Datasheet 2N4920, 2N4919, 2N4918 Datasheet (ON Semiconductor)

Page 1
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ON Semiconductor
2N4918
Medium-Power Plastic PNP Silicon Transistors
...designed for driver circuits, switching, and amplifier
applications. These high–performance plastic devices feature:
Low Saturation Voltage —
V
CE(sat)
Excellent Power Dissipation Due to Thermopad Construction —
PD = 30 W @ TC = 25C
Excellent Safe Operating Area
Gain Specified to I
Complement to NPN 2N4921, 2N4922, 2N4923
*MAXIMUM RATINGS
ООООООООООООООООООООО
Collector–Emitter Voltage Collector–Base Voltage Emitter–Base Voltage Collector Current — Continuous (1)
ООООООООО
Base Current Total Power Dissipation @ TC = 25°C
Derate above 25C
ООООООООО
Operating & Storage Junction
Temperature Range
= 0.6 Vdc (Max) @ IC = 1.0 Amp
= 1.0 Amp
Ratings
Symbol
V
CEO
V
CB
V
EB
IC*
Î
I
B
P
D
Î
TJ, T
stg
ООООООО
ООООООО
2N4918
40 40
2N4919
60 60
5.0
1.0
3.0
1.0 30
0.24
–65 to +150
2N4920
80 80
Unit
Vdc Vdc Vdc Adc
Î
Adc
Watts W/C
Î
C
thru
2N4920
*ON Semiconductor Preferred Device
3 AMPERE
GENERAL–PURPOSE
POWER TRANSISTORS
40–80 VOLTS
30 WATTS
STYLE 1:
3
2
1
TO–225AA TYPE
PIN 1. EMITTER
CASE 77–09
*
2. COLLECTOR
3. BASE
ООООООООООООООООООООО
THERMAL CHARACTERISTICS (2)
Characteristic
Thermal Resistance, Junction to Case
Symbol
θ
JC
Max
4.16
Unit
C/W
*Indicates JEDEC Registered Data for 2N4918 Series. (1) The 1.0 Amp maximum IC value is based upon JEDEC current gain requirements.
The 3.0 Amp maximum value is based upon actual current–handling capability of the device (See Figure 5).
(2) Recommend use of thermal compound for lowest thermal resistance.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
Semiconductor Components Industries, LLC, 2002
1 Publication Order Number:
April, 2002 – Rev. 10
2N4918/D
Page 2
2N4918 thru 2N4920
40
30
20
10
, POWER DISSIPATION (WATTS)
D
P
0
25 50 75 100 125 150
T
, CASE TEMPERATURE (°C)
C
Figure 1. Power Derating
http://onsemi.com
2
Page 3
2N4918 thru 2N4920
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ELECTRICAL CHARACTERISTICS (T
= 25C unless otherwise noted)
C
Characteristic
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1)
(IC = 0.1 Adc, IB = 0) 2N4918
ОООООООООООООООООООО
ОООООООООООООООООООО
2N4919 2N4920
Collector Cutoff Current
(VCE = 20 Vdc, IB = 0) 2N4918
ОООООООООООООООООООО
(VCE = 30 Vdc, IB = 0) 2N4919
ОООООООООООООООООООО
(VCE = 40 Vdc, IB = 0) 2N4920
Collector Cutoff Current
ОООООООООООООООООООО
(VCE = Rated V (VCE = Rated V
ОООООООООООООООООООО
CEO CEO
, V , V
= 1.5 Vdc)
BE(off)
= 1.5 Vdc, TC = 125C
BE(off)
Collector Cutoff Current
(VCB = Rated VCB, IE = 0)
Emitter Cutoff Current
ОООООООООООООООООООО
(VBE = 5.0 Vdc, IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(IC = 50 mAdc, VCE = 1.0 Vdc)
ОООООООООООООООООООО
(IC = 500 mAdc, VCE = 1.0 Vdc)
ОООООООООООООООООООО
(IC = 1.0 Adc, VCE = 1.0 Vdc)
Collector–Emitter Saturation Voltage (1)
(IC = 1.0 Adc, IB = 0.1 Adc)
ОООООООООООООООООООО
Base–Emitter Saturation Voltage (1)
(IC = 1.0 Adc, IB = 0.1 Adc)
Base–Emitter On Voltage (1)
ОООООООООООООООООООО
(IC = 1.0 Adc, VCE = 1.0 Vdc)
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz) Small–Signal Current Gain (IC = 250 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
*Indicates JEDEC Registered Data. (1) Pulse Test: PW 300 µs, Duty Cycle 2.0%
Symbol
V
CEO(sus)
ÎÎÎ
ÎÎÎ
I
CEO
ÎÎÎ
ÎÎÎ
I
CEX
ÎÎÎ
ÎÎÎ
I
CBO
I
EBO
ÎÎÎ
h
FE
ÎÎÎ
ÎÎÎ
V
CE(sat)
ÎÎÎ
V
BE(sat)
V
BE(on)
ÎÎÎ
f
T
C
ob
h
fe
Min
40
Î
60
Î
80
Î
Î
Î
— —
Î
Î
40
Î
30
Î
10 —
Î
Î
3.0 — 25
Max
ÎÎ
ÎÎ
ÎÎ
0.5
0.5
ÎÎ
0.5
ÎÎ
0.1
0.5
ÎÎ
0.1
1.0
ÎÎ
ÎÎ
150
ÎÎ
0.6
ÎÎ
1.3
1.3
ÎÎ
100
Unit
Vdc
Î
Î
mAdc
Î
Î
mAdc
Î
Î
mAdc
mAdc
Î
Î
Î
Vdc
Î
Vdc
Vdc
Î
MHz
pF —
V
BE(off)
0
V
in
V
CC
APPROX
-11 V t
1
V
in
Cjd<<C
APPROX 9.0 V
0V
t1 < 15 ns 100 < t t3 < 15 ns
t
DUTY CYCLE 2.0%
3
< 500 µs
2
in
APPROX
-11 V
t
2
TURN-OFF PULSE
Figure 2. Switching Time Equivalent Test Circuit
R
C
R
B
eb
+4.0 V
RB and R varied to obtain desired current levels
5.0
3.0
2.0
SCOPE
1.0
0.7
0.5
t, TIME (s)µ
0.3
C
0.2
0.1
0.07
0.05 10
http://onsemi.com
3
VCC = 30 V
IC/IB = 10, UNLESS NOTED
IC/IB = 20
VCC = 30 V
t
d
VCC = 60 V
t
r
V
BE(off)
= 2.0 V
VCC = 30 V V
= 0
BE(off)
20 30 50 70 100 200 700 1000
300 500
IC, COLLECTOR CURRENT (mA)
Figure 3. Turn–On Time
T
= 25°C
J
T
= 150°C
J
VCC = 60 V
Page 4
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
(NORMALIZED)
0.03
0.02
r(t), TRANSIENT THERMAL RESISTANCE
0.01
0.01
D = 0.5
0.2
0.1
0.05
0.01
SINGLE PULSE
0.02 0.03
2N4918 thru 2N4920
P
θJC(t) = r(t) θ θJC = 4.16°C/W MAX
D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t T
J(pk)
0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 200 300 1000500 t, TIME (ms)
- TC = P
JC
1
(pk) θJC
(t)
Figure 4. Thermal Response
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
10
dc
= 25°C
C
1.0 ms
5.0
T
2.0
1.0
0.5
, COLLECTOR CURRENT (AMP)
C
I
0.2
0.1
1.0
= 150°C
J
SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED THERMALLY LIMIT @ T
PULSE CURVES APPLY BELOW
RATED V
2.0 3.0 5.0 10 20 30 50 10070 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
5.0 ms
CEO
7.0
Figure 5. Active–Region Safe Operating Area
5.0
100
IC/IB = 20
200 300
3.0
2.0
1.0
0.7
0.5
0.3
, STORAGE TIME (s)
0.2
s
t µ
0.1
0.07
0.05 10
IC/IB = 10
t
= t
- 1/8 t
s
s
f
20 30 50 70 500 700 1000
IC, COLLECTOR CURRENT (mA)
T
= 25°C
J
T
= 150°C
J
IB1 = I
100 µs
B2
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – V
CE
operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T
= 150C; TC is
J(pk)
variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T
J(pk)
150C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
5.0
3.0
2.0
1.0
0.7
0.5
0.3
, FALL TIME (s)
f
t µ
0.2
0.1
0.07
0.05 10
IC/IB = 20
IC/IB = 10
20 30 50 70 500 700 1000
IC, COLLECTOR CURRENT (mA)
100
T T
200 300
= 25°C
J
= 150°C
J VCC = 30 V IB1 = I
B2
Figure 6. Storage Time
Figure 7. Fall Time
http://onsemi.com
4
Page 5
2N4918 thru 2N4920
TYPICAL DC CHARACTERISTICS
1000
700 500
T
= 150°C
300
200
100
70 50
, DC CURRENT GAIN
FE
h
30
20
10
2.0
3.0 5.0 10 20 30 200 300 500 2000
J
25°C
-55°C
50 100 1000 3.0 30 100
IC, COLLECTOR CURRENT (mA)
Figure 8. Current Gain
8
10
IC = 10 I
7
10
6
10
5
10
4
10
, EXTERNAL BASE-EMITTER RESISTANCE (OHMS)
3
10
BE
0
R
I
I
C
CES
I
VALUES
CES
OBTAINED FROM FIGURE 13
30 60 90 120 150
T
, JUNCTION TEMPERATURE (°C)
J
CES
IC = 2x I
Figure 10. Effects of Base–Emitter Resistance
VCE = 1.0 V
VCE = 30 V
CES
1.0
IC = 0.1 A
0.8
0.6
T
= 25°C
J
0.4
0.2
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
CE
V
0
0.2
0.3 0.5 1.0 2.0 5.0 10 20 50 200
0.25 A 0.5 A 1.0 A
IB, BASE CURRENT (mA)
Figure 9. Collector Saturation Region
1.5
1.2
0.9
0.6
VOLTAGE (VOLTS)
0.3
T
= 25°C
J
V
@ IC/IB = 10
BE(sat)
VBE @ VCE = 2.0 V
V
@ IC/IB = 10
0
2.0
3.0 500 1000
CE(sat)
5.0 10 20 30 50 100 200 300 2000
IC, COLLECTOR CURRENT (mA)
Figure 11. “On” Voltage
2
10
1
10
T
= 150°C
0
10
-1
10
-2
10
, COLLECTOR CURRENT (A)µI
4
C
10
REVERSE
3
10
-0.2
-0.1 0 +0.1 +0.2 +0.3 +0.4 +0.5
J
100°C
IC = I
CES
25°C
FORWARD
VBE, BASE-EMITTER VOLTAGE (VOLTS)
VCE = 30 V
Figure 12. Collector Cut–Off Region
+2.5
h
@V
FE
+2.0
+1.5
+1.0
+0.5
0
-0.5
-1.0
-1.5
-2.0
TEMPERATURE COEFFICIENTS (mV/ C)°
-2.5
2.0
3.0 5.0 10 20 30 50 100 200 2000
*APPLIES FOR IC/IB <
*θ
FOR V
VC
θ
CE(sat)
FOR V
VB
BE
IC, COLLECTOR CURRENT (mA)
CE
2
T
= 100°C to 150°C
J
T
= -55°C to +100°C
J
300 500 1000
Figure 13. Temperature Coefficients
 1.0V
http://onsemi.com
5
Page 6
2N4918 thru 2N4920
PACKAGE DIMENSIONS
TO–225AA
CASE 77–09
ISSUE W
–B–
–A–
K
F
M
U
Q
132
H
V
G
0.25 (0.010) B
S
D
2 PL
M
0.25 (0.010) B
A
M
A
M
STYLE 1:
PIN 1. EMITTER
C
J
R
M
M
M
2. COLLECTOR
3. BASE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
A 0.425 0.435 10.80 11.04 B 0.295 0.305 7.50 7.74 C 0.095 0.105 2.42 2.66 D 0.020 0.026 0.51 0.66
F 0.115 0.130 2.93 3.30 G 0.094 BSC 2.39 BSC H 0.050 0.095 1.27 2.41 J 0.015 0.025 0.39 0.63 K 0.575 0.655 14.61 16.63 M 5 TYP 5 TYP

Q 0.148 0.158 3.76 4.01 R 0.045 0.065 1.15 1.65 S 0.025 0.035 0.64 0.88 U 0.145 0.155 3.69 3.93 V 0.040 --- 1.02 ---
MILLIMETERSINCHES
http://onsemi.com
6
Page 7
Notes
2N4918 thru 2N4920
http://onsemi.com
7
Page 8
2N4918 thru 2N4920
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700 Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
AN4918/D
8
Loading...