Danfoss DST 730 Operating guide

Operating guide
Data sheet
APP pumps
Top level inclination sensor CANopen output
APP 0.6-1.0 / APP 1.5-3.5 / APP (W) 5.1-10.2 /
APP 11-13 / APP 16-22 / APP 21-43
ia.danfoss.com.
ro-solutions.com
Operation guide | DST 730 Top level inclination sensor
Table of Contents
1. General Information ........................................................................2
1.1 Contact .................................................................................2
1.2 General.................................................................................2
1.3 Abbreviations and terms ................................................................3
2. Electrical connections.......................................................................4
2.1 M12 x 1, 5-pin 43-01090 .................................................................4
2.2 6 wires output 18 AWG 1.65 mm OD .....................................................5
3. Network Management (NMT)............................................................6
8. Restore default parameter ...............................................................6
4. Baud rate ...................................................................................7
5. Node-ID and resolution .....................................................................7
6. Parameter settings..........................................................................7
7. Restore default parameters .................................................................7
8. Heartbeat ...................................................................................7
9 Error handling ..........................................................................8
10. SDO communication and read/write commands .........................................9
11. PDO communication and Angle calculation .................................................9
1. General Information
12. CANopen features summary ............................................................17
13. Status LED .................................................................................21
14. Digital filter setting ........................................................................22
15. Communication examples .................................................................22
1.1 Contac t
Danfoss A/S Industrial Automation DK-6430 Nordborg Denmark www.ia.danfoss.com E-mail: IA-Sensorglobaltechnicalsupport@danfoss.com
1.2 General
The document describes the standard CANopen implementations created. It is addressed to CANopen system integrators and to CANopen device designers who already know the content of standards designed by C.i.A. (CAN in Automation).
2 | © Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
1.3 Abbreviations and terms
Abbreviation/term Definition
CAN Controller Area Network
CAL CAN Application Layer
CMS CAN Message Specification
COB Communication Object
COB-ID COB Identifier
D1 - D8 Data from 1 to 8
DLC Data Length Code
ISO International Standard Organization
NMT Network Management
PDO Process Data Object
RXSDO Receive SDO
SDO Service Data Object
TXPDO Transmit PDO
TXSDO Transmit SDO
Describes a serial communication bys that implements the “physical” level 1 and the “data link” level 2 of the ISO/OSI reference model.
Describes implementation of the CAN in level 7 “application” of the ISO/OSI reference model form which CANopen derives.
CAL service element. Defines the CAN Apllication Layer for the various industrial applications.
Unit of transport of data in a CAN network (aCAN message). A maximum of 2,048 COBs may be present i a CAN network, each of which may transport from 0 to a maximum of 8 bytes.
Identifying element of a CAN message. The identifier determines the priority of a COB in case of multiple messages in the network.
Number of data bytes in the data field of a CAN message.
Number of data bytes transmitted in a single frame.
International authority providing standards for various merchandise sectors.
CAL service element. Describes how to configure, initialize, manage errors in a CAN network.
Process data communication objects (with high priority).
SDO objects received from the remote device.
Service data communication objects (with low priority). The value of this data is contained in the “Objects Dictionary” of each device in the CAN network.
PDO objects transmitted by the remote device.
SDO objects transmitted by the remote device.
© Danfoss | DCS (im) | 2019.04
NOTE:
The numbers followed by the suffix “h” represent a hexadecimal value, with suffix “b” a binary value, and with suffix “d” a decimal value. The value is decimal unless specified otherwise.
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 3
Operation guide | DST 730 Top level inclination sensor
2. Electrical connections
2.1 M12 x 1, 5-pin 43-01090
CONNECTIONS
1.: NC
2.: + VS (+10 - +36 VDC)
3.: GROUND
4.: CAN-L
5.: CAN-H
NOTE:
Please make sure that the CANbus is terminated. The impedance measured between CAN-H and CAN-L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the tranducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible.
4 | © Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
2.2 6 wires output 18 AWG 1.65 mm OD
Cables output IEC 60332 Cable 7 pole 0.5 mm² OD 6.4 mm
NOTE:
Please make sure that the CANbus is terminated. The impedance measured between CAN-H and CAN-L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the tranducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible.
CONNECTIONS
White: +Vs (+10 - +36 Vdc) Yellow: GROUND Grey: CAN-H Blue: CAN-L Pink: NC Green: NC Brown: NC
© Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 5
Operation guide | DST 730 Top level inclination sensor
3. Network Management (NMT)
The device supports CANopen network management functionality NMT Slave (Minimum Boot Up).
8. Restore default parameter
Every CANopen device contains an international Network Management server that communicates with an external NMT master. One device in a network, generally the host, may act as the NMT master. Through NMT messages, each CANopen device’s network management server controls state changes within its built-in Communication
State Machine.
This is independent from each node’s operational state machine, which is device dependant and described in Control State
Machine.
NMT Message COB-ID Data Byte 1 Data Byte 2 Start Remote Node 0 01h Node-ID’ Stop Remote Node 0 02h Node-ID’ Pre-operational State 0 80h Node-ID’ Reset Node 0 81h Node-ID’ Reset Communication 0 82h Node-ID’
* Node-ID = Drive address (from 1 to 7Fh)
It is important to distinguish a CANopen device’s operational state machine from its Communication State Machine. CANopen sensors and I/O modules, for example, have completely different operational state machines than servo drives. The “Communication State Machine” in all CANopen devices, however, is identical as specified by the DS301. NMT messages have the highest priority. The 5 NMT messages that control the Communication State Machine each contain 2 date bytes that identify the node number and a command to that node’s state machine. Table 1 shows the 5 NMT messages surpported, and Table 2 shows the correct message for sending these messages.
Table 1
6 | © Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
Arbitration Field
COB-ID RTR Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 000h 0 See table 1 See table 2 These bytes are not sent
4. Baud rate Node-ID can be configurable via SDO communication object =x20F2 and 020F3 (see communication examples at the end of this coument).
The default Baud rate is 250kbit/s.
5. Node-ID and resolution Node-ID can be configurable via SDO
communication object 0x20F0 and 0x20F1 (see communication examples at the end of this documentation).
The default Node-ID is 7F.
6. Parameter settings All object dictionary parameters (object with
marking PARA) can be saved in a special section of the internal EEPROM and secured by checksum calculation. The special LSS parameters (objects with marking LL-PARA), also part of the objec dictionary, will be also saved in a special section of the internal EEPROM and secured by checksum calculation.
Data Field
Table 2
Important Note:
Changing this parameter can disturb the network! Use the service only if one device is connected to the network!
Important note:
Changing this parameter can disturb the network! Use the service only if one device is connected to the network!
Due to the internal architecture of the microcontroller the parameter write cycles are limited to 100,000 cycles.
7. Restore default
parameters
8. Heartbeat
All object dictionary parameters (objects with marking PARA) can be restored to factory default values via SDO communication (index 0x1011).
The heartbeat mechanism for this device isestablished through cyclic transmission of the heartbeat message done by the heartbeat producer. One or more devices in the network are aware of this heartbeat message. If the herartbeat cycle fails from the heartbeat producer the local application on the heartbeat consumer will be informed about that event.
Heartbeat Message
COB-ID Byte 0
700+Node-ID Content NMT State
The implementation of either guarding or heartbeat is mandatory. The device supports Heartbeat Producer functionality. The producer heartbeat time is defined in object 0x1017.
© Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 7
Operation guide | DST 730 Top level inclination sensor
9 Error handling
Principle
Emergency messages (EMCY) shall be triggered by internal errors on device and they are assigned the highest possible priority to ensure that they get access to the bus without delay (EMCY Producer). By default, the EMCY contains the error field with pre-defined error numbers
EMCY Message
The EMCY COB-ID is defined in object 0x1014. The EMCY message consists of 8 bytes. It contains an emergency error code, the contents of object 0x1001 and 5 byte of manufacturer specific error code. The device uses only the 1st byte as manufacturer specific error code.
and additional information.
Error Behavior (object 0x4000)
If a serious device failure is detected the object 0x4000 specifies, to which state the module shall be set: 0: Pre-operational 1: Mo state change (default) 2: Stopped
Byte Byte 1
Byte 3 Byte 4 Byte 5 Byte 6
Byte 2
Description Emergency
Error code
1)
Error code 0x0000 Error Reset on no ERrror (Error Register = 0)
1)
Error Register (object 0x1001
Manufacturer
2)
)
specific error code (always 0x00)
Manufacturer specific error code (object 0x4001)
0x1000 Generic error
2)
Always 0
Byte 7 Byte 8
Manufacturer specific error code NOT IMPLEMENTED (always 0x00)
Supported Manufacturer Specific Error Codes (object 0x4001)
Manufacturer Specific Error Code (bit field)
0bxxxxxxx1
(a)
Sensor Error TYPE DST X730 Z-360 (e.g. angle under/above
Description
limits, self-test failure, MEMS IC communication error)
0bxxxxxxx1
(a)
Sensor Error X-axis TYPE DST X730 XY-0xx (e.g. angle under/
above limits, self-test failure, MEMS IC communication error)
0bxxxxxxx1
(a)
Sensor Error Y-axis TYPE DST X730 XY-0xx (e.g. angle under/
above limits, self-test failure, MEMS IC communication error) 0bxxx1xxxx Program checksum error 0bxx1xxxxx Flash limit reached - error 0bx1xxxxxx LSS Parameter checksum error
(a)
An angle error will be generated if the actual measured angle is under or above limits. Example of limits for different versions are reported below: DST X730 dual axis version ± 10º Error limit are ± 11º (± 11º are also the FSO angles STOP) DST X730 dual axis version ± 15º Error limit are ± 16.5º (± 16.5º are also the FSO angles STOP) DST X730 dual axis version ± 20º Error limit are ± 22º (± 22º are also the FSO angles STOP) DST X730 dual axis version ± 30º Error limit are ± 33º (± 33º are also the FSO angles STOP) DST X730 dual axis version ± 45º Error limit are ± 49.5º (± 49.5º are also the FSO angles STOP) DST X730 dual axis version ± 60º Error limit are ± 66º (± 66º are also the FSO angles STOP) DST X730 dual axis version ± 90º Error limit are ± 87º (± 87º are also the FSO angles STOP)
8 | © Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
10. SDO communication and read/write commands
COB-ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 600+Node-ID 8 CMD Index Sub-Index Data Data Data Data
COB-ID DLC Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 580+Node-ID 8 RES Index Sub-Index Data Data Data Data
The device fulfils the SDO Server functionality. With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data typ SDOs can be used to transfer multiple data sets from a client to a server and vice versa.
Structure of SDO-request by the Master
Structure of SDO-answer by the Slave
Write Access, Data Transfer from Host to Slave
Each access to object dictionary is checked by the slave for validity. Any write access to nonexistent objects, to read - only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.
CMD determines the direction of data transfer and the size of the data object:
23 hex Sending of 4-byte data (bytes 5 - 8 contian a 32 bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value 2F hex Sending of 1-byte data (byte 5 contians an 8-bit value)
Read Access, Data Transfer form Slave to Host
Any read access to non-existing objects is answered with an error message.
CMD determines the direction of data transfer:
40 hex read access (in any case)
The Slave answers:
RES Response of the slave: 42 hex Bytes used by node when replying to read command with 4 or less data 43 hex Bytes 5 - 8 contain a 32-bit value 4B hex Bytes 5, 6 contain a 16-bit value 4F hex Byte 5 contains an 8-bit value 80 hex Error
11. PDO communication and Angle calculation
Byte Byte 1 Byte 2 Byte 3 Byte 4
Description
The Slave answers:
RES response of the slave: 60 hex Data sent successfully 80 hex Error
Transmit PDO #0
This PDO transmits asynchronously the position value of the angle sensor. The Tx PDO#0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4 ms and 65535 ms shall be selectable by parameter settings. The Tx PDO#0 will be transmitted by entering the “Operational” state.
Byte 5 Byte 6 Byte 7 Byte 8
X Axis
object
(0x6010)
Low-Byte
Inthe following figures an example of PDO mapping is reported in the case of Angle X = 0.00º and
Angle Y = 0.00º (Node-ID = 7Fh and resolution ± 0.01º
X Axis
object
(0x6010)
High-Byte
Y Axis
object
(0x6020)
Low-Byte
Y Axis
object
(0x6020)
High-Byte
(0x00)
© Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 9
Operation guide | DST 730 Top level inclination sensor
Angle X = 0.00° Angle Y = 0.00°
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 00h 00h 00h 00h 00h 00h 00h 00h
Angle X:
Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
In the following figures an example of PDO mapping is reported in the case of Angle X = +
45.00° and Angle Y = 0.00°. (Node-ID = 7Fh and resolution ± 0.01°)
Angle X = +45.00° Angle Y = 0.00°
Angle Y:
Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
10 | © Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 94h 11h 00h 00h 00h 00h 00h 00h
Angle X:
Byte 2 MSB (11h) = 11h; Byte 1 LSB (94h) = 94h; Angle X = 1194h to decimal 4500d (resolution ±0.01°) = +45.00°
In the following figures an example of PDO map­ping is reported in the case of Angle X = -45.00° and Angle Y = 0.00°. (Node-ID = 7Fh and resolu- tion ± 0.01º)
Angle X = -45.00° Angle Y = 0.00°
Angle Y:
Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 6Bh EEh 00h 00h 00h 00h 00h 00h
Angle X:
Byte 2 MSB (EEh) = EEh; Byte 1 LSB (6Bh) = 6Bh; Angle X = EE6Bh to decimal 61035d If the Angle X in decimal is greater thanm 32768, the Angle X is NEGATVE and it must be computed as below (resolution ± 0.01° Angle X = EE6Bh to decimal 61035d Angle X = Angle X (in decimal) - 65535d = 61035d - 65535d = -4500d (resolution ± 0.01°) = -45.00°
Angle X = 0.00° Angle Y = 0.00°
Angle Y:
Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ±0.01°) = 0.00° In the following figures an example of PDO mapping is reported in the case of Angle X =
0.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution ± 0.01°)
© Danfoss | DCS (im) | 2019.04
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 11
Operation guide | DST 730 Top level inclination sensor
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 00h 00h 00h 00h 00h 00h 00h 00h
Angle X:
Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
In the following figures an example of PDO map­ping is reported in the case of Angle X = 0.00° and Angle Y = +45.00°. (Node-ID = 7Fh and resolution ±0.01°)
Angle X = -0.00° Angle Y = +45.00°
Angle Y:
Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 00h 00h 94h 11h 00h 00h 00h 00h
Angle X:
Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
In the following figures an example of PDO map­ping is reported in the case of Angle X = 0.00° and Angle Y = +45.00°. (Node-ID = 7FH and resolution ± 0.01°)
Angle Y:
Byte 4 MSB (11h) = 11h; Byte 3 LSB (94h) = 94h Angle Y = 1194h to decimal 4500d (resolution ±0.01°) = +45.00°
12 | © Danfoss | DCS (im) | 2019.04
Angle X = -0.00° Angle T = -45.00°
AQ304230922416en-000101 | IC.PS.P21.L1.02
Operation guide | DST X730 Top level inclination sensor
ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
1FFh 00h 00h 6Bh EEh 00h 00h 00h 00h
Angle X:
Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution ±0.01°) = 0.00°
Transmit PDO#0 - Single axis configuration Z (-180° - +180°) model DST X730 Z-360
Byte Byte 1 Byte 2
Description
Int he following figures an example of PDO mapping is reported in the case of Angle Z = -180.0º (in 0 - 360º configuration the equivalent angle is 0.00º).
Z Axis
(object 0x6010)
Low-Byte
(Node-ID = 7Fh and resolution ± 0.01º
(object 0x6010)
Angle Y:
Byte 4 MSB (EEh) = EEh; Byte 3 LSB (6Bh) = 6Bh Angle Y = EE6Bh to decimal 61035d If the Angle Y in decimal is greater than 32768, the Angle Y is NEGATIVE and it must be computed as below (resolution ± 0.01°) Angle Y = EE6Bh to decimal 61035d Angle Y = Angle Y (in decimal) - 65535d = 61035d
- 65535d = -4500d (resolution ± 0.01°) = -45.00°
This PDO transmits synchronously the position value of the inclinationsensor. The Tx PDO#0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4 ms and 65535 ms shall be selectable by parameter settings. The Tx PDO#0 will be transmitted by entering the “Operational” state.
Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Z Axis
(0x00)
High-Byte
© Danfoss | DCS (im) | 2019.04
Angle Z = -180.00°
AQ304230922416en-000101 | IC.PS.P21.L1.02 | 13
Loading...
+ 29 hidden pages