A word about the organization of this manual..................................................................................................................... 5
General description of H1 family hydrostatic pumps..........................................................................................................5
Overview of H1 Pumps Technical Specifications..................................................................................................................6
H1 Pumps Literature Reference...................................................................................................................................................7
System Schematic for Single Pump...........................................................................................................................................9
System Schematic for Tandem Pumps...................................................................................................................................10
Electrical Displacement Control (EDC)................................................................................................................................... 11
EDC Operation...........................................................................................................................................................................11
Manual Displacement Control (MDC) ....................................................................................................................................12
Hydraulic Displacement Control (HDC)................................................................................................................................. 14
Automotive Control (AC) ............................................................................................................................................................15
Automotive Control connection diagram.......................................................................................................................16
Forward-Neutral-Reverse (FNR) electric control.................................................................................................................17
Non feedback proportional electric control (NFPE).......................................................................................................... 17
Fan Drive Control (FDC)...............................................................................................................................................................18
Control Signal Requirements, FDC ....................................................................................................................................18
Swashplate angle sensor for EDC controls........................................................................................................................... 21
Swash Plate Angle Sensor for NFPE and AC2 Controls.....................................................................................................22
Control Cut Off Valve (CCO)....................................................................................................................................................... 23
Brake gauge port with MDC................................................................................................................................................. 23
Life Time............................................................................................................................................................................................24
Speed and Temperature Sensor...............................................................................................................................................25
Theory of Operation................................................................................................................................................................ 25
Speed sensor 4.5 – 8 V technical data...............................................................................................................................26
Temperature sensor data.......................................................................................................................................................26
System Pressure..............................................................................................................................................................................28
Case Pressure...................................................................................................................................................................................29
External Shaft Seal Pressure....................................................................................................................................................... 30
Integral Charge Pressure Filtration.....................................................................................................................................35
Case drain......................................................................................................................................................................................... 38
Bearing loads and life .................................................................................................................................................................. 40
Shaft Torque for Splined Shafts................................................................................................................................................ 42
Shaft Torque for Tapered Shafts...............................................................................................................................................42
Shaft availability and torque ratings.......................................................................................................................................43
Minimizing System Noise............................................................................................................................................................44
Determination of Nominal Pump Sizes..................................................................................................................................45
General information covering all displacements of the H1 range is given in the beginning of this manual.
This includes definitions of operating parameters and system design considerations.
The next sections in the book detail the specific operating limitations for each frame and give a full
breakdown of available displacements, features and options.
General description of H1 family hydrostatic pumps
The H1 family of closed circuit variable displacement axial piston pumps is designed for use with all
existing Danfoss hydraulic motors for the control and transfer of hydraulic power. The H1 axial piston
variable displacement pumps are of cradle swash-plate design and are intended for closed circuit
applications.
Flow direction is reversed by tilting the swash-plate to the opposite side of the neutral (zero
displacement) position. The flow rate is proportional to the pump input speed and displacement. The
latter is infinitely adjustable between zero and maximum displacement.
H1 pumps can be used together in combination with other Danfoss pumps and motors in the overall
hydraulic system.
Danfoss hydrostatic products are designed with 15 different displacements (cm³ [in³]):
•
045053060068069078089100115130147165210250280
45.0
[2.75]
53.8
[3.28]
60.4
[3.69]
68.0
[4.15]
69.0
[4.22]
Danfoss hydrostatic products are designed with many different pressure, load-life and control
•
78.0
[4.76]
89.2
[5.44]
101.7
[6.21]
115.8
[7.07]
130.8
[7.98]
147.0
[8.97]
165.0
[10.07]
211.5
[12.91]
251.7
[15.36]
280.2
[17.10]
capabilities:
Electric Displacement Control (EDC)
‒
Forward-Neutral-Reverse control (FNR)
‒
Non-Feedback Proportional Electric control (NFPE)
‒
Automotive Control (AC)
‒
Fan Drive Control (FDC)
‒
Manual Displacement Control (MDC)
‒
Hydraulic Displacement Control (HDC)
‒
Control-Cut-Off valve (CCO)
‒
High power density where all units utilize an integral electro-hydraulic servo piston assembly that
•
controls the rate (speed) and direction of the hydraulic flow.
Compatible with the Danfoss family of PLUS+1® micro-controllers for easy Plug-and-Perform
•
installation.
More compact and lightweight
•
Improved reliability and performance
•
Go to the Danfoss website or applicable product catalog to choose the components that are right for
your complete closed circuit hydraulic system.
Danfoss | December 2021BC152886483968en-001001 | 7
Basic Information
H1 Axial Piston Pumps, Single and Tandem
Operation
Pressure Limiter Valves
Pressure limiter valves provide system pressure protection by compensating the pump swash plate
position when the set pressure of the valve is reached. A pressure limiter is a non-dissipative (non heat
generating) pressure regulating system.
Each side of the transmission loop has a dedicated pressure limiter valve that is set independently. A
pump configured with pressure limiter must have pressure limiters on both sides of the system pressure
loop. The pump order code allows for different pressure settings to be used at each system port.
The pressure limiter setting is the maximum differential pressure between the high and low loops. When
the pressure limiter setting is reached, the valve ports oil to the low-pressure side of the servo piston. The
change in servo differential pressure rapidly reduces pump displacement. Fluid flow from the valve
continues until the resulting drop in pump displacement causes system pressure to fall below the
pressure limiter setting.
An active pressure limiter destrokes a pump to near neutral when the load is in a stalled condition. The
pump swash-plate moves in either direction necessary to regulate the system pressure, including into
stroke (overrunning) or over-center (winch payout).
The pressure limiter is optional on H1 pumps (except H1T 045/053 tandem pumps).
High Pressure Relief Valve (HPRV) and Charge Check Valve
All H1 pumps have a combination high pressure relief and charge check valve. The high pressure relief
function is a dissipative (heat generating) pressure control valve for the purpose of limiting excessive
system pressures. The charge check function replenishes the low pressure side of the working loop with
charge oil.
Each side of the transmission loop has a dedicated HPRV valve that is non-adjustable with a factory set
pressure. When system pressure exceeds the factory setting of the valve, oil is passed from the high
pressure system loop, into the charge gallery, and into the low pressure system loop via the charge
check.
The pump may have different pressure settings to be used at each system port. When an HPRV valve is
used in conjunction with a pressure limiter, the HPRV valve is always factory set above the setting of the
pressure limiter. The system pressure shown in the order code for pumps with only HPRV is the HPRV
setting.
The system pressure shown in the order code for pumps with pressure limiter and HPRV is a reflection of
the pressure limiter setting:
HPRVs are set at low flow condition. Any application or operating condition which leads to elevated HPRV
flow will cause a pressure rise with flow above the valve setting. Consult factory for application review.
Excessive operation of the HPRV will generate heat in the closed loop and may cause damage to the
internal components of the pump.
The bypass function allows a machine or load to be moved without rotating the pump shaft or prime
mover. The single pump HPRV valve also provides a loop bypass function when each of the two HPRV hex
plugs are mechanically backed out three full turns.
Engaging the bypass function mechanically connects both A & B sides of the working loop to the
common charge gallery.
Possible damage to hydromotor(s).
Excessive speeds and extended load/vehicle movement must be avoided. The load or vehicle should be
moved not more than 20% of maximum speed and for a duration not exceeding 3 minutes. When the
bypass function is no longer needed, care should be taken to re-seat the HPRV hex plugs to the normal
operating position.
Bypass function not available for tandem pumps.
System Schematic for Single Pump
The schematic below shows the function of an H1P axial piston variable displacement pump with electric
displacement control (EDC).
Danfoss | December 2021BC152886483968en-001001 | 9
C1
C1
C2C2
M14
M14
CW
F00B
F00A
F00BF00A
A
B
MA
E
C D
MD
MB
M3
L3
MC
M4
M5
M4
M5
PTO
X7
P003 207E
Basic Information
H1 Axial Piston Pumps, Single and Tandem
Operation
System Schematic for Tandem Pumps
The schematic below shows the function of H1T axial piston variable displacement tandem pumps with
electric displacement control (EDC).
System schematic, tandem pumps
Charge Pressure Relief Valve (CPRV)
The charge pressure relief valve is a direct acting poppet valve that opens and discharges fluid to the
pump case when pressure exceeds a designated level. The charge pressure relief valve maintains charge
pressure at a designated level above case pressure.
This level is nominally set with the pump running at 1800 min-1(rpm), and with a fluid viscosity of 32
mm²/s [150 SUS]. In forward or reverse, charge pressure will be slightly lower than in neutral position. The
model code of the pump specifies the charge pressure relief valve setting. Typical charge pressure
increase from 1.2-1.5 bar per 10 l/min [17.4-21.8 psi per 2.64 US gal/min]. For external charge flow the
CPRV is set according to the table below:
CPRV flow setting for external charge supply
Tandem 045/053Single 045/053Single 060—165Single 210/250/280
30 l/min [7.9 US gal/min]15 l/min [3.9 US gal/min]22.7 l/min [6.0 US gal/min]40.0 l/min [10.6 US gal/min]
An EDC is a displacement (flow) control. Pump swash plate position is proportional to the input
command and therefore vehicle or load speed (excluding influence of efficiency), is dependent only on
the prime mover speed or motor displacement.
The Electrical Displacement Control (EDC) consists of a pair of proportional solenoids on each side of a
three-position, four-way porting spool. The proportional solenoid applies a force input to the spool,
which ports hydraulic pressure to either side of a double acting servo piston. Differential pressure across
the servo piston rotates the swash plate, changing the pump‘s displacement from full displacement in
one direction to full displacement in the opposite direction.
A serviceable 170 μm screen is located in the supply line immediately before the control porting spool.
Under some circumstances, such as contamination, the control spool could stick and cause the pump to
stay at some displacement.
Electrical Displacement Control
EDC schematic, feedback from swash plate
EDC Operation
H1 EDC’s are current driven controls requiring a Pulse Width Modulated (PWM) signal. Pulse width
modulation allows more precise control of current to the solenoids.
The PWM signal causes the solenoid pin to push against the porting spool, which pressurizes one end of
the servo piston, while draining the other. Pressure differential across the servo piston moves the
swashplate.
A swashplate feedback link, opposing control links, and a linear spring provide swashplate position force
feedback to the solenoid. The control system reaches equilibrium when the position of the swashplate
spring feedback force exactly balances the input command solenoid force from the operator. As
hydraulic pressures in the operating loop change with load, the control assembly and servo/swashplate
system work constantly to maintain the commanded position of the swashplate.
The EDC incorporates a positive neutral deadband as a result of the control spool porting, preloads from
the servo piston assembly, and the linear control spring. Once the neutral threshold current is reached,
the swashplate is positioned directly proportional to the control current. To minimize the effect of the
control neutral deadband, we recommend the transmission controller or operator input device
incorporate a jump up current to offset a portion of the neutral deadband.
The neutral position of the control spool does provide a positive preload pressure to each end of the
servo piston assembly.
When the control input signal is either lost or removed, or if there is a loss of charge pressure, the springloaded servo piston will automatically return the pump to the neutral position.
Danfoss | December 2021BC152886483968en-001001 | 11
"0"
Lever rotation
"A"
Displacement
100 %
a
-a
100 %
"B"
-b
-d
b
c
d
-c
P301 752
Basic Information
H1 Axial Piston Pumps, Single and Tandem
Operation
Manual Displacement Control (MDC)
A Manual proportional Displacement Control (MDC) consists of a handle on top of a rotary input shaft.
The shaft provides an eccentric connection to a feedback link. This link is connected on its one end with a
porting spool. On its other end the link is connected the pumps swashplate.
This design provides a travel feedback without spring. When turning the shaft the spool moves thus
providing hydraulic pressure to either side of a double acting servo piston of the pump.
Differential pressure across the servo piston rotates the swash plate, changing the pump’s displacement.
Simultaneously the swashplate movement is fed back to the control spool providing proportionality
between shaft rotation on the control and swash-plate rotation. The MDC changes the pump
displacement between no flow and full flow into opposite directions.
Under some circumstances, such as contamination, the control spool could stick and cause the pump to
stay at some displacement.
For the MDC with CCO option the brake port (X7) provides charge pressure when the coil is energized to
activate static function such as a brake release. The X7 port must not be used for any continuous oil
consumption.
The MDC is sealed by means of a static O-ring between the actuation system and the control block. Its
shaft is sealed by means of a special O-ring which is applied for low friction. The special O-ring is
protected from dust, water and aggressive liquids or gases by means of a special lip seal.
Manual Displacement ControlPump displacement vs. control lever rotation
Deadband on B side: a = 3° ±1°
Maximum pump stroke: b = 30° +2/-1°
Required customer end stop: c = 36° ±3°
Internal end stop: d = 40°
MDC operation
The MDC provides a mechanical dead-band required to overcome the tolerances in the mechanical
actuation. The MDC contains an internal end stop to prevent turning the handle into any inappropriate
position.
The MDC provides a permanent restoring moment appropriate for turning the MDC input shaft back to
neutral position only. This is required to take the backlash out of the mechanical connections between
the Bowden cable and the control.
High case pressure may cause excessive wear and the NSS to indicate that the control is not in neutral
position. In addition, if the case pressure exceeds 5 bar there is a risk of an insufficient restoring moment.
The MDC is designed for a maximum case pressure of 5 bar and a rated case pressure of 3 bar.
Customers must install some support to limit the setting range of their Bowden cable to avoid an
•
overload of the MDC.
Customers can apply their own handle design but they must care about a robust clamping
•
connection between their handle and the control shaft and avoid overload of the shaft.
Customers can connect two MDC’s on a tandem unit in such a way that the actuation force will be
•
transferred from the pilot control to the second control. The kinematic of the linkages must ensure
that either control shaft is protected from torque overload.
Caution
Using the internal spring force on the input shaft is not an appropriate way to return the customer
connection linkage to neutral, or to force a Bowden cable or a joystick back to neutral position. It is not
applicable for any limitation of the Bowden cable stroke, except the applied torque to the shaft will never
exceed 20 N•m.
Neutral start switch (NSS)
The Neutral Start Switch (NSS) contains an electrical switch that provides a signal of whether the control
is in neutral. The signal in neutral is Normally Closed (NC).
Neutral start switch schematic
Neutral start switch data
Max. continuous current with switching
Max. continuous current without switching
Max. voltage
Electrical protection class
Danfoss | December 2021BC152886483968en-001001 | 13
8.4 A
20 A
36 V
DC
IP67 / IP69K with mating connector
P400520
P400519
X1
F00B
F00A
Feedback from
Swashplate
TP
X2M14
Basic Information
H1 Axial Piston Pumps, Single and Tandem
Operation
Hydraulic Displacement Control (HDC)
HDC principle
An HDC is a Hydraulic Displacement Control. Pump swashplate position is proportional to the input
command and therefore vehicle speed or load speed (excluding influence of efficiency), is dependent
only on the prime mover speed or motor displacement.
The HDC control uses a hydraulic input signal to operate a porting spool, which ports hydraulic pressure
to either side of a double acting servo piston. The hydraulic signal applies a force input to the spool
which ports hydraulic pressure to either side of a double acting servo piston. Differential pressure across
the servo piston rotates the swashplate, changing the pump’s displacement from full displacement in
one direction to full displacement in the opposite direction. Under some circumstances, such as
contamination, the porting spool could stick and cause the pump to stay at some displacement.
A serviceable 175 μm screen is located in the supply line immediately before the control porting spool.