivitcA:1noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:2noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:2noitarugifnoC
srotinomycneuqerF
)0:1(noitarugifnoc
:0noitarugifnoC )0:1(etar_yaced
:1noitarugifnoC )0:1(etar_yaced
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com19
Page 20
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
A52ezis_tekcub_gfnc
)etirw/daer(
B52etar_yaced_gfnc
)etirw/daer(
C53dlohserht_reppu_vitca_gfnc
)etirw/daer(
D53dlohserht_rewol_vitca_gfnc
)etirw/daer(
E53ezis_tekcub_gfnc
)etirw/daer(
F53etar_yaced_gfnc
)etirw/daer(
Register map description
.rddA )xeH(
20noisiver_pihc rebmunnoisiverpihcehtsniatnocretsigerylnodaersihT 10000000
301lortnoc_gfnc tfelronoitasilaitinignirud'0'tatesrehtieebtsumdnaslortnoctsetera5&)0:3(stiB
402lortnoc_gfnc .degnahcnutfelronoitasilaitinignirud'010'tatesebtsumdnaslortnoctsetera)0:2(stiB
stpurretni_sts ehtecnereferfossolrofeno,dilav_secruos_stsfotibhcaeroftibenosniatnocretsigertib61sihT
50desunu)6:7(stiB
600dna)6:7(etybtnacifingistsoM
emaNretemaraPtiBataD
)bsm(7654321)bsl(0
)0:7(ezistekcubmralaytivitcA:2noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:3noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:3noitarugifnoC
)0:7(ezistekcubmralaytivitcA:3noitarugifnoC
emaNretemaraPnoitpircseDtluafeD
.degnahcnu
tnemngilaesahpehtevahotyrassecensisihT.ngilasesahpriehttahthcusnoitcesLLPD
.edomnureerfotniecrofasahcusruccoycneuqerfnisegnahckciuq
otsdnopserrochcihw)001(4ottestluafedyB.timilgalfssolesahpehtenifed)3:5(stiB timilgalfehT.timilesahprewolgnidnopserrocasteseulavrewolA.°041yletamixorppa
tupniehtnopmujycneuqerfaro,pmuj
.hgihevitcaerastibllA.edomgnitarepoehtrofrehtonadna,otdekcolsawecived
ehtfI.tpurretninareggirtlliwtidilavniseogro,dilavsemocebecruosafi.e.i,tibsutats
.detarenegeblliwtpurretniehtetatssegnahc)9retsiger(edoMgnitarepO
.ecivedehtfonipODTehtotnonevird
.tceffeonevahlliws'0'gnitirW.noitarepoetirwelgnisahtiwderaelc
)2:5(etybtnacifingistsaeL
.desunu)0:1(stiB
desunu)1:5(stiB
FINAL
:2noitarugifnoC )0:1(etar_yaced
:3noitarugifnoC )0:1(etar_yaced
)nib(eulaV
000000XX
ehtnisredividehtotnoitcesLLPAtuptuoehtnisredividehtsesinorhcnys,hgihtesnehw,4tiB
,tluafedyB.)zHM67.77otzHM84.6(setardevired3COtaskcolctuptuodnastupniehtneewteb
hgihtibsihtgnitteS.ffodenrutnehtsidnapurewopretfasdnoces2rofsrucconoitasinorhcnys
nehwcnysfotuognittegsredividehtdiovaotyrassecenebyamhcihw,nonoitasinorhcnysspeek
010001XX
esahpa,rettijtupnifotluserasatsolesahpsetacidniLLPDehthcihwtaeulavehtsenimreted
tnevelerehtfoetatsehtni"egnahc"anotesera)41tib(tib'deliafferniam'ehttpecxestibllA
ecnereferehtnoytivitcanigalfotdesusiretsigersutatstpurretniehtfo)deliafferniam(41tiB
fo6tibfI.troppusnacsrotinomytivitcaehtnahtylkciuqeromhcumotdekcolsiecivedehttaht
sitibsihtfoetatsehtneht,tessi)ODTnossolfergalf()84retsiger(retsigersrotinom_gfnceht
deraelcebyamtibhcaE.retsigerksam_tpurretni_gfncehtnistibehtybelbaksamerastibllA
ebnacstibforebmunynA.tpurretniehtgnittesersuht,tibtahtot'1'agnitirwybyllaudividni
XX0000XX
0XXXXX00
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com20
Page 21
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
90edom_gnitarepo_sts wohs7erugiF.enihcametatsniamehtfoetatsgnitarepotnerrucehtsdlohretsigerylno-daersihT
A0ecruosdilavytiroirp-tsehgiH)4:7(
B0
C0
D0
70
E0dilav_secruos_sts swollasihT.setybsecruos_ecnerefer_sutatsehtllamorf3tibfoseipocsniatnocretsigertib8sihT
F0 000000XX
11 1CESecruosecnerefertupnifosutatS)0:3(
21 FFID1CESecruosecnerefertupnifosutatS)0:3(
emaNretemaraPnoitpircseDtluafeD
.setatslaudividniehthtiwhctamelbairav'etatsgnitarepo'ehtfoseulavehtwoh
.ecruosdilavytiroirp-tsehgihehtotytiroirptsehgih-txenehtsahdnadilavsihcihw
.ecruosdilavytiroirp-tsehgih-dnocesehtotytiroirptsehgih-txenehtsahdnadilavsi
.teserretfayletaidemmi00000000daerlliwretsigerehT.)desusinoitces
.airetirclladessapsahecruosatonrorehtehwsetacidniylnoretsigersihT
)2-0stibfonoitanibmocsi3tib()smralaon(dilavecruoS=3tibsutatS
elbat_ytiroirp_sts .sesserddaowtgnikat,retsigerylno-daertib-61asisihT
tesffo_cni_rruc_sts ehtfostibtnacifingis91ehtgnitneserpereulavregetni-dengisasniatnocretsigerylno-daersihT
secruos_ecnerefer_sts ehT.secruosecnerefertupni8ehtfohcaefosutatsehtsdlohhcihwretsigeretyb-5asisihT
tnetnoCtiB
etatS)0:2(stiB
nureerf100
revodloh010
dekcol001
dekcol-erp011
tsolesahp111
desunu7:3
.ytiroirp
tnetnoCtiB
dr
3)4:7(
dn
2)0:3(
)0:2(etatsgnitarepO0:2
2dekcol-erp101
.noitcnufGTESehtotdetcennocyltnerrucsihcihw
.)ytiroirpdemmargorpnisegnahcroyrotsiheruliafoteud(ecruos
ecruosecnereferdetcelesyltnerruC)0:3(
ecruosdilavytiroirp-tsehgih-
ecruosdilavytiroirp-tsehgih-
eulavtesffofoetybtnacifingistsaeL
eulavtesffofoetybtnacifingistxeN
desunu)4:7(stib,eulavtesffofostibtnacifingistsom3)0:2(stiB
.sdaer2tsujnisecruosllafoytidilavehttegotresueht
)yllaudividnideraelcebyamtibhcaE(:swollofsadetroper
mralakcolesahp=0tibsutatS
mralaytivitcaon=1tibsutatS
mraladnab-fo-tuo=2tibsutatS
2CESecruosecnerefertupnifosutatS)4:7(
FFID2CESecruosecnerefertupnifosutatS)4:7(
FINAL
)nib(eulaV
100XXXXX
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosecnereferdetceles-yltnerruC
sihcihwecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirp-tsehgiH
ecnereferdetceles-yltnerrucehtsaemasehtebtonyamti;ytiroirptsehgihehtsahdnadilav
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-dnoceS
hcihwecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-drihT
ehtfostnetnocehtotesnopsernienihcametatsehtybdetadpuerasretsigeresehttahtetoN
lennahc;slennahclaudividnifosutatsgniognoehtdnaretsigerytiroirp_noitceles_fer_gfnc
tahtrofelbaliavasilennahcontahtsetacidni,sretsigeresehtfoynanigniraeppa,'0000'rebmun
00000000
00000000
apudliubotyllacidoirepdaerebyamretsigerehT.LLPlatigidehtfotesffotnemercnitnerruc
nafiyrassecenebylnodluowsiht(sdoireprevodlohgnirudesuretalrofesabatadlacirotsih
kcolCrotallicsOlacoLnidebircsedairetircytilibatsehtteemtondidhcihwrotallicsolanretxe
00000000
00000000
000XXXXX
00000000
sutatsdiaoT.hgihevitcasitibhcaE.dleiftib-4aninwohssiecruosecnereferhcaefosutats
sisutatsehT.retsigerdilav_secruos_stsehtnidedivorpsi3tibsutatshcaefoypoca,gnikcehc
01100110
01100110
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com21
Page 22
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
41secruos_ecnerefer_sts 3CESecruosecnerefertupnifosutatS)0:3(
81 noitasilaitinignirud00000000ottesebtsuM)0:7(
91 1CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(
A1 FFID1CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(
B1 noitasilaitinignirud00000000ottesebtsuM)0:7(
C1 3CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(
D1 noitasilaitinignirud00000000ottesebtsuM)0:7(
E1 noitasilaitinignirud00000000ottesebtsuM)0:7(
emaNretemaraPnoitpircseDtluafeD
ytiroirp_noitceles_fer_gfnc ehT.secruosecnerefertupni3ehtfohcaefoytiroirpehtsdlohhcihwretsigeretyb-7asisihT
ycneuqerf_ecruos_fer_gfnc ecnerefertupni5ehtfohcaefoseicneuqerfehtotsyekehtsdlohhcihwretsigeretyb-5asisihT
FINAL
)nib(eulaV
desunU)4:7(
.seitiroirprehgihgnikatsrebmundeulav-rewolhtiw,rehtohcaeotevitalerllaeraseulavytiroirp
.ytiroirpeuqinuanevigebtsum
.devreserebtondeen'1'eulavytiroirpnehtretsiger
tnetnoCtiB
2CESecruosecnerefertupnifoytiroirpdemmargorP)4:7(
FFID2CESecruosecnerefertupnifoytiroirpdemmargorP)4:7(
noitasilaitinignirud0000ottesebtsuM)4:7(
.wolebdetsilsa,secruos
ycneuqerF)0:3(eulaV
zHk80000
zHM84.60100
zHM44.911100 zHM29.520010 zHM88.831010 zHM48.150110
zHM67.771110
zHM25.5510001 zHk21001 zHk40101
ecruosecnereferhcaE.ecruosecnereferehtselbasid'0'-dilavera)ced(51ot1seulavehtylnO
noitcelesecnerefergnicrofnehwdesusisihtsa'1'eulavytiroirpehtevreserotdednemmocersitI
noitceles_fer_gfncehtesuotdnetnitonseodresuehtfI.retsigernoitceles_fer_gfncehtaiv
:yekgniwollofehthtiwecnadroccaniecruosecnereferehtfoycneuqerfehtenifed)0:3(stiB
)2tib,43retsigeRybdenifedsA()HDS(zHk8402/)TENOS(zHk44511000
0110XXXX
01001100
00101010
01101110
00011001
01011101
10001011
01111111
.)xeh(F5ot)xeh(
:yekgniwollofehthtiw
22
32
42
52
82
23edom_gnitarepo_gfnc ehtybdetneserper,etatsgnitarepoderisedaotniecivedehtecrofotdesusiretsigertib-3sihT
.yllacitamotua
ecruosecnerefeRtiB
desunU)3:7(
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com22
05sretsigernidenifedsa,desuera)3-0(sgnittestekcubykaelhcihwenifedrehtegot)4:5(stiB
ecnadroccani,ycneuqerftupniehtnonekatrednunoitarepoehtenifedetybhcaefo)6:7(stiB
LLPDehtotniyltceriddefsiycneuqerftupniehT00
.ecnarelotrettijtnellecxesevigsihT.LLPD
esutonod-noitarugifnocdetroppusnU01
.zHM001dnazHM445.1neewtebseicneuqerftupnirofskrow
1CESecruosecnereferfoycneuqerF 00000000
2CESecruosecnereferfoycneuqerF 00000000
FFID1CESecruosecnereferfoycneuqerF 11000000
FFID2CESecruosecnereferfoycneuqerF 11000000
3CESecruosecnereferfoycneuqerF 11000000
)8erugiFrepsa(etatsgnitarepoderiseD)0:2(
ehtotnidefgnieberofeb,zHk8otnwoddedividyllanretnisiycneuqerftupniehT10
ybtupniehtedividotnvid_qerf_gfncretsigerniderotstneiciffeocnoisividehtsesU11
ehT.delbasidebtsumsrotinomycneuqerfehT.LLPDehtotgniogotroirpeulavsiht
ottesebdluohs)0:3(ycneuqerfehT.zHk8lauqedluohsycneuqerfnwoddedivid
erutaefNviDehT.ycneuqerftupnilautcaehtwolebtsujycneuqerftopstseraeneht
etarepootenihcametatslortnocehtswolla)xeh(0eulaV.8erugiFninwohsseulavyranib
000XXXXX
Page 23
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
33noitceles_fer_gfnc ehtecrofotdesusitI.)xeh(33sserddataecapstib-8eritneehtseipuccoretsigertib-4sihT
43edom_gfnc noitarugifnoclaudividnilarevessniatnoctI.)xeh(43sserddaehtseipuccoretsigertib-6sihT
emaNretemaraPnoitpircseDtluafeD
0tiB
.etats
.desunusi1stiB
2tiB
3tiB
.etatstluafedeht
4tiB
5tiB
.langisrotallicso
6tiB
.erawtfos
.etatstluafed
7tiB
.evobadebircsed
FINAL
)nib(eulaV
sihtotgnitirW.ytiroirpstifoevitcepserri,ecruosecnerefertupniralucitrapatcelesotecived
ydaerlasitupnirehtoondedivorP.'1'ytiroirpottupnidetcelesehtsesiaryliraropmetretsiger
.srotinomytivitcadnaycneuqerfehtybdetadilavneeb
ecruosdetceleS)0:3(eulaV
1CES1100 2CES0010
FFID1CES1010 FFID2CES0110
3CES1001
:wolebdeliatedsa,sdleif
.))xeh(A0sserddata()4:7(retsigerelbat_ytiroirp_sts
.nipk2cnySehterongilliwecivedehT.elbasiDcnySzHk2lanretxE0=
.etatstluafedehtsisihT.eulavhtaplargetniLLP
.etatstluafedehtsisihT.langisrotallicso
.etatstluafedehtsisihT.delbasideblliwtiesiwrehtO.zHM83.6ot
sahtifi,detceleseblliwecruossiht,nosiedomevitreverdna,'1'ytiroirphtiwdemmargorp
era)4:7(stiB.yekgniwollofehthtiwecnadroccanidetcelessitahtecruosehtenifed)0:3(tiB
.FXsitluafedehT*.secruosecnerefertupnillaelbasidlliw)xeh(FXro)xeh(0XgnitirW.desunu
tluafedehtsisihT.ecruosdetcelesyltneserpehtniaterlliwecivedehT:edoMevitrever-noN0=
ninwohsecruosytiroirptsehgihehtothctiwslliwecivedehT:edoMevitreveR1=
eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edomHDS0=
.elbaetirwsitibsihT.zHk8402ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'
eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edomTENOS1=
.elbaetirwsitibsihT.zHk4451ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'
detarenegyllanretnistifoesahpehtngilalliwecivedehT.elbanEcnySzHk2lanretxE1=
deilppuslangisehtfotahthtiw)zHk2(langiscnySemarF-itluMdna)zHk8(langiscnySemarF
sisihT.0158SCAnamorftuptuozHM84.6aotdekcolebdluohsecivedehT.nipk2cnySehtot
tnerrucehtesulliwrevodlohdnaeulavehterongilliwecivedehT:elbasidtesfforevodloH0=
ehtniderotseulavtesfforevodloHehttpodalliwecivedehT:elbanetesfforevodloH1=
.edomrevodlohniycneuqerfehttesotdesunehtsieulavsihT.retsigertesffo_revodloh_fgnc
lanretxeehtfoegdegnillafehtotecnereferlliwecivedehT:detcelesegdEkcolCgnillaF0=
lanretxeehtfoegdegnisirehtotecnereferlliwecivedehT:detcelesegdEkcolCgnisiR1=
ybteserebtsumdnatuoemittonlliwmralaesahpehT:elbasidtuoemiTmralAesahP0=
ehtsisihT.sdnoces001retfatuoemitlliwmralaesahpehT:elbanetuoemiTmralAesahP1=
sa,retsigersihtfo3tibgnisunoitcnufsihtslortnocresuehT.elbasiDcnySzHk2otuA0=
dekcolsiecruosehtnehwylnodelbaneeblliwcnySzHk2lanretxE.elbanEcnySzHk2otuA1=
*1111XXXX
00010011
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com23
Page 24
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
63stupni_laitnereffid_gfnc laudividniowtsniatnoctI.)xeh(63sserddataecapstib-8eritneehtseipuccoretsigertib-2sihT
83elbane_tuptuo_gfnc larevessniatnoctI.)xeh(83sserddataecapstib-8eritneehtseipuccoretsigertib-8sihT
93seicneuqerf_tuptuo_10_gfnc .wolebdeliatedsa,troptuptuo10ehtrofsnoitcelesycneuqerfehtsdlohretsigersihT
A3stuptuo_laitnereffid_gfnc laitnereffidehtrofepytygolonhcet-tropehtdnasnoitcelesycneuqerfehtsdlohretsigersihT
emaNretemaraPnoitpircseDtluafeD
tluafed=*
FINAL
)nib(eulaV
:wolebdeliatedsa,sdleifnoitarugifnoc
dleifnoitarugifnoCtiB
desunU)2:7(
dleifnoitarugifnoCtiB
delbane2OtroptuptuO='1'2
delbasid2OtroptuptuO='0'
dleifnoitarugifnoCtiB
desunuera)7:6(dna)3:0(
ycneuqerf1giD)4:5(
*zHk8402/zHk445100
zHk6904/zHk880310
zHk2918/zHk671601
zHk48361/zHk2532111
elbitapmoc-LCEPsiFFID1CEStupnI='1'0
)tluafeD(elbitapmoc-SDVLsiFFID1CEStupnI='0'
)tluafeD(elbitapmoc-LCEPsiFFID2CEStupnI='1'1
elbitapmoc-SDVLsiFFID2CEStupnI='0'
:wolebdeliatedsa,sdleifnoitarugifnoclaudividni
'0'ottesebdluohsdna,desunuera6,4,3,1,0
1giDrofdetcelesedomtenoS='1'5
1giDrofdetcelesedomHDS='0'
zHM40.113ottesycneuqerftuptuo1O='1'7
)4:5(A3sserddAybtesycneuqerftuptuo1O='0'
.)detats-irTtonsitropeht(eulavcigolcitatsasdlohtroptuptuoehttahtsnaem"delbasiD":etoN
.edomHDSroferasrehtoehtdnaedomtenoSroferaseulavycneuqerftsomtfeleht1giDroF
.elbane_tuptuo_gfncretsigernistibHDS/TENOSehtaivdetceleserayehT
.desunuera2dna3,6,7stiB.wolebdeliatedsa,1Otuptuo
dleifnoitarugifnoCtiBdleifnoitarugifnoCtiB
ycneuqerf1O)4:5(SDVL/LCEP)0:1(
)tluafed(zHM88.8300delbasidtroP00
zHM44.9110elbitapmoc-LCEP10
zHM25.55101)tluafed(elbitapmoc-SDVL01
.1giD11desunu11
01XXXXXX
11111000
00010000
01XX00XX
B3htdiwdnab_gfnc nehW.LLPlatigidehtfonoitarepoehtlortnocotdesunoitamrofnisniatnocretsigersihT
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com24
gnitteshtdiwdnabnoitisiuqcaehtesulliwLLPDeht,citamotuaottessinoitceleshtdiwdnab
.gnitteshtdiwdnabdekcol/lamronehtesuyawlalliwLLPDeht
htdiwdnabnoitisiuqcA)4:6(htdiwdnabpooL)0:2(tiB zH1.0000zH1.0000 zH3.0100zH3.0100 zH6.0010zH6.0010 zH2.1110zH2.1110 zH5.2001zH5.2001 zH0.5101zH0.5101
zH01011zH01011 zH02111zH02111
noitceleshtdiwdnaB7desunu3
noitarepolaunaM='0'
noitarepocitamotuA='1'
,launamottesnehW.kcolninehwgnitteshtdiwdnabdekcol/lamronehtdna,kcolfotuonehw
101X1110
Page 25
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
C3
D3
E3
F3
04.stibtnacifingistsoM
14
24desunu)2:7(
34ksam_tpurretni_gfnc ehtniecruostpurretnietairporppaehtelbasidlliw,orezottesfi,retsigertib12sihtfotibhcaE
emaNretemaraPnoitpircseDtluafeD
ycneuqerf_lanimon_gfnc sihT.ycneuqerflanimonderisedehtgnitneserperregetnidengisnutib61asdlohretsigersihT
tesffo_revodloh_gfnc ,regetnidengistib91asdlohtI.)xeh(04ot)xeh(E3sesserddasesuretsigertib-91sihT
timil_qerf_gfnc tI.LLPDehtfoegnarni-llupehtgnitneserperregetnidengisnutib01asdlohretsigersihT
FINAL
)nib(eulaV
.seicneuqerflatsyrclanretxeehtninoitairav
.etybtnacifingistsaeL
.etybtnacifingistsoM
.retsigeredom_gfncehtnitibdelbanetesfforevodlohehtaivdelbanenehw
.etybtnacifingistsaeL
etybtnacifingistxeN
.revodloHniesurofecruosecnereferotdekcol
;alumrofgniwollof
5870.0/)74610.0-egnarycneuqerF(=timil_qerf_gfnc
.mpp08±dnuorafoegnarllufehtsihgihsiWSCRS
etybtnacifingistsaeL
stibtnacifingistsoM)0:1(
.retsigersutatstpurretni
tsniagaetasnepmocotycneuqerftuptuolanimonehtetarbilacyllanoitpootelbaliavasi
10011001
10011001
ycneuqerfedomrevodlohehttesotdesuebnachcihw,eulavtesfforevodlohehtgnitneserper
00000000
00000000
000XXXX1
ebotegarevaycneuqerfehtselbanesihT.1tluafed-elbanegnigarevArevodloHotuAsi7tiB
neebsahycneuqerfehtretfa,sdnoces23yrevenekatelpmasenO.selpmas23morfnekat
yltnerrucehtfoyrotsihetunim71agnivig,srotinomycneuqerfehtybdnab-niebotdemrifnoc
ehtgnisu,noitacilppaehtnidetnemelpmilatsyrcfoycaruccaehtotgnidroccatesebdluohs
ro74610.0+)5870.0xtimil_qerf_gfnc(=)mpp(-/+egnarycneuqerF
nehweulavtluafeD.mpp2.9±siwoldeitrodetcennocnutfelsiWSCRSnehweulavtluafeD
01101110
)wolWSCRS(
11111111
)hgihWSCRS(
00XXXXXX
)wolWSCRS(
11XXXXXX
)hgihWSCRS(
11111111
44
54
nvid_qerf_gfnc ycneuqerfgnikcolesahpehttegottupniynarofrosividehtsadesusiregetnitib51sihT
.)1+n(
64
74
.etybtnacifingis-tsael 00000000
.stibtnacifingis-tsom 000000XX
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com25
11111111
11111XXX
ycneuqerftupniehtesuaclliwsihT.1ottestibnvidehthtiwstupnirofevitcaylnO.derised
.nosirapmocesahpotroirp)1+n(ybdedividebot
ybnoisividehtretfaycneuqerfecruosehttcelferdluohsstibycneuqerf_ecruos_ecnereferehT
Page 26
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
.rddA )xeH(
84srotinom_gfnc .tuodliubesahpfolortnocdnasrotinomfonoitarugifnoclabolgswollaretsigertib7sihT
050dlohserht_reppu_vitca_gfnc 150dlohserht_rewol_vitca_gfnc
250ezis_tekcub_gfnc
350etar_yaced_gfnc rof1+sitekcubehtfoetar-llifehT.tekcubykaelehtfoetarkaelehtslortnocretsigertib2sihT
451dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 01100000 551dlohserht_rewol_vitca_gfnc 651ezis_tekcub_gfnc
751etar_yaced_gfnc.1tekcubroftub)xeh(35retsigerrofsA 10XXXXXX 852dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 01100000 952dlohserht_rewol_vitca_gfnc .deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 00100000 A52ezis_tekcub_gfnc
B52etar_yaced_gfnc.2tekcubroftub)xeh(35retsigerrofsA 10XXXXXX C53dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 01100000 D53dlohserht_rewol_vitca_gfnc .deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 00100000 E53ezis_tekcub_gfnc evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
F53etar_yaced_gfnc.3tekcubroftub)xeh(35retsigerrofsA 10XXXXXX
emaNretemaraPnoitpircseDtluafeD
.esuerutuf
0otkcolsyawlalliwLLPDeht,delbasidfI.tuodliubesahpselbanenetuodliubesahP2tiB
.seerged
.tesffoesahptnerrucehthtiwniamertubstnevetuodliubesahp
.3ro
ehtmorfyawagnihctiwstsafyrevelbanelliwsihT.selcycwefaylnognissimretfaecruos
deliaf_fer_niamehtybdereggirtsisihT.noitacilppaepytnoitcetorpaniecruosdetceles
.msinahcemtpurretni
.ecivedehtfonipODTehtfotuonevird
.)xeh(51sieulavtluafedeht,hgihdeitsi
.tupni
sietaryacedehT.ytivitcanifolevelemosdecneirepxesahtahtlavretnism821yreve
.enoevitcaninasaetar
.tupni
.tupni
.tupni
ebottpurretnideliaf_fer_niamehtfoeulavehtelbanelliwODTnossolecnerefergalF6tiB
evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
rofdevresererasrehto,mpp51=10,ffo=00-srotinomycneuqerfgnirugifnocrofera)0:1(stiB
erutufynaelbasidylevitceffelliw)delbanesituodliubesahpnehw(tuodliubesahpezeerF3tiB
4tupnirehtieotgnikcolehtecrofotniptiwScrSehtselbanegnihctiwsnoitcetorplanretxE4tiB
detcelesyltnerrucehtnomralaytivitcaninaesiarotllpdehtselbanegnihctiwstsaf-artlU5tiB
TWSCRSfI.woldeitrodetcennocnutfelsinipTWSCRSnehwdilavsinevigeulavtluafedehT*
.desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 01100000
seulavgnisuyb1:8,1:4,1:2,1:1ottesebnacoitarehT.etarllifehtfosoitarnielbammargorp
.erutannistekcubykaeleurttonerastekcubeseht,revewoH.ylevitcepser11,01,10,00fo
nacsetaryaceddnallifehttahtsnaemsihT.dellifgniebsitinehwgnikaelspotstekcubehT
emasehttadesingocerebnactupnievitcanatahttceffetenehthtiw)1:1=00(emasehteb
FINAL
)nib(eulaV
*1010000X
.deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 00100000
00010000
10XXXXXX
.deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT 00100000
00010000
00010000
00010000
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com26
Page 27
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Selection of Input Reference Clock Source
Under normal operation, the input reference sources are selected automatically by an order of priority, where SEC1 is the highest priority, SEC2 is the second highest priority and SEC3 is the lowest priority. The priorities can be re­assigned with external software. The SEC1 reference source has inputs via either a low speed TTL input port or a high speed PECL/ LVDS input port. Similarly, the SEC2 reference source has both a low speed TTL or a high speed PECL/LVDS input port. The SEC3 (standby) reference source only has provision via a low speed TTL input port. There is provision for one sync clock input via a TTL port. Whilst SEC1, SEC2 and SEC3 reference source inputs can all be active at the same time, only one of the TTL or PECL/LVDS input ports for the SEC1 and SEC2 reference sources may be used at any time, the inactive port is ignored, by setting the priority of that port to zero.
Restoration of repaired reference sources is handled carefully to avoid inadvertent disturbance of the output clock. The ACS8515 has two modes of operation; Revertive and non­Revertive. In Revertive mode, if a re-validated (or newly validated) source has a higher priority than the reference source which is currently selected, a switch over will take place. Many applications prefer to minimise the clock switching events and choose Non-Revertive mode. In Non-Revertive mode , when a re­validated (or newly validated) source has a higher priority then the selected source will be maintained. The re-validation of the reference source will be flagged in the sts_sources_valid register and, if not masked, will generate an interrupt. Selection of the re-validated source can only take place under software control ­the software should briefly enable Revertive mode to affect a switch-over to the higher priority source. If the selected source fails under these conditions the device will still not select
FINAL
the higher priority source until instructed to do so by the software, by briefly setting the Revertive mode bit. When there is a reference available with higher priority than the selected reference, there will be NO change of reference source as long as the Non-Revertive mode remains on. This is the case even of there are lower priority references available or the currently selected reference fails. When the ONLY valid reference sources that are available have a lower priority than the selected reference, a failure of the selected reference will always trigger a switch-over regardless of whether Revertive or Non-revertive mode has been chosen.
Automatic Control Selection
When automatic selection is required, the 'cnfg_ref_selection' registers must be set to all­zero. The configuration registers, 'cnfg_ref_selection_priority', held in the µP port are organised as 5, 4-bit registers with each representing an input reference port. Unused ports should be given the value, '0000' in the relevant register to indicate they are not to be included in the priority table. On power-up, or following a reset, the whole of the configuration file will be defaulted to the values defined by Table 1. The selection priority values are all relative to each other, with lower-valued numbers taking higher priorities. Each reference source should be given a unique number, the valid values are 1 to 15(dec). A value of 0 disables the reference source. However if two or more inputs are given the same priority number those inputs will be selected on a first in, first out basis. If the first of two same priority number sources goes invalid the second will be switched in. If the first then becomes valid again, it becomes the second source on the first in, first out basis, and there will not be a switch. If a third source with the same priority number as the other two becomes valid, it joins the priority list on the same first in, first out basis. There is no implied priority based on the
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com27
Page 28
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
channel numbers.
Activity Monitoring
The ACS8515 has a combined inactivity and irregularity monitor. The ACS8515 uses a "leaky bucket" accumulator, which is a digital circuit which mimics the operation of an analog integrator, in which input pulses increase the output amplitude but die away over time. Such integrators are used when alarms have to be triggered either by fairly regular defect events, which occur sufficiently close together, or by defect events which occur in bursts. Events which are sufficiently spread out should not trigger the alarm. By controlling the alarm­setting threshold, the point at which the alarm is triggered can be controlled. The point at which the alarm is cleared depends upon the decay rate and the alarm-clearing threshold. On the alarm-setting side, if several events occur close together, each event adds to the amplitude and the alarm will be triggered quickly; if events occur a little more spread out, but still sufficiently close together to overcome the decay, the alarm will be triggered eventually. If
FINAL
events occur at a rate which is not sufficient to overcome the decay, the alarm will not be triggered. On the alarm-clearing side, if no defect events occur for a sufficient time, the amplitude will decay gradually and the alarm will be cleared when the amplitude falls below the alarm­clearing threshold. The ability to decay the amplitude over time allows the importance of defect events to be reduced as time passes by. This means that, in the case of isolated events, the alarm will not be set, whereas, once the alarm becomes set, it will be held on until normal operation has persisted for a suitable time (but if the operation is still erratic, the alarm will remain set).
The "leaky bucket" accumulators are programmable for size, alarm set & reset thresholds and decay rate. Each source is monitored over a 128 ms period. If, within a 128 ms period, an irregularity occurs that is not deemed to be due to allowable jitter/wander, then the accumulator is incremented. The accumulator will continue to increment up to the point that it reaches the programmed bucket size. The "fill rate" of the leaky bucket is, therefore, 8 units/second. The "leak rate"
inactivities/irregularities
reference
source
leaky bucket
response
alarm
Figure 7: Inactivity and irregularity monitoring
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com28
bucket_size upper_threshold lower_threshold
(all programmable)programmable fall slopes
Page 29
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
of the leaky bucket is programmable to be in multiples of the fill rate (x1, x0.5, x0.25 and x0.125) to give a programmable leak rate from 8 units/sec down to 1 unit/sec. A conflict between trying to leak at the same time as a fill is avoided by preventing a leak when a fill event occurs.
Disqualification of a non-selected reference source is based on inactivity, or on an out of band result from the frequency monitors. The currently selected reference source can be disqualified for phase, frequency, inactivity or if the source is outside the DPLL lock range. If the currently selected reference source is disqualified, the next highest priority, active reference source is selected.
Restoration of repaired reference sources is handled carefully to aviod inadvertant disruption of the output clock. The ACS8515 operates in a Non-revertive mode by default. In this mode, if the restored reference source has a higher
FINAL
priority than the reference source which is currently selected, a switch-over to the restored source will not tale place automatically. A restored reference source will assume its correct place in the priority table but a switch­over will only take place automatically upon failure of the currently selected source. It is possible to invoke a switch-over by external control or by enabling revertive mode.
Ultra Fast Switching
A reference source is normally disqualified after the leaky bucket monitor thresholds have been crossed. An option for a faster disqualification has been implemented, whereby if register 48H, bit 5 (Ultra Fast Switching), is set then a loss of activity of just a few reference clock cycles will set the no activity alarm and cause a reference switch. This can be chosen to cause an interrupt to occur instead of or as well as causing the reference switch.
Leaky bucket timing
The time taken to raise an inactivity alarm on a reference source that has previously been fully active (leaky bucket empty) will be:
(cnfg_activ_upper_threshold N)
8
where N is the number of the relevent leaky bucket configuration. If an input is intermittently inactive then this time can be longer. The default setting of cnfg_activ_upper_threshold is 6, therefore the default time is
0.75 s.
The time taken to cancel the activity alarm on a previously completely inactive reference source is calculated as:
(cnfg_decay_rate N)
2 x ((cnfg_bucket_size N) - (cnfg_activ_lower_thrshold N))
8
where N is the number of the relevent leaky bucket configuration in each case. The default setting are shown in the following:
2 x (8-4) = 1.0 s
8
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com29
1
secs
secs
Page 30
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
External Protection Switching
Fast external switching between inputs SEC1 and SEC2 can also be triggered directly from a dedicated pin (SRCSW). This mode can be activated either by holding this pin high during reset, or by writing to bit 4 of register address 48Hex.
Once external protection switching is enabled, then the value of this pin directly selects either SEC1 (SRCSW high) or SEC2 (SRCSW low). If this mode is activated at reset by pulling the SRCSW pin high, then it configures the default frequency tolerance of SEC1 and SEC2 to +/­80 ppm (register address 41Hex and 42Hex). Any of these registers can be subsequently set by external s/w if required.
When external protection switching is enabled, the device will operate as a simple switch. All clock monitoring is disabled and the DPLL will simply be forced to try to lock on to the indicated reference source. The operating state (sts_operating_mode register) will always indicate locked in the mode.
FINAL
Free-Run mode
The Free-Run mode is typically used following a power-on-reset or a device reset before network synchronisation has been achieved. In the Free-Run mode, the timing and synchronisation signals generated from the ACS8515 are based on the Master clock frequency provided from the external oscillator and are not synchronised to an input reference source. The frequency of the output clock is a fixed multiple of the frequency of the external oscillator, and the accuracy of the output clock is equal to the accuracy of the Master clock.
The transition from Free-Run to Pre-locked(1) occurs when the ACS8515 selects a reference source.
Pre-Locked(1) mode
The ACS8515 will enter the Locked state in a maximum of 100 seconds, as defined by GR­1244-CORE specification, if the selected reference source is of good quality. If the device cannot achieve lock within 100 seconds, it reverts to Free-Run mode and another reference source is selected.
Modes of Operation
The ACS8515 has three primary modes of operation (Free-Run, Locked and Holdover) supported by three secondary, temporary modes (Pre-Locked, Lost_Phase and Pre­Locked2). These are shown in the State Transition Diagram, Figure 6.
The ACS8515 can operate in Forced or Automatic control. On reset, the ACS8515 reverts to Automatic Control, where transitions between states are controlled completely automatically. Forced Control can be invoked by configuration, allowing transitions to be performed under external control. This is not the normal mode of operation, but is provided for special occasions such as testing, or where a high degree of hands-on control is required.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com30
Locked mode
The Locked mode is used when an input reference source has been selected and the PLL has had time to lock. When the Locked mode is achieved, the output signal is in phase and locked to the selected input reference source. The selected input reference source is determined by the priority table. When the ACS8515 is in Locked mode, the output frequency and phase follows that of the selected input reference source. Variations of the external crystal frequency have a minimal effect on the output frequency. Only the minimum to maximum frequency range is affected. Note that the term, 'in phase', is not applied in the conventional sense when the ACS8515 is used as a frequency translator (e.g., when the input frequency is 2.048MHz and
Page 31
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
the output frequency is 19.44 MHz) as the input and output cycles will be constantly moving past each other; however, this variation will itself be cyclical over time unless the input and output are not locked.
Lost_Phase mode
Lost_Phase mode is used whenever the selected reference source suffers most kinds of anomalous behaviour. Clock generation is performed in the same way as in the Holdover mode. If the leaky bucket accumulator calculates that the anomaly is serious, the device rejects the reference source and one of the following transitions takes place:
Go to Pre-Locked(2);
- If a known-good standby source is available.
Go to Holdover;
- If no standby sources are available.
Holdover mode
The Holdover mode is used when the circuit was in Locked mode but the selected reference source has become unavailable and a replacement has not yet been selected.
The Holdover performance is mainly limited by what is happening to the TCXO. The ACS8515 has 3 ways of determining Holdover, either;
1. By external frequency setting (cnfg_holdover_offset register)
FINAL
due to temperature fluctuations in the room, then the instantaneous value can be different from the average value, and then it may be possible to exceed the 0.05 ppm limit (depending on how extreme the temperature fluctuations are). It is advantageous to shield the TCXO to slow down frequency changes due to drift and external temperature fluctuations.
In Holdover mode, the ACS8515 provides the timing and synchronisation signals to maintain the Network Element (NE), but they are not phase locked to any input reference source. The timing is based on a stored value of the frequency ratio obtained during the last Locked mode period.
The frequency accuracy of Holdover mode has to meet the ITU-T, ETSI and Telcordia performance requirements. The performance of the external oscillator clock is critical in this mode, although only the frequency stability is important - the stability of the output clock in Holdover is directly related to the stability of the external oscillator.
Pre-Locked(2) mode
This state is very similar to the Pre-Locked(1) state. It is entered from the Holdover state when a reference source has been selected and applied to the phase locked loop. It is also entered if the device is operating in revertive mode and a higher-priority reference source is restored.
2. By an internal frequency measuring and averaging system which averages the last 20 minutes
3. By just using the last frequency (as reported by the sts_curr_inc_offset register). This value can be read out of the device and used to build up a longer term average using an external averaging circuit. This value can then to readback into the device and used as the Holdover offset (via cnfg_holdover_offset register).
By default it uses the internal averager. This means that if the TCXO frequency is varying
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com31
PORB
The Power On Reset (PORB) pin resets the device if forced Low for a power-on-reset to be initiated. The reset is asynchronous, the minimum Low pulse width is 5 ns. Reset is needed to initialize all of the register values to their defaults. Asserting Reset (POR) is required at power on, and may be re-asserted at any time to restore defaults. This is implemented
Page 32
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
most simplistically by an external capacitor to GND along with the internal pull-up resistor. The ACS8510 is held in a reset state for 250
(1)Reset
(3) no valid standby ref
(main ref invalid
or out of lock >100s)
(4) valid standby ref
&
[ main ref inv alid o r (high er-priority ref v alid & in revertive m ode) or
out of lock >100s]
&
free-run
select ref
(state 001)
pre-locked
wait for up to 100s
(state 110)
(5) selected re f
phase locked
FINAL
ms after the PORB pin has been pulled High. In normal operation PORB should be held High.
(2) all refs evaluated
&
at least one ref valid
Reference sources are flagged as ’valid’ when active, ’in-band’ and have no phase alarm set.
All sources are continuously checked for activity and frequency.
Only the main source is checked for phase. A phase lock alarm is only raised on a reference when that reference has lost phase whilst being us ed as the main reference. The micro-processor can reset the phase lock alarm.
(10) selected source phase
locked
pre-locked2
wait for up to 100s
(state 101)
(15) valid standby ref
&
[ main ref invalid or (h ighe r-priority ref valid & in revertive mode) or
out of lock >100s]
(9) valid standby ref
&
[ main ref inv alid o r
(high er-priority ref v alid
& in revertive mode) ]
(12) valid standby ref
&
(main re f invalid
or out of lock >100s)
locked
keep ref
(state 100)
(8) phase
regained within
100s
Lost phase
wait for up to 100s
(state 111)
(13) no valid standby ref
(main ref invalid
or out of lock >100s)
(14) all refs evaluated
at least one ref valid
(7) ph ase lost
on main ref
&
&
A source is considered to have phase locked when it has been continuously in phase lock for between 1 and 2 seconds
(6) no valid standby ref
&
main re f inv alid
holdover
select ref
(11) no valid standby ref
&
(main ref inv alid
or out of lock >100s)
(state 010)
Figure 8: Automatic Mode Control State Diagram.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com32
Page 33
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
FINAL
Electrical Specification
Important Note: The "Absolute Maximum Ratings" are stress ratings only, and functional operation of the device at conditions other than those indicated in the "Operating Conditions" sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product.
ABSOLUTE MAXIMUM RATINGS
PRETEMARA SLOBMY MNI MXA USTIN
V
ppuSegatloVyl
DDV,D
V
V,+
,+1VA+2
A
egatloVtupnI
)snipylppus-non(
egatloVtuptuO
)snipylppus-non(
erutarepmeTgnitarepOtneibmA
egnaR
erutarepmeTegarotST
DD
niV- 5.5V
tuoV- 5.5V
T
A
rots
5.0-6.3V
04-5C
05-05C
OPERATING CONDITIONS
PRETEMARA SLOBMY NIM PYT XAM STINU
)egatlovcd(ylppuSrewoP
VDD+2AV,+1AV,+DV,FFID_DDV,
)egatlovcd(ylppuSrewoP
5DDV
egnaRerutarepmettneibmAT
tnerrucylppuS
tuptuozHM91eno-lacipyT
w/serofebAm091-mumixaM
noitasilaitniw/sretfaAm051,noitasilaitini
noitapissidrewoplatoTP
DDV0.33.36.3V
5DDV0.30.5/3.35.5V
A
DDI-011051/091Am
TOT
DC CHARACTERISTICS: TTL Input pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
VnihgiHV
hi
04--5C
-063586Wm
0.2--V
V
woLV
ni
tnerructupnII
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com33
li
ni
-- 8.0V
--01Aµ
Page 34
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
DC CHARACTERISTICS: TTL Input pad with internal pull-up.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
VnihgiHV
V
woLV
ni
hi
li
rotsiserpu-lluPUP03-08Wk
tnerructupnII
ni
DC CHARACTERISTICS: TTL Input pad with internal pull-down.
Across operating conditions, unless otherwise stated
0.2--V
-- 8.0V
-- 021Aµ
FINAL
RETEMARAP LOBMYS NIM PYT XAM STINU
VnihgiHV
V
woLV
ni
rotsisernwodu-lluPDP03-08Wk
tnerructupnII
hi
li
ni
DC CHARACTERISTICS: TTL Output pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
woLtuoV
Am4=loI
hgiHtuoV
Am4=hoI
loV0- 4.0V
hoV4.2- V
0.2--V
-- 8.0V
-- 021Aµ
tnerrucevirDDI--4Am
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com34
Page 35
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
DC CHARACTERISTICS: PECL Input/Output pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
egatlovwoLtupnILCEP
stupnilaitnereffiD)1etoN(
egatlovhgiHtupnILCEP
stupnilaitnereffiD)1etoN(
egatlovlaitnereffiDtupnIV
egatlovwoLtupnILCEP
tupnidedneelgniS)2etoN(
egatlovhgiHtupnILCEP
tupnidedneelgniS)2etoN(
tnerruchgiHtupnI
v4.1=
V
DI
egatlovlaitnereffidtupnI
V
LCEPLI
V
LCEPHI
LCEPDI
V
S_LCEPLI
V
S_LCEPHI
I
LCEPHI
FINAL
-DDV5.2- 5.0-DDVV
-DDV4.2- 4.0-DDVV
1.0-4.1V
-DDV4.2- 5.1-DDVV
1-DDV3.- 5.0-DDVV
01--01+Aµ
tnerrucwoLtupnI
V
v4.1=
DI
egatlovlaitnereffidtupnI
egatlovwoLtuptuOLCEP
)3etoN(
egatlovhgiHtuptuOLCEP
)3etoN(
egatlovlaitnereffiDtuptuOLCEP
)1etoN(
I
LCEPLI
V
LCEPLO
V
LCEPHO
V
LCEPDO
01--01+Aµ
-DDV01.2- 26.1-DDVV
52.1-DDV-88.0-DDVV
085-009Vm
Notes:
Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to VDD and GND respectively.
Note 1. Assuming a differential input voltage of at least 100 mV.
Note 2. Unused differential input terminated to VDD-1.4v.
Note 3. With 50W load on each pin to VDD-2v. i.e. 82W to GND and 130W to VDD.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com35
Page 36
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
V
DD
130R
Z
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
Recommended line termination for PECL Input/Output ports for VDD = 3.3V
DC CHARACTERISTICS: LVDS Input/Output pad.
Across operating conditions, unless otherwise stated
O=50
ZO=50
ZO=50
ZO=50
82R
130R
82R
I5POS T06POS
130R
I5NEG
82R
GND GND
V
DD
I6POS
130R
I6NEG
82R
GND
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
130R
130R
FINAL
V
DD
19.44, 38.88, 155.52,
130R
82R
V
DD
82R
GND
82R
130R
82R
311.04 MHz & DIG1
19.44, 51.84, 77.76,
155.52 MHz
LSDVegnaregatlovtupnI
LSDVfoedutingamniegrahC
RETEMARAP LOBMYS NIM PYT XAM STINU
V
Vm001=egatlovtupnilaitnereffiD
dlohserhttupnilaitnereffiDSDVLV
egatlovlaitnereffiDtupnISDVLV
SDVLRV
HTID
SDVLDI
ecnatsisernoitanimrettupnISDVL
ehtssorcayllanretxedecalpebtsuM
.0158SCAfosniptupni-/+SDVL
%5htiwW001ebdluohsrotsiseR
ecnarelot
egatlovhgihtuptuOSDVL
)1etoN(
egatlovwoltuptuOSDVL
)1etoN(
egatlovtuptuolaitnereffiDSDVL
)1etoN(
rofegatlovtuptuolaitnereffid
setatsyratnemilpmoc
)1etoN(
R
MRET
V
SDVLHO
V
SDVLLO
V
SDVLDO
V
SDVLSOD
0- 04.2V
001--001+mV
1.0- 4.1V
59001501W
-- 585.1V
588.0--V
052-054Vm
-- 52Vm
LSDVegatlovtesffotuptuo
)1etoN(
C°52=erutarepmeT
V
SDVLSO
Note 1. With 100W load between the differential outputs.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com36
521.1- 572.1V
Page 37
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Z
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
O=50
ZO=50
ZO=50
ZO=50
100R
100R
I5POS T06POS
I5NEG
I6POS
I6NEG
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
100R
100R
19.44, 38.88, 155.52,
311.04 MHz & D IG 1
19.44, 51.84, 77.76,
155.52 MHz
FINAL
Recommended line termination for LVDS Input/Output ports
DC CHARACTERISTICS: Output Jitter Generation
Across operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8MHz TCXO on ICT Flexacom + 10MHz reference from Wavetek 905.
noitinifedtseTdesuretliFcepsIU
1noitpozHM25.551rof318GzHM3.1otzH005IU
1noitpozHM25.551rof318GzHM3.1otzHk56IU
pp
pp
5.0=)2etoN(850.0
1.0=
2veR
)3etoN(840.0 )2etoN(840.0
5158SCAnotnemerusaemIU
)4etoN(350.0 )5etoN(350.0
)6etoN(850.0 )7etoN(350.0
)2etoN(350.0 )3etoN(850.0
2noitpozHM25.551rof318GzHM3.1otzHk21IU
1.0=
pp
)8etoN(750.0 )9etoN(550.0
)01etoN(750.0 )11etoN(750.0
)21etoN(750.0
)31etoN(350.0
zHM840.2rof218G&318G
1noitpo
zHk001otzH02IU
50.0=)41etoN(640.0
pp
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com37
Page 38
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
noitinifedtseTdesuretliFcepsIU
zHM445.1rof218GzHk04otzH01IU
lacirtcelezHM25.551rof218GzHM3.1otzH005IU
lacirtcelezHM840.2rof218GzHM3.1otzHk56
noitinifedtseTdesuretliFcepsIU
FINAL
5158SCAnotnemerusaemIU
2veR
50.0=)41etoN(630.0
pp
5.0=)3etoN(850.0
pp
=
IU
pp
570.0
2veR
)3etoN(840.0
5158SCAnotnemerusaemIU
zHM840.2rof3-264-003-STE
CES
zHk001otzH02IU
pp
5.0=)41etoN(640.0
zHM840.2rof3-264-003-STE
CES
zHk001otzH02IU
pp
2.0=)41etoN(640.0
)zHk001otzH94cepsretliF(
zHM840.2rof3-264-003-STE
USS
zHk001otzH02IU
zHM25.551rof3-264-003-STEzHM3.1otzH005IU
zHM25.551rof3-264-003-STEzHM3.1otzHk56IU
pp
pp
pp
50.0=)41etoN(640.0
5.0=)3etoN(850.0
1.0=)3etoN(840.0
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com38
Page 39
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
noitinifedtseTdesuretliFcepsIU
48.15,f/itenEROC-352-RG
zHM
48.15,f/itenEROC-352-RG
zHM
)zHk004otzHk02cepsretliF(
25.551,f/itenEROC-352-RG
zHM
25.551,f/itenEROC-352-RG
zHM
,f/itceleIItacEROC-352-RG
zHM25.551
zHk004otzH001IU
zHk004otzHk81IU
zHM3.1otzH005IU
zHM3.1otzHk56IU
zHM3.1otzHk21
FINAL
5158SCAnotnemerusaemIU
2veR
5.1=)3etoN(220.0
pp
51.0=)3etoN(910.0
pp
5.1=)3etoN(850.0
pp
51.0=)3etoN(840.0
pp
IU
1.0=)3etoN(850.0
pp
IU
10.0=)3etoN(600.0
smr
1.0=)3etoN(710.0
IU
,f/itceleIItacEROC-352-RG
zHM48.15
445.1,f/i1SDEROC-352-RG
zHM
zHk04otzH01
noitinifedtseTdesuretliFcepsIU
zHM445.1rof11426T&TA
)zHk8otzH01cepsretliF(
zHk04otzH01IU
zHM445.1rof11426T&TAzHk04otzH01
zHM445.1rof11426T&TAzHk04otzH01
zHM445.1rof11426T&TAdnabdaorBIU
pp
zHk004otzHk21
IU
IU
pp
IU
smr
smr
10.0=)3etoN(300.0
1.0=)41etoN(630.0
10.0=)41etoN(5500.0
5158SCAnotnemerusaemIU
2veR
20.0=)41etoN(5500.0
smr
=
IU
smr
520.0
=
IU
smr
520.0
50.0=)41etoN(5500.0
smr
)41etoN(5500.0
)41etoN(5500.0
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com39
Page 40
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
noitinifedtseTdesuretliFcepsIU
zHM840.2rof247-GzHk001otCDIU
zHM840.2rof247-G
)zHk001otzHk81cepsretliF(
zHM840.2rof247-GzHk001otzH02IU
noitinifedtseTdesuretliFcepsIU
rof428G&994000-TWN-RT
zHM445.1
rof428G&994000-TWN-RT
zHM445.1
)zHk04otzHk8cepsretliF(
noitinifedtseTdesuretliFcepsIU
zHk001otzH02IU
zHk04otzH01IU
zHk04otzH01IU
pp
pp
pp
pp
pp
FINAL
5158SCAnotnemerusaemIU
2veR
52.0=)41etoN(740.0
50.0=)41etoN(640.0
50.0=)41etoN(640.0
5158SCAnotnemerusaemIU
2veR
0.5=)41etoN(630.0
1.0=)41etoN(630.0
5158SCAnotnemerusaemIU
2veR
zHM445.1rofEROC-4421-RGzH01>IU
50.0=)41etoN(630.0
pp
Notes for the output jitter generation tables
Note 1. Filter used is that defined by test definition unless otherwise stated
Note 2. 5 Hz bandwidth, 19.44 MHz input, direct lock
Note 3. 5 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 4. 20 Hz bandwidth, 19.44 MHz input, direct lock
Note 5. 20 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 6. 10 Hz bandwidth, 19.44 MHz input, direct lock
Note 7. 10 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 8. 2.5 Hz bandwidth, 19.44 MHz input, direct lock
Note 9. 2.5 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 10. 1.2 Hz bandwidth, 19.44 MHz input, direct lock
Note 11. 1.2 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 12. 0.6 Hz bandwidth, 19.44 MHz input, direct lock
Note 13. 0.6 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 14. 5 Hz bandwidth, 2.048 MHz input, 8 kHz lock
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com40
Page 41
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
FINAL
Microprocessor interface timing
SERIAL MODE
In SERIAL mode, the device is configured to interface with a serial microprocessor bus. The following figures show the timing diagrams of write and read accesses for this mode.
During read access the output data SDO is clocked out on the rising edge of SCLK when the active edge selection control bit CLKE is 0 and on the falling edge when CLKE = 1.
Address, read/write control bit and write data are always clocked into the interface on the rising edge of SCLK.
Both input data SDI and clock SCLK are oversampled, filtered and synchronized to the 6MHz internal clock.
The serial interface clock (SCLK) is not required to run between accesses (i.e., when CSB = 1).
CLKE = 0; SDO data is clocked out on the rising edge of SCLK
CSB
t
h2
SCLK
t
su2
t
t
su1
h1
t
pw1
t
pw2
SDI
R/W_A0 A1 A2 A3 A4 A5 A6
SDO
CLKE = 1; SDO data is clocked out on the falling edge of SCLK
CSB
SCLK
SDI
R/W
_
A3A1A0
A2 A5A4 A6
SDO
Read access timing in SERIAL Mode.
t
d1
D0 D5D3D2 D4 D7D6
D1
t
d1
D0 D1 D2 D3 D4 D5 D6
t
D7
t
d2
h2
t
d2
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com41
Page 42
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
lobmyS retemaraP NIM PYT XAM
t
t
t
t
t
t
t
t
t
1us
2us
1d
2d
1wp
2wp
1h
2h
p
CSB
BSCputeS
KLCSyaleD
BSCyaleD
t
su2
KLCSotdilavIDSputeS
egdegnisir
KLCSot
egdegnillaf
KLCS(
egdegnisir
egdegnisir
egdegnisir
egdegnillaf
Z-hgihODSot--sn01
emitwolKLCS sn081--
emithgihKLCS sn081--
KLCSretfadilavIDSdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnillaf
Read access timing in SERIAL Mode.
FINAL
0sn- -
sn061--
dilavODSot)1=EKLCrof--sn71
sn071--
0=EKLCrof,
1=EKLCrof,
BSC(sesseccaevitucesnocneewtebemiT
t
pw2
BSCot
egdegnisir
)sn061--
egdegnillaf
sn5--
t
h2
SCLK
t
h1
pw1
D1
D0 D5D3D2 D4 D7D6
SDI
t
su1
t
R/W_A0 A1 A2 A3 A4 A5 A6
SDO
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1wp
t
2wp
t
1h
t
2h
t
p
BSCputeS
KLCSotdilavIDSputeS
egdegnisir
KLCSot
egdegnillaf
egdegnisir
emitwolKLCS sn081--
emithgihKLCS sn081--
KLCSretfadilavIDSdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnisir
BSC(sesseccaevitucesnocneewtebemiT
BSCot
egdegnisir
)sn061--
egdegnillaf
0sn- -
sn061--
sn071--
sn5--
Write access timing in SERIAL Mode.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com42
Page 43
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Package information
2
D
1
D1
E
E1
1
2
3
4
3
2
1
A A2
Seating plane
A1
6
b
3
AA
5
e
FINAL
AN2
AN3
1
R1
S
AN1
B
L
L1
7
b
c c1
7
b1
7
Section A-A
R2
B
AN4
Section B-B
7
8
Notes
The top package body may be smaller than the bottom package body by as much as 0.15 mm.
1 2
To be determined at seating plane.
3
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Details of pin 1 identifier are optional but will be located within the zone indicated.
4
Exact shape of corners can vary.
5
A1 is defined as the distance from the seating plane to the lowest point of the package body.
6
These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
7
8
Shows plating.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com43
Page 44
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
PFQL46 egakcaP
E/D1E/1DA1A2Ae 1NA2NA3NA4NA1R2RL 1LSb1bc1c
snoisnemiD
mmni
niM04.150.053.1°11°11°080.080.054.002.071.071.090.090.0
moN00.2100.0105.101.004.105.0°21°21- °5.3-- 06.0
xaM06.151.054.1°31°31-°7- 02.057.0-72.032.002.061.0
Thermal conditions
00.1
-22.002.0--
)fer(
FINAL
The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements.
NOTES
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com44
Page 45
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Application information
A simplified Application Schematic for the ACS8515 is illustrated in Figure 9.
7\SLFDOSRZHU VXSSO\FRPSRQHQWV
BW[FR
'*1'
9''
YGG
0+]
JQG
;
RXWSXW
JQG
RSWQ
3
Y
Y
WHUPBFRQQHFW
9''$
=' ='
$*1'
5
5
5
5
&
Q)
9''
&
Q)
&
Q)
$*1'
9''Y
X)
&
2SWLRQDO3URFHVVRU LQWHUIDFHFRQQHFWLRQV
'*1'
&
Q)
(=
,175(465&6:
,&
9,1 *1'
9287
X)B7$17
$*1'*5
,&
$*1'$
9$
,175(4
5()&/.
'*1''
9''
9''

'*1''

'*1''

9''

65&6:

9$

$*1'$

,&
9''
&
'*1'

,
6
&
2
1
6
' + %
F Q \ 6
U )
9''
&
Q)
'*1'
F Q \ 6
U )
0
'*1'
,
,
&
&
6
* (
2 3
1
2
2
9''
'*1'
,
&
) )
, ' B ' 1 *
2
9
'
,
&
'
*
'
1
'
,&
$&6
6
*
)
(
2
)
,
3
1
'
B
B
B
'
&
&
'
(
(
9
6
6
2
6
2
3
B
&
(
6
9''
&
Q)
'*1'
9
,
&
'
'
* ( 1
9
'
& (
'
6
9
9''
' * 1 '
6 ' 2
. & 1 < 6
9''$
$*1'
Q)
&
'*1'
,
,
,
&
&
&
7
7
7
&
'
'
.
2
,
,&6<1&
,&6<1&
'
1
'
&
&
*
(
(
'
6
6
'
9
RSWLRQDO RQO\QHHGHGIRU YSURWHFWLRQ
& Q)
325%
6&/. 9'' 9''
&6%
6',
&/.(
,&706
'*1'
9'' 9''
,&7567
9''
6(&
9''Y
9''
&
Q)
'*1'
               
'*1'
Q)
&
'*1'
9''
& Q)
'*1'
6'2 6&/. &6% 6', &/.(
FINAL
2SWLRQDO3URFHVVRU LQWHUIDFHFRQQHFWLRQV
23 21 6(&3 6(&16(&16(&3 6(& 6(&
'*1' '*1'
Figure 9: A simplified Application Schematic.
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com45
6<1&N0)U6\QF)U6\QF
6(&
Page 46
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Revision History
Changes from revision 2.04 to 2.05, January 2001.
metInoitceSegaPnoitpircseD
1stnetnocfoelbaT2 yrotsiHnoisiveRfonoisulcnI
2
3
4
5
6edomrevodloH13detcerrocrorregnillepS
retsigeR
noitpircsed
retsigeR
noitpircsed
retsigeR
noitpircsed
retsigeR
noitpircsed
02dettamrof-erretsigerstpurretni_sts
22detcerrocrorreretsigeredom_gnitarepo_gfnc
42detcerrocrorrestuptuo_laitnereffid_gfnc
52nettirw-erdnadettamrof-erretsigertimil_qerf_gfnc
FINAL
7yrotsiHnoisiveR64deddanoitceS
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com46
Page 47
ACS8515 LC/P
ADVANCED COMMUNCIATIONS
Ordering information
FINAL
REBMUNTRAP NOITPIRCSED
5158SCA PFQLnip46,noitcetorPdraCeniLHDS/TENOS
Disclaimers
Life support - This product is not designed or intended for use in life suport equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech Corporation for such use.
Right to change - Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders.
For additional information, contact the following:
Semtech Corporation Advanced Communications Products
E-Mail: AdvCom@semtech.com
Internet: http://www.semtech.com
USA: 652 Mitchell Road, Newbury Park, CA 91320-2289
Tel: +1 805 498 2111, Fax: +1 805 498 3804
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, Taiwan, R.O.C.
Tel: +886 2 2748 3380, Fax: +886 2 2748 3390
EUROPE: Delta House, Chilworth Science Park, Southampton, Hants, SO16 7NS, UK
Tel: +44 23 80 769008, Fax: +44 23 80 768612
Revision 2.05/Jan 2001 ã2001 Semtech Corp www.semtech.com47
ISO9001
CERTIFIED
Loading...