Datasheet 74HCT390U, 74HCT390N, 74HCT390DB, 74HCT390D, 74HC390U Datasheet (Philips)

...
Page 1
DATA SH EET
Product specification File under Integrated Circuits, IC06
December 1990
INTEGRATED CIRCUITS
74HC/HCT390
Dual decade ripple counter
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
Page 2
December 1990 2
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
FEATURES
Two BCD decade or bi-quinary counters
One package can be configured to divide-by-2, 4, 5, 10,
20, 25, 50 or 100
Two master reset inputs to clear each decade counter individually
Output capability: standard
ICC category: MSI
GENERAL DESCRIPTION
The 74HC/HCT390 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.
The 74HC/HCT390 are dual 4-bit decade ripple counters divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections are normally used in a BCD
decade or bi-quinary configuration, since they share a common master reset input (nMR). If the two master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks (n
CP0and nCP1) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25, 50 or 100.
Each section is triggered by the HIGH-to-LOW transition of the clock inputs (nCP0and nCP1). For BCD decade operation, the nQ0output is connected to the nCP1 input of, the divide-by-5 section. For bi-quinary decade operation, the nQ3 output is connected to the nCP0input and nQ0becomes the decade output.
The master reset inputs (1MR and 2MR) are active HIGH asynchronous inputs to each decade counter which operates on the portion of the counter identified by the “1” and “2” prefixes in the pin configuration. A HIGH level on the nMR input overrides the clocks and sets the four outputs LOW.
QUICK REFERENCE DATA
GND = 0 V; T
amb
=25°C; tr=tf= 6 ns
Notes
1. C
PD
is used to determine the dynamic power dissipation (PD in µW):
PD=CPD× V
CC
2
× fi+∑ (CV
CC
2
× fo) where: fi= input frequency in MHz fo= output frequency in MHz (CV
CC
2
× fo) = sum of outputs CL= output load capacitance in pF VCC= supply voltage in V
2. For HC the condition is VI= GND to V
CC
For HCT the condition is VI= GND to VCC−1.5 V
SYMBOL PARAMETER CONDITIONS
TYPICAL
UNIT
HC HCT
t
PHL
/ t
PLH
propagation delay CL= 15 pF; VCC=5V
n
CP0 to nQ
0
14 18 ns
n
CP1 to nQ
1
15 19 ns
n
CP1to nQ
2
23 26 ns
n
CP1to nQ
3
15 19 ns
nMR to Q
n
16 18 ns
f
max
maximum clock frequency nCP0,nCP
1
66 61 MHz
C
I
input capacitance 3.5 3.5 pF
C
PD
power dissipation capacitance per counter notes 1 and 2 20 21 pF
Page 3
December 1990 3
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
ORDERING INFORMATION
See
“74HC/HCT/HCU/HCMOS Logic Package Information”
.
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 15 1
CP0, 2CP
0
clock input divide-by-2 section (HIGH-to-LOW, edge-triggered) 2, 14 1MR, 2MR asynchronous master reset inputs (active HIGH) 3, 5, 6, 7 1Q
0
to 1Q
3
flip-flop outputs 4, 12 1
CP1, 2CP
1
clock input divide-by-5 section (HIGH-to-LOW, edge triggered) 8 GND ground (0 V) 13, 11, 10, 9 2Q
0
to 2Q
3
flip-flop outputs 16 V
CC
positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
Page 4
December 1990 4
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
Fig.4 Functional diagram.
BCD COUNT SEQUENCE FOR 1/2 THE “390”
Notes
1. Output Q
0
connected to nCP
1
with counter input on nCP0. H = HIGH voltage level L = LOW voltage level
COUNT
OUTPUTS
Q0Q1Q
2
Q
3
0 LLLL 1 HLLL 2LHLL 3 HHLL 4 LLHL 5HLHL 6 LHHL 7 HHHL 8 LLLH 9 HLLH
BI-QUINARY COUNT SEQUENCE FOR 1/2 THE “390”
Note
1. Output Q
3
connected to nCP
0
with counter input on nCP1.
COUNT
OUTPUTS
Q0Q1Q
2
Q
3
0 LLLL 1LHLL 2 LLHL 3 LHHL 4 LLLH 5 HLLL 6 HHLL 7HLHL 8 HHHL 9 HLLH
Fig.5 Logic diagram (one counter).
Page 5
December 1990 5
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard ICC category: MSI
AC CHARACTERISTICS FOR 74HC
GND = 0 V; t
r=tf
= 6 ns; CL=50pF
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HC
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
t
PHL
/ t
PLH
propagation delay
nCP0 to nQ
0
47 17 14
145 29 25
180 36 31
220 44 38
ns 2.0
4.5
6.0
Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
1
50 18 14
155 31 26
195 39 33
235 47 40
ns 2.0
4.5
6.0
Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
2
74 27 22
210 42 36
265 53 45
315 63 54
ns 2.0
4.5
6.0
Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
3
50 18 14
155 31 26
195 39 33
235 47 40
ns 2.0
4.5
6.0
Fig.6
t
PHL
propagation delay
nMR to nQ
n
52 19 15
165 33 28
205 41 35
250 50 43
ns 2.0
4.5
6.0
Fig.7
t
THL
/ t
TLH
output transition time 19
7 6
75 15 13
95 19 16
110 22 19
ns 2.0
4.5
6.0
Fig.6
t
W
clock pulse width
nCP0, nCP
1
80 16 14
19 7 6
100 20 17
120 24 20
ns 2.0
4.5
6.0
Fig.6
t
W
master reset pulse width
HIGH
80 17 14
28 10 8
105 21 18
130 26 22
ns 2.0
4.5
6.0
Fig.7
t
rem
removal time
nMR to nCP
n
75 15 13
22 8 6
95 19 16
110 22 19
ns 2.0
4.5
6.0
Fig.7
f
max
maximum clock pulse
frequency nCP0, nCP
1
6.0 30 35
20 60 71
4.8 24 28
4.0 20 24
MHz 2.0
4.5
6.0
Fig.6
Page 6
December 1990 6
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard ICC category: MSI
Note to HCT types
The value of additional quiescent supply current (I
CC
) for a unit load of 1 is given in the family specifications.
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; t
r=tf
= 6 ns; CL=50pF
INPUT UNIT LOAD COEFFICIENT
nCP
0
nCP1, nMR
0.45
0.60
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HCT
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
t
PHL
/ t
PLH
propagation delay
nCP0 to nQ
0
21 34 43 51 ns 4.5 Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
1
22 38 48 57 ns 4.5 Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
2
30 51 64 77 ns 4.5 Fig.6
t
PHL
/ t
PLH
propagation delay
nCP1 to nQ
3
22 38 48 57 ns 4.5 Fig.6
t
PHL
propagation delay
nMR to nQ
n
21 36 45 54 ns 4.5 Fig.7
t
THL
/ t
TLH
output transition time 7 15 19 22 ns 4.5 Fig.6
t
W
clock pulse width
nCP0, nCP
1
18 8 23 27 ns 4.5 Fig.6
t
W
master reset pulse width
HIGH
17 10 21 26 ns 4.5 Fig.7
t
rem
removal time
nMR to nCP
n
15 8 19 22 ns 4.5 Fig.7
f
max
maximum clock pulse
frequency nCP0, nCP
1
27 55 22 18 MHz 4.5 Fig.6
Page 7
December 1990 7
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
AC WAVEFORMS
PACKAGE OUTLINES
See
“74HC/HCT/HCU/HCMOS Logic Package Outlines”
.
Fig.6 Waveforms showing the clock (nCPn) to output (nQn) propagation delays, the clock pulse width, the output
transition times and the maximum clock frequency.
(1) HC : VM= 50%; VI= GND to VCC.
HCT : V
M
= 1.3 V; VI= GND to 3 V.
Fig.7 Waveforms showing the master reset (nMR) pulse width, the master reset to output (nQn) propagation
delays and the master reset to clock (nCPn) removal time.
(1) HC : VM= 50%; VI= GND to VCC.
HCT : V
M
= 1.3 V; VI= GND to 3 V.
Loading...