
DATA SH EET
Product specification
File under Integrated Circuits, IC06
September 1993
INTEGRATED CIRCUITS
74HCU04
Hex inverter
For a complete data sheet, please also download:
•The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
•The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
•The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

September 1993 2
Philips Semiconductors Product specification
Hex inverter 74HCU04
FEATURES
• Output capability: standard
• ICC category: SSI
GENERAL DESCRIPTION
The 74HCU04 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL).
It is specified in compliance with JEDEC standard no. 7A.
The 74HCU04 is a general purpose hex inverter. Each of the six inverters is a single stage
QUICK REFERENCE DATA
GND = 0 V; T
amb
=25°C; tr=tf=6ns
Note
1. C
PD
is used to determine the dynamic power dissipation (PD in µW):
PD=CPD× V
CC
2
× fi + ∑ (CL× V
CC
2
× fO) where:
fi= input frequency in MHz
fo= output frequency in MHz
CL= output load capacitance in pF
VCC= supply voltage in V
∑ (CL× V
CC
2
× fo) = sum of outputs
ORDERING INFORMATION
See
“74HC/HCT/HCU/HCMOS Logic Package Information”
.
FUNCTION TABLE
Note
1. H = HIGH voltage level
L = LOW voltage level
SYMBOL PARAMETER CONDITIONS TYP. UNIT
t
PHL
/ t
PLH
propagation delay nA to nY CL= 15 pF; VCC=5V 5 ns
C
I
input capacitance 3.5 pF
C
PD
power dissipation capacitance per inverter note 1 10 pF
INPUT OUTPUT
nA nY
L
H
H
L

September 1993 3
Philips Semiconductors Product specification
Hex inverter 74HCU04
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 3, 5, 9, 11, 13 1A to 6A data inputs
2, 4, 6, 8, 10, 12 1Y to 6Y data outputs
7 GND ground (0 V)
14 V
CC
positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
Fig.4 Functional diagram.
Fig.5 Schematic diagram
(one inverter).

September 1993 4
Philips Semiconductors Product specification
Hex inverter 74HCU04
DC CHARACTERISTICS FOR 74HCU
Voltages are referenced to GND (ground = 0 V)
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HCU
V
CC
(V)
V
I
OTHER+25 -40 to +85
−40 to
+125
min. typ. max. min. max. min. max.
V
IH
HIGH level input voltage 1.7
3.6
4.8
1.4
2.6
3.4
1.7
3.6
4.8
1.7
3.6
4.8
V 2.0
4.5
6.0
V
IL
LOW level input voltage 0.6
1.9
2.6
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V 2.0
4.5
6.0
V
OH
HIGH level output
voltage
1.8
4.0
5.5
2.0
4.5
6.0
1.8
4.0
5.5
1.8
4.0
5.5
V 2.0
4.5
6.0
V
IH
or
V
IL
−IO=20µA
−IO=20µA
−IO=20µA
V
OH
HIGH level output
voltage
3.98
5.48
4.32
5.81
3.84
5.34
3.7
5.2
V 4.5
6.0
V
CC
or
GND
−IO= 4.0 mA
−IO= 5.2 mA
V
OL
LOW level output
voltage
0
0
0
0.2
0.5
0.5
0.2
0.5
0.5
0.2
0.5
0.5
V 2.0
4.5
6.0
V
IH
or
V
IL
IO=20µA
IO=20µA
IO=20µA
V
OL
LOW level output
voltage
0.15
0.16
0.26
0.26
0.33
0.33
0.4
0.4
V 4.5
6.0
V
CC
or
GND
IO= 4.0 mA
IO= 5.2 mA
±I
I
input leakage current 0.1 1.0 1.0 µA 6.0 V
CC
or
GND
I
CC
quiescent supply
current
2.0 20.0 40.0 µA 6.0 V
CC
or
GND
IO=0

September 1993 5
Philips Semiconductors Product specification
Hex inverter 74HCU04
AC CHARACTERISTICS FOR 74HCU
GND = 0 V; t
r=tf
= 6 ns; CL=50pF
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HCU
V
CC
(V)
WAVEFORMS+25 -40 to +85 −40 to +125
min. typ. max. min. max. min. max.
t
PHL
/ t
PLH
propagation delay
nA to nY
19
7
6
70
14
12
90
18
15
105
21
18
ns 2.0
4.5
6.0
Fig.6
t
THL
/ t
TLH
output transition time 19
7
6
75
15
13
95
19
16
110
22
19
ns 2.0
4.5
6.0
Fig.6
AC WAVEFORMS
Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition times.
(1) VM= 50%; VI= GND to VCC.
TYPICAL TRANSFER
CHARACTERISTICS
Fig.7 _____ V
O;
_ _ _ _ ID(drain current);
IO= 0; VCC= 6.0 V.
Fig.8 ______ VO;
_ _ _ _ ID (drain current);
IO= 0; VCC= 4.5 V.
Fig.9 _____ VO;
_ _ _ _ ID (drain current);
IO= 0; VCC= 2.0 V.

September 1993 6
Philips Semiconductors Product specification
Hex inverter 74HCU04
Fig.10 Test set-up for measuring forward
transconductance gfs=dio/dvi at vo is constant
(see also graph Fig.11).
Fig.11 Typical forward transconductance gfs as a
function of the supply voltage VCC at
T
amb
=25°C.
APPLICATION INFORMATION
Some applications for the “HCU04” are:
• Linear amplifier (see Fig.12)
• In crystal oscillator designs (see Fig.13)
• Astable multivibrator (see Fig.14)
Fig.12 HCU04 used as a linear amplifier.
ZL> 10 kΩ; AOL= 20 (typ.)
V
O max (p-p)
≈ VCC−2 V centered at1⁄2V
CC
3kΩ≤ R1, R2 ≤ 1 MΩ
Typical unity gain bandwidth product is 5 MHz.
CI (see Fig.15)
AOL= open loop amplification
Au= voltage amplification
A
u
A
OL
1
R1
R2
------- -
1A
OL
+()+
---------------------------------------------
;–=

September 1993 7
Philips Semiconductors Product specification
Hex inverter 74HCU04
OPTIMUM VALUE FOR R
2
EXTERNAL COMPONENTS FOR RESONATOR
(f < 1 MHz)
Note
1. All values given are typical and must be used as an
initial set-up.
FREQUENCY
(MHz)
R
2
(kΩ)
OPTIMUM FOR
3
2
8
minimum required I
CC
minimum influence due to
change in V
CC
6
1
4.7
minimum I
CC
minimum influence by V
CC
10
0.52minimum I
CC
minimum influence by V
CC
14
0.51minimum I
CC
minimum influence by V
CC
> 14
replace R2 by C3 with a typical
value of 35 pF
FREQUENCY
(kHz)
R
1
(MΩ)
R
2
(kΩ)
C
1
(pF)
C
2
(pF)
10 to 15.9 22 220 56 20
16 to 24.9 22 220 56 10
25 to 54.9 22 100 56 10
55 to 129.9 22 100 47 5
130 to 199.9 22 47 47 5
200 to 349.9 10 47 47 5
350 to 600 10 47 47 5
Fig.13 Crystal oscillator configuration.
C1= 47 pF (typ.)
C
2
= 33 pF (typ.)
R
1
= 1 to 10 MΩ (typ.)
R2 optimum value depends on the frequency and required
stability against changes in V
CC
or average minimum I
CC
(ICC is typically 5 mA at VCC= 5 V and f = 10 MHz).
Note to Application information
All values given are typical unless otherwise specified.
PACKAGE OUTLINES
See
“74HC/HCT/HCU/HCMOS Logic Package Outlines”
.
Fig.14 HCU04 used as an astable multivibrator
RS≈ 2 ×R.
The average ICC (mA) is approximately
3.5 + 0.05 × f (MHz)× C (pF) at V
CC
= 5.0 V
(for more information refer to
“DESIGNERS GUIDE”
).
f
1
T
---
1
2.2 RC
------------------
≈=
Fig.15 Typical input capacitance as a function of
input voltage.
(1) VCC = 2.0 V.
(2) VCC= 3.0 V.
(3) VCC= 4.0 V.
(4) VCC= 5.0 V.
(5) VCC= 6.0 V.