Datasheet ACS8510 Datasheet (Semtech Corporation)

Page 1
ACS8510 SETS
Synchronous Equipment Timing Source
for SONET or SDH Network Elements
ADVANCED COMMUNCIATIONS
Description Features
The ACS8510 is a highly integrated, single-chip solution for the Synchronous Equipment Timing Source (SETS) function in a SONET or SDH Net­work Element. The device generates SONET or SDH Equipment Clocks (SEC) and frame synchro­nization clocks. The ACS8510 is fully compliant with the required specifications and standards.
The device supports Free-Run, Locked and Holdover modes. It also supports all three types of reference clock source: recovered line clock, PDH network, and node synchronization. The ACS8510 generates independent SEC and BITS clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.
Two ACS8510 devices can be used together in a Master/Slave configuration mode allowing sys­tem protection against a single ACS8510 failure.
A microprocessor port is incorporated, providing access to the configuration and status registers for device setup and monitoring. The ACS8510 supports IEEE 1149.1 JTAG boundary scan.
* Meets Holdover requirements, lowest bandwidth 0.1 Hz.
Block Diagram
Suitable for Stratum 3E*, 3, 4E and 4 SONET or SDH Equipment Clock (SEC) applications Meets AT&T, ITU-T, ETSI and Telcordia specifi­ cations Accepts 14 individual input reference clocks Generates 11 output clocks Supports Free-Run, Locked and Holdover modes of operation Robust input clock source quality monitoring on all inputs Automatic hit-less source switchover on loss of input Phase build-out for output clock phase conti­ nuity during input switchover and mode transi­ tions Microprocessor interface - Intel, Motorola, Serial, Multiplexed, EEPROM Programmable wander and jitter tracking/ attenuation 0.1 Hz to 20 Hz Support for Master/Slave device configuration alignment and hot/standby redundancy IEEE 1149.1 JTAG Boundary Scan Single 3.3 v operation. 5 v I/O compatible Operating temperature (ambient) -40°C to +85°C Available in 100 pin LQFP package
FINAL
14 Input Reference Source includin g: AMI 64/8 kHz 2 kHz 8 kHz N x 8 kHz
1.544 MHz
2.048 MHz
6.48 MHz
19.44 MHz
25.92 MHz
38.88 MHz
51.84 MHz
77.76 MHz
155.52 MHz
TCK TDI TMS TRST TDO
Input Ports
6xT
IN1
4xT
IN2
4xT
IN3
MFrSync
IEEE
1149.1 JTAG
T
OUT4
selector
Monitors
T
OUT0
selector
Chip Clock
Generator
TCXO (* OCXO )
CLK
Divid er
Divider
PFD
DPLL/F req . Synthesis
Priority
Register
Priority
Register
Table
Table
Set
Set
Digital
Loop Filter
PFD
Digita l
DPLL/Freq. Synthesis
DTO
Loop Filter
M icroprocessor
Port
DTO
APLL
Frequency
Dividers
Output
Ports
2xT
OUT4
7xT
OUT0
MFrSync
FrSync
11 Output Ports
includin g:
1.544/2.048 MHz
3.088/4.096 MHz
6.176/8.182 MHz
12.352/16.384 M Hz
6.48 MHz
19.44 MHz
25.92 MHz
38.88 MHz
51.84 MHz
77.76 MHz
155.52 MHz
311.04 MHz
AMI 64/8 kHz
2 kHz MFrSync
8 kHz FrSync
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com
Page 2
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
Table of Contents
Pin diagram................................................................................................................................................3
Pin descriptions.........................................................................................................................................4
Functional description...............................................................................................................................7
Local oscillator clock..........................................................................................................................................................8
Input Interfaces..................................................................................................................................................................8
Over voltage protection.......................................................................................................................................................8
Input reference clock ports................................................................................................................................................9
Input wander and jitter tolerance...................................................................................................................................11
Output clock ports...........................................................................................................................................................13
Output wander and jitter..................................................................................................................................................14
Phase variation.................................................................................................................................................................16
Phase build-out.................................................................................................................................................................17
Microprocessor interface................................................................................................................................................17
Interrupt enable and clear...............................................................................................................................................19
Register map description.................................................................................................................................................21
Register map description.................................................................................................................................................25
Selection of input reference clock source.....................................................................................................................33
Clock quality monitoring..................................................................................................................................................34
Activity monitoring...........................................................................................................................................................35
Modes of operation..........................................................................................................................................................38
Protection facility.............................................................................................................................................................39
JTAG..............................................................................................................................................................................42
Power on reset - PORB.....................................................................................................................................................42
Electrical specification............................................................................................................................45
Absolute maximum range...............................................................................................................................................45
Operating conditions.......................................................................................................................................................45
TTL DC characterisitics...................................................................................................................................................45
PECL DC characteristics..................................................................................................................................................47
LVDS DC characteristics..................................................................................................................................................48
AMI DC characteristics....................................................................................................................................................49
Jitter characteristics........................................................................................................................................................52
JTAG timing........................................................................................................................................................................55
Microprocessor interface timing characteristics.......................................................................................56
Motorola mode..................................................................................................................................................................56
Intel mode................................................................................................................................................................58
Multiplexed mode.............................................................................................................................................................60
Serial mode.......................................................................................................................................................................62
EEPROM mode.................................................................................................................................................................64
Package information................................................................................................................................65
Application information............................................................................................................................67
Simplified application schematic...................................................................................................................................67
Revision History.......................................................................................................................................68
Order information....................................................................................................................................69
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com2
Page 3
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Pin Diagram
1 AGND 2 TRST 3IC 4NC 5 AGND 6 VA1+ 7 TMS 8 INTREQ 9 TCK 10 REFCLK 11 DGND 12 VD+ 13 VD+ 14 DGND 15 DGND 16 VD+ 17 NC 18 SRCSW 19 VA2+ 20 AGND 21 TDO 22 IC 23 TDI 24 I1 25 I2 26 VAMI+ 27 TO8NEG 28 TO8POS 29 GND_AMI 30 FrSync 31 MFrSync 32 GND_DIFF 33 VDD_DIFF 34 TO6POS 35 TO6NEG 36 TO7POS 37 TO7NEG 38 GND_DIFF 39 VDD_DIFF 40 I5POS 41 I5NEG 42 I6POS 43 I6NEG 44 VDD5 45 SYNC2K 46 I3 47 I4 48 I7 49 DGND 50 VDD
1
Figure 1: Top view of 100 pin LQFP package.
NC - Not Connected; leave to Float. IC - Internally Connected; leave to Float.
ACS85 1 0
SDH/SONET SETS
Rev 2.x
FINAL
100 SONSDHB 99 MSTSLVB 98IC 97IC 96IC 95 TO9 94 TO5 93 TO4 92 DGND 91 VDD 90 TO3 89 TO2 88 TO1 87 DGND 86 VDD 85 VDD 84 DGND 83 AD0 82 AD1 81 AD2 80 AD3 79 AD4 78 AD5 77 AD6 76 AD7 75 RDY 74 PORB 73 ALE 72 RDB 71 WRB 70 CSB 69 A0 68 A1 67 A2 66 A3 65 A4 64 A5 63 A6 62 DGND 61 VDD 60 UPSEL0 59 UPSEL1 58 UPSEL2 57 I14 56 I13 55 I12 54 I11 53 I10 52 I9 51 I8
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com3
Page 4
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Pin Descriptions
Power
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
61,31,21+DVP-
62+IMAVP- :egatlovylppuS %01-/+.stloV3.3+,tuptuoIMAotylppuslatigiD
93,33FFID_DDVP-
445DDVP-
,58,16,05
19,68
6+1AVP-
DDVP- :egatlovylppuS %01-/+.stloV3.3+,cigolotylppuslatigiD
FINAL
:egatlovylppuS 3.3+,noitcesgolananisetagotylppuslatigiD
%01-/+.stloV
:egatlovylppuS .stloV3.3+,stroplaitnereffidrofylppuslatigiD
%01-/+
5DDV tcennoC.sniptupniotecnarelotstloV5+rofylppuslatigiD:
rofDDVottcennoC.v5+otgnipmalcrof)%01-/+(stlov5+ot
sniptupni,gnipmalconrofgnitaolfevaeL.v3.3+otgnipmalc
.v5.5+otputnarelot
:egatlovylppuS .stloV3.3+,LLPgniypitlumkcolcotylppusgolanA
%01-/+
91+2AVP- egatlovylppuS %01-/+.stloV3.3+,LLPtuptuootylppusgolanA:
,51,41,11 ,48,26,94
29,78
92IMA_DNGP
83,23FFID_DNGP- dnuorGylppuS stroplaitnereffidrofdnuorglatigiD:
02,5,1DNGAP- dnuorGylppuS dnuorggolanA:
DNGDP- dnuorGylppuS cigolrofdnuorglatigiD:
-
No connections
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
71,4CN-- detcennoCtoN taolFotevaeL:
,69,22,3
89,79
CI-- detcennoCyllanretnI taolFotevaeL:
dnuorGylppuS tuptuoIMArofdnuorglatigiD:
Note: I = input, O = output, P = power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com4
Page 5
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Others
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
2TSRTILTT
7SMTILTT
8QERTNIO
9KCTILTT
01KLCFERILTT
81WSCRSILTT
12ODTO
FINAL
tupnIteseRlortnoCGATJ yradnuoBGATJelbaneot1=TSRT:
D
U
LTT
SOMC
kcolCGATJ ottcennocdesutonfI.tupnikcolcnacSyradnuoB:
D
.tuoyalBCP
)kcolCrotallicsO
D
LTT
SOMC
tuptuOGATJ foegdegnillafnodetadpU.tuptuoatadtsetlaireS:
tceleSedoMtseTGATJ nodelpmaS.elbanenacSyradnuoB:
tseuqeRtpurretnI tuptuotpurretnIerawtfoshgihevitcA:
kcolCecnerefeR lacoLdedaehnoitcesotrefer(zHM8.21:
gnihctiwSecruoS gnihctiwSecruoStsaFecroF:
.gnitaolfevaeldesutonfI.KCT
cigolGATJ(noitarepoecivedlamronrof0=TSRT.edomnacS
.gnitaolfevaelroDNGottcennocdesutonfI.)tnerapsnart
.gnitaolfevaelroDDVottcennocdesutonfI.KCTfoegdegnisir
decalproticapacaeriuqeryamnipsihT.gnitaolfevaelroDNG
A.pukcipesionecuderot,DNGtseraenehtdnanipehtneewteb
notnednepedsieulavehttub,etauqedaebdluohsFp01foeulav
32IDTILTT
421IIIMA 1ecnerefertupnI zHk8+zHk46kcolcetisopmoc:
522IIIMA 2ecnerefertupnI zHk8+zHk46kcolcetisopmoc:
72GEN8OTOIMA
82SOP8OTOIMA
03cnySrFO
13cnySrFMO
43 53
63 73
04 14
SOP6OT GEN6OT
SOP7OT GEN7OT
SOP5I GEN5I
O
O
I
U
LTT
SOMC
LTT
SOMC
/LCEP
SDVL
/SDVL
LCEP
SDVL LCEP
tupnIGATJ .KCTfoegdegnisirnodelpmaS.tupnIatadtsetlaireS:
eslup
eslup
)evaw
)evawerauqs(
.gnitaolfevaelroDDVottcennocdesutonfI
8ecnerefertuptuO evitagenzHk8+zHk46,kcolcetisopmoc:
8ecnerefertuptuO evitisopzHk8+zHk46,kcolcetisopmoc:
01ecnerefertuptuO erauqs(tuptuokcolccnySemarFzHk8:
11ecnerefertuptuO tuptuokcolccnySemarF-itluMzHk2:
6ecnerefertuptuO 445.1(1giDoslA.zHM88.83tluafed:
40.113,zHM25.551,zHM44.91,)x8,4,2dnazHM840.2/zHM
.SDVLepyttluafeD.zHM
7ecnerefertuptuO 67.77,zHM48.15oslA.zHM44.91tluafed:
.LCEPepyttluafeD.zHM25.551,zHM
5ecnerefertupnI SDVLepyttluafed,zHM44.91tluafed:
24 34
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com5
SOP6I GEN6I
I
LCEP SDVL
6ecnerefertupnI LCEPepyttluafed,zHM44.91tluafed:
Page 6
ACS8510 SETS
ADVANCED COMMUNCIATIONS
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
54K2CNYSILTT
643IILTT
744IILTT
847IILTT
158IILTT
259IILTT
3501IILTT
4511IILTT
5521IILTT
6531IILTT
FINAL
D
D
D
D
D
D
D
D
D
D
zHk2esinorhcnyS fotuptuocnySemarF-itluMzHk2ottcennoC:
metsysycnadnuderni0158SCArentrap
3ecnerefertupnI zHk8tluafed,elbammargorp:
4ecnerefertupnI zHk8tluafed,elbammargorp:
7ecnerefertupnI zHM44.91tluafed,elbammargorp:
8ecnerefertupnI zHM44.91tluafed,elbammargorp:
9ecnerefertupnI zHM44.91tluafed,elbammargorp:
01ecnerefertupnI .zHM44.91tluafed,elbammargorp:
:11ecnerefertupnI ,elbammargorp
,zHM840.2/445.1)edomretsam(tluafed
zHM84.6)edomevals(tluafed
21ecnerefertupnI .zHM840.2/445.1tluafed,elbammargorp:
31ecnerefertupnI .zHM840.2/445.1tluafed,elbammargorp:
7541IILTT
06-85)0:2(LESPUILTT
96-36)0:6(AILTT
07BSCILTT
17BRWILTT
27BDRILTT
37ELAILTT
47BROPILTT
57YDRO
LTT
D
41ecnerefertupnI .zHM840.2/445.1tluafed,elbammargorp:
tcelesrossecorporciM ralucitraparofecafretniehtserugifnoC:
D
.epytrossecorporcim
sserddAecafretnIrossecorporciM ehtrofsubsserddA:
D
U
)woLevitcA(tceleSpihC ehtybwoLdetressasinipsihT:
.edomlaireSniIDSsi)0(A.sretsigerecafretnirossecorporcim
.ecafretnirossecorporcimehtelbaneotrossecorporcim
U
)woLevitcA(etirW ehtybwoLdetressasinipsihT:
1=BRW,edomalorotoMnI.elcycetirwaetaitiniotrossecorporcim
.daeRrof
U
)woLevitcA(daeR ehtybwoLdetressasinipsihT:
.elcycdaeraetaitiniotrossecorporcim
elbanEhctaLsserddA hctalsserddaehtsemocebnipsihT:
morfsnoitisnartnipsihtnehW.rossecorporcimehtmorfelbane
D
lanretniehtotnidehctalerastupnisubsserddaeht,woLothgiH
.edomlaireSniKLCS=ELA.sretsiger
U
teseRnOrewoP lanretnilla,woLdecrofsiBROPfI.teserretsaM:
.seulavtluafedotkcab.tesererasetats
egdelwonkcaataD/ydaeR etacidniothgiHdetressasinipsihT:
SOMC
.noitarepoetirwrodaeradetelpmocsahecivedeht
38-67)0:7(DAOILTT
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com6
D
ataD/sserddA ehtnognidnepedsubsserdda/ataddexelpitluM:
edomlaireSniODSsi)0(DA.noitcelesedomrossecorporcim
Page 7
ACS8510 SETS
ADVANCED COMMUNCIATIONS
NIPLOBMYSOIEPYTNOITPIRCSED/EMAN
881OTO
982OTO
093OTO
394OTO
495OTO
599OTO
99BVLSTSMILTT
FINAL
LTT
SOMC
LTT
SOMC
LTT
SOMC
LTT
SOMC
LTT
SOMC
LTT
SOMC
U
.erawtfos
1ecnerefertuptuO 445.1(1giDoslA.zHM84.6tluafed:
zHM29.52,zHM44.91,)x8,4,2dnazHM840.2/zHM
2ecnerefertuptuO 445.1(2giDoslA.zHM88.83tluafed:
zHM48.15,zHM29.52,)x8,4,2dnazHM840.2/zHM
3ecnerefertuptuO .dexif-zHM44.91:
4ecnerefertuptuO .dexif-zHM88.83:
5ecnerefertuptuO .dexif-zHM67.77:
9ecnerefertuptuO )STIB4T(.zHM840.2/445.1:
BEVALSRETSAM purewoplaitiniehtstes:tcelesevalsretsaM:
,retsigernoitcelesevalS/retsaMehtfo)BROParetfaetatsro(etats ybpurewopretfadegnahcebnacetatsretsigerehT.1tib,43rdda
001BHDSNOSILTT
D
Functional description
The ACS8510 is a highly integrated, single-chip solution for the SETS function in a SONET/SDH Network Element, for the generation of SEC and frame synchronisation pulses. In Free-Run mode, the ACS8510 generates a stable, low­noise clock signal from an internal oscillator. In Locked mode, the ACS8510 selects the most appropriate input reference source and generates a stable, low-noise clock signal locked to the selected reference. In Holdover mode, the ACS8510 generates a stable, low-noise clock signal from the internal oscillator, adjusted to match the last-known-good frequency of the last-selected reference source. In all modes, the frequency accuracy, jitter and drift performance of the clock meet the requirements of ITU G.812, G.813, G.823, GR 1244-CORE.
BHDSTENOS laitiniehtstes:tcelesycneuqerfHDSroTENOS:
HDS/TENOSehtfo)BROParetfaetatsro(etatspurewop
.5tib,83rddadna2tib,h43rdda,sretsigernoitcelesycneuqerf
.erawtfosybpurewopretfadegnahcebnacsetatsretsigerehT
The ACS8510 supports all three types of reference clock source: recovered line clock (T
), PDH network synchronisation timing (T
IN1
and node synchronisation (T generates independent T
OUT0
). The ACS8510
IN3
and T
OUT4
IN2
clocks, an 8 kHz Frame Synchronisation clock and a 2 kHz Multi-Frame Synchronisation clock.
The ACS8510 has a high tolerance to input jitter and wander. The output jitter and wander are low, where the wander transfer is programmable (0.1 Hz up to 20 Hz cut-off points).
The ACS8510 supports protection. Two ACS8510 devices can be configured to provide protection against a single ACS8510 failure. The protection maintains alignment of the two ACS8510 devices (Master and Slave) and ensures that both ACS8510 devices maintain the same priority table, choose the same
)
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com7
Page 8
ACS8510 SETS
ADVANCED COMMUNCIATIONS
reference input and generate the T the 8 kHz Frame Synchronisation clock and the 2 kHz Multi-Frame Synchronisation clock with the same phase. The ACS8510 includes a microprocessor port, providing access to the configuration and status registers for device setup and monitoring.
Local Oscillator Clock
The Master system clock on the ACS8510 should be provided by an external clock oscillator of frequency 12.80 MHz. The clock specification is important for meeting the ITU/ETSI and Telcordia performance requirements in Holdover mode. ITU and ETSI specifications permit a combined drift characteristic, at constant temperature, of all non-temperature-related parameters, of up to 10 ppb per day. The same specifications allow a drift of 1 ppm over a temperature range of 0 to 70 Celsius. Telcordia specifications are somewhat tighter, requiring a non-temperature-related drift of less than 40 ppb per day and a drift of 280 ppb over the temperature range 0 to 50 Celsius.
ITU and ETSI specification
OUT0
clock,
FINAL
Crystal Frequency Calibration
The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. +/- 50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8 bit register locations. The setting of the conf_nominal_frequency register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321. The minimum being 0 and the maximum 65535, gives a +500 ppm to -700 ppm adjustment range of the output frequencies.
For example, if the crystal was oscillating at
12.8 MHz + 5 ppm, then the calibration value in the register to give a -5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be : 39321 - (5 /
0.02) = 39071 (decimal).
Tolerance: +/- 4.6 ppm over 20 year life time.
Drift*: +/- 0.05 ppm/15 seconds @ constant temp.
+/- 0.01 ppm/day @ constant temp.
+/- 1 ppm over temp. range 0-70 Celsius
*Frequency drift over supply voltage range of 2.7 V to 3.3 V.
Telcordia GR-1244 CORE specification
Tolerance: +/- 4.6 ppm over 20 year life time.
Drift*: +/- 0.05 ppm/15 seconds @ constant temp.
+/- 0.04 ppm/day @ constant temp.
+/- 0.28 ppm over temp. range 0-50 Celsius
*Frequency drift over supply voltage range of 2.7 V to 3.3 V.
Please contact Semtech for information on crystal oscillator suppliers.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com8
Input Interfaces
The ACS8510 supports up to fourteen input reference clock sources from input types T T
and T
IN2
using TTL, CMOS, PECL, LVDS and
IN3
IN1
AMI buffer I/O technologies. These interface technologies support 3.3 V and 5 V operation.
Over-Voltage Protection
The ACS8510 may require Over-Voltage Protection on input reference clock ports according to the ITU Recommendation K.41. Semtech recommends the use of their protection devices for this purpose (see separate Semtech data book).
,
Page 9
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Input Reference Clock Ports
Table 1 gives details of the input reference ports, showing the input technologies and the range of frequencies supported on each port; the default spot frequencies and default priorities assigned to each port on power-up or by reset are also shown. Note that SDH and SONET networks use different default frequencies; the network type is pin-selectable (using the SONSDHB pin). Specific frequencies and priorities are set by configuration.
Although each input port is shown as belonging to one of the types, T fully interchangeable as long as the selected speed is within the maximum operating speed of the input port technology.
SDH and SONET networks use different default frequencies; the network type is selectable using the config_mode register 34 Hex, bit 2. For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex, bit 2 = 0. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin
100). Specific frequencies and priorities are set by configuration.
TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies supported are; 8 kHz (and N x 8 kHz), 1.544 MHz/2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz,
51.84 MHz, 77.76 MHz. The frequency selection is programmed via the cnfg_ref_source_frequency register. The internal DPLL will normally lock to the selected input at the frequency of the input, eg. 19.44 MHz will lock the DPLL phase comparisons at
19.44 MHz. It is, however, possible to utilise an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways:
IN1
, T
IN2
or T
, they are
IN3
FINAL
(i) any of the supported spot frequencies can be divided to 8 kHz by setting the "lock8K" bit (bit 6) in the appropriate cnfg_ref_source_frequency register location
(ii) any multiple of 8 kHz between 1544 kHz to 100 MHz can be supported by using the "DivN" feature (bit 7 of the cnfg_ref_source_frequency register). Any reference input can be set to use DivN independently of the frequencies and configurations of the other inputs.
Any reference input with the "DivN" bit set in the cnfg_ref_source_frequency register will employ the internal pre-divider prior to the DPLL locking. The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by (N+1) where 0<N<214-1. The cnfg_ref_source_frequency register must be set to the closest supported spot frequency to the input frequency, but must be lower than the input frequency. When using the "DivN" feature the post-divider frequency must be 8 kHz, which is indicated by setting the lock8k bit high (bit 6 in cnfg_ref_source_ frequency register). Any input set to DivN must have the frequency monitors disabled (If the frequency monitors are disabled, they are disabled for all inputs regardless of the input configurations, in this case only activity monitoring will take place). Whilst any number of inputs can be set to use the "DivN" feature, only one N can be programmed, hence all inputs using the "DivN" feature must require the same division to get to 8 kHz.
PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz and
311.04 MHz. The choice of PECL or LVDS compatibility is programmed via the cnfg_differential_inputs register. Unused PECL/ LVDS differential inputs should be fixed with one input high (VDD) and the other input low (GND), or set in LVDS mode and left floating, in which case one input is internally pulled high and the other low.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com9
Page 10
ACS8510 SETS
ADVANCED COMMUNCIATIONS
troP
rebmuN
1_I1000T
2_I0100T
3_I1100T
4_I0010T
5_I1010T
6_I0110T
lennahC
rebmuN
troP
epyT
NI3
NI3
NI3
NI3
NI1
NI1
FINAL
troPtupnI
ygolonhceT
detroppuSseicneuqerF
)zHk8+zHk46,kcolcetisopmoc(zHk8/46
IMA
zHk8/46:)TENOS(tluafeD zHk8/46:)HDS(tluafeD
)zHk8+zHk46,kcolcetisopmoc(zHk8/46
IMA
zHk8/46:)TENOS(tluafeD zHk8/46:)HDS(tluafeD
zHM001otpU)1etoNees(
SOMC/LTT
:)TENOS(tluafeDHk8z
:)HDS(tluafeDHk8z
zHM001otpU)1etoNees(
SOMC/LTT
:)TENOS(tluafeDHk8z
:)HDS(tluafeDHk8z
LCEP/SDVL
tluafedSDVL
SDVL/LCEP
tluafedLCEP
zHM25.551otpU)2etoNees(
zHM44.91:)TENOS(tluafeD zHM44.91:)HDS(tluafeD
zHM25.551otpU)2etoNees(
zHM44.91:)TENOS(tluafeD zHM44.91:)HDS(tluafeD
tluafeD
ytiroirP
2
3
4
5
6
7
7_I1110T
8_I0001T
9_I1001T
01_I0101T
11_I1101T
21_I0011T
31_I1011T
41_I0111T
NI1
NI1
NI1
NI1
NI2
NI2
NI2
NI2
SOMC/LTT
zHM44.91:)TENOS(tluafeD
8
zHM44.91:)HDS(tluafeD
zHM001otpU)1etoNees(
zHM001otpU)1etoNees(
SOMC/LTT
zHM44.91:)TENOS(tluafeD
9
zHM44.91:)HDS(tluafeD
zHM001otpU)1etoNees(
SOMC/LTT
zHM44.91:)TENOS(tluafeD
01
zHM44.91:)HDS(tluafeD
zHM001otpU)1etoNees(
SOMC/LTT
:)TENOS(tluafeDzHM44.91
11
zHM44.91:)HDS(tluafeD
)1etoNees(zHM001otpU
SOMC/LTT
zHM445.1:)TENOS()retsaM(tluafeD
zHM840.2:)HDS()retsaM(tluafeD
1/21
)3etoN(
)evalS(tluafeD6zHM84.
zHM001otpU)1etoNees(
SOMC/LTT
zHM445.1:)TENOS(tluafeD
31
zHM840.2:)HDS(tluafeD
zHM001otpU)1etoNees(
SOMC/LTT
zHM445.1:)TENOS(tluafeD
41
zHM840.2:)HDS(tluafeD
zHM001otpU)1etoNees(
SOMC/LTT
zHM445.1:)TENOS(tluafeD
51
zHM840.2:)HDS(tluafeD
Table 1: Input Reference Source Selection and Priority Table
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com10
Page 11
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Notes for Table 1.
Note 1: TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies are: 2 kHz, 4 kHz, 8 kHz, 1.544 MHz/2.048 MHz, 6.48 MHz,
19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. There are different output clock frequencies available for SONET and SDH applications. SONSDHB controls the default frequency output. F frequency is F1 when the SONSDHB pin is High and F2 when SONSDHB pin is Low.
Note 2: PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz and 311.04 MHz.
Note 3: Input port <I_11> is set at 12 on the Master SETS IC and 1 on the Slave SETS IC, as default on power up (or PORB). The default setup of Master or Slave <I_11> priority is determined by the MSTSLVB pin.
DivN examples
To lock to 2.000 MHz.
(1) The cnfg_ref_source_frequency register is set to 11XX0001 (binary) to set the DivN, lock8k bits, and the frequency to E1/T1. (XX = leaky bucket ID for this input).
(2) The cnfg_mode register (34Hex) bit 2 needs to be set to 1 to select SONET frequencies (T1).
(3) The frequency monitors are disabled in cnfg_monitors register (48Hex) by writing 00 to bits 0 and 1.
(4) the DivN register is set to F9 Hex (249 decimal).
means that the output
1/F2
FINAL
To lock to 10.000 MHz.
(1) The cnfg_ref_source_frequency register is set to 11XX0010 (binary) to set the DivN, lock8k bits, and the frequency to 6.48 MHz. (XX = leaky bucket ID for this input).
(2) The frequency monitors are disabled in cnfg_monitors register (48Hex) by writing 00 to bits 0 and 1.
(3) the DivN register is set to 4E1 Hex (1249 decimal).
An AMI port supports a composite clock, consisting of a 64 kHz AMI clock with 8 kHz boundaries marked by deliberate violations of the AMI coding rules, as specified in ITU recommendation G.703. Departures from the nominal pattern are detected within the ACS8510, and may cause reference-switching if too frequent. See Figure 9 for more details.
in, hold-in and pull-out ranges are specified for each input port in Table 2. Minimum jitter tolerance masks are specified in Figures 1 and 2, and Tables 3 and 4, respectively. The ACS8510 will tolerate wander and jitter components greater than those shown in Figure 1 and Figure 2, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the
Input Wander and Jitter Tolerance
The ACS8510 is compliant to the requirements of all relevant standards, principally ITU Recommendation G.825, ANSI T1.101-1994 and ETS 300 462-5 (1997).
eye-closure caused by jitter (the input source will be rejected if the offset pushes the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). The 8klocking mode
All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pull-
should be engaged for high jitter tolerance according to these masks. All reference clock
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com11
Page 12
ACS8510 SETS
ADVANCED COMMUNCIATIONS
ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause rearrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to an acceptable level.
The registers reg sts_curr_inc_offset (address 0C, 0D, 07) report the frequency of the DPLL
rettiJ
ecnareloT
rotinoMycneuqerF
egnaRecnatpeccA
FINAL
with respect to the external TCXO frequency. This is a 19 bit signed number with one LSB representing 0.0003 ppm (range of +/- 80 ppm). Reading this regularly can show how the currently locked source is varying in value e.g. due to wander on its input.
The ACS8510 performs automatic frequency monitoring with an acceptable input frequency offset range of +/- 16.6 ppm. The ACS8510 DPLL has a programmable frequency limit of +/- 80 ppm. If the range is programmed to be > 16.6 ppm, the frequency monitors should be disabled so the input reference source is not automatically rejected as out of frequency range.
ycneuqerF
egnaRecnatpeccA
)ni-lluP(
ycneuqerF
ecnatpeccA
)ni-dloH(egnaR
ycneuqerF
egnaRecnatpeccA
)tuo-lluP(
307.G
387.G mpp6.61-/+
328.G
EROC-4421-RG
Table 2: Input Reference Source Jitter Tolerance.
Notes for Table 2.
Note 1. The frequency acceptance and generation range will be +/-4.6 ppm around the required frequency when the external crystal frequency accuracy is within a tolerance of +/- 4.6 ppm.
Note 2. The fundamental acceptance range and generation range is +/- 9.2 ppm with an exact external crystal frequency of 12.8 MHz.
Note 3. The power up default PDLL range is as stated in note 2, but the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com12
Page 13
ACS8510 SETS
ADVANCED COMMUNCIATIONS
$
$
$
$
$
$
$
$
$
$
I I I I I I I
I I I I I I I
Figure 1: Minimum Input Jitter Tolerance for inputs supporting G.783 compliant sources
edutilpmakaepotkaeP
MTS
level
0A1A2A3A4A0F1F2F3F4F5F6F7F8F9F
)lavretnItinu(
FINAL
-LWW HUDQGZ DQGHUIUHTXHQF\ORJVFDOH
-LWW HUDQGZ DQGHUIUHTXHQF\ORJVFDOH
I I
I I
)zH(ycneuqerF
1-MTS0082113935.151.0u21u871m6.1m6.51521.03.91005k5.6k56m3.1
Table 3: Amplitude and Frequency values for Jitter Tolerance for inputs supporting G.783 compliant sources
Output Clock Ports
The device supports a set of main output clocks, T
OUT0
and T
, and a pair of secondary output
OUT4
clocks, 'Frame-Sync' and 'Multi-Frame-Sync'. The two main output clocks, T
OUT0
and T
OUT4
, are independent of each other and are individually­selectable. The two secondary output clocks, 'Frame-Sync' and 'Multi-Frame-Sync', are derived from T
. The frequencies of the output clocks
OUT0
are selectable from a range of pre-defined spot frequencies and a variety of output technologies are supported, as defined in Table 5.
Low-speed Output Clock (T
The T
clock is supplied on two output ports,
OUT4
TO8 and TO9. The former port will provide an AMI signal carrying a composite clock of 64 kHz and 8 kHz, according to ITU Recommendation G.703. The latter port will provide a TTL/CMOS signal at either 1.544 MHz or 2.048 MHz, depending on the setting of the SONSDHB pin.
High-speed Output Clock (Part of T
The T
port has multiple outputs. Outputs T
OUT0
and TO2 are TTL/CMOS output with a choice of
OUT4
)
)
OUT0
11 different frequencies up to 51.84 MHz.
Performance-wise, the output ports are specified in Figures 3, 4 and 5, in terms of jitter, MTIE (and TDEV) and Phase Error, respectively.
Outputs T with fixed frequencies of 19.44 MHz, 38.88 MHz and 77.76 MHz, respectively. Output T is differential and can support clocks up to
to TO5 are all TTL/CMOS outputs
O3
155.52 MHz. Output TO7 is also differential
O1
O6
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com13
Page 14
ACS8510 SETS
ADVANCED COMMUNCIATIONS
3HDNWRSHDNMLWWHUDQGZ DQGHUDPSOLWXGHORJ
3HDNWRSHDNMLWWHUDQGZ DQGHUDPSOLWXGHORJ VFDOH
VFDOH
$
$
$
$
I I I I
I I I I
Figure 2: Minimum Input Jitter Tolerance for inputs supporting G.703 compliant sources
epyT.cepS
-LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH
-LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH
edutilpmA )kp-kpIU(
1A2A1F2F3F4F
ycneuqerF
)zH(
FINAL
1SDEROC-4421-RG 51.001005k8k04
1E328.GUTI 5.12.002k4.2k81k001
Table 4: Amplitude and Frequency values for Jitter Tolerance for inputs supporting G.703 compliant sources
and can support clocks up to 155.52 MHz. Each output is individually configured to operate at the frequencies shown in Table 5 (configuration must be consistent between
These will be driven from the T will be synchronised with their counterparts in a second ACS8510 device (if used), using the technique described later.
clock. They
OUT0
ACS8510 devices for protection-switching to be effective - output clocks will be phase-aligned between devices). Using the cnfg_differential_outputs register, outputs T
Output Wander and Jitter
Wander and jitter present on the output clocks
O6
are dependent on:
and TO7 can be made to be LVDS or PECL compatible.
Frame Sync and Multi-Frame Sync Clocks (Part of T
)
OUT0
Frame Sync (8 kHz) and Multi-Frame Sync (2 kHz) clocks will be provided on outputs T (FrSync) and T
(MFrSync). The FrSync and
O11
MFrSync clocks have a 50:50 mark space ratio.
The magnitude of wander and jitter on the selected input reference clock (in Locked mode);
The internal wander and jitter transfer characteristic (in Locked mode);
O10
The jitter on the local oscillator clock;
The wander on the local oscillator clock (in
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com14
Page 15
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Holdover mode).
Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit the application and operating state. Wander and jitter attenuation is performed using a digital phase locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole.
troP
emaN
T
10
T
20
T
30
troPtuptuO
ygolonhceT
SOMC/LTT
SOMC/LTT
SOMC/LTTdexif-zHM44.91
FINAL
It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be gradually tightened again to remove wander. Since wander represents a relatively long-term deviation from the nominal operating frequency, it affects the rate of supply of data to the network element. Strong wander attenuation limits the rate of consumption of data to within a smaller range, so a larger buffer
detroppuSseicneuqerF
,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
zHM29.52,zHM44.91,zHM483.61/zHM253.21,)tluafed(zHM84.6
,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
zHM48.15,)tluafed(zHM88.83,zHM29.52,zHM483.61/zHM253.21
T
40
T
50
T
60
T
70
T
80
T
90
T
010
T
110
SDVL()tluafed
LCEP()tluafed
IMA)zHk8+zHk46,kcolcetisopmoc(zHk8/46
SOMC/LTTdexif-zHM88.83
SOMC/LTTdexif-zHM67.77
SDVL/LCEP
LCEP/SDVL
SOMC/LTTzHM840.2/zHM445.1
SOMC/LTTRSM05:05ahtiw-zHk8,cnySrF
SOMC/LTTRSM05:05ahtiw-zHk2,cnySrFM
zHM40.113
zHM25.551,zHM67.77,zHM48.15,)tluafed(zHM44.91
Table 5: Output Reference Source Selection Table
Note for Table 5.
Frequencies supported: There are different output clock frequencies available for SONET and SDH applications. SONSDHB controls the default frequency output. F1/F2 means that the output frequency is F1 when the SONSDHB pin is High and F when SONSDHB pin is Low.
2
,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
,zHM25.551,)tluafed(zHM88.83,zHM44.91,zHM483.61/zHM253.21
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com15
Page 16
ACS8510 SETS
ADVANCED COMMUNCIATIONS
store is required to prevent data loss. But, since any buffer store potentially increases latency, wander may often only need to be removed at specific points within a network where buffer stores are acceptable, such as at digital cross connects. Otherwise, wander is sometimes not required to be attenuated and can be passed through transparently. The ACS8510 has programmable wander transfer characteristics in a range from 0.1 Hz to 20 Hz. The wander and jitter transfer characteristic is shown in Figure 3.
Wander on the local oscillator clock will not have significant effect on the output clock whilst in Locked mode, so long as the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal. In Free-Running or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects must
FINAL
be limited by careful selection of a suitable component for the local oscillator, as specified in the section Local Oscillator Clock.
Phase Variation
There will be a phase shift across the ACS8510 between the selected input reference source and the output clock. This phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterised using two parameters, MTIE (Maximum Time Interval Error), and TDEV (Time Deviation), which, although being specified in all relevent specifications, differ in acceptable limits in each one. Typical measurements for the ACS8510 are shown in Figures 4 and 5, for Locked mode operation. Figure 6 shows a typical measurement of Phase Error accumulation in Holdover mode operation.
The required performance for phase variation during Holdover is specified in several ways depending upon the particular circumstances
3HDNWRSHDNMLWWHU DQGZ DQGHUDPSOLWXGH ORJVFDOH
8,#I
G%
G%
Figure 3: Wander and Jitter Transfer Characteristsics
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com16
-LWWHUFXWRIIORZIUHTXHQF\ +]
-LWWHUFXWRIIKLJKIUHTXHQF\ +]
-LWWHUDQGZDQG HUIUHT XHQF\ORJVFDOH
Page 17
ACS8510 SETS
ADVANCED COMMUNCIATIONS
pertaining:
1. ETSI 300 462-5, Section 9.1, requires that the short­term phase error during switchover (i.e., Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval.
2. ETSI 300 462-5, Section 9.2, requires that the long­term phase error in the Holdover mode should not exceed {(a1+a2)S+0.5bS
a1 = 50 ns/s (allowance for initial frequency offset)
a2 = 2000 ns/s (allowance for temperature variation)
b = 1.16x10
c = 120 ns (allowance for entry into Holdover mode).
3. ANSI Tin1.101-1994, Section 8.2.2, requires that the phase variation be limited so that no more than 255 slips (of 125 µs each) occur during the first day of Holdover. This requires a frequency accuracy better than:
((24x60x60)+(255x125µs))/(24x60x60) = 0.37 ppm.
Temperature variation is not restricted, except to within the normal bounds of 0 to 50 Celsius.
4. Telcordia GR.1244.CORE, Section 5.2. Table 4. shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects.
5. ITU G.822, Section 2.6, requires that the slip rate during category(b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125 µs each) per hour
((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm.
Phase Build Out
Phase Transient Response and Holdover
2
+c}, where
-4
ns/s2 (allowance for ageing)
FINAL
Lost_Phase mode is entered.
The typical phase disturbance on clock reference source switching will be less than 12 ns on the ACS8510. For clock reference switching caused by the main input failing or being disconnected, then the phase disturbance on the output will still be less than the 120 ns allowed for in the G.813 spec. The actual value is dependant on the frequency being locked to.
The PBO requirement, as specified in Telcordia GR1244-CORE, Section 5.7, is that a phase transient of greater than 3.5 µs occuring in less than 0.1 seconds should be absorbed. This will be implemented on a future version.
ITU-T G.813 states that the max allowable short term phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1 µs over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm.
On the ACS8510, PBO can be enabled, disabled or frozen using the µP interface. By default, it is enabled. When PBO is enabled, it can also be frozen, which will disable the PBO operation on the next input reference switch, but will remain with the current offset. If PBO is disabled while the device is in the Locked mode, there will be a phase jump on the output SEC clocks as the DPLL locks back to 0 degree phase error.
Phase Build Out (PBO) is the function to minimise phase transients on the output SEC clock during input reference switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference), the second, next highest priority reference source will be selected. During this transition, the
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com17
Micro-Processor Interface
The ACS8510 incorporates a microprocessor interface, which can be configured for the following modes via the bus interface mode control pins UPSEL(2:0) as defined in Table 6.
Page 18
ACS8510 SETS
ADVANCED COMMUNCIATIONS
G.813 option 1, constant temperature wander limit
MTIE m e asurement on 155 MHz output, 19.44 MHz i/p (8kHz locking),
1
Vectron 6664 xtal
0.01
0.1
Figure 4: Maximum Time Interval Error of T
G.813 option 1 constant temperature wander limit
1
Time
(ns)
0.01
Time
(ns)
100
10
0.1
10
FINAL
1
10
100
1000
Ob s e rv a tio n in te rv a l (s)
output port
OUT0
10000
0.1
0.01
0.01
TDEV m easurement on 155 M Hz output, 19.44 MHz i/p (8kHz locking),
Vectron 6664 xtal
0.1
1
Figure 5: Time Deviation of T
10000000
1000000
100000
Phase Error (ns)
10000
1000
100
Permitted Phase Error Limit
1000
Figure 6: Phase error accumulation of T
10
Typical measurement, 25°C constant temperature
OUT0
100
O bse rv a tio n in te r v a l (s )
output port
OUT0
10000
1000
Observation interval (s)
10000
100000
output port in hold-over mode
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com18
Page 19
ACS8510 SETS
ADVANCED COMMUNCIATIONS
UPSEL(2:0) Mode Description
111 (7) OFF Interface disabled 110 (6) OFF Interface disabled 101 (5) SERIAL Serial uP bus interface 100 (4) MOTOROLA Motorola interface 011 (3) INTEL Intel compatible bus interface 010 (2) MULTIPLEXED Multiplexed bus interface 001 (1) EPROM EPROM read mode 000 (0) OFF Interface disabled
Table 6: Microprocessor Interface Mode Selection
Motorola Mode
Parallel data + address: this mode is suitable for use with Motorola's 68x0 type bus.
Intel Mode
Parallel data + address: this mode is suitable for use with Intel's 80x86 type bus.
Multiplexed Mode
Data/address: this mode is suitable for use with microprocessors which share bus signals between address and data (e.g., Intel's 80x86 family).
Serial Mode
This mode is suitable for use with microprocessor which use a serial interface.
EPROM Mode
This mode is suitable for use with an EPROM, in which configuration data is stored (one-way communication - status information will not be accessible). A state machine internal to the ACS8510 device will perform numerous EPROM read operations to pull the data out of the EPROM.
FINAL
right most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g. flags) upwards. Several data fields are spread across multiple registers; their organisation is shown in the register map, Table 7.
Configuration Registers
Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pin­settable. All configuration registers can be read out over the microprocessor port.
Status Registers
The Status Registers contain readable registers. They may all be read from outside the chip but are not writeable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location.
Register Access
Most registers are of one of two types, configuration registers or status registers, the exceptions being the Chip_ID and Chip_revision registers. Configuration registers may be written to or read from at any time (the complete 8-bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the sts_interrupts register), any individual data field may be cleared by writing a "1" into each bit of the field (writing a "0" value into a bit will not affect the value of the bit). A description of each register follows.
Register Set
All registers are 8-bits wide, organised with the most-significant bit positioned in the left-most bit, with bit-significance decreasing towards the
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com19
Interrupt Enable and Clear
Interrupt requests are flagged on pin INTREQ (active High).
Bits in the interrupt status register are set (high)
Page 20
ACS8510 SETS
ADVANCED COMMUNCIATIONS
by the following conditions;
(i) any reference source becoming valid or going invalid
(ii) a change in the operating state (eg. locked, holdover etc.)
(iii) brief loss of the currently selected reference source
(iv) AMI input error
All interrupt sources are maskable via the mask register, each one being enabled by writing a '1' to the appropriate bit.
Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted (high).
All interrupts are cleared by writing a '1' to the bit(s) to be cleared in the status register.
When all pending unmasked interrupts are cleared the interrupt pin will go inactive (low).
The loss of the currently selected reference source will eventually cause the input to be
FINAL
considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependant on the leaky bucket configuration of the activity monitors. The very fastest leaky bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. Some applications require the facility to switch downstream devices based on the status of the reference sources. In order to provide extra flexibility, it is possible to flag the "main reference failed" interrupt (addr 06, bit 6) on the pin TDO. This is simply a copy of the status bit in the interrupt register and is independent of the mask register settings. The bit is reset by writing to the interrupt status register in the normal way. This feature can be enabled and disabled by writing to bit 6 of register 48Hex.
This section left blank
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com20
Page 21
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
Register map
Shaded areas in the map are dont care and writing either 0 or 1 will not affect any function of the device.
Bits labelled Set to 0 or Set to 1 must be set as stated during initialisation of the device, either following power up, or after a power on reset (POR). Failure to correctly set these bits may result in the device operating in an unexpected way.
Some registers do not appear in this list. These are either not used, or have test functionality. Do not write to any undefined registers as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values.
.rddA
)xeH(
00di_pihc
)ylnodaer(
10
emaNretemaraPtiBataD
)bsm(7 654321 )bsl(0
)0:7(rebmuntrapeciveD
)8:51(rebmuntrapeciveD
20noisiver_pihc
)ylnodaer(
301lortnoc_gfnc
)etirw/daer(
402lortnoc_gfnc
)etirw/daer(
50stpurretni_sts
)etirw/daer(
60gnitarepO
80stupni_4T_sts
)etirw/daer(
90edom_gnitarepo_sts
)ylnodaer(
A0elbat_ytiroirp_sts
)ylnodaer(
B0
C0tesffo_cni_rruc_sts
)ylnodaer(
D0
70
E0dilav_secruos_sts
)ylnodaer(
F0
)0:7(rebmunnoisiverpihC
'0'otteS
dilav>8_I<
egnahc
edom
3
>8_I<>7_I<>6_I<>5_I<>4_I<>3_I<>2_I<>1_I<
dilav>7_I<
egnahc
.ferniaM
deliaf
dr
dilav>6_I<
egnahc
dilav>41_I<
egnahc
ecruosdilavytiroirptsehgiH ecruosecnereferdetcelesyltnerruC
>41_I<>31_I<>21_I<>11_I<>01_I<>9_I<
golanA
cnysvid
dilav>5_I<
egnahc
dilav>31_I<
egnahc
deliaffer4T
ecruosdilavytiroirptsehgih2
'0'otteS'0'otteS'0'otteS'0'otteS
timilgalfssolesahP'0'otteS'1'otteS'0'otteS
dilav>4_I<
egnahc
dilav>21_I<
egnahc
2imA
noitaloiV
dn
)0:7(tesffotnemercnitnerruC
)8:51(tesffotnemercnitnerruC
dilav>3_I<
egnahc
dilav>11_I<
egnahc
2imA
.S.O.L
dilav>2_I<
egnahc
dilav>01_I<
egnahc
1imA
noitaloiV
ecruosdilavytiroirptsehgih
)0:2(edomgnitarepO
dilav>1_I<
egnahc
dilav>9_I<
egnahc
1imA
.S.O.L
)61:81(tesffotnemercnitnerruC
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com21
Page 22
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
01secruos_ecnerefer_sts
)etirw/daer(
11
21
31
41
51
61
81ytiroirp_noitceles_fer_gfnc
)etirw/daer(
91
A1
B1
C1
emaNretemaraPtiBataD
)bsm(7 654321 )bsl(0
FINAL
>2_I<sutats>1_I<sutats
>4_I<sutats>3_I<sutats
>6_I<sutats>5_I<sutats
>8_I<sutats>7_I<sutats
>01_I<sutats>9_I<sutats
>21_I<sutats>11_I<sutats
>41_I<sutats>31_I<sutats
>2_I<ytiroirp_demmargorp >1_I<ytiroirp_demmargorp
>4_I<ytiroirp_demmargorp >3_I<ytiroirp_demmargorp
>6_I<ytiroirp_demmargorp >5_I<ytiroirp_demmargorp
>8_I<ytiroirp_demmargorp >7_I<ytiroirp_demmargorp
>01_I<ytiroirp_demmargorp >9_I<ytiroirp_demmargorp
D1
E1
02ycneuqerf_ecruos_fer_gfnc
12
22
32
42
52
62
72
82
92
A2
B2
C2
D2
>21_I<ytiroirp_demmargorp >11_I<ytiroirp_demmargorp
>41_I<ytiroirp_demmargorp >31_I<ytiroirp_demmargorp
)etirw/daer(
nvidk8kcol)0:1(>1_I<di_tekcub)0:3(>1_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>2_I<di_tekcub)0:3(>2_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>3_I<di_tekcub)0:3(>3_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>4_I<di_tekcub)0:3(>4_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>5_I<di_tekcub)0:3(>5_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>6_I<di_tekcub)0:3(>6_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>7_I<di_tekcub)0:3(>7_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>8_I<di_tekcub)0:3(>8_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>9_I<di_tekcub)0:3(>9_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>01_I<di_tekcub)0:3(>01_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>11_I<di_tekcub)0:3(>11_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>21_I<di_tekcub)0:3(>21_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>31_I<di_tekcub)0:3(>31_I<ycneuqerf_ecruos_ecnerefer
nvidk8kcol)0:1(>41_I<di_tekcub)0:3(>41_I<ycneuqerf_ecruos_ecnerefer
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com22
Page 23
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
03_secruos_etomer_sts_gfnc
13
23edom_gnitarepo_gfnc
33noitceles_fer_gfnc
43edom_gfnc
534T_gfnc
63stupni_laitnereffid_gfnc
73snip_lesPu_gfnc
83elbane_tuptuo_0T_gfnc
93seicneuqerf_tuptuo_0T_gfnc
A3stuptuo_laitnereffid_gfnc
B3htdiwdnab_gfnc
C3ycneuqerf_lanimon_gfnc
D3
dilav
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)ylnodaer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
)etirw/daer(
emaNretemaraPtiBataD
)bsm(7654321)bsl(0
otuA
lanretxe
elbaneK2
zHM40.113
60Tno
2latigiD1latigiD20T10T
noitceles
w/botuA
hctiws
kcol/qcA
FINAL
>1:8<slennahc,sutatsetomeR
>9:41<slennahc,sutatsetomeR
edomgnitarepodecroF
ecruos_ecnerefer_tceles_ecrof
esahP
mrala
tuoemit
elbane
TENOS=1
HDS=0
2giDrof
ycneuqerF70T
egdekcolC
hcleuqS
TENOS=1
HDS=0
1giDrof
revodloH tesffO elbane
tceleS
1T/0T
10T20T
ycneuqerF60T
noitceles
htdiwdnabnoitisiuqcA'0'otteShtdiwdnabdekcol/lamroN
K2lanretxE
elbanecnyS
SDVL70T
elbane
)0:7(ycneuqerflanimoN
)8:51(ycneuqerflanimoN
P/I
30T
/TENOS
HDS
zHM44.91
LCEP70T
elbane
/retsaM
evalS
noitcelesecruostupni1TecroF
)01_Iot5_Istupnirofdilavylno(
>6_I<
LCEP
40T
zHM88.83
SDVL60T
elbane
noisreveR
edom
>5_I<
LCEP
epytrossecorp-orciM
50T
zHM67.77
LCEP60T
elbane
E3tesffo_revodloh_gfnc
F3
04otuA
14timil_qerf_gfnc
24
34ksam_tpurretni_gfnc
44gnitarepO
54
64nvid_qerf_gfnc
74
)etirw/daer(
revodloH gnigarevA
)etirw/daer(
)etirw/daer(
)etirw/daer(
dilav>8_I<
egnahc
edom
dilav>7_I<
egnahc
.ferniaM
deliaf
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com23
)0:7(tesfforevodloH
)8:51(tesfforevodloH
)61:81(tesfforevodloH
)0:7(timiltesffoycneuqerFLLPD
tesffoycneuqerFLLPD
)8:9(timil
dilav>6_I<
egnahc
dilav>41_I<
egnahc
dilav>5_I<
egnahc
dilav>31_I<
egnahc
fer4T
dilav>4_I<
egnahc
dilav>21_I<
egnahc
2imA
noitaloiV
)0:7(oitarn-yb-tupni-ediviD
dilav>3_I<
egnahc
dilav>11_I<
egnahc
2imA S.O.L
)8:31(oitarn-yb-tupni-ediviD
dilav>2_I<
egnahc
dilav>01_I<
egnahc
1imA
noitaloiV
dilav>1_I<
egnahc
dilav>9_I<
egnahc
1imA S.O.L
Page 24
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
84srotinom_gfnc
)etirw/daer(
050dlohserht_reppu_vitca_gfnc
)etirw/daer(
150dlohserht_rewol_vitca_gfnc
)etirw/daer(
250ezis_tekcub_gfnc
)etirw/daer(
350etar_yaced_gfnc
)etirw/daer(
451dlohserht_reppu_vitca_gfnc
)etirw/daer(
551dlohserht_rewol_vitca_gfnc
)etirw/daer(
651ezis_tekcub_gfnc
)etirw/daer(
751etar_yaced_gfnc
)etirw/daer(
852dlohserht_reppu_vitca_gfnc
)etirw/daer(
952dlohserht_rewol_vitca_gfnc
)etirw/daer(
A52ezis_tekcub_gfnc
)etirw/daer(
B52etar_yaced_gfnc
)etirw/daer(
C53dlohserht_reppu_vitca_gfnc
)etirw/daer(
D53dlohserht_rewol_vitca_gfnc
)etirw/daer(
E53ezis_tekcub_gfnc
)etirw/daer(
F53etar_yaced_gfnc
)etirw/daer(
F7lesPu_gfnc
)etirw/daer(
emaNretemaraPtiBataD
)bsm(7654321)bsl(0
FINAL
tsolfergalF
ODTno
tsaf-artlU gnihctiws
lanretxE ecruos hctiws
elbane
esahpezeerF
tuodliub
esahP
tuodliub
elbane
)0:7(dlohserhttesmralaytivitcA:0noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:0noitarugifnoC
)0:7(ezistekcubmralaytivitcA:0noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:1noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:1noitarugifnoC
)0:7(ezistekcubmralaytivitcA:1noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:2noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:2noitarugifnoC
)0:7(ezistekcubmralaytivitcA:2noitarugifnoC
)0:7(dlohserhttesmralaytivitcA:3noitarugifnoC
)0:7(dlohserhttesermralaytivitcA:3noitarugifnoC
)0:7(ezistekcubmralaytivitcA:3noitarugifnoC
srotinomycneuqerF
)0:1(noitarugifnoc
)0:1(etar_yaced:0gfC
)0:1(etar_yaced:1gfC
)0:1(etar_yaced:2gfC
)0:1(etar_yaced:3gfC
epytrossecorp-orciM
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com24
Page 25
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Register map description
.rddA
)xeH(
00
10 10000100
20
30
40
50 60
80
90
di_pihc .DIecivedehtsniatnocretsigerylno-daersihT
noisiver_pihc rebmunnoisiverpihcehtsniatnocretsigerylnodaersihT
1lortnoc_gfnc tfelronoitasilaitinignirud'0'tatesrehtieebdluohsdnaslortnoctsetera5&)0:3(stiB
2lortnoc_gfnc .degnahcnutfelronoitasilaitinignirud'010'tatesebdluohsdnaslortnoctsetera)0:2(stiB
emaNretemaraPnoitpircseDtluafeD
)xeh(E3:etybtnacifingis-tsaeL00sserddA
)ced(0158=)xeh(E312
.degnahcnu
stpurretni_sts ecnereferfossolrofeno,dilav_secruos_stsfotibhcaeroftibenosniatnocretsigertib61sihT
.ecivedehtfonipODTeht
)0:7(etybtnacifingis-tsaeL
)8:51(etybtnacifingis-tsoM
stupni_4T_sts smralaehT.ecnerefer4TUOTehtdnastupniIMAehtfosgalfsutatsehtsdlohretsigersihT
.stpurretni
tnetnoCtiB
;ecruosot
)x:eulav(desunu)7:5(
edom_gnitarepo_sts 7erugiF.enihcametatsniamehtfoetatsgnitarepotnerrucehtsdlohretsigerylno-daersihT
tnetnoCtiB
etatS)0:2(stiB
nureerf100
revodloh010
dekcol001
dekcol-erp011
2dekcol-erp101
tsolesahp111
desunu)7:3(
)xeh(12:etybtnacifingis-tsoM10sserddA
.edomnureerfotniecrofasahcusruccoycneuqerfnisegnahckciuqnehwcnys
tupniehtnopmujycneuqerfaro,pmuj
.detarenegeblliwtpurretniehtllataetatssegnahc
.tceffeonevahlliws'0'gnitirW.noitarepoetirwelgnisahtiwderaelc
raelc1imA='0';langisfossoL1imA='1':0
raelc1imA='0';detcetednoitaloiV1imA='1':1
raelc2imA='0';langisfossoL2imA='1':2
Tdilavon-deliafecnerefer4T='1':4
Tdilav-doogecnerefer4T='0'
1NI
)0:2(etatsgnitarepO0:2
raelc2imA='0';detcetednoitaloiV2imA='1':3
1NI
elbaliavatupni
otsdnopserrochcihw)001(4ottestluafedyB.timilgalfssolesahpehtenifed)3:5(stiB
timilgalfehT.timilesahprewolgnidnopserrocasteseulavrewolA.°041yletamixorppa
.hgihevitcaerastibllA.edomgnitarepoehtrofrehtonadna,otdekcolsawecivedeht
.setatslaudividniehthtiwhctamelbairav'etatsgnitarepo'ehtfoseulavehtwohwohs
FINAL
)nib(eulaV
01111100
10000000
ehtnisredividehtotnoitcesLLPAtuptuoehtnisredividehtsesinorhcnys,hgihtesnehw,4tiB
tnemngilaesahpehtevahotyrassecensisihT.ngilasesahpriehttahthcusnoitcesLLPD
yB.)zHM67.77otzHM84.6(setardevired3COtaskcolctuptuodnastupniehtneewteb
sihtgnitteS.ffodenrutnehtsidnapurewopretfasdnoces2rofsrucconoitasinorhcnys,tluafed
fotuognittegsredividehtdiovaotyrassecenebyamhcihw,nonoitasinorhcnysspeekhgihtib
esahpa,rettijtupnifotluserasatsolesahpsetacidniLLPDehthcihwtaeulavehtsenimreted
tnevelerehtfoetatsehtni"egnahc"anotesera)41tib(tibdeliaf_fer_niamehttpecxestibllA
MSFehtfI.tpurretninareggirtlliwtidilavniseogro,dilavsemocebecruosafi.e.i,tibsutats
ecnereferehtnoytivitcanigalfotdesusiretsigersutatstpurretniehtfo)deliaf_fer_niam(41tiB
fo6tibfI.troppusnacsrotinomytivitcaehtnahtylkciuqeromhcumotdekcolsiecivedehttaht
otnonevirdsitibsihtfoetatsehtneht,tessi)ODTnossolfergalf(retsigersrotinom_gfnceht
deraelcebyamtibhcaE.retsigerksam_tpurretni_gfncehtnistibehtybelbaksamerastibllA
ebnacstibforebmunynA.tpurretniehtgnittesersuht,tibtahtot'1'agnitirwybyllaudividni
ot'1'agnitirwybyllaudividnideraelcebyamtibhcaE.teserlitnuetatsriehtdlohlliwtesecno
etarenegoslanacstibesehT.tceffeonevahlliws'0'gnitirW.tpurretniehtgnittesersuht,tibtaht
kcoltonnacLLPD4T,)>5_I<:>01_I<(tupni
000000XX
010001XX
00000000 00000000
00001XXX
100XXXXX
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com25
Page 26
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
A0
B0
C0
D0
70
E0
emaNretemaraPnoitpircseDtluafeD
elbat_ytiroirp_sts .sesserddaowtgnikat,retsigerylno-daertib-61asisihT
.ytiroirptaht
dr
3)4:7(
dn
2)0:3(
tesffo_cni_rruc_sts tnerrucehtfostib91ehtgnitneserpereulavregetni-dengisasniatnocretsigerylno-daersihT
desunu)4:7(stiB
dilav_secruos_sts sihT.setybsecruos_ecnerefer_sutatsehtllamorf3tibfoseipocsniatnocretsigertib41sihT
FINAL
)nib(eulaV
.noitcnufGTESehtotdetcennocyltnerrucsihcihw
.)ytiroirpdemmargorpnisegnahcroyrotsiheruliafoteud(ecruos
.ecruosdilavytiroirp-tsehgihehtotytiroirptsehgih-txenehtsahdnadilavsihcihw
tnetnoCtiB
ecruosdilavytiroirp-tsehgiH)4:7(
ecruosecnereferdetcelesyltnerruC)0:3(
ecruosdilavytiroirp-tsehgih-
ecruosdilavytiroirp-tsehgih-
.teserretfayletaidemmi00000000daerlliwretsigerehT.)desu
eulavtesffofoetybtnacifingistsaeL
eulavtesffofoetybtnacifingistxeN
eulavtesffofostibtnacifingistsom3)0:2(stiB
.sdaer2tsujnisecruosllafoytidilavehttegotresuehtswolla
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosecnereferdetceles-yltnerruC
sihcihwecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirp-tsehgiH
ecnereferdetceles-yltnerrucehtsaemasehtebtonyamti;ytiroirptsehgihehtsahdnadilav
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-dnoceS
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-drihT
.ecruosdilavytiroirp-tsehgih-dnocesehtotytiroirptsehgih-txenehtsahdnadilavsihcihw
ehtfostnetnocehtotesnopsernienihcametatsehtybdetadpuerasretsigeresehttahtetoN
lennahc;slennahclaudividnifosutatsgniognoehtdnaretsigerytiroirp_noitceles_fer_gfnc
rofelbaliavasilennahcontahtsetacidni,sretsigeresehtfoynanigniraeppa,'0000'rebmun
00000000
00000000
lacirotsihapudliubotyllacidoirepdaerebyamretsigerehT.LLPlatigidehtfotesffotnemercni
lanretxenafiyrassecenebylnodluowsiht(sdoireprevodlohgnirudesuretalrofesabatad
sinoitceskcolCrotallicsOlacoLnidebircsedairetircytilibatsehtteemtondidhcihwrotallicso
00000000
00000000
000XXXXX
00000000
F0 000000XX
secruos_ecnerefer_sts ehT.secruosecnerefertupni41ehtfohcaefosutatsehtsdlohhcihwretsigeretyb-7asisihT
)yllaudividnideraelcebyamtibhcaE(:swollofsadetroper
mralakcolesahp=0tibsutatS
mralaytivitcaon=1tibsutatS
mraladnab-fo-tuo=2tibsutatS
tnetnoCtiB
01
11
21
31
41
51
61
>1-I<ecruosecnerefertupnifosutatS)0:3(
>2_I<ecruosecnerefertupnifosutatS)4:7( >3_I<ecruosecnerefertupnifosutatS)0:3(
>4_I<ecruosecnerefertupnifosutatS)4:7( >5_I<ecruosecnerefertupnifosutatS)0:3(
>6_I<ecruosecnerefertupnifosutatS)4:7( >7_I<ecruosecnerefertupnifosutatS)0:3(
>8_I<ecruosecnerefertupnifosutatS)4:7( >9_I<ecruosecnerefertupnifosutatS)0:3(
>01_I<ecruosecnerefertupnifosutatS)4:7( >11_I<ecruosecnerefertupnifosutatS)0:3(
>21_I<ecruosecnerefertupnifosutatS)4:7( >31_I<ecruosecnerefertupnifosutatS)0:3(
>41_I<ecruosecnerefertupnifosutatS)4:7(
.airetirclladessapsahecruosatonrorehtehwsetacidniylnoretsigersihT
))0:2(stibfonoitanibmocsi3tib()smralaon(dilavecruoS=3tibsutatS
.pamretsigerehtnidnawolebnwohssiretsigerehtfonoitasinagroehT
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com26
sutatsdiaoT.hgihevitcasitibhcaE.dleiftib-4aninwohssiecruosecnereferhcaefosutats
sisutatsehT.retsigerdilav_secruos_stsehtnidedivorpsi3tibsutatshcaefoypoca,gnikcehc
00100010
01100110
01100110
00100010
00100010
00100010
00100010
Page 27
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA )xeH(
81
91
A1
B1
C1
D1
E1
emaNretemaraPnoitpircseDtluafeD
ytiroirp_noitceles_fer_gfnc seulavytiroirpehT.secruosecnerefertupni41ehtfohcaefoytiroirpehtsdlohhcihwretsigeretyb-7asisihT
tnetnoCtiB
)0:3( )0:7(
)0:3( )4:7(
)0:3( )4:7(
)0:3( )4:7(
)0:3( )4:7(
)0:3( )4:7(
)0:3( )4:7(
ycneuqerf_ecruos_fer_gfnc ,secruosecnerefertupni41ehtfohcaefoseicneuqerfehtotsyekehtsdlohhcihwretsigeretyb-41asisihT
0000 1000 0100
1100
0010
1010 0110 1110 0001 1001 0101
.wolebdetsilsa
zHk8
zHM84.6
zHk2
zHk4
FINAL
)nib(eulaV
)ced(51ot1seulavehtylnO.seitiroirprehgihgnikatsrebmundeulav-rewolhtiw,rehtohcaeotevitalerllaera
,rebmuneuqinuanevigebdluohsecruosecnereferhcaE.ecruosecnereferehtselbasid0-dilavera
.sisabtuotsrifnitsrifanodengissaeblliwrebmunytiroirpemasehtnevigsecruosowtrevewoh
eht,erofereht-ylfehtnoseitiroirpehtredro-erotyrassecensitiesacni'1'eulavehtevreserotelbisnessitI
.lamicedaxehniebdluohsseulavllA.)11#tupni,ecruos
.pamretsigerehtnidnawolebnwohssiretsigerehtfonoitasinagroehT
.)xeh(CDsieulavtluafedeht
>1_I<ecruosecnerefertupnifoytiroirpdemmargorP >2_I<ecruosecnerefertupnifoytiroirpdemmargorP
>3_I<ecruosecnerefertupnifoytiroirpdemmargorP >4_I<ecruosecnerefertupnifoytiroirpdemmargorP
>5_I<ecruosecnerefertupnifoytiroirpdemmargorP >6_I<ecruosecnerefertupnifoytiroirpdemmargorP
>7_I<ecruosecnerefertupnifoytiroirpdemmargorP >8_I<ecruosecnerefertupnifoytiroirpdemmargorP
>9_I<ecruosecnerefertupnifoytiroirpdemmargorP
>01_I<ecruosecnerefertupnifoytiroirpdemmargorP >11_I<ecruosecnerefertupnifoytiroirpdemmargorP
>21_I<ecruosecnerefertupnifoytiroirpdemmargorP >31_I<ecruosecnerefertupnifoytiroirpdemmargorP
>41_I<ecruosecnerefertupnifoytiroirpdemmargorP
)2tib,43retsigeRybdenifedsA()HDS(zHk8402/)TENOS(zHk4451
zHM44.91 zHM29.52 zHM88.83 zHM48.15 zHM67.77
zHM25.551
noitcetorpehtrofdesuyllacitamotuasi1eulaveht,ecivedevalsani(desuebyllamrondluow51ot2egnar
,woldeitsiBVLSTSMfI.hgihdeitrodetcennocnutfelsinipBVLSTSMnehwdilavsinevigeulavtluafedehT*
01001100
00101010
01101110
00011001
01011101
*10001011
01111111
:yekgniwollofehthtiwecnadroccaniecruosecnereferehtfoycneuqerfehtenifedetybhcaefo)0:3(stiB
.)xeh(F5ot)xeh(
:yekgniwollof
00 10
01 11
.zHM001dnazHM445.1
.)xeh(30sieulavtluafedeht
02
12
22
32
>3_I<ecruosecnereferfoycneuqerF
>4_I<ecruosecnereferfoycneuqerF
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com27
05sretsigernidenifedsa,desuera)3-0(sgnittestekcubykaelhcihwenifedrehtegotetybhcaefo)4:5(stiB
ehthtiwecnadroccani,ycneuqerftupniehtnonekatrednunoitarepoehtenifedetybhcaefo)6:7(stiB
.LLPDehtotniyltceriddefsiycneuqerftupniehT
.ecnarelotrettijtnellecxesevig
.esutonod-noitarugifnocdetroppusnU
ylnozHk8rof00000000tadexif->1_I<ecruosecnereferfoycneuqerF
ylnozHk8rof00000000tadexif->2_I<ecruosecnereferfoycneuqerF
sihT.LLPDehtotnidefgnieberofeb,zHk8otnwoddedividyllanretnisiycneuqerftupniehT
eulavsihtybtupniehtedividotnvid_qerf_gfncretsigerniderotstneiciffeocnoisividehtsesU
nwoddedividehT.delbasidebtsumsrotinomycneuqerfehT.LLPDehtotgniogotroirp
ycneuqerftopstseraenehtottesebdluohs)0:3(ycneuqerfehT.zHk8lauqedluohsycneuqerf
neewtebseicneuqerftupnirofskrowerutaefNviDehT.ycneuqerftupnilautcaehtwolebtsuj
,woldeitsiBVLSTSMfI.hgihdeitrodetcennocnutfelsinipBVLSTSMnehwdilavsinevigeulavtluafedehT*
00000000
00000000
00000000
00000000
Page 28
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
42
52
62
72
82
92
A2
B2
C2
D2
dilav
03
13
23
33
edom_gfnc larevessniatnoctI.)xeh(43sserddataecapstib-8eritneehtseipuccoretsigertib-7sihT
43
emaNretemaraPnoitpircseDtluafeD
_secruos_etomer_sts_gfnc
edom_gnitarepo_gfnc ehtecrofotdesusitI.)xeh(23sserddataecapstib-8eritneehtseipuccoretsigertib-3sihT
noitceles_fer_gfnc ehtecrofotdesusitI.)xeh(33sserddataecapstib-8eritneehtseipuccoretsigertib-4sihT
0tiB
.etatstluafed
1tiB
.BVLSTSM
FINAL
)nib(eulaV
>5_I<ecruosecnereferfoycneuqerF
>6_I<ecruosecnereferfoycneuqerF
>7_I<ecruosecnereferfoycneuqerF
>8_I<ecruosecnereferfoycneuqerF
>9_I<ecruosecnereferfoycneuqerF
>01_I<ecruosecnereferfoycneuqerF
>11_I<ecruosecnereferfoycneuqerF
>21_I<ecruosecnereferfoycneuqerF
>31_I<ecruosecnereferfoycneuqerF
>41_I<ecruosecnereferfoycneuqerF
asitI.ecivedrehtonaotdeilppussecruosecnereferehtfosutatsehtsdlohretsigertib-41sihT
noitcetorpehtfotrapsiretsigerehT.retsigerdilav_secruos_stss'ecivedrehtoehtfoypoc
:swollofsadesinagrosiretsigerehT.msinahcem
ecruosecnerefeRtiB
>1_I<:>8_I<)0:7(
ecruosecnerefeRtiB
>9_I<:>41_I<)0:5(
desunu)6:7(
.8erugiFninwohsseulavyranibehtybdetneserper,etatsgnitarepoderisedaotniecived
.yllacitamotuaetarepootenihcametatslortnocehtswolla)xeh(0eulaV
ecruosecnerefeRtiB
)8erugiFrepsa(etatsgnitarepoderiseD)0:2(
desunU)3:7(
.ytiroirpstifoevitcepserri,ecruosecnerefertupniralucitrapatcelesotecived
rehtoondedivorP.'1'ytiroirpottupnidetcelesehtsesiaryliraropmetretsigersihtotgnitirW
eblliwecruossiht,nosiedomevitreverdna,'1'ytiroirphtiwdemmargorpydaerlasitupni
.srotinomytivitcadnaycneuqerfehtybdetadilavneebsahtifi,detceles
.FXsitluafedehT*.secruosecnerefertupnillaelbasidlliw)xeh(FXro)xeh(0XgnitirW
noitamrofnItiB
ecruosecnereferderiseD)0:3(
desunU)4:7(
:wolebdeliatedsa,sdleifnoitarugifnoclaudividni
ehtsisihT.ecruosdetcelesyltneserpehtniaterlliwecivedehT:edoMevitrever-noN0=
ninwohselbaliavaecruosytiroirptsehgihehtothctiwslliwecivedehT:edoMevitreveR1=
.))xeh(A0sserddata()4:7(retsigerelbat_ytiroirp_stseht
.ecivedretsamehtwolloflliwdnaedomevalsehttpodalliwecivedehT:edoMevalS0=
fosnoisicedevitcaehtekamdnaedomretsamehttpodalliwecivedehT:edoMretsaM1=
,nipehtybdenimretedsieulavtluafedstitub,elbaetirwsitibsihT.cte,tcelesotecruoshcihw
11000000
11000000
11000000
11000000
11000000
11000000
*01000000
10000000
10000000
10000000
11111111
111111XX
000XXXXX
*1111XXXX
00010011
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com28
Page 29
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
edom_gfnc2tiB
43
tnoc
4T_gfnc larevessniatnoctI.)xeh(53sserddataecapstib-8eritneehtseipuccoretsigertib-6sihT
53
63
emaNretemaraPnoitpircseDtluafeD
3tiB
4tiB
5tiB
.langisrotallicso
6tiB
.yllanretxe
.etatstluafedeht
7tiB
T)0:3(
1NI
T
1NI
TtceleS
0TUOT/1NI
stupni_laitnereffid_gfnc owtsniatnoctI.)xeh(63sserddataecapstib-8eritneehtseipuccoretsigertib-2sihT
FINAL
)nib(eulaV
eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edoMHDS0=
.BHDSNOS,nipehtybdenimretedsieulavtluafed
.BHDSNOS,nipehtybdenimretedsieulavtluafed
.nipk2cnySehterongilliwecivedehT:elbasiDcnySzHk2lanretxE0=
.etatstluafedehtsisihT.0158SCA
.etatstluafedehtsisihT.eulavhtaplargetniLLP
.etatstluafedehtsisihT.langisrotallicso
.evobadebircsed
.etatstluafedehtsisihT.delbasideblliwtiesiwrehtO.zHM84.6otdekcol
:wolebdeliatedsa,sdleifnoitarugifnoclaudividni
dleifnoitarugifnoCtiB
TtceleS='1'4 TtceleS='0'
1NI
hcleuqS='1'5
desunU6 desunU7
Tehtfonoitareneg
4TUO
desunU)2:7(
noitcelesecruostupni
0TUO
)tluafeD(hcleuqS-noN='0'
Tevitcaytiroirptsehgihehttceleslliwti'0'fI.langis
.
1NI
TehtetareneglliwecivedehT:
.tibsihtfosutatsehtotgnidrocca
dleifnoitarugifnoCtiB
4TUO
:wolebdeliatedsa,sdleifnoitarugifnoclaudividni
elbitapmoc-LCEPsi>5_I<tupnI='1'0
elbitapmoc-SDVLsi>6_I<tupnI='0'
Tehtmorflangis
0TUO
TehthcleuqslliwecivedehthgihtessitibsihtfI:hcleuqS-noN/hcleuqS
4TUO
TehthcleuqstonlliwtiwoltesfI,'0'ro'1'rehtietaniamerdnagnilggotpotsot
4TUO
)tluafeD(elbitapmoc-SDVLsi>5_I<tupnI='0' )tluafeD(elbitapmoc-LCEPsi>6_I<tupnI='1'1
stitub,elbaetirwsitibsihT.zHk8402ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'
eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edoMTENOS1=
stitub,elbaetirwsitibsihT.zHk4451ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'
detareneg-yllanretnistifoesahpehtngilalliwecivedehT:elbanEcnySzHk2lanretxE1=
langisehtfotahthtiw)zHk2(langiscnySemarF-itluMdna)zHk8(langiscnySemarF
rehtonamorftuptuozHM84.6aotdekcolebdluohsecivedehT.nipK2cnySehtotdeilppus
tnerrucehtesulliwrevodlohdnaeulavehterongilliwecivedehT:elbasiDtesffOrevodloH0=
ehtniderotseulavtesffOrevodloHehttpodalliwecivedehT:elbanEtesffOrevodloH1=
.edomrevodloHniycneuqerfehttesotdesunehtsieulavsihT.retsigertesffo_revodloh_gfnc
lanretxeehtfoegdegnillafehtotecnereferlliwecivedehT:detceleSegdEkcolCgnillaF0=
lanretxeehtfoegdegnisirehtotecnereferlliwecivedehT:detceleSegdEkcolCgnisiR1=
teserebtsumdnatuoemittonlliwmralaesahpehT:elbasiDtuoemiTmralAesahP0=
sisihT.sdnoces001retfatuoemitlliwmralaesahpehT:elbanEtuoemiTmralAesahP1=
sa,retsigersihtfo3tibgnisunoitcnufsihtslortnocresuehT:elbasiDcnySzHk2otuA0=
siecruosehtnehwylnodelbaneeblliwcnySzHk2lanretxE:elbanEcnySzHk2otuA1=
ehtrofdleifsihtninwohsecruosehtothctiwslliwecivedehT:noitcelesecruostupni
Tehtrohtap
,htap
1NI
tignisuac,langis
.langis
00010011
000000XX
01XXXXXX
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com29
Page 30
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
73
83
93
emaNretemaraPnoitpircseDtluafeD
snip_lesPu_gfnc ehtrofyekehtsdlohtI.)xeh(73sserddataecapstib-8eritneehtseipuccoretsigertib-3sihT
.retsigersihtaiv
LETNI110
elbane_tuptuo_0T_gfnc larevessniatnoctI.)xeh(83sserddataecapstib-8eritneehtseipuccoretsigertib-8sihT
.)detats
seicneuqerf_tuptuo_0T_gfnc .wolebdeliatedsa,troptuptuohcaerofsnoitcelesycneuqerfehtsdlohretsigersihT
tluafed=*
FINAL
)nib(eulaV
snipleSPuehtnodeilppagniebeulaveht,ylno-daersitI.epytrossecorporcimehtfonoitceles
daerebllitsnactubderongierasnipehtpu-rewopretfA.teserropu-rewopnodetpodadna
epytrossecorporciM)0:2(tiB
)delbasidecafretni(FFO000
MORPE100
DEXELPITLUM010
ALOROTOM001
LAIRES101
)delbasidecafretni(FFO011 )delbasidecafretni(FFO111
:wolebdeliatedsa,sdleifnoitarugifnoclaudividni
dleifnoitarugifnoCtiB
)zHM67.77(delbane50TtroptuptuO='1'0
delbasid50TtroptuptuO='0'
)zHM88.83(delbane40TtroptuptuO='1'1
delbasid40TtroptuptuO='0'
)zHM44.91(delbane30TtroptuptuO='1'2
delbasid30TtroptuptuO='0'
delbane20TtroptuptuO='1'3
delbasid20TtroptuptuO='0'
seicneuqerf_tuptuo_0T_gfncretsigerees-
delbane10TtroptuptuO='1'4
delbasid10TtroptuptuO='0'
seicneuqerf_tuptuo_0T_gfncretsigerees-
1giDrofdetcelesedomtenoS='1'5
1giDrofdetcelesedomHDS='0'
seicneuqerf_tuptuo_0T_gfncretsigerees-
2giDrofdetcelesedomtenoS='1'6
2giDrofdetcelesedomHDS='0'
seicneuqerf_tuptuo_0T_gfncretsigerees-
zHM40.113ottesycneuqerftuptuo60T='1'7
)4:5(A3sserddAybtesycneuqerftuptuo60T='0'
-irTtonsitropeht(eulavcigolcitatsasdlohtroptuptuoehttahtsnaem"delbasiD":etoN
dleifnoitarugifnoCtiBdleifnoitarugifnoCtiB
20T)2:3(10T)0:1(
zHM29.5200*zHM84.600
zHM48.1510zHM29.5210
*zHM88.8301zHM44.9101
2giD111giD11
2giD)6:7(1giD)4:5(
*zHk8402/zHk445100*zHk8402/zHk445100
zHk6904/zHk880310zHk6904/zHk880310
zHk2918/zHk671601zHk2918/zHk671601
zHk48361/zHk2532111zHk48361/zHk2532111
srehtoehtdnaedomtenoSroferaseulavycneuqerftsomtfeleht,2giDdna1giDhtobroF-
retsigernistibHDS/TENOSehtaivdetceleserayehT.edomHDSrofera
.elbane_tuptuo_0T_gfnc
=)3:7(stiB
XXXXX
=)0:2(stiB
tnednepedniP
11111000
00010000
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com30
Page 31
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
A3
B3
C3
emaNretemaraPnoitpircseDtluafeD
stuptuo_laitnereffid_gfnc laitnereffidehtrofepytygolonhcet-tropehtdnasnoitcelesycneuqerfehtsdlohretsigersihT
tluafed=*
htdiwdnab_gfnc nehW.LLPlatigidehtfonoitarepoehtlortnocotdesunoitamrofnisniatnocretsigersihT
ycneuqerf_lanimon_gfnc .ycneuqerflanimonderisedehtgnitneserperregetnidengisnutib61asdlohretsigersihT
FINAL
)nib(eulaV
.wolebdeliatedsa,70Tdna60T,stuptuo
70T)2:3(60T)0:1(
desunu11desunu11
70T)6:7(60T)4:5(
zH1.0000zH1.0000 zH3.0100zH3.0100 zH6.0010zH6.0010
zH2.1110zH2.1110 zH5.2001zH5.2001 zH0.5101zH0.5101
zH01011zH01011 zH02111zH02111
.etybtnacifingis-tsaeL
.seicneuqerflatsyrclanretxeehtninoitairav
dleifnoitarugifnoCtiBdleifnoitarugifnoCtiB
delbasidtroP00delbasidtroP00
*elbitapmoc-LCEP10elbitapmoc-LCEP10
elbitapmoc-SDVL01*elbitapmoc-SDVL01
zHM25.55100*zHM88.8300
zHM48.1510zHM44.9110
zHM67.7701zHM25.55101
*zHM44.9111.1giD11
gnitteshtdiwdnabnoitisiuqcaehtesulliwLLPDeht,citamotuaottessinoitceleshtdiwdnab
.gnitteshtdiwdnabdekcol/lamronehtesuyawlalliwLLPDeht
htdiwdnabnoitisiuqcA)4:6(htdiwdnabpooL)0:2(tiB
noitceleshtdiwdnaB7desunu3
noitarepolaunaM='0'
noitarepocitamotuA='1'
,launamottesnehW.kcolninehwgnitteshtdiwdnabdekcol/lamronehtdna,kcolfotuonehw
tsniagaetasnepmocotycneuqerftuptuolanimonehtetarbilacyllanoitpootelbaliavasisihT
01100011
101X1110
10011001
D3
tesffo_revodloh_gfnc ,regetnidengistib61asdlohtI.)xeh(04ot)xeh(E3sesserddasesuretsigertib-61sihT
E3
F3
04
timil_qerf_gfnc tI.LLPDehtfoegnarni-llupehtgnitneserperregetnidengisnutib01asdlohretsigersihT
14
24
.etybtnacifingis-tsoM
)0:7(tesfforevodloH)0:7(tiB
)8:51(tesfforevodloH)0:7(tiB
)61:81(tesfforevodloH)0:2(tiB
desunU)3:6(tiB
:alumrofgniwollof
etybtnacifingistsaeL
desunU)2:7(
etybtnacifingistsoM)0:1(
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com31
10011001
.retsigeredom_gfncehtnitibdelbanetesfforevodlohehtaivdelbanenehw
.revodloHniesurofecruosecnereferotdekcolyltnerruc
5870.0/)74610.0-egnarycneuqerF(=timil_qerf_gfnc
.mpp08±dnuorafoegnarllufehtsihgihsiWSCRS
ro74610.0+)5870.0xtimil_qerf_gfnc(=)mpp(-/+egnarycneuqerF
ycneuqerfedomrevodlohehttesotdesuebnachcihw,eulavtesfforevodlohehtgnitneserper
00000000
00000000
otegarevaycneuqerfehtselbanesihT.1tluafed-elbanegnigarevArevodloHotuAsi7tiB
sahycneuqerfehtretfa,sdnoces23yrevenekatelpmasenO.selpmas23morfnekateb
ehtfoyrotsihetunim71agnivig,srotinomycneuqerfehtybdnab-niebotdemrifnocneeb
ehtgnisu,noitacilppaehtnidetnemelpmilatsyrcfoycaruccaehtotgnidroccatesebdluohs
nehweulavtluafeD.mpp2.9±siwoldeitrodetcennocnutfelsiWSCRSnehweulavtluafeD
000XXXX1
01101110
)wolWSCRS(
11111111
)hgihWSCRS(
00XXXXXX
)wolWSCRS(
11XXXXXX
)hgihWSCRS(
Page 32
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
34
44 11111111
54 11111XXX
64
74
84
05
emaNretemaraPnoitpircseDtluafeD
ksam_tpurretni_gfnc niecruostpurretnietairporppaehtelbasidlliw,orezottesfi,retsigertib12sihtfotibhcaE
.retsigerstupni_4T_stsehtroretsigersutatstpurretniehtrehtie
nvid_qerf_gfnc esahpehttegot>1_I<:>41_I<otdeilppatupniynarofrosividehtsadesusiregetnitib41sihT
1-)zHk8/)qerftupni((
.ycneuqerftupniehtnahtrewolebtsumtub,ycneuqerftupni
.etybtnacifingis-tsaeL
.stib6tnacifingis-tsoM
srotinom_gfnc .tuodliubesahpfolortnocdnasrotinomfonoitarugifnoclabolgswollaretsigertib7sihT
.esuerutufrof
.seerged
.tesffoesahptnerrucehthtiwniamertubstnevetuodliubesahp
.3ro
ehtmorfyawagnihctiwstsafyrevelbanelliwsihT.selcycwefaylnognissimretfaecruos
deliaf_fer_niamehtybdereggirtsisihT.noitacilppaepytnoitcetorpaniecruosdetceles
.msinahcemtpurretni
.ecivedehtfonipODTehtfotuonevird
fI.woldeitrodetcennocnutfelsinipTWSCRSnehwdilavsinevigeulavtluafedehT*
.)xeh(51sieulavtluafedeht,hgihdeitsiTWSCRS
0dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
FINAL
)nib(eulaV
11111111
esuaclliwsihT.1ottestibNviDehthtiwstupnirofevitcaylnO.derisedycneuqerfgnikcol
:otNmargorp.g.e,nosirapmocesahpotroirp)1+N(ybdedividebotycneuqerftupnieht
ehtotycneuqerftopstsesolcehttcelferottesebdluohsstibycneuqerf_ecruos_ecnereferehT
00000000
000000XX
devresererasrehto,mpp51=10,ffo=00-srotinomycneuqerfgnirugifnocrofera)0:1(stiB
0otkcolsyawlalliwLLPDeht,delbasidfI.tuodliubesahpselbanenetuodliubesahP2tiB
erutufynaelbasidylevitceffelliw)delbanesituodliubesahpnehw(tuodliubesahpezeerF3tiB
4tupnirehtieotgnikcolehtecrofotniptiwScrSehtselbanegnihctiwsnoitcetorplanretxE4tiB
detcelesyltnerrucehtnomralaytivitcaninaesiarotllpdehtselbanegnihctiwstsaf-artlU5tiB
ebottpurretnideliaf_fer_niamehtfoeulavehtelbanelliwODTnossolecnerefergalF6tiB
*1010000X
01100000
15
25
0etar_yaced_gfnc rof1+sitekcubehtfoetar-llifehT.tekcubykaelehtfoetarkaelehtslortnocretsigertib2sihT
35
45
55
65
75
1etar_yaced_gfnc.1tekcubroftub)xeh(35retsigerrofsA
0dlohserht_rewol_vitca_gfnc ebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
.deraelc
0ezis_tekcub_gfnc evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
.tupni
.enoevitcaninasaetar
1dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
1dlohserht_rewol_vitca_gfnc ebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
.deraelc
1ezis_tekcub_gfnc evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
.tupni
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com32
00100000
00010000
sietaryacedehT.ytivitcanifolevelemosdecneirepxesahtahtlavretnism821yreve
seulavgnisuyb1:8,1:4,1:2,1:1ottesebnacoitarehT.etarllifehtfosoitarnielbammargorp
.erutannistekcubykaeleurttonerastekcubeseht,revewoH.ylevitcepser11,01,10,00fo
nacsetaryaceddnallifehttahtsnaemsihT.dellifgniebsitinehwgnikaelspotstekcubehT
emasehttadesingocerebnactupnievitcanatahttceffetenehthtiw)1:1=00(emasehteb
10XXXXXX
01100000
00100000
00010000
10XXXXXX
Page 33
ACS8510 SETS
ADVANCED COMMUNCIATIONS
.rddA
)xeH(
85
95
A5
B5
C5
D5
E5
F5
lesPu_gfnc lliwsihT.ecafretnirossecorporcimehtfoedomehtlortnocotdesusiretsigertib3sihT
F7
Selection of Input Reference Clock Source
Under normal operation, the input reference sources are selected automatically by an order of priority. But, for special circumstances, such as chip or board testing, the selection may be forced by configuration.
Automatic operation selects a reference source based on its pre-defined priority and its current availability. A table is maintained which lists all reference sources in the order of priority. This is initially downloaded into the ACS8510 via the micro-processor interface by the Network Manager, and is subsequently modified by the results of the ongoing quality monitoring. In this way, when all the defined sources are active and valid, the source with the highest programmed priority is selected but, if this source fails, the next-highest source is selected, and so on.
Restoration of repaired reference sources is handled carefully to avoid inadvertent disturbance of the output clock. The ACS8510 has two modes of operation; Revertive and Non-Revertive. In Revertive mode, if a re-
emaNretemaraPnoitpircseDtluafeD
2dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
2dlohserht_rewol_vitca_gfnc ebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
.deraelc
2ezis_tekcub_gfnc evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
.tupni
2etar_yaced_gfnc.2tekcubroftub)xeh(35retsigerrofsA
3dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
3dlohserht_rewol_vitca_gfnc ebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehtstesretsigertib8sihT
.deraelc
3ezis_tekcub_gfnc evitcaninanevighcaernactekcubykaelehttahteulavmumixamehtstesretsigertib8sihT
.tupni
3etar_yaced_gfnc.3tekcubroftub)xeh(35retsigerrofsA
.gnitoobretfayrassecenfi
FINAL
01100000
00100000
00010000
10XXXXXX
01100000
00100000
00010000
10XXXXXX
ehttupotnettirwebnacretsigereht,yltneuqesbuS.sniplesPµehtnoeulavehthtiwpu-rewop
dnaMORPEmorfgnitoobtroppuslliwsihT.edomrehtonaotniecafretnirossecorp-orcim
aivdaerebsyawlanacsnipehtnoeulavehT.edomrehtonaaivgnitacinummocyltneuqesbus
ehtrofstupniesopruplarenegsadesuebnacsnip3esehT.retsigersnip_lesPu_gfnceht
validated (or newly validated) source has a higher priority than the reference source which is currently selected, a switch over will take place. Many applications prefer to minimise the clock switching events and choose Non­Revertive mode. In Non-Revertive mode , when a re-validated (or newly validated) source has a higher priority then the selected source will be maintained. The re-validation of the reference source will be flagged in the sts_sources_valid register and, if not masked, will generate an interrupt. Selection of the re-validated source can only take place under software control ­the software should briefly enable Revertive mode to affect a switch-over to the higher priority source. If the selected source fails under these conditions the device will still not select the higher priority source until instructed to do so by the software, by briefly setting the Revertive mode bit. When there is a reference available with higher priority than the selected reference, there will be NO change of reference source as long as the Non-Revertive mode remains on. This is the case even of there are lower priority references available or the currently selected reference fails. When the ONLY valid reference sources that are available
=)3:7(stiB
XXXXX
=)0:2(stiB
)nib(eulaV
tnednepedniP
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com33
Page 34
ACS8510 SETS
ADVANCED COMMUNCIATIONS
have a lower priority than the selected reference, a failure of the selected reference will always trigger a switch-over regardless of whether Revertive or Non-revertive mode has been chosen.
Also, in a Master/Slave redundancy-protection scheme, the Slave device(s) must follow the Master device. The alignment of the Master and Slave devices is part of the protection mechanism. The availability of each source is determined by a combination of local and remote monitoring of each source. Each input reference source supplied to each ACS8510 device is monitored locally and the results are made available to other devices.
Forced Control Selection
A configuration register, 'cnfg_ref_selection', controls both the choice of automatic or forced selection and the selection itself (when forced selection is required). The forced selection of an input reference source occurs when the 'cnfg_ref_selection' variable contains a non-zero value, the value then representing the input port required to be selected. This is not the normal mode of operation, and the 'cnfg_ref_selection' variable is defaulted to the all-zero value on reset, thereby adopting the automatic selection of the reference source.
Automatic Control Selection
When an automatic selection is required, the 'cnfg_ref_selection' register must be set to all­zero. The configuration registers, 'cnfg_ref_selection_priority', held in the µP port block, consists of seven, 8 bit registers organised as one 4 bit register per input reference port. Each register holds a 4-bit value which represents the desired priority of that particular port. Unused ports should be given the value, '0000' or '1111', in the relevant register to indicate they are not to be included in the priority table. On power-up, or following a reset, the whole of the configuration file will be defaulted to the values defined by Table 1. The
FINAL
selection priority values are all relative to each other, with lower-valued numbers taking higher priorities. Each reference source should be given a unique number, the valid values are 1 to 15 (dec). A value of 0 disables the reference source. However if two or more inputs are given the same priority number those inputs will be selected on a first in, first out basis. If the first of two same priority number sources goes invalid the second will be switched in. If the first then becomes valid again, it becomes the second source on the first in, first out basis, and there will not be a switch. If a third source with the same priority number as the other two becomes valid, it joins the priority list on the same first in, first out basis. There is no implied priority based on the channel numbers.
The input port <I_11> is for the connection of the synchronous clock of the T the Master device (or the active-Slave device), to be used to align the T
output with the
OUT0
Master (or active-Slave) device if this device is acting in a subordinate-Slave or subordinate­Master role.
Clock Quality Monitoring
Clock quality is monitored and used to modify the priority tables of the local and remote ACS8510 devices. The following parameters are monitored:
- Activity (toggling)
- Frequency (This monitoring is only performed when there is no irregular operation of the clock or loss of clock
condition)
In addition, input ports <I_1> and <I_2> carry AMI-encoded composite clocks which are monitored by the AMI-decoder blocks. Loss of signal is declared by the decoders when either the signal amplitude falls below 0.3 v or there is no activity for 1 ms.
Any reference source which suffers a loss-of-
output of
OUT0
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com34
Page 35
ACS8510 SETS
ADVANCED COMMUNCIATIONS
signal, loss-of-activity, loss-of-regularity or clock­out-of-band condition will be declared as unavailable.
Clock quality monitoring is a continuous process which is used to identify clock problems. There is a difference in dynamics between the selected clock and the other reference clocks. Anomalies occurring on non-selected reference sources affect only that source's suitability for selection, whereas anomalies occurring on the selected clock could have a detrimental impact on the accuracy of the output clock.
Anomalies, whether affecting signal-purity or signal frequency, could induce jitter or frequency offsets in the output clock, leading to anomalous behaviour. Anomalies on the selected clock, therefore, have to be detected as they occur and the phase locked loop must be temporarily isolated until the clock is once again pure. The clock monitoring process cannot be used for this because the high degree of accuracy required dictates that the process be slow. To achieve the immediacy required by the phase locked loop requires an alternative mechanism. The phase locked loop itself contains appropriate circuitry, based around the
FINAL
phase detector, and isolates itself from the selected reference source as soon as a signal impurity is detected. It can likewise respond to frequency offsets outside the permitted range since these result in saturation of the phase detector. When the phase locked loop is isolated from the reference source, it is essentially operating in a Hold-Over state; this is preferable to feeding the loop with a standby source, either temporarily or permanently, since excessive phase excursions on the output clock are avoided.
Anomalies detected by the phase detector are integrated in a leaky bucket accumulator. Occasional anomalies do not cause the accumulator to cross the alarm-setting threshold, so the selected reference source is retained. Persistent anomalies cause the alarm­setting threshold to be crossed and result in the selected reference source being rejected.
Activity Monitoring
The ACS8510 has a combined inactivity and irregularity monitor. The ACS8510 uses a "leaky bucket" accumulator, which is a digital circuit which mimics the operation of an analog integrator, in which input pulses increase the
inactivities/irregularities
reference
source
leaky bucket
response
alarm
Figure 7: Inactivity and irregularity monitoring
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com35
bucket_size upper_threshold lower_threshold
(all programmable)programmable fall slopes
Page 36
ACS8510 SETS
ADVANCED COMMUNCIATIONS
output amplitude but die away over time. Such integrators are used when alarms have to be triggered either by fairly regular defect events, which occur sufficiently close together, or by defect events which occur in bursts. Events which are sufficiently spread out should not trigger the alarm. By adjusting the alarm-setting threshold, the point at which the alarm is triggered can be controlled. The point at which the alarm is cleared depends upon the decay rate and the alarm-clearing threshold. On the alarm-setting side, if several events occur close together, each event adds to the amplitude and the alarm will be triggered quickly; if events occur a little more spread out, but still sufficiently close together to overcome the decay, the alarm will be triggered eventually. If events occur at a rate which is not sufficient to overcome the decay, the alarm will not be triggered. On the alarm-clearing side, if no defect events occur for a sufficient time, the amplitude will decay gradually and the alarm will be cleared when the amplitude falls below the alarm-
FINAL
clearing threshold. The ability to decay the amplitude over time allows the importance of defect events to be reduced as time passes by. This means that, in the case of isolated events, the alarm will not be set, whereas, once the alarm becomes set, it will be held on until normal operation has persisted for a suitable time (but if the operation is still erratic, the alarm will remain set). See Figure 7.
The "leaky bucket" accumulators are programmable for size, alarm set & reset thresholds and decay rate. Each source is monitored over a 128 ms period. If, within a 128 ms period, an irregularity occurs that is not deemed to be due to allowable jitter/wander, then the accumulator is incremented. The accumulator will continue to increment up to the point that it reaches the programmed bucket size. The "fill rate" of the leaky bucket is, therefore, 8 units/second. The "leak rate" of the leaky bucket is programmable to be in multiples of the fill rate (x1, x0.5, x0.25 and x0.125) to give a programmable leak rate from
Leaky bucket timing
The time taken to raise an inactivity alarm on a reference source that has previously been fully active (leaky bucket empty) will be:
(cnfg_activ_upper_threshold N)
8
where N is the number of the relevent leaky bucket configuration. If an input is intermittently inactive then this time can be longer. The default setting of cnfg_activ_upper_threshold is 6, therefore the default time is
0.75 s.
The time taken to cancel the activity alarm on a previously completely inactive reference source is calculated as:
(cnfg_decay_rate N)
2 x ((cnfg_bucket_size N) - (cnfg_activ_lower_thrshold N))
8
where N is the number of the relevent leaky bucket configuration in each case. The default setting are shown in the following:
2 x (8-4) = 1.0 s
8
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com36
1
secs
secs
Page 37
ACS8510 SETS
ADVANCED COMMUNCIATIONS
8 units/sec down to 1 unit/sec. A conflict between trying to leak at the same time as a fill is avoided by preventing a leak when a fill event occurs.
Disqualification of a non-selected reference source is based on inactivity, or on an out of band result from the frequency monitors. The currently selected reference source can be disqualified for phase, frequency, inactivity or if the source is outside the DPLL lock range. If the currently selected reference source is disqualified, the next highest priority, active reference source is selected.
Ultra Fast Switching
A reference source is normally disqualified after the leaky bucket monitor thresholds have been crossed. An option for a faster disqualification has been implemented, whereby if register 48H, bit 5 (Ultra Fast Switching), is set then a loss of activity of just a few reference clock cycles will set the no activity alarm and cause a reference switch. This can be chosen to cause an interrupt to occur instead of or as well as causing the reference switch.
The sts_interrupts register 05 Hex Bit 15 (main_ref_failed) of the interrupt status register is used to flag inactivity on the reference that the device is locked to much faster than the activity monitors can support. If bit 6 of the cnfg_monitors register (flag ref loss on TDO) is set, then the state of this bit is driven onto the TDO pin of the device.
The flagging of the loss of the main reference failure on TDO is simply allowing the status of the sts_interrupt bit 15 to be reflected in the state of the TDO output pin. The pin will, therefore remain High until the interrupt is cleared. This functionality is not enabled by default so the usual JTAG functions can be used. When JTAG is normally used straight out of power-up, then this feature will have no bearing on the functionality. The TDO flagging feature will need to be disabled if JTAG is not
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com37
FINAL
enabled on power-up and the feature has since been enabled.
When the TDO output from the ACS8510 is connected to the TDI pin of the next device in the JTAG scan chain, the implementation should be such that a logic change caused by the action of the interrupt on the TDI input should not effect the operation when JTAG is not active.
External Protection Switching
Fast external switching between inputs <I_3> and <I_4> can also be triggered directly from a dedicated pin (SRCSW). This mode can be activated either by holding this pin high during reset, or by writing to bit 4 of register address 48Hex. Once external protection switching is enabled, then the value of this pin directly selects either <I_3> (SRCSW high) or <I_4> (SRCSW low). If this mode is activated at reset by pulling the SRCSW pin high, then it configures the default frequency tolerance of <I_3> and <I_4> to +/- 80 ppm (register address 41Hex and 42Hex). Any of these registers can be subsequently set by external software if required.
When external protection switching is enabled, the device will operate as a simple switch. All clock monitoring is disabled and the DPLL will simply be forced to try to lock on to the indicated reference source.
Frequency Monitoring
The ACS8510 performs frequency monitoring to identify reference sources which have drifted outside the acceptable frequency range of +/-
16.6 ppm (measured with respect to the output clock). The sts_reference sources out-of-band alarm for a particular reference source is raised when the reference source is outside the acceptable frequency range. The ACS8510 DPLL has a programmable frequency limit of +/- 80 ppm. If the range is programmed to be > 16.6 ppm, the activity monitors should be
Page 38
ACS8510 SETS
ADVANCED COMMUNCIATIONS
disabled so the input reference source is not automatically rejected as out of frequency range.
Modes of Operation
The ACS8510 has three primary modes of operation (Free-Run, Locked and Holdover) supported by three secondary, temporary modes (Pre-Locked, Lost_Phase and Pre­Locked2). These are shown in the State Transition Diagram, Figure 8.
The ACS8510 can operate in Forced or Automatic control. On reset, the ACS8510 reverts to Automatic Control, where transitions between states are controlled completely automatically. Forced Control can be invoked by configuration, allowing transitions to be performed under external control. This is not the normal mode of operation, but is provided for special occasions such as testing, or where a high degree of hands-on control is required.
Free-Run mode
The Free-Run mode is typically used following a power-on-reset or a device reset before network synchronisation has been achieved. In the Free-Run mode, the timing and synchronisation signals generated from the ACS8510 are based on the Master clock frequency provided from the external oscillator and are not synchronised to an input reference source. The frequency of the output clock is a fixed multiple of the frequency of the external oscillator, and the accuracy of the output clock is equal to the accuracy of the Master clock.
The transition from Free-Run to Pre-locked(1) occurs when the ACS8510 selects a reference source.
Pre-Locked(1) mode
The ACS8510 will enter the Locked state in a maximum of 100 seconds, as defined by GR­1244-CORE specification, if the selected reference source is of good quality. If the
FINAL
device cannot achieve lock within 100 seconds, it reverts to Free-Run mode and another reference source is selected.
Locked mode
The Locked mode is used when an input reference source has been selected and the PLL has had time to lock. When the Locked mode is achieved, the output signal is in phase and locked to the selected input reference source. The selected input reference source is determined by the priority table. When the ACS8510 is in Locked mode, the output frequency and phase follows that of the selected input reference source. Variations of the external crystal frequency have a minimal effect on the output frequency. Only the minimum to maximum frequency range is affected. Note that the term, 'in phase', is not applied in the conventional sense when the ACS8510 is used as a frequency translator (e.g., when the input frequency is 2.048 MHz and the output frequency is 19.44 MHz) as the input and output cycles will be constantly moving past each other; however, this variation will itself be cyclical over time unless the input and output are not locked.
Lost_Phase mode
Lost_Phase mode is used whenever the selected reference source suffers most kinds of anomalous behaviour. Clock generation is performed in the same way as in the Holdover mode. If the leaky bucket accumulator calculates that the anomaly is serious, the device rejects the reference source and one of the following transitions takes place:
Go to Pre-Locked(2);
- If a known-good standby source is available.
Go to Hold-Over;
- If no standby sources are available.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com38
Page 39
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Holdover mode
The Holdover mode is used when the ACS8510 was in Locked mode for long enough to acquire stable frequency data, but the final selected reference source has become unavailable and a replacement has not yet been qualified for selection.
In Holdover mode, the ACS8510 provides the timing and synchronisation signals to maintain the Network Element (NE), but they are not phase locked to any input reference source. The timing is based on a stored value of the frequency ratio obtained during the last Locked mode period.
The Holdover performance is mainly limited by what is happening to the TCXO. The ACS8510 has 3 ways of determining Holdover, either;
1. By external frequency setting (cnfg_holdover_offset register)
2. By an internal frequency measuring and averaging system which averages the last 20 minutes
3. By just using the last frequency (as reported by the sts_curr_inc_offset register). This value can be read out of the device and used to build up a longer term average using an external averaging circuit. This value can then to readback into the device and used as the Holdover offset
(via cnfg_holdover_offset register).
By default it uses the internal averager. This means that if the TCXO frequency is varying due to temperature fluctuations in the room, then the instantaneous value can be different from the average value, and then it may be possible to exceed the 0.05 ppm limit (depending on how extreme the temperature flucuations are). It is advantageous to shield the TCXO to slow down frequency changes due to drift and external temperature fluctuations.
The frequency accuracy of Holdover mode has to meet the ITU-T, ETSI and Telcordia performance requirements. The performance of the external oscillator clock is critical in this mode, although only the frequency stability is
FINAL
important - the stability of the output clock in Hold-Over is directly related to the stability of the external oscillator.
Pre-Locked(2) mode
This state is very similar to the Pre-Locked(1) state. It is entered from the Holdover state when a reference source has been selected and applied to the phase locked loop. It is also entered if the device is operating in revertive mode and a higher-priority reference source is restored.
Upon applying a reference source to the phase locked loop, the ACS8510 will enter the Locked state in a maximum of 100 seconds, as defined by GR-1244-CORE specification, if the selected reference source is of good quality.
If the device cannot achieve lock within 100 seconds, it reverts to Holdover mode and another reference source is selected.
Protection Facility
The ACS8510 supports redundancy protection. The primary functions of this include:
- Alignment of the priority tables of both Master and Slave ACS8510 devices so as to align the selection of reference sources of both Master and Slave ACS8510 devices.
- Alignment of the phases of the 8 kHz and 2 kHz clocks in both Master and Slave ACS8510 devices to within one cycle of the 77.76 MHz internal clock.
When two ACS8510 devices are to be used in a redundancy-protection scheme within an NE, one will be designated as the Master and the other as the Slave. It is expected that an NE will use the T operations because the T to feed an SSU/BITS system. An SSU/BITS will not be bothered by phase differences between
output for its internal
OUT0
output is intended
OUT4
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com39
Page 40
ACS8510 SETS
ADVANCED COMMUNCIATIONS
signals arriving from different sources because it typically incorporates line build-out functions to absorb phase differences on reference inputs. This means that the phasing of the composite clocks between two ACS8510 devices do not have to be mutually-aligned. The same is not true, however, of the T signals (T01 - T07, Frame clock and Multi-Frame clock). It is usually important to align the phases of all equivalent T
signals generated by
OUT0
different sources so that switch-over from one device to another does not affect the internal operations of the NE. Both ACS8510 devices will produce the same signals, which will be routed around the NE to the various consumers (clock sinks). With the possible exception of a through-timing mode, the signals from the Master device will be used by all consumers, unless the Master device fails, when each consumer will switch over to the signals generated by the Slave device.
Switchover to a new T
clock should be as
OUT0
hitless as possible. This requires the signals of both ACS8510 devices to be phase aligned at each consumer. Phase alignment requires frequency alignment. To ensure that both devices can generate output clocks locked to the same source, both devices are supplied with the same reference sources on the same input ports and will have identical priority tables. Failures of selected reference sources will result in both ACS8510 devices making the same updates to their priority tables as availability information will be updated in both devices. Although, in principle, the priority tables will be the same if the same reference sources are used on the same input port on each device, in practice, this is only true if the reference sources actually arrive at each device - failures of a source seen only by one device and not by the other, such as could be caused, for example, by a backplane connector failure, would result in the priority tables becoming misaligned. It is thus necessary to force the priority tables to
OUT0
output
FINAL
be aligned under normal operating conditions so that the devices can make the same decisions - this can be achieved by loading the availability seen by one device (via the
sts_reference_sources register) into the cnfg_sts_remote_sources_valid register of the
other device. Another factor which could affect hit-less switching is the frequency of the local oscillator clock used by each ACS8510 device: these clocks are not mutually aligned and, whilst this has no impact on the frequency of the output clocks during locked mode, it could cause the output frequencies to diverge during Holdover mode if no action were taken to avoid it. In order to maintain alignment of the output frequencies of each ACS8510 device even during Holdover, the Master device's 6.48 MHz output is fed into the Slave device on its <I_11> pin, whilst the Multi-Frame Sync (2 kHz) output is fed to the Sync2k input of the Slave. In this way, the Slave locks to the master's output and remains locked whilst the Master moves between operating states. Only when the Master fails does the Slave use its own reference inputs - should the Master have been in the Holdover state, the Slave device will see the same lack of reference sources and also enter the Holdover state. This scheme also provides a convenient way to phase-align all
output clocks in Master and Slave devices,
T
OUT0
and also to detect the failure of the Master device.
If a Master device fails, the Slave has to take over responsibility for the generation of the output clocks, including the 8 kHz and 2 kHz Frame and Multi-Frame clocks. The Slave device is also given responsibility for building the priority table and performing the reference switching operations. The Slave device, therefore, adopts a more active role when the Master has failed. The cnfg_mode register 34 (Hex) Bit 1 contains the "Master/Slave" control bit to determine the designation of the device.
To restore redundancy protection, the Master
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com40
Page 41
ACS8510 SETS
ADVANCED COMMUNCIATIONS
has to be repaired and replaced. When this occurs, the new Master cannot immediately adopt its normal role because it must not cause phase hits on the output clocks. It has, therefore, to adopt a subordinate role to the active Slave device, at least until such time as it has acquired alignment to the 8 kHz and 2 kHz frame and Multi-Frame clocks and the priority table of the Slave device; then, when a switch-back (restoration) is ordered, the Master can take over responsibility. These activities, in Master or Slave operation, are detailed in Table
8.
Alignment of priority tables in Master and Slave ACS8510
Correct protection will only be achieved by connecting individual reference sources to the same input ports on each device and priority tables in each device must be aligned to each other.
The Master device must take account of the availability of each reference source seen by another device and a Slave device must adopt the same order of priority as the Master device (except that the slave's highest-priority input is <I_11>). Both devices monitor the reference sources and decide the availability of each source; if the failure of a reference source is seen by both devices, they will both update their priority tables - however, if the reference source failure is only seen by one device and not by both, the priority tables could get out of step: this could be catastrophic if it resulted in two devices choosing different reference sources since any slight differences in frequency variation over time (e.g. wander) would mis-align the phase of the 8 kHz Frame and 2 kHz Multi­Frame clocks produced by the individual devices, resulting in phase hits on switch-over. It is therefore important that the same priority table be built by each device, using the reference source availability seen by each device.
FINAL
The monitoring of the reference sources performed by a Master ACS8510 results in a list of available sources being placed in a sts_valid_sources register. This information is used within the device as one of the masks used to build the device's priority table. The information is passed to the Slave device and used to configure the cnfg_sts_remote_sources_valid register so that it can use it as a mask in building its own priority tables. The information is passed between devices using the microprocessor port.
Alignment of the selection of reference sources for T ACS8510
As stated previously, there is no need to align the phases of the T Slave devices. There is a need, however, to ensure that all devices select the same reference source. But, since there is no Holdover mode required for the generation of the T continuously monitored within each device, it is permissible to rely on external intelligence to command a switch-over to an alternative source should the selected one fail. The time delay involved in detecting the failure, indicating it to the outside and selecting a new source, will result only in the SSU/BITS entering its Hold­Over mode for a short time.
Alignment of the phases of the 8kHz and 2kHz clocks in both Master and Slave ACS8510
In addition to aligning the edges of the T outputs of Master and Slave devices, it is necessary to align the edges of the Frame and Multi-Frame clocks. If this is not performed, frame alignment may be lost in distant equipment on switch-over to an alternative device, resulting in anomalous network operation of a very serious nature.
In accordance with the alignment mechanism used with the main T
generation in the Master and Slave
OUT4
outputs in Master and
OUT4
clock, and every reference source is
OUT4
clock (described in the
OUT0
OUT0
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com41
Page 42
ACS8510 SETS
ADVANCED COMMUNCIATIONS
opening paragraphs of this section), whereby the 6.48 MHz output of the Master device is supplied to the Slave device, the alignment of both the 8 kHz and 2 kHz clocks is accomplished (they are already synchronous to the T the Master device into the Slave device. The Multi-Frame Sync clock output of the Slave device is also fed to the Sync2K input of the Master device. Alignment of the Multi-Frame Sync input occurs only when cnfg_mode register, bit 3, address 34Hex External 2 kHz Sync Enable is set to 1.
JTAG
The JTAG connections on the ACS8510 allow a full boundary scan to be made. The JTAG implementation is fully compliant to IEEE
1149.1, with the following minor exceptions, and the user should refer to the standard for further information.
1. The output boundary scan cells do not capture data from the core, and so do not support EXTEST. However this does not affect board testing.
clocks) by feeding the 2 kHz clock of
OUT0
FINAL
2. In common with some other manufacturers, pin TRST is internally pulled low to disable JTAG by default. The standard is to pull high. The polarity of TRST is as the standard: TRST high to enable JTAG boundary scan mode, TRST low for normal operation.
3. The device does not support the optional tri-state capability (HIGHZ). This will be supported on the next revision of the device.
The JTAG timing diagram is shown on page 53.
PORB
The Power On Reset (PORB) pin resets the device if forced Low for a power-on-reset to be initiated. The reset is asynchronous, the minimum Low pulse width is 5 ns. Reset is needed to initialize all of the register values to their defaults. Asserting Reset (POR) is required at power on, and may be re-asserted at any time to restore defaults. This is implemented most simplistically by an external capacitor to GND along with the internal pull-up resistor. The ACS8510 is held in a reset state for 250 ms after the PORB pin has been pulled High. In normal operation PORB should be held High.
Notes to Table 8
Note 1: Both ACS8510 must build a common priority table so that the Slave ACS8510 can select the same input reference source as the Master ACS8510 if the Master fails (when the Master is OK, the Slave locks to the Master's output).
Note 2: Slave ACS8510 uses common priority table, built before Master ACS8510 failed - priority table can be modified as status of the input reference sources changes
Note 3: Slave ACS8510 outputs must remain in phase with those of Master ACS8510
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com42
Page 43
ACS8510 SETS
ADVANCED COMMUNCIATIONS
SEC1 SEC2
SEC3
SEC14
SEC1
GND
SEC2 SEC3
SEC13
FINAL
TCXO
V
DD
MASTER
MSTSLVB I_1 I_2
I_3
. . .
I_11
. . .
I_14 SYNC2K
SLAVE
MSTSLVB I_1 I_2
I_3
. . .
I_11
. . .
I_14 SYNC2K
SYNC2K_EN=1
TCXO
34Bit3
T
01
T
02
03
T T
04
. . .
T
07
. . .
011
T
6.48 MHz
T01 T
02
03
T T
04
. . .
T
07
. . .
011
T
6.48 MHz
rMF Sync
MF
Sr
ync
otsecruos_feR
0158SCAretsaM
otsecruos_feR
0158SCAevalS
0158SCAretsaM
sutats
doogllAdoogllAdooGdooG)x_fer(dekcoLretsamotdekcoL1etoN
deliafemoSdeliafsrehtoemoSdooGdooG)y_fer(dekcoLretsamotdekcoL1etoN
dooGdooGdooGdeliaF)x_fer(dekcoLdaeD
dooGdooGdeliaFdooGdaeD)x_fer(dekcoL2etoN
dooGdooGdeliaFdeliaFdaeDdaeD
deliaFdeliaFdeliaFdooGrevodloHretsamotdekcoL3etoN
deliaFdeliaFdooGdeliaFrevodloHdaeD
deliaFdeliaFdeliaFdooGdaeDrevodloH4etoN
deliaFdeliaFdeliaFdeliaFdaeDdaeD
Table 8: Master-Slave ACS8510 Relationship
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com43
0158SCAevalS
sutats
0158SCAretsaM
0158SCAevalS
tuptuo
stnemmoC
Page 44
ACS8510 SETS
ADVANCED COMMUNCIATIONS
(1)Reset
(3) no valid standby ref
(m ain ref in v alid
or out of lock >100s)
(4) valid standby ref
&
[ main re f inv alid or
(high er-priority ref v alid
& in revertive mode) or
out of lock >100s]
(10) selected sour ce phase
locked
(9) valid standby ref
&
[ main re f inv alid or
(high er-priority ref v alid
& in rev ertive mode) ]
&
wait for up to 100s
(8) phase
re gained within
100s
free-run
select r ef
(state 001)
pre-locked
(state 110)
(5) selected ref
phase locked
locked
keep ref
(state 100)
(7) phase lost
on main ref
(2) all refs evaluated
&
at least one ref valid
Reference sources are fl agged as ’val id’ when active, ’in-band’ and have no phase alarm set.
All sour ces are continuously checked for activity and frequency.
Only the main source is checked for phase. A phase lock alarm is only raised on a reference when th at reference has lost phase whilst being used as the main reference. The micro-processor can reset the phase lock alarm.
A source is considered to have phase locked when it has been continuously in phase lock for between 1 and 2 seconds
(6) no valid standby ref
&
main ref in valid
FINAL
pre-locked2
wait for up to 100s
(state 101)
(15) valid standby ref
&
[ main ref inva lid or
(h igh er-priority ref va lid
& in revertive mode) or
out of lock >100s]
(12) valid standby ref
&
(main ref invalid
or out of lock >100s)
Lost phase
wait for up to 100s
(state 111)
(13) no valid standby ref
(main ref invalid
or out of lock >100s)
(14) all refs evaluated
at least one ref valid
Figure 8: Automatic Mode Control State Diagram.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com44
holdover
select r ef
(11) no valid standby ref
&
(main ref invalid
or out of lock >100s)
&
&
(state 010)
Page 45
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
Electrical Specification
Important Note: The "Absolute Maximum Ratings" are stress ratings only, and functional operation of the device at conditions other than those indicated in the "Operating Conditions" sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product.
ABSOLUTE MAXIMUM RATINGS
PRETEMARA SLOBMY MNI MXA USTIN
V
ppuSegatloVyl
DDV,D
V,+
,+1VA+2
A
egatloVtupnI
)snipylppus-non(
egatloVtuptuO
)snipylppus-non(
erutarepmeTgnitarepOtneibmA
egnaR
erutarepmeTegarotST
V
DD
5.0-6.3V
niV- 5.5V
tuoV- 5.5V
T
A
rots
04-5C
05-05C
OPERATING CONDITIONS
PRETEMARA SLOBMY NIM PYT XAM STINU
)egatlovcd(ylppuSrewoP
VDD+2AV,+1AV,+DV,,+IMAV,
FFID_DDV
)egatlovcd(ylppuSrewoP
5DDV
egnaRerutarepmettneibmAT
tnerrucylppuS
)tuptuozHM91eno-lacipyT(
noitapissidrewoplatoTP
DDV0.33.36.3V
5DDV0.30.5/3.35.5V
A
DDI-011002Am
TOT
DC CHARACTERISTICS: TTL Input pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
V
hgiHV
ni
hi
04--5C
-063027Wm
0.2--V
V
woLV
ni
tnerructupnII
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com45
li
ni
-- 8.0V
--01Aµ
Page 46
ACS8510 SETS
ADVANCED COMMUNCIATIONS
DC CHARACTERISTICS: TTL Input pad with internal pull-up.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
V
hgiHV
ni
V
woLV
ni
hi
li
rotsiserpu-lluPUP03-08Wk
tnerructupnII
ni
DC CHARACTERISTICS: TTL Input pad with internal pull-down.
Across operating conditions, unless otherwise stated
0.2--V
-- 8.0V
-- 021Aµ
FINAL
RETEMARAP LOBMYS NIM PYT XAM STINU
V
hgiHV
ni
V
woLV
ni
hi
li
rotsisernwodu-lluPDP03-08Wk
tnerructupnII
ni
DC CHARACTERISTICS: TTL Output pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
woLtuoV
Am4=loI
hgiHtuoV
Am4=hoI
loV0- 4.0V
hoV4.2- V
0.2--V
-- 8.0V
-- 021Aµ
tnerrucevirDDI--4Am
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com46
Page 47
ACS8510 SETS
ADVANCED COMMUNCIATIONS
DC CHARACTERISTICS: PECL Input/Output pad.
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
egatlovwoLtupnILCEP
stupnilaitnereffiD)1etoN(
egatlovhgiHtupnILCEP
stupnilaitnereffiD)1etoN(
egatlovlaitnereffiDtupnIV
egatlovwoLtupnILCEP
tupnidedneelgniS)2etoN(
egatlovhgiHtupnILCEP
tupnidedneelgniS)2etoN(
tnerruchgiHtupnI
v4.1=
V
DI
egatlovlaitnereffidtupnI
V
LCEPLI
V
LCEPHI
LCEPDI
V
S_LCEPLI
V
S_LCEPHI
I
LCEPHI
FINAL
-DDV5.2- 5.0-DDVV
-DDV4.2- 4.0-DDVV
1.0-4.1V
-DDV4.2- 5.1-DDVV
1-DDV3.- 5.0-DDVV
01--01+Aµ
tnerrucwoLtupnI
V
v4.1=
DI
egatlovlaitnereffidtupnI
egatlovwoLtuptuOLCEP
)3etoN(
egatlovhgiHtuptuOLCEP
)3etoN(
egatlovlaitnereffiDtuptuOLCEP
)1etoN(
I
LCEPLI
V
LCEPLO
V
LCEPHO
V
LCEPDO
01--01+Aµ
-DDV01.2- 26.1-DDVV
52.1-DDV-88.0-DDVV
085-009Vm
Notes:
Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to VDD and GND respectively.
Note 1. Assuming a differential input voltage of at least 100 mV.
Note 2. Unused differential input terminated to VDD-1.4v.
Note 3. With 50W load on each pin to VDD-2v. i.e. 82W to GND and 130W to VDD.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com47
Page 48
ACS8510 SETS
ADVANCED COMMUNCIATIONS
V
DD
130R
O=50
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
Recommended line termination for PECL Input/Output ports for VDD = 3.3V
DC CHARACTERISTICS:
Across operating conditions, unless otherwise stated
RETEMARAP LOBMYS NIM PYT XAM STINU
Z
130R
82R
ZO=50
82R
GND GND
V
DD
130R
ZO=50
130R
82R
ZO=50
82R
GND
LVDS Input/Output pad.
I5POS T06POS
I5NEG
I6POS
I6NEG
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
130R
130R
FINAL
V
DD
19.44, 38.88, 155.52,
130R
82R
V
DD
130R
82R
GND
82R
82R
311.04 MHz & DIG1
19.44, 51.84, 77.76,
155.52 MHz
LSDVegnaregatlovtupnI
LSDVfoedutingamniegrahC
LSDVegatlovtesffotuptuo
V
Vm001=egatlovtupnilaitnereffiD
dlohserhttupnilaitnereffiDSDVLV
egatlovlaitnereffiDtupnISDVLV
SDVLRV
HTID
SDVLDI
0- 04.2V
001--001+mV
1.0-4.1V
ecnatsisernoitanimrettupnISDVL
ehtssorcayllanretxedecalpebtsuM
.0158SCAfosniptupni-/+SDVL
%5htiwW001ebdluohsrotsiseR
ecnarelot
egatlovhgihtuptuOSDVL
)1etoN(
egatlovwoltuptuOSDVL
)1etoN(
egatlovtuptuolaitnereffiDSDVL
)1etoN(
rofegatlovtuptuolaitnereffid
setatsyratnemilpmoc
)1etoN(
C°52=erutarepmeT
)1etoN(
R
MRET
V
SDVLHO
V
SDVLLO
V
SDVLDO
V
SDVLSOD
V
SDVLSO
59001501W
-- 585.1V
588.0--V
052-054Vm
-- 52Vm
521.1-572.1V
Note 1. With 100W load between the differential outputs.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com48
Page 49
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Z
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
O=50
ZO=50
ZO=50
ZO=50
100R
100R
I5POS T06POS
I5NEG
I6POS
I6NEG
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
100R
100R
19.44, 38.88, 155.52,
311.04 MHz & DIG1
19.44, 51.84, 77.76,
155.52 MHz
FINAL
Recommended line termination for LVDS Input/Output ports
DC CHARACTERISTICS: AMI Input/Output pad.
Across operating conditions, unless otherwise stated
The Alternate Mark Inversion (AMI) signal is DC balanced and consists of positive and negative pulses with a peak to peak voltage of 2.0 +/- 0.2V.
The electrical specifications are taken from option a) of Table 2/G.703 - Digital 64kbit/s centralized clock interface, from ITU G.703.
RETEMARAPGNIMIT
epahsesluP
ecnedepmidaoltsetlanimoNsmhO011
)eslup("kram"afoegatlovkaePV1.0-/+0.1
"ecaps"afoeulavkaePV1.0-/+0.0
htdiwesluplanimoNsµ8.7
esirhtiw,ralugnatceryllanimoN
sµ1<semitllafdna
The electrical characteristics of 64kbits/s interface are as follows;
Nominal bit rate: 64kbit/s. The tolerance is determined by the network clock stability.
There should be a symmetrical pair carrying the composite timing signal (64kHz and 8kHz). The use of transformers is recommended.
Over-voltage protection requirement; refer to Recommendation K.41.
Code conversion rules;
The data signals are coded in AMI code with 100% duty cycle. The composite clock timing signals convey the 64kHz bit-timing information using AMI coding with a 50% to 70% duty ratio and the 8kHz octet phase information by introducing violations in the code rule. The structure of the signals and voltage levels are shown in Figure 9 and Figure 10.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com49
Page 50
ACS8510 SETS
ADVANCED COMMUNCIATIONS
2Vp-p
2Vp-p
+1.0V
+1.0V
0V
0V
IM
IM
-1.0V
-1.0V
FINAL
15.6us
15.6us
7.8us
1V
1V
7.8us
1V
1V
IH
IH
IL
IL
Figure 9: Signal structure of 64 kHz/8 kHz central clock interface after suitable input/output transformer (also
see Figure 6/G.703).
15.6us
7.8us
7.8us
7.8us
7.8us
15.6us
15.6us
15.6us
2Vp-p
2Vp-p
Signal structure of 64 kHz/
8 kHz central clock interface
after suitable transformer.
15.6us
15.6us
7.8us
+1.0V
+1.0V
0V
0V
IM
IM
-1.0V
-1.0V
IL
IL
7.8us
IH
IH
1V
1V
1V
1V
C1
C1
I_1
I_2
TO8POS
TO8NEG
C2
+VDD
+VDD
0V
0V
+VDD
+VDD
0V
0V
Figure 10: AMI input and output signal levels.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com50
Page 51
ACS8510 SETS
ADVANCED COMMUNCIATIONS
AMI input
signal
AMI input
signal
<I_1>
C1
<I_2>
C1
Recommended line termination for AMI Input/Output ports
TO8POS
TO8NEG
Turns
ratio
1:1
R
C2 C3
NOTE: For 1:1 turn ratio, a 3:1 potential divider R output with 1 V pp for positive and negative pulses.
load
is required to give AMI
load
FINAL
AMI output signal to external devices
GND
The AMI inputs <I_1> and <I_2> should be connected to the external AMI clock source by 470 nF coupling capacitor C1.
The AMI differential output O8POS/O8NEG should be coupled to a line transformer with a turns ration of 3:1. Components C2 = 470 pF and C3 = 2 nF. If a transformer with a turns ratio of 1:1 is used, a 3:1 ratio potential divider R
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com51
must be used to achieve the required 1 V pp voltage level for the positive and negative pulses.
load
Page 52
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
DC CHARACTERISTICS: Output Jitter Generation
Across operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8MHz TCXO on ICT Flexacom + 10MHz reference from Wavetek 905.
noitinifedtseTdesuretliFcepsIU
1noitpozHM25.551rof318GzHM3.1otzH005IU
1noitpozHM25.551rof318GzHM3.1otzHk56IU
2noitpozHM25.551rof318GzHM3.1otzHk21IU
pp
pp
pp
5.0=)2etoN(850.0
1.0=
1.0=
2veR
)3etoN(840.0 )2etoN(840.0
)4etoN(350.0 )5etoN(350.0
)6etoN(850.0 )7etoN(350.0
)2etoN(350.0 )3etoN(850.0
)8etoN(750.0
)9etoN(550.0
0158SCAnotnemerusaemIU
)01etoN(750.0
)11etoN(750.0
)21etoN(750.0
)31etoN(350.0
zHM840.2rof218G&318G
1noitpo
noitinifedtseTdesuretliFcepsIU
zHM445.1rof218GzHk04otzH01IU
lacirtcelezHM25.551rof218GzHM3.1otzH005IU
lacirtcelezHM840.2rof218GzHM3.1otzHk56
zHk001otzH02IU
50.0=)41etoN(640.0
pp
0158SCAnotnemerusaemIU
2veR
50.0=)41etoN(630.0
pp
5.0=)51etoN(850.0
pp
=
IU
pp
570.0
)51etoN(840.0
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com52
Page 53
ACS8510 SETS
ADVANCED COMMUNCIATIONS
noitinifedtseTdesuretliFcepsIU
zHM840.2rof3-264-003-STE
CES
zHM840.2rof3-264-003-STE
CES
)zHk001otzH94cepsretliF(
zHM840.2rof3-264-003-STE
USS
zHM25.551rof3-264-003-STEzHM3.1otzH005IU
zHM25.551rof3-264-003-STEzHM3.1otzHk56IU
noitinifedtseTdesuretliFcepsIU
zHk001otzH02IU
zHk001otzH02IU
zHk001otzH02IU
pp
pp
pp
pp
pp
FINAL
0158SCAnotnemerusaemIU
2veR
5.0=)41etoN(640.0
2.0=)41etoN(640.0
50.0=)41etoN(640.0
5.0=)51etoN(850.0
1.0=)51etoN(840.0
0158SCAnotnemerusaemIU
2veR
48.15,f/itenEROC-352-RG
zHM
zHk004otzH001IU
5.1=)51etoN(220.0
pp
48.15,f/itenEROC-352-RG
zHM
zHk004otzHk81IU
51.0=)51etoN(910.0
pp
)zHk004otzHk02cepsretliF(
25.551,f/itenEROC-352-RG
zHM
25.551,f/itenEROC-352-RG
zHM
,f/itceleIItacEROC-352-RG
zHM25.551
,f/itceleIItacEROC-352-RG
zHM48.15
445.1,f/i1SDEROC-352-RG
zHM
zHM3.1otzH005IU
zHM3.1otzHk56IU
zHk004otzHk21
zHM3.1otzHk21
zHk04otzH01
5.1=)51etoN(850.0
pp
51.0=)51etoN(840.0
pp
1.0=)51etoN(750.0
IU
pp
IU
IU
pp
IU
IU
pp
IU
smr
smr
smr
10.0=)51etoN(600.0
1.0=)51etoN(710.0
10.0=)51etoN(300.0
1.0=)41etoN(630.0
10.0=)41etoN(5500.0
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com53
Page 54
ACS8510 SETS
ADVANCED COMMUNCIATIONS
noitinifedtseTdesuretliFcepsIU
zHM445.1rof11426T&TA
)zHk8otzH01cepsretliF(
zHM445.1rof11426T&TAzHk04otzH01
zHM445.1rof11426T&TAzHk04otzH01
zHM445.1rof11426T&TAdnabdaorBIU
noitinifedtseTdesuretliFcepsIU
zHM840.2rof247-GzHk001otCDIU
zHk04otzH01IU
FINAL
0158SCAnotnemerusaemIU
2veR
20.0=)41etoN(5500.0
smr
=
IU
smr
520.0
=
IU
smr
520.0
50.0=)41etoN(5500.0
smr
2veR
52.0=)41etoN(740.0
pp
)41etoN(5500.0
)41etoN(5500.0
0158SCAnotnemerusaemIU
zHM840.2rof247-G
)zHk001otzHk81cepsretliF(
zHM840.2rof247-GzHk001otzH02IU
noitinifedtseTdesuretliFcepsIU
rof428G&994000-TWN-RT
zHM445.1
rof428G&994000-TWN-RT
zHM445.1
)zHk04otzHk8cepsretliF(
noitinifedtseTdesuretliFcepsIU
zHM445.1rofEROC-4421-RGzH01>IU
zHk001otzH02IU
zHk04otzH01IU
zHk04otzH01IU
pp
pp
pp
pp
pp
50.0=)41etoN(640.0
50.0=)41etoN(640.0
0158SCAnotnemerusaemIU
2veR
0.5=)41etoN(630.0
1.0=)41etoN(630.0
0158SCAnotnemerusaemIU
2veR
50.0=)41etoN(630.0
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com54
Page 55
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Notes for the output jitter generation tables
Note 1. Filter used is that defined by test definition unless otherwise stated
Note 2. 5 Hz bandwidth, 19.44 MHz direct lock
Note 3. 5 Hz bandwidth, 8 kHz lock
Note 4. 20 Hz bandwidth, 19.44 MHz direct lock
Note 5. 20 Hz bandwidth, 8 kHz lock
Note 6. 10 Hz bandwidth, 19.44 MHz direct lock
Note 7. 10 Hz bandwidth, 8 kHz lock
Note 8. 2.5 Hz bandwidth, 19.44 MHz direct lock
Note 9. 2.5 Hz bandwidth, 8 kHz lock
Note 10. 1.2 Hz bandwidth, 19.44 MHz direct lock
Note 11. 1.2 Hz bandwidth, 8 kHz lock
Note 12. 0.6 Hz bandwidth, 19.44 MHz direct lock
Note 13. 0.6 Hz bandwidth, 8 kHz lock
FINAL
Note 14. 5 Hz bandwidth, 8 kHz lock, 2.048 MHz input
Note 15. 5 Hz bandwidth, 8 kHz lock, 19.44 MHz input
JTAG Timing
TCK
t
TMS
TDI
TDO
SUR
t
HT
RETEMARAP LOBMYS NIM PYT XAM STINU
emitelcyCt
egdegnisirKCTotIDT/SMT
emit
dlohIDT/SMTotgnisirKCT
emit
CYC
t
RUS
t
TH
t
CYC
t
DOD
05--sn
3- -sn
32--sn
dilavODTotgnillafKCTt
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com55
DOD
--5sn
Page 56
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
Microprocessor interface timing
MOTOROLA Mode
In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus. The following figures show the timing diagrams of write and read accesses for this mode.
t
pw1
CSB
WRB
A
AD
RDY
(DTACK)
t
su2
X X
t
su1
address
t
d1
Z Z
t
d2
Z
data
t
pw2
t
h3
t
h2
t
h1
XX
t
d3
t
d4
Z
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1d
t
2d
t
3d
t
4d
t
1wp
t
2wp
t
1h
t
2h
t
3h
t
p
BSCyaleD
BSCyaleD
BSCyaleD
BSCyaleD
BSCotdilavAputeS
egdegnillaf
BSCotdilavBRWputeS
egdegnillaf
egdegnillaf
egdegnisir
egdegnisir
dilavDAot--sn771
KCATDot
Z-hgihDAot--sn0
emitwolBSC sn584
emithgihKCATD sn013- sn274
BSCretfadilavAdloH
egdegnisir
BSCretfahgihBRWdloH
KCATDretfawolBSCdloH
Read access timing in MOTOROLA Mode.
Note 1: Timing with RDY. If RDY not used, t
0sn- -
egdegnillaf
egdegnisir
sn0--
-- sn31
Z-hgihYDRot--sn7
)1(
--
sn3--
egdegnisir
egdegnillaf
BSC(sesseccaevitucesnocneewtebemiT
becomes 178 ns.
pw1
BSCot
egdegnisir
)sn023--
egdegnillaf
sn0--
sn0--
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com56
Page 57
ACS8510 SETS
ADVANCED COMMUNCIATIONS
CSB
WRB
A
AD
RDY
(DTACK)
lobmyS retemaraP NIM PYT XAM
X X
t
su1
address
X X
Z
FINAL
t
pw1
t
su2
t
su3
data
t
d2
t
pw2
t
h3
t
h2
t
h1
XX
t
h4
t
d4
Z
t
1us
t
2us
t
3us
t
2d
t
4d
t
1wp
t
2wp
t
1h
t
2h
t
3h
t
4h
t
p
BSCyaleD
BSCyaleD
BSCotdilavAputeS
egdegnillaf
BSCotdilavBRWputeS
egdegnillaf
BSCerofebdilavDAputeS
egdegnisir
KCATDot
egdegnillaf
egdegnisir
egdegnisir
Z-hgihYDRot--sn7
emitwolBSC sn584
emithgihKCATD sn013- sn274
BSCretfadilavAdloH
egdegnisir
BSCretfawolBRWdloH
egdegnisir
KCATDretfawolBSCdloH
egdegnillaf
BSCretfadilavDAdloH
egdegnisir
BSC(sesseccaevitucesnocneewtebemiT
BSCot
egdegnisir
)sn023--
egdegnillaf
0sn- -
sn0--
sn3--
-- sn31
)1(
--
sn3--
sn0--
sn0--
sn4
Write access timing in MOTOROLA Mode.
Note 1: Timing with RDY. If RDY not used, t
becomes 178 ns.
pw1
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com57
Page 58
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
INTEL Mode
In INTEL mode, the device is configured to interface with a microprocessor using a 80x86 type bus. The following figures show the timing diagrams of write and read accesses for this mode.
CSB
WRB
RDB
A
AD
RDY
t
su2
t
su1
address
t
d1
Z Z
t
d2 t
Z
t
d3
t
pw2
pw1
data
t
h3
t
h2
t
h1
t
d4
t
d5
Z
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1d
t
2d
t
3d
t
4d
t
5d
t
1wp
t
2wp
t
1h
t
2h
t
3h
t
p
BDRyaleD
BSCyaleD
BDRyaleD
BDRyaleD
BSCyaleD
BDR
BSCotdilavAputeS
egdegnillaf
BSCputeS
BDRot
egdegnillaf
egdegnillaf
egdegnillaf
egdegnisir
egdegnisir
egdegnisir
dilavDAot--sn771
evitcaYDRot--sn31
YDRot
egdegnillaf
Z-hgihDAot--sn01
Z-hgihYDRot sn9
emitwolBDR sn684
emitwolYDR sn013- sn274
BDRretfadilavAdloH
egdegnisir
BDRretfawolBSCdloH
egdegnisir
YDRretfawolBDRdloH
egdegnisir
BRWot
egdegnisir
)
egdegnillaf
Read access timing in INTEL Mode.
Note 1: Timing with RDY. If RDY not used, t
egdegnillaf
BDR(sesseccaevitucesnocneewtebemiT
becomes 180 ns.
pw1
0sn- -
sn0--
-- sn41
)1(
--
sn0--
sn0--
sn0--
BDRot
egdegnisir
ro,
egdegnillaf
sn023--
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com58
Page 59
ACS8510 SETS
ADVANCED COMMUNCIATIONS
CSB
t
WRB
RDB
t
su1
A
AD
RDY
Z Z
address
t
d2 t
FINAL
su2
t
d3
t
pw2
pw1
t
su3
data
t
h3
t
h2
t
h1
t
h4
t
d5
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
3us
t
2d
t
3d
t
5d
t
1wp
t
2wp
t
1h
t
2h
t
3h
t
4h
t
p
BSCputeS
BSCyaleD
BRWyaleD
BSCyaleD
BRW
BSCotdilavAputeS
egdegnillaf
BRWot
egdegnillaf
BRWotdilavDAputeS
egdegnillaf
egdegnillaf
egdegnisir
egdegnillaf
egdegnisir
evitcaYDRot--sn31
YDRot
egdegnillaf
Z-hgihYDRot sn9
emitwolBRW sn684
emitwolYDR sn013- sn274
BRWretfadilavAdloH
egdegnisir
BRWretfawolBSCdloH
egdegnisir
YDRretfawolBRWdloH
egdegnisir
BRWretfadilavDAdloH
egdegnisir
egdegnisir
)
egdegnillaf
BDRot
BRW(sesseccaevitucesnocneewtebemiT
BRWot
egdegnisir
ro,
egdegnillaf
Write access timing in INTEL Mode.
Note 1: Timing with RDY. If RDY not used, t Note 2: Timing if th2 is greater than 170 ns, otherwise 5 ns after CSB rising edge.
becomes 180 ns.
pw1
0sn- -
sn0--
sn3--
-- sn41
)1(
)2(
sn071
--
--
sn0--
sn0--
sn4
sn023--
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com59
Page 60
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
MULTIPLEXED Mode
In MULTIPLEXED mode, the device is configured to interface with a microprocessor using a multiplexed address/ data bus. The following figures show the timing diagrams of write and read accesses for this mode.
ALE
CSB
WRB
RDB
AD
RDY
t
pw3
t
su1
address data
Z Z
t
p1
t
h1
t
su2
t
d1
X X
t
d2 t
t
d3
t
pw2
pw1
t
h2
t
d4
t
h3
t
d5
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1d
t
2d
t
3d
t
4d
t
5d
t
1wp
t
2wp
t
3wp
t
1h
t
2h
t
3h
t
1p
t
2p
BSCputeS
egdegnillaf
BDRyaleD
egdegnillaf
BSCyaleD
egdegnillaf
BDRyaleD
egdegnillaf
BDRyaleD
egdegnisir
BSCyaleD
egdegnisir
emitwolBDR sn784
emitwolYDR sn013- sn274
emithgihELA sn2
ELAneewtebemiT
ELAotdilavsserddaDAputeS
BDRot
YDRot
BDRretfawolBSCdloH
egdegnisir
YDRretfawolBDRdloH
egdegnisir
egdegnillaf
Read access timing in MULTIPLEXED Mode.
Note 1: Timing with RDY. If RDY not used, t
egdegnillaf
egdegnillaf
sn2--
sn0--
dilavatadDAot--sn771
evitcaYDRot--sn31
egdegnillaf
-- sn51
Z-hgihatadDAot--sn9
Z-hgihYDRot--sn01
)1(
ELAretfadilavsserddaDAdloH
egdegnillaf
sn3--
--
sn0--
sn0--
BDRdna
egdegnillaf
BDR(sesseccaevitucesnocneewtebemiT
becomes 180 ns.
pw1
ELAot
egdegnisir
)sn023--
egdegnisir
sn0--
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com60
Page 61
ACS8510 SETS
ADVANCED COMMUNCIATIONS
t
pw3
ALE
t
CSB
WRB
RDB
AD
RDY
Z Z
lobmyS retemaraP NIM PYT XAM
t
1us
t
su1
address data
ELAotdilavsserddaDAputeS
t
p1
h1
t
su2
X X
t
d2 t
egdegnillaf
t
d3
t
pw2
pw1
t
h2
t
t
su3
h4
t
h3
t
d5
sn2--
FINAL
t
2us
t
3us
t
2d
t
3d
t
5d
t
1wp
t
2wp
t
3wp
t
1h
t
2h
t
3h
t
4h
t
1p
t
2p
BSCputeS
BRWot
egdegnillaf
BRWotdilavatadDAputeS
BSCyaleD
egdegnillaf
BRWyaleD
BSCyaleD
YDRot
egdegnillaf
egdegnisir
emitwolBRW sn784
emitwolYDR sn013- sn274
emithgihELA sn2--
BRWretfawolBSCdloH
YDRretfawolBRWdloH
BRWretfadilavdlohatadDA
ELAneewtebemiT
egdegnillaf
Write access timing in MULTIPLEXED Mode.
Note 1: Timing with RDY. If RDY not used, t
egdegnillaf
egdegnisir
sn0--
sn3--
evitcaYDRot--sn31
egdegnillaf
-- sn51
Z-hgihYDRot sn9
ELAretfadilavsserddaDAdloH
egdegnillaf
egdegnisir
egdegnisir
egdegnisir
BRWdna
egdegnillaf
BRW(sesseccaevitucesnocneewtebemiT
becomes 180 ns.
pw1
)1(
sn3--
sn0--
sn0--
sn4
sn0--
ELAot
egdegnisir
)sn023--
egdegnisir
--
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com61
Page 62
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
SERIAL Mode
In SERIAL mode, the device is configured to interface with a serial microprocessor bus. The following figures show the timing diagrams of write and read accesses for this mode.
During read access the output data SDO (AD(0)) is clocked out on the rising edge of SCLK (ALE) when the active edge selection control bit CLKE (A(1)) is 0 and on the falling edge when CLKE = 1.
Address, read/write control bit and write data are always clocked into the interface on the rising edge of SCLK.
Both input data SDI and clock SCLK are oversampled, filtered and synchronized to the 6MHz internal clock.
The serial interface clock (SCLK) is not required to run between accesses (i.e., when CSB = 1).
CLKE = 0; SDO data is clocked out on the rising edge of SCLK
CSB
t
t
su2
t
pw2
h2
ALE=SCLK
t
h1
pw1
A(0)=SDI
t
su1
t
R/W_A0 A1 A2 A3 A4 A5 A6
AD(0)=SDO
CLKE = 1; SDO data is clocked out on the falling edge of SCLK
CSB
ALE=SCLK
A(0)=SDI
R/W
A3A1A0
A2 A5A4 A6
_
AD(0)=SDO
t
d1
D0 D5D3D2 D4 D7D6
D1
t
d1
D0 D1 D2 D3 D4 D5 D6
t
D7
t
d2
h2
t
d2
Read access timing in SERIAL Mode.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com62
Page 63
ACS8510 SETS
ADVANCED COMMUNCIATIONS
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1d
t
2d
t
1wp
t
2wp
t
1h
t
2h
t
p
BSCputeS
KLCSyaleD
BSCyaleD
emitwolKLCS sn081--
CSB
KLCSotdilavIDSputeS
egdegnisir
KLCSot
egdegnillaf
egdegnisir
egdegnisir
egdegnisir
KLCS(
egdegnillaf
Z-hgihODSot--sn01
emithgihKLCS sn081--
KLCSretfadilavIDSdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnillaf
Read access timing in SERIAL Mode.
t
su2
FINAL
0sn- -
sn061--
dilavODSot)1=EKLCrof--sn71
sn071--
0=EKLCrof,
1=EKLCrof,
BSC(sesseccaevitucesnocneewtebemiT
t
pw2
BSCot
egdegnisir
)sn061--
egdegnillaf
sn5--
t
h2
ALE=SCLK
t
A(0)=SDI
t
su1
t
R/W_A0 A1 A2 A3 A4 A5 A6
pw1
h1
D0 D5D3D2 D4 D7D6D1
D(0)=SDO
lobmyS retemaraP NIM PYT XAM
t
1us
t
2us
t
1wp
t
2wp
t
1h
t
2h
t
p
BSCputeS
emitwolKLCS sn081--
KLCSotdilavIDSputeS
egdegnisir
KLCSot
egdegnillaf
egdegnisir
emithgihKLCS sn081--
KLCSretfadilavIDSdloH
egdegnisir
KLCSretfawolBSCdloH
egdegnisir
BSC(sesseccaevitucesnocneewtebemiT
BSCot
egdegnisir
)sn061--
egdegnillaf
0sn- -
sn061--
sn071--
sn5--
Write access timing in SERIAL Mode.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com63
Page 64
ACS8510 SETS
ADVANCED COMMUNCIATIONS
FINAL
EPROM Mode
In EPROM mode, the ACS8510 takes control of the bus as Master, and reads the device set-up from an AMD AM27C64 type EPROM at lowest speed (250ns), after device start-up (system reset). The EPROM access state machine in the up interface sequences the accesses.
Further details can be found in the AMD AM27C64 data sheet.
CSB (=OEB)
A
AD
Z Z
address
t
acc
data
lobmyS retemaraP NIM PYT XAM
t
cca
BSCyaleD
egdegnillaf
dilavDAotegnahcAro--sn029
Read access timing in EPROM Mode.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com64
Page 65
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Package information
2
D
1
D1
E
E1
1
2
3
4
3
2
1
A A2
Seating plane
A1
6
b
3
AA
5
e
FINAL
AN2
AN3
1
R1
S
AN1
B
L
L1
7
b
c c1
7
b1
7
Section A-A
R2
B
AN4
Section B-B
7
8
Notes
The top package body may be smaller than the bottom package body by as much as 0.15 mm.
1 2
To be determined at seating plane.
3
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Details of pin 1 identifier are optional but will be located within the zone indicated.
4
Exact shape of corners can vary.
5
A1 is defined as the distance from the seating plane to the lowest point of the package body.
6
These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
7
8
Shows plating.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com65
Page 66
ACS8510 SETS
ADVANCED COMMUNCIATIONS
PFQL001
egakcaP
E/D1E/1DA1A2Ae 1NA2NA3NA4NA1R2RL1LSb1bc1c
snoisnemiD
mmni
niM04.150.053.1°11°11°080.080.054.002.071.071.090.090.0
moN00.6100.4105.101.004.105.0°21°21- °5.3--06.0
xaM06.151.054.1°31°31-°7- 02.057.0-72.032.002.061.0
Thermal conditions
00.1
-22.002.0--
)fer(
FINAL
The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements.
Notes
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com66
Page 67
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Application information
A simplified Application Schematic for the ACS8510 is illustrated in Figure 11.
Typical power supply
L1
1
GND(GR)
2
BSMODE
3
IREF1
4
NC
5
GND(A1)
6
VA1+
7
TMS
8
Int
9
TCK REFCLK GND(D1) VD+(D1) VD+(D3) GND(D3) GND(D2) VD+(D2) NC SrcSwit VA2+ GND(A2) TDO IREF2 TDI I1 I2
L2
L3
10uF_TANT
L4
C5
L5
L6
100
SDHB
VDD3
(+)(+)
DGND3
99
VDD2
C6 100nF
DGND2
VDDA
C7
100nF
IC1
ACS8510
AGND
VDD
100nF
C9
DGND
Optional Processor interface
ALE
Int
RDY
SrcSwit
AD(7)76AD(6)77AD(5)78AD(4)79AD(3)80AD(2)81AD(1)82AD(0)83VSSc84VDDc85VDDb86VSSb87O188O289O390VDDa91VSSa92O493O594O995TSCAN96TEST197TEST298MSTSLVB
RDY
75
PORB
74
ALE
73
RDB
72
WRB
71
CSB
70
A(0)
69
A(1)
68
A(2)
67
A(3)
66
A(4)
65
A(5)
64
A(6)
63
VSSd
62
VDDd
61
UPSEL(0)
60
UPSEL(1)
59
UPSEL(2)
58
I14
57
I13
56
I12
55
I11
54
I10
53
I9
52
I8
51
RDB
WRB
CSB
AD[0:7]
Am27c64
OE_B
CE_B
P_B
20
27
22
C8
1nF
DGND
VDD
100nF
C13
DGND
_txco
DGND
VDD
2
vdd
12.8MHz
3
gnd1
X1
output
gnd2
optn
5v 0v
term_connect
1 5
4
P1
AGND
AGND
ZD1
O1 O2
O3 O4 O5 O9
DGND
VDDA
ZD1
C10
100nF
C12
100nF
VDD5v
R1
10R
R7 10R
VDD
IC2
3
2
VIN
VOUT
1
GND
EZ1086
(+)
100uF
100nF
C3
VDD3
C11
100nF
DGND3
C4
10uF_TANT
DGND
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
C2
Optional boot EPROM
2
VDD
DGND
19
IC3
A1021A1123A12
24
A[0:7]
Q011Q112Q213Q315Q416Q517Q618Q7
Optional Processor interface type selection
FINAL
GND
DGND
14
C1
100nF
VCC
28
VDD5v
A010A19A28A37A46A55A64A73A825A9
VDD(AMI)26O8NEG27O8POS28GND(AMI)29O1030O1131VSS_DIFFa32VDD_DIFFa33O6POS34O6NEG35O7POS36O7NEG37VSS_DIFFb38VDD_DIFFb39I5POS40I5NEG41I6POS42I6NEG43VDD544SYNC2K45I346I447I748VSSe49VDDe
C16 470nF
I1 I2
C17
470nF
C21
440pF
5
6
8
7
2nF
C22
O8
O11O10
O6N
O6P
DGND2DGND DGND
O7P
C20
100nF
C15
VDD2VDD
100nF
DGND2DGND
Figure 11: A simplified Application Schematic.
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com67
50
VDD
C14
100nF
DGND
SYNC2K
I3
I4 I8
I7 I9
I10 I12I6NI6PI5NI5PO7N
I11 I13
I14
Page 68
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Revision History
Changes from revision 2.06 to 2.07. January 2001.
metInoitceSegaPnoitpircseD
1stnetnocfoelbaT2 yrotsiHnoisiveRfonoisulcnI
2snoitpircsedniP5 stluafedLCEP/SDVLrofdetcerroc73/63dna53/43sniP
35elbaT51TstroP
4
5
6
7
retsigeR
noitpircsed
retsigeR
noitpircsed
retsigeR
noitpircsed
retsigeR
noitpircsed
52devomerrorresserddadnadettamrof-erretsigerstpurretni_sts
62srorrerofdetcerrocretsigertesffo_cni_rruc_sts
82dettamrof-erretsigerdilav_secruos_etomer_sts_gfnc
82detcerrocrorreretsigeredom_gnitarepo_gfnc
Tdna
60
70
FINAL
stluafedLCEP/SDVLrofdetcerroc
8
9
01edomrevodloH93detcerrocrorregnillepS
11yrotsiHnoisiveR86deddanoitceS
retsigeR
noitpircsed
tekcubykaeL
xobgnimit
13nettirw-erdnadettamrof-erretsigertimil_qerf_gfnc
63noitauqegnittestluafednidetcerrocnoissimO
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com68
Page 69
ACS8510 SETS
ADVANCED COMMUNCIATIONS
Ordering information
FINAL
REBMUNTRAP NOITPIRCSED
0158SCA PFQLnip001,noitasinorhcnySHDS/TENOS
Disclaimers
Life support - This product is not designed or intended for use in life suport equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech Corporation for such use.
Right to change - Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders.
For additional information, contact the following:
Semtech Corporation Advanced Communications Products
E-Mail: AdvCom@semtech.com
Internet: http://www.semtech.com
USA: 652 Mitchell Road, Newbury Park, CA 91320-2289
Tel: +1 805 498 2111, Fax: +1 805 498 3804
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, Taiwan, R.O.C.
Tel: +886 2 2748 3380, Fax: +886 2 2748 3390
EUROPE: Delta House, Chilworth Science Park, Southampton, Hants, SO16 7NS, UK
Tel: +44 23 80 769008, Fax: +44 23 80 768612
Revision 2.07/Jan 2001 ã2001 Semtech Corp www.semtech.com69
ISO9001
CERTIFIED
Loading...