Datasheet 74HCT221N, 74HCT221DB, 74HCT221D, 74HC221N, 74HC221DB Datasheet (Philips)

...
Page 1
DATA SH EET
Product specification Supersedes data of April 1988 File under Integrated Circuits, IC06
December 1990
INTEGRATED CIRCUITS
74HC/HCT221
Dual non-retriggerable monostable multivibrator with reset
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
Page 2
December 1990 2
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
FEATURES
Pulse width variance is typically less than ±5%
Pin-out identical to “123”
Overriding reset terminates output pulse
nB inputs have hysteresis for improved noise immunity
Output capability: standard (except for nR
EXT/CEXT
)
ICC category: MSI
GENERAL DESCRIPTION
The 74HC/HCT221 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.
The 74HC/HCT221 are dual non-retriggerable monostable multivibrators. Each multivibrator features an active LOW-going edge input (n
A) and an active HIGH-going edge input (nB), either of which can be used as an enable input.
Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the nB inputs allow
jitter-free triggering from inputs with slow transition rates, providing the circuit with excellent noise immunity.
Once triggered, the outputs (nQ, nQ) are independent of further transitions of nA and nB inputs and are a function of the timing components. The output pulses can be terminated by the overriding active LOW reset inputs (nRD). Input pulses may be of any duration relative to the output pulse.
Pulse width stability is achieved through internal compensation and is virtually independent of VCC and temperature. In most applications pulse stability will only be limited by the accuracy of the external timing components.
The output pulse width is defined by the following relationship:
tW=C
EXTREXTIn2
tW= 0.7C
EXTREXT
Pin assignments for the “221” are identical to those of the “123” so that the “221” can be substituted for those products in systems not using the retrigger by merely changing the value of R
EXT
and/or C
EXT
.
QUICK REFERENCE DATA
GND = 0 V; T
amb
=25°C; tr=tf= 6 ns
Notes
1. C
PD
is used to determine the dynamic power dissipation (PD in µW):
PD=CPD× V
CC
2
× fi+∑(CV
CC
2
× fo) + 0.33 × C
EXT
× V
CC
2
× fo+ D × 28 × VCCwhere: fi= input frequency in MHz; fo= output frequency in MHz (CV
CC
2
× fo) = sum of outputs
C
EXT
= timing capacitance in pF; CL= output load capacitance in pF
VCC= supply voltage in V; D = duty factor in %
2. For HC the condition is VI= GND to V
CC
For HCT the condition is VI= GND to VCC− 1.5 V
SYMBOL PARAMETER CONDITIONS
TYPICAL
UNIT
HC HCT
propagation delay C
L
= 15 pF; VCC=5 V;
R
EXT
=5 kΩ; C
EXT
= 0 pF
t
PHL
nA, nB, nRD to nQ, nQ 2932ns
t
PLH
nA, nB, nRD to nQ, nQ 3536ns
C
I
input capacitance 3.5 3.5 pF
C
PD
power dissipation capacitance per package notes 1 and 2 90 96 pF
Page 3
December 1990 3
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
ORDERING INFORMATION
See
“74HC/HCT/HCU/HCMOS Logic Package Information”
.
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 9 1
A, 2A trigger inputs (negative-edge triggered) 2, 10 1B, 2B trigger inputs (positive-edge triggered) 3, 11 1
RD, 2R
D
direct reset inputs (active LOW)
4, 12 1
Q, 2Q outputs (active LOW) 72R
EXT/CEXT
external resistor/capacitor connection 8 GND ground (0 V) 13, 5 1Q, 2Q outputs (active HIGH) 14, 6 1C
EXT
, 2C
EXT
external capacitor connection 15 1R
EXT/CEXT
external resistor/capacitor connection 16 V
CC
positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
Page 4
December 1990 4
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Fig.4 Functional diagram.
FUNCTION TABLE
Notes
1. H = HIGH voltage level L = LOW voltage level X = don’t care
= LOW-to-HIGH level= HIGH-to-LOW level
= one HIGH-level output pulse = one LOW-level output pulse
2. If the monostable was triggered before this condition was established the pulse will continue as programmed.
3. For this combination the reset input must be LOW and the following sequence must be used: pin 1 (or 9) must be set HIGH or pin 2 (or 10) set LOW; then pin 1 (or 9) must be LOW and pin 2 (or 10) set HIGH. Now the reset input goes from LOW-to-HIGH and the device will be triggered.
INPUTS OUTPUTS
nR
D
nAnBnQnQ
LXXLH
XHXL
(2)
H
(2)
XXLL
(2)
H
(2)
HL H↓H
LH
(3) (3)
Page 5
December 1990 5
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Note
It is recommended to ground pins 6 (2C
EXT
) and 14 (1C
EXT
) externally to pin 8 (GND).
Fig.5 Logic diagram.
Fig.6 Timing component connections.
Page 6
December 1990 6
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard (except for nR
EXT/CEXT
)
ICC category: MSI
AC CHARACTERISTICS FOR 74HC
GND = 0 V; t
r=tf
= 6 ns; CL= 50 pF
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HC
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min typ max. min max. min. max.
t
PLH
propagation delay (trigger)
nA, nB to nQ
72 26 21
220 44 37
275 55 47
330 66 56
ns 2.0
4.5
6.0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PLH
propagation delay (trigger)
nRD to nQ
80 29 23
245 49 42
305 61 52
370 74 63
ns 2.0
4.5
6.0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (trigger)
nA, nB to nQ
58 21 17
180 36 31
225 45 38
270 54 46
ns 2.0
4.5
6.0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (trigger)
nRD to nQ
63 23 18
195 39 33
245 49 42
295 59 50
ns 2.0
4.5 6,0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PLH
propagation delay (reset)
nRD to nQ
66 24 19
200 40 34
250 50 43
300 60 51
ns 2.0
4.5
6.0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.11
t
PLH
propagation delay (reset)
nRD to nQ
58 21 17
180 36 31
225 45 38
270 54 46
ns 2.0
4.5
6.0
C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.11
t
THL
/
t
TLH
output transition time 19
7 6
75 15 13
95 19 16
110 22 19
ns 2.0
4.5
6.0
Fig.10
t
W
trigger pulse width
nA = LOW
75 15 13
25 9 7
95 19 16
110 22 19
ns 2.0
4.5
6.0
Fig.7
t
W
trigger pulse width
nB = HIGH
90 18 15
30 11 9
115 23 20
135 27 23
ns 2.0
4.5
6.0
Fig.7
t
W
trigger pulse width
nRD= LOW
75 15 13
25 9 7
95 19 16
110 22 19
ns 2.0
4.5
6.0
Fig.8
t
W
output pulse width
nQ = LOW nQ = HIGH
630 700 770 602 798 595 805 µs 5.0 C
EXT
= 100 nF;
R
EXT
= 10 k;
Fig.10
Page 7
December 1990 7
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
t
W
output pulse width
nQ or nQ
140 −− ns 2.0
4.5
6.0
C
EXT
= 28 nF;
R
EXT
=2 kΩ;
Fig.10
t
W
output pulse width
nQ or nQ
1.5 −− µs 2.0
4.5
6.0
C
EXT
= 1 nF;
R
EXT
=2 kΩ;
Fig.10
t
W
output pulse width
nQ or nQ
7 −− µs 2.0
4.5
6.0
C
EXT
= 1 nF;
R
EXT
= 10 k;
Fig.10
t
W
pulse width match
between circuits in the package
± 2 −− % 4.5
to
5.5
C
EXT
= 1000 pF;
R
EXT
= 10 k
t
rem
removal time
nRD to nA or nB
100
20 17
30 11
9
125
25 21
150
30 26
ns 2.0
4.5
6.0
Fig.9
R
EXT
external timing resistor 10
2
1000 1000−−
k 2.0
5.0
Fig.12 Fig.13
C
EXT
external timing capacitor no limits pF 2.0
5.0
Fig.12 Fig.13
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HC
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min typ max. min max. min. max.
Page 8
December 1990 8
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard (except for nR
EXT/CEXT
)
ICC category: MSI
Note to HCT types
The value of additional quiescent supply current (I
CC
) for a unit load of 1 is given in the family specifications.
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.
INPUT UNIT LOAD COEFFICIENT
nB 0.30 n
A 0.50
n
R
D
0.50
Page 9
December 1990 9
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; t
r=tf
= 6 ns; CL= 50 pF
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HCT
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min typ max min max. min. max.
t
PLH
propagation delay (trigger)
nA, nRD to nQ
30 50 63 75 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PLH
propagation delay (trigger)
nB to nQ
24 42 53 63 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (trigger)
nA to nQ
26 44 55 66 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (trigger)
nB to nQ
21 35 44 53 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (trigger)
nRD to nQ
26 43 54 65 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.10
t
PHL
propagation delay (reset)
nRD to nQ
26 43 54 65 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.11
t
PLH
propagation delay (reset)
nRD to nQ
31 51 64 77 ns 4.5 C
EXT
= 0 pF;
R
EXT
=5 kΩ;
Fig.11
t
THL
/ t
TLH
output transition time 7 15 19 22 ns 4.5 Fig.10
t
W
trigger pulse width
nA = LOW
20 13 25 30 ns 4.5 Fig.10
t
W
trigger pulse width
nB = HIGH
20 13 25 30 ns 4.5 Fig.10
t
W
pulse width
nRD= LOW
22 13 28 33 ns 4.5 Fig.8
t
W
output pulse width
nQ = LOW nQ = HIGH
630 700 770 602 798 595 805 µs 5.0 C
EXT
= 100 nF;
R
EXT
= 10 k;
Fig.10
t
W
trigger pulse width
nQ or nQ
140 −− ns 4.5 C
EXT
= 28 pF;
R
EXT
=2 kΩ;
Fig.10
t
W
trigger pulse width
nQ or nQ
1.5 −− µs 4.5 C
EXT
= 1 nF;
R
EXT
= 2 k;
Fig.10
Page 10
December 1990 10
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
t
W
trigger pulse width
nQ or nQ
7 −− µs 4.5 C
EXT
= 1 nF;
R
EXT
= 10 k;
Fig.10
t
rem
removal time
nRD to nA or nB
20 12 25 30 ns 4.5 Fig.9
R
EXT
external timing resistor 2 1000 −− k5.0 Fig.13
C
EXT
external timing capacitor no limits pF 5.0 Fig.13
SYMBOL PARAMETER
T
amb
(°C)
UNIT
TEST CONDITIONS
74HCT
V
CC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min typ max min max. min. max.
Page 11
December 1990 11
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
AC WAVEFORMS
Fig.7 Output pulse control; nRD= HIGH.
Fig.8 Output pulse control using reset input nRD;
nA = LOW.
Fig.9 Waveforms showing the removal times;
nRD to nA or nB.
(1) HC : VM=VM= 50%; VI= GND to VCC.
HCT : V
M=VM
= 1.3 V; VI= GND to 3 V.
Fig.10 Waveforms showing the triggering of One
Shot by input nA or input nB for one period (tW) and minimum pulse widths of the trigger inputs nA and nB.
(1) HC : VM=VM= 50%; VI= GND to VCC.
HCT : V
M=VM
= 1.3 V; VI= GND to 3 V.
Fig.11 Waveforms showing the reset to nQ and nQ
output propagation delays.
(1) HC : VM=VM= 50%; VI= GND to VCC.
HCT : V
M=VM
= 1.3 V; VI= GND to 3 V.
Page 12
December 1990 12
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Fig.12 HC typical output pulse width as a function of timing capacitance (VCC = 2 V).
Page 13
December 1990 13
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Fig.13 HC/HCT typical output pulse width as a function of timing capacitance (VCC= 4.5 V).
Page 14
December 1990 14
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Fig.14 HC typical output pulse width as a function of timing capacitance (VCC= 6 V).
Page 15
December 1990 15
Philips Semiconductors Product specification
Dual non-retriggerable monostable multivibrator with reset
74HC/HCT221
Fig.15 Typical output pulse width as a function of
temperature; CX= 0.1 µF; RX=10KΩ; VCC=5V.
Fig.16 k factor as a function of supply voltage;
RX=10KΩ;T
amb
=25°C.
Power-down consideration
A large capacitor (CX) may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of VCC to zero occurs, the monostable may substain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (DX) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Fig.17.
Fig.17 Power-down protection circuit.
PACKAGE OUTLINES
See
“74HC/HCT/HCU/HCMOS Logic Package Outlines”
.
Loading...