Danfoss VACON NXP DCGuard Fact sheet

Fact Sheet

Ensure safe DC-grid selectivity with

VACON® NXP DCGuard™

VACON® NXP DCGuard™* enables fast disconnection and full selectivity between DC grids.

Utilizing DC grids rather than AC grids enables power distribution with lower power losses. However, ensuring selectivity and limited short circuit energy requires more sophisticated protection devices.

Danfoss Drives has therefore developed the VACON® NXP DCGuard™, a semiconductor protection device that can detect and cut off any faulty DC currents and isolate the faulty part of the system in microseconds.

Current range:

n465-800 VDC………3-4140 A

n640-1100 VDC…..….4-3100 A

Easy dimensioning

Rated VACON® NXP DCGuard™ DC current = Rated VACON® NXP Inverter AC current.

This means that your primary dimensioning value is the required load through the VACON® NXP DCGuard™, meaning energy transfer from one side to another. It is as easy as that.

Type approvals:

DNV-GL, ABS, Lloyd’s Register, CCS, Bureau Veritas

Current cut-off in

<5 µs

DC Grid 1

Short Circuit

DC Grid 2

Protection

 

 

 

VACON® NXP DCGuard™

 

Feature

Short circuit protection

Cuts off both + and - inside the same unit

Controlled voltage ramp up

Overload detection

Standard NXP hardware

Benefit

Ensure correct system selectivity

No overvoltage spikes related to current cut-off

Connect two different DC grids with voltage differences up to full DC voltage

Protection of transmission cables

Proven and well known products

*patent pending

www.danfossdrives.com

Danfoss VACON NXP DCGuard Fact sheet

Battery

 

 

G1

 

 

 

G2

 

 

 

 

 

 

 

 

 

 

G3

 

1200kWh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000kW

 

 

 

2000kW

 

 

 

 

 

 

 

 

 

 

2000kW

L L L

 

LCL

 

 

 

LCL

 

 

 

 

 

 

 

 

 

 

LCL

 

= V

= DC/DC

 

~V

=

<![if ! IE]>

<![endif]>AFE

 

 

~V

=

<![if ! IE]>

<![endif]>AFE

 

VACON® NXP DCGuard™

 

 

~V

=

<![if ! IE]>

<![endif]>AFE

<![if ! IE]>

<![endif]>U

<![if ! IE]>

<![endif]>W

 

<![if ! IE]>

<![endif]>U

<![if ! IE]>

<![endif]>W

 

 

 

<![if ! IE]>

<![endif]>U

<![if ! IE]>

<![endif]>W

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>U

<![if ! IE]>

<![endif]>W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCGuard1

 

 

DCGuard2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Grid 1

DC+ =

 

 

=

DC+

DC Grid 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC-

=

L

L

=

DC-

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>gridMicro

 

 

 

 

<![if ! IE]>

<![endif]>gridMicro

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V W

 

 

 

<![if ! IE]>

<![endif]>V W

 

 

<![if ! IE]>

<![endif]>V W

 

<![if ! IE]>

<![endif]>INU

 

 

 

 

 

<![if ! IE]>

<![endif]>V W

 

<![if ! IE]>

<![endif]>INU

 

 

 

=

U~

 

 

 

=

U~

 

 

=

U~

 

 

 

 

 

 

=

U~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter

 

 

 

Filter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main propulsion

Main propulsion

 

FWD

AFT

 

2000kW

2000kW

Shore supply

 

 

2000kW

Hotel load

 

 

200kW

 

Example of hybrid system where VACON® NXP DCGuard™ ensures the required system selectivity

 

G4

2000kW

LCL

 

<![if ! IE]>

<![endif]>U

<![if ! IE]>

<![endif]>AFE

~VW

=

 

=

U~

<![if ! IE]>

<![endif]>Micro

<![if ! IE]>

<![endif]>V W

 

<![if ! IE]>

<![endif]>grid

Filter

 

Hotel load 200kW

=

U~

<![if ! IE]>

<![endif]>Micro

<![if ! IE]>

<![endif]>V W

 

<![if ! IE]>

<![endif]>grid

Filter

 

Shore supply 2500kW

DClink voltage on feeding side. Negligible voltage dip on feeding side. DC current in connection cables.

<![if ! IE]>

<![endif]>DCGuard current

2

1

dt

<![if ! IE]>

<![endif]>Fault

3

faul

 

Prospective

 

current

dI

5

4

DCGuard trip level

Time

Legend

4. Energy discharge time.

1. Normal situation(No fault)

Current dI/dt=V/L

Current is within DCGuard nominal

V=Feeding DC voltage

current capacity.

L=Inductance in the circuit

2. Fault current rise time.

Typical time:100-150µs*

Current dI/dt=V/L

5. Total fault clearance time.

V=Feeding DC voltage

Typical time:200-300µs*

L=Inductance in the circuit

* System dependent

Typical time:100-150µs*

 

3.Current cut off time.

DCGuard performs a current cut off by forcing all IGBTs open when current reaches the tripping limit of the DCGuard. Time:<5µs

DKDD.PFP.906.A4.22

© Copyright Danfoss Drives | 2019.11

Loading...