The desired flow temperature is influenced by for example return temperature.
The actuator closes the control valve.
The actuator opens the control valve.
The actuator does not activate the valve.
The pump is ON.
Adjust temperatures and values.
Switch between menu lines.
Select / return.
2 sec.
Return to daily user menu.
The pump is OFF.
The controller is in setback mode.
The controller is in pre-setback mode (the symbol is blinking).
The controller is in comfort mode.
The controller is in pre-comfort mode (the symbol is blinking).
Safety Note
To avoid injury of persons and damages to the device, it is absolutely necessary to read and
observe these instructions carefully. The warning sign is used to emphasize special conditions
that should be taken into consideration.
This symbol indicates that this particular piece of information should be read with
special attention.
Motor prot. (motor protection) 6174 25
Xp (proportional band) 6184 25
Tn (integration time constant) 6185 25
M1 run (running time of the motorized control valve) 6186 25
Nz (neutral zone) 6187 26
Application 7000 28
ECA address (choice of room panel / remote control) 7010 28
P1 exercise (pump exercise) 7022 28
M1 exercise (valve exercise) 7023 28
Actuator (gear motor / thermo actuator) 7024 28
DHW prior. (closed valve / normal operation) 7052 29
P1 frost T (frost protection) 7077 29
P1 heat T (heat demand) 7078 30
Standby T (standby temperature) 7093 30
Ext. (external override) 7141 30
Knee point 7162 31
Min. on time (min. activation time gear motor) 7189 31
Daylight (daylight saving time changeover) 7198 31
ECL address (master / slave address) 7199 31
Type 7600 32
Mounting the ECL Comfort controller 35
Electrical connections - 230 V a.c. - in general 36
Electrical connections - 24 V a.c. - in general 37
Connecting the temperature sensors and the ECL BUS 38
How to identify your system type 39
Adapting the ECL Comfort 110 controller 41
Manual control 42
Placing the temperature sensors 43
Connecting the room panel / remote control 44
Basic principles of application 130 for ECL Comfort 110
Typically, the flow temperature is always adjusted according to your requirements.
The flow temperature sensor (S3) is the most important sensor. The desired flow
temperature at S3 is calculated in the ECL Comfort controller, based on the outdoor
temperature (S1). The lower the outdoor temperature, the higher the desired flow
temperature.
The motorized control valve (M1) is opened gradually when the flow temperature is
lower than the desired flow temperature and vice versa.
The return temperature (S4) to the district heating supply should not be too high. If so,
the desired flow temperature can be adjusted (typically to a lower value) thus resulting
in a gradual closing of the motorized control valve. In boiler-based heating supply the
return temperature should not be too low (same adjustment procedure as above).
If the measured room temperature does not equal the desired room temperature, the
desired flow temperature can be adjusted.
The circulation pump, P1, is ON when the desired flow temperature is higher than 20 °C
(factory setting) or the outdoor temperature is lower than 2 °C (factory setting).
°C (degrees Celsius) is an absolute temperature whereas K (Kelvin) is a relative temperature.
The setting of the desired room temperature is important even if a room temperature sensor
/ room panel / remote control is not connected.
Is the room temperature too low?
Make sure that the radiator thermostat(s) does not limit the room temperature.
If you still cannot obtain the desired room temperature by adjusting the radiator
thermostats, the flow temperature is too low. Increase the desired room temperature.
Temperature overview
2 sec.
Push the button to see the sensor (S1-S4) temperatures.
Change between the temperature displays:
S1:
Actual outdoor temperature
Accumulated outdoor temperature
S1 act. T 13@
S1 acc. T 12@
S2:
Actual room temperature
Desired room temperature
S3:
Actual flow temperature
Desired flow temperature
S4:
Actual return temperature
Desired return temperature limitation
It is only necessary to set the correct date and time in connection with the first use of the
ECL Comfort 110 controller or after a power break of more than 36 hours (see the chapter
on Adapting the ECL Comfort 110 controller).
Flow temp. (flow temperature control) 2000
Heat curve
The ECL Comfort 110 controls the heating system according to the calculated flow
temperature under the influence of the return and / or room temperature.
The desired flow temperature is defined by 5 settings: ‘Temp. max.’, ‘Temp. min.’, ‘Slope’,
‘Displace’, and ‘Knee point’.
Desired flow temperature
[°C]
110
100
90
80
70
60
50
40
30
20
10
-20-1001020-30
Heat cur ve
‘Slope’
‘Te mp. max .’
‘Displace’
‘Knee point’
‘Te mp. min.’
Outdoo r temp.
[°C]
The calculated flow temperature can be influenced by connected sensors, ‘Boost’ and ‘Ramp’
etc.
How to determine another heat curve, if necessary:
Choose the calculated flow temperature for your system and the determined min.
outdoor temperature for your area. Pick the heat curve closest to the crossing point of
these two values.
The setting of the desired room temperature has an influence on the calculated flow
temperature (heat curve), no matter if a room temperature sensor is connected or not.
Floor heating systems
This controller is factory set for radiator systems, which typically are high flow temperature
systems. To control floor heating systems, which typically are low flow temperature systems,
you need to change the ‘Slope’ according to your type of system (typical setting: 0.6).
Adjust the parallel displacement of the heat curve with a number of degrees, if required.
Whether it is reasonable to change the ‘Slope’ (at outdoor temperatures below 0 °C) or
parallel displacement (at outdoor temperatures above 0 °C) will depend on the individual
heat requirement.
Small increases or reductions in the heating temperature can be implemented by means of
the parallel displacement.
Temp. min. (flow temp. limit, min.) 2177
Setting rangeFactory setting
10 ... 150 °C10 °C
Choose the allowed min. flow temperature for your system. Adjust the factory setting, if
required.
Temp. max. (flow temp. limit, max.) 2178
Setting rangeFactory setting
10 ... 150 °C90 °C
Choose the allowed max. flow temperature for your system. Adjust the factory setting, if
required.
The setting for ‘Temp. max.’ has higher priority than ‘Temp. min.’.
This section is only relevant if you have installed a room temperature sensor or room
panel / remote control.
The controller adjusts the desired flow temperature to eliminate the difference between
the desired and the actual room temperature.
There are two basic principles for control of the room temperature.
A: Max. room temperature limitation
Use this limitation if your heating system is fully equipped with thermostats and you also
want to obtain a max. limitation of the room temperature. The controller will allow for
free heat gains, i.e. solar radiation or heat from a fire place, etc.
Influence
‘Gain - min.’ (min. limitation)
Desired room temperature
Actual room temperature
‘Gain - max.’ (max. limitation)
The ‘Gain - max.’ determines how much the room temperature should influence the
desired flow temperature.
If the ‘Gain’ is too high and / or the ‘Intgr. time’ too low, there is a risk of unstable control.
Exa mple A1
The actual room temperature is 2 degrees too high.
The ‘Gain - max.’ is set to -4.0.
The ‘Gain - min.’ is set to 0.0.
The ‘Slope’ is 1.8.
Result:
The desired flow temperature is changed by 2 x -4.0 x 1.8 = -14.4 degrees.
Used if your heating system is not equipped with thermostats and you select the room
with room temperature sensor as a temperature reference for the rest of the rooms.
Set a positive value for the ‘Gain - min.’ and a negative value for the ‘Gain - max.’.
Influence
‘Gain - min.’ (min. limitation)
Desired room temperature
Actual room temperature
‘Gain - max.’ (max. limitation)
The room temperature sensor in the reference room measures the actual room
temperature.
If a difference occours between the actual and the desired room temperature, the
desired flow temperature can be corrected. The correction is based on the settings in the
lines 3182 and 3183. This correction of the desired flow temperature will normally give a
correct room temperature. See also line 3015.
Example B1
The actual room temperature is 2 degrees too low.
The ‘Gain - max.’ is set to -3.5.
The ‘Gain - min.’ is set to 2.0.
The ‘Slope’ is 1.8.
Result:
The desired flow temperature is changed by 2 x 2.0 x 1.8 = 7.2 degrees.
Example B2
The actual room temperature is 2 degrees too high.
The ‘Gain - max.’ is set to -3.5.
The ‘Gain - min.’ is set to 2.0.
The ‘Slope’ is 1.8.
Result:
The desired flow temperature is changed by 2 x (-3.5) x 1.8 = -12.6 degrees.
This limitation is based on a PI regulation where P (Gain) responds quickly to deviations
and I (Intgr. time) responds slower and over time removes the small offsets between the
desired and actual values. This is done by changing the desired flow temperature.
Intgr. time (time constant for room temp.) 3015
Setting rangeFactory setting
OFF / 1 ... 50OFF
Controls how fast the room temperature adapts to the desired room temperature (I control).
OFF: The control function is not influenced by the ‘Intgr. time’.
1: The desired temperature is adapted quickly.
50: The desired temperature is adapted slowly.
Gain - max. (room temp. limitation, max.) 3182
Setting rangeFactory setting
-9.9 ... 0.0-4.0
Determines how much the flow temperature will be influenced (decreased) if the room temperature is
higher than the desired room temperature (P control).
-9.9: The room temperature has a big influence.
0.0: The room temperature has no influence.
Gain - min. (room temp. limitation, min.) 3183
Setting rangeFactory setting
0.0 ... 9.90.0
Determines how much the flow temperature will be influenced (increased) if the room temperature is
lower than the desired room temperature (P control).