Dallas Semiconductor DS80CH11-E02 Datasheet

DS80CH11
System Energy Manager
DS80CH11
011200 1/88
PRODUCT SPECIFICATION
V2.1
DS80CH11
011200 2/88
1.0 GENERAL DESCRIPTION 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 OVERVIEW 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 CONVENTIONS 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 ADDITIONAL REFERENCES 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.0 PIN DESCRIPTION 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 PIN FUNCTION SUMMARY 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 PIN CHARACTERISTICS 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.0 CORE MICROCONTROLLER 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 CORE MICRO OVERVIEW 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 INSTRUCTION SET SUMMARY 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 SPEED IMPROVEMENT 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 INSTRUCTION SET ADDITIONAL REFERENCES 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 RESET 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 INTERRUPT CONTROL 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.0 MEMORY RESOURCES 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 OVERVIEW 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 DATA MEMORY ACCESS 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Stretch Memory Cycle 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Dual Data Pointer 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 EXTERNAL MEMORY INTERFACE 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 DIRECT (SCRATCHPAD) RAM ACCESS 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 SPECIAL FUNCTION REGISTERS 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0 CORE I/O RESOURCES 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 PROGRAMMABLE TIMERS 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 SERIAL PORTS 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 WATCHDOG TIMER 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 PARALLEL I/O PORTS 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1 Alternate Pin Function Summary 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.0 2–Wire SERIAL INTERFACE 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 INTRODUCTION 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 REGISTER DESCRIPTION 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 2WFSx – 2–Wire Frequency Select Registers 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.2 2WDATx – 2–Wire Data I/O Registers 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.3 2WSADRx – 2–Wire Slave Address Registers 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.4 2WCONx – 2–Wire Control Registers 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.5 2WSTAT1x – 2–Wire Status Register 1 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.6 2WSTAT2x – 2–Wire Status Register 2 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 OPERATION DESCRIPTION 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.1 Master Transmit 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.2 Master Receive 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.3 Slave Receive 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TABLE OF CONTENTS
DS80CH11
011200 3/88
6.3.4 Slave Transmit 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.5 Bus Monitor Mode Operation 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.0 A/D CONVERTER 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 OVERVIEW 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 ANALOG POWER / SLEEP MODE 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 REFERENCE OPTION 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 SAR A/D CONVERTER 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5 CONVERSION TIME 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6 WINDOW COMPARATOR 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 A/D OPERATION 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8 A/D SPECIAL FUNCTION REGISTERS 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.1 ADCON1 – A/D Control Register 1 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.2 ADCON2 – A/D Control Register 2 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.3 ADMSB – A/D Result Most Significant Byte 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.4 ADLSB – A/D Result Least Significant Byte 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.5 WINHI – A/D Window Comparator High Byte 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.6 WINLO – A/D Window Comparator Low Byte 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.0 ACTIVITY MONITOR/LED CONTROL 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 OVERVIEW 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 ACTIVITY MONITOR INPUT OPERA TION 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 AME – ACTIVITY MONITOR ENABLE REGISTER 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 AMQ – ACTIVITY MONITOR QUALIFIER REGISTER 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5 AMP – ACTIVITY MONITOR POLARITY REGISTER 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6 AMF – ACTIVITY MONITOR FLAG REGISTER 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7 LED CONTROL 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.0 HOST INTERFACE PORTS 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1 OVERVIEW 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 REGISTER MAPPING 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3 KBDIN / PMDIN – DATA REGISTERS 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4 KBSTAT / PMSTAT – STATUS REGISTERS 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5 KBDOUT / PMDOUT – OUTPUT DATA REGISTERS 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.0 KEYBOARD SCANNING PORTS 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 OVERVIEW 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 KEY SCAN OUTPUTS 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 KEY SCAN INPUTS 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 KDE – KEY DETECT ENABLE REGISTER 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 KDF – KEYBOARD DETECT FLAG REGISTER 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.0 PULSE WIDTH MODULAT ORS 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 FUNCTION OVERVIEW 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 PRESCALER 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 PWM CLOCK GENERATORS 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 PWM PULSE GENERAT ORS 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5 PWM SPECIAL FUNCTION REGISTERS 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.1 PW01CS / PW23CS – PWM 0, 1 / PWM 2, 3 Clock Select Registers 62. . . . . . . . . . . . . .
11.5.2 PW01CON / PW23CON – PWM 0, 1 / PWM 2, 3 Control Register 63. . . . . . . . . . . . . . . .
11.5.3 PWnFG – PWM n Frequency Generator Registers 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.4 PWMn – PWM n Value Registers 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.0 MICROCONTROLLER POWER MANAGEMENT 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 POWER–DOWN / POWER–UP OPERATION 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS80CH11
011200 4/88
12.1.1 Microcontroller Power Fail Reset 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 LOW POWER OPERATING MODES 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1 Slow Clock Mode 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.1 Crystaless Slow Clock Mode 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.2 Slow Clock Mode Operation 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.3 Clock Divider 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.4 Switchback 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.5 Status 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1.6 Crystal / Ring Operation 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.2 Idle Mode 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.3 Stop Mode and Enhancements 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.0 +5.0V ELECTRICAL SPECIFICATIONS 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1 ABSOLUTE MAXIMUM RATINGS* 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 MICROCONTROLLER DC ELECTRICAL CHARACTERISTICS 74. . . . . . . . . . . . . . . . . . . . . . . . . .
13.3 MICROCONTROLLER AC ELECTRICAL CHARACTERISTICS 76. . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.1 External Program Memory Characteristics 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.2 MOVX Using Stretch Memory Cycles 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.3 External Clock Characteristics 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.4 Serial Port Mode 0 Timing Characteristics 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3.5 Power Cycle Timing Characteristics 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 SYSTEM INTERFACE DC ELECTRICAL CHARACTERISTICS 83. . . . . . . . . . . . . . . . . . . . . . . . . .
13.5 HOST I/F AC TIMING CHARACTERISTICS 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.6 2–Wire AC TIMING CHARACTERISTICS 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.7 A/D CONVERTER SPECIFICATIONS 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.7.1 Absolute Maximum Ratings 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.7.2 A/D Electrical Characteristics 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS80CH11
011200 5/88
1.0 GENERAL DESCRIPTION
1.1 OVERVIEW
The System Energy Manager is a highly integrated microcontroller that provides several key features for systems including key scanning and control, battery and power management, as well as two 2–Wire serial I/O Ports. It incorporates the Dallas 8051–compatible high–speed microcontroller core which has been rede­signed to eliminate wasted clock and memory cycles. Every standard 8051 instruction is executed between
1.5 and 3 times faster than the original for the same crystal speed. Looking at it another way, the high– speed core achieves the same throughput as a stan­dard 8051 while using much less power as a result of fewer required clock cycles. As a result, the firmware can easily support many tasks required by mobile sys­tems within a single component.
The controller is designed to off–load battery and power management tasks from the host CPU and thereby make possible an efficient solution for systems. In addi­tion to the microcontroller core, it incorporates an 8–channel, 10–bit A/D converter with external refer­ence so that its firmware can perform battery manage­ment tasks without burdening the host CPU. A four–
channel 8–bit pulse–width modulator allows digital control of functions such as LCD contrast and bright­ness. An 8–bit port is provided for key scan inputs. A total of 88 parallel I/O pins are available for key scan­ning, system configuration, and power management control.
The System Energy Manager scans a key matrix and interfaces to the host CPU via an 8042–compatible port. The benefits of sophisticated power management and permanently powered functions are thereby attained without adding to the system’s chip count.
Two 2–wire, bi–directional serial buses are incorpo­rated to facilitate the management of slave peripheral devices on the motherboard, such as digital tempera­ture sensors and potentiometers, and to support exter­nal low–speed I/O devices such as monitor configura­tion channels, pen tablets, and joysticks.
Because a direct interface to the X–bus is provided, the controller is not dependent on a particular core logic chip or chip set. Independent chip select inputs for the keyboard controller, power management #1, and power management #2 registers are provided.
DS80CH11
011200 6/88
CONTROLLER BLOCK DIAGRAM Figure 1–1
VCC
P7.7 / AMI.7 / LED.7
uC
CLK OSC.
VPFW
VRST
GND
XTAL1 XTAL2
PORT 7 /
ACT. MONITOR /
LED CONTROL
P7.0 / AMI.0 / LED.0
TIMING /
BUS CONTROL
ALE
PSEN
RST
P3.7 / RD
PORT 3
P3.6 / WR
P3.5 / T1
P3.4 / T0 P3.3 / INT1 P3.2 / INT0
P3.1 / TXD0 P3.0 / RXD0
P1.7
PORT 1
P1.6
P1.3 / SDA1 P1.2 / SCL1 P1.1 / T2EX
P1.0 / T2
P6.7 / SOC
PORT 6 /
P6.6 P6.5 / PWI.1 P6.4 / PWI.0
P6.3 / PWO.3
P6.2 / PWO.2
P6.1 / PWO.1 P6.0 / PWO.0
PWM I/O
P1.5 / SDA2
P1.4 / SCL2
PORT 0
PORT 2
PORT 4 /
KEYBOARD
IN
PORT 8/
KEYBOARD
OUT
P0.7 /
AD7
P0.0 /
AD0
P2.7 /
A15
P2.0 /A8P4.7 /
KSI.7
P4.0 / KSI.0
P8.7/
KS0.7
P8.0/
KS0.0
P9.7/
KS0.15
P9.0/
KS0.8
PORT 5 /
10–BIT ADC
P5.0 / AI.0
P5.7 / AI.7
AGND
AVCC
VRL
VRH
PM1C
PC I/F
uC I/F
KBC
PC I/F
uC I/F
KBC
OUTPUT
STATUS
KBC
INPUT
SD7–SD0
IOW
IOR
A0
KBCS
KBOBF
SMI1
PM1CS
4 MHz
RING OSC.
SYS. CLOCK
CONTROL
WATCHDOG
TIMER
TIMER 2 TIMER 1 TIMER 0
INT 1 INT 0
8051
UART
ACC. BUS
SIO2
ACC. BUS
SIO1
SCRATCHPAD
REGISTERS (256 BYTES)
POWER MON./
CONTROL
HVCC
HGND
SPECIAL
HIGH SPEED
256 x 8
FUNCTION
REGISTERS
80C520
CPU CORE
DATA
RAM
POWER
CONTROL
3
3
PORT 9/
KEYBOARD
OUT
P10.7
PORT 10
P10.0
PM1C
PM1C
PM2C
PC I/F
uC I/F
PM2C
PM2C
STATUS
OUTPUT
INPUT
PM2CS
SMI2
STATUS
OUTPUT
INPUT
DS80CH11
011200 7/88
1.2 DETAILED FEATURE SUMMARY
High Speed 80C32 Compatible Core:
– High performance 4 clocks / machine cycle
(8032 = 12)
– Low Power: typically 1/3 power for equivalent
8032 throughput – Maximum clock speed up to 25 MHz at 5.0V – Ultra–low stop mode power (typ. 1 uA) and
“IDLE” mode (typ. 10 mA) – Multiple wake–up sources from STOP including
key scan, 2–wire, host I/F, or external interrupt – Three 16–bit timers, 1 serial port – 256 byte scratchpad – 256 bytes MOVX RAM
Keyboard Control:
– Replaces 8042 and key scan microcontroller – 2 Parallel I/O ports for key scan outputs – One interrupt–driven 8–bit input port to initiate
key–scan sequence
Input/Output:
– Total of eleven 8–bit I/O ports; all pins can be
individually programmed to serve as general
purpose digital input/output. – Each 8–bit port supports one or more special
functions:
Port 0, 2, 3: External program / data memory
interface
Port 1, 3: UART, 2–Wire serial, timers, and
external interrupt I/O.
Port 4, 8, 9: Key scan input / output Port 5: A/D inputs Port 6: PWM Outputs Port 7: Activity monitor, LED Control Port 10: GPIO
Analog Input/Output:
– Eight–channel, 10–bit A/D with power down
mode supports charging NiMH rechargeable
cells
– 4–channel, 8–bit PWM supports LCD brightness
and contrast control
2–Wire Bi–directional Serial Buses
– Master/slave multi–drop operation – Manages on–board slaves or external I/O
devices
Power Control
– Generates system power on reset – Programmable power down pin states
1.3 CONVENTIONS
The following conventions are used throughout this specification:
“SEM” is the short form name used to indicate the
System Energy Manager.
Signals that are active low are followed by a pound
symbol (#) or backslash (\), or are indicated with an overbar.
If a range of signals is described, such as SA0 through
SA10, the range is given as SA10–0, with the most– significant digit first and the least–significant digit last, separated by a hyphen.
Numbers written in this specification can be written as
decimal, hexadecimal, or binary . Hexadecimal num­bers are followed by an “H” suffix. Binary numbers are followed by a “B” suffix. For example, decimal 27 = 1BH = 00011011B.
1.4 ADDITIONAL REFERENCES
The SEM incorporates the Dallas 8051 compatible High Speed Micro core including the CPU and many of its core peripherals. The operational details of these ele­ments are contained in the Dallas High Speed Micro User’s Guide.
DS80CH11
011200 8/88
2.0 PIN DESCRIPTION
128–TQFP PIN ASSIGNMENT Figure 2–1
VRST VPFW P3.5 / T1 P3.4 / T0 P3.3 / INT1 P3.2 / INT0 P3.1 / TXD0 P3.0 / RXD0 P1.7 P1.6 P1.5 / SDA2 P1.4 / SCL2 P1.3 / SDA1 P1.2 / SCL1 P1.1 / T2EX P1.0 / T2 GND VCC P4.7 / KSI.7 P4.6 / KSI.6 P4.5 / KSI.5 P4.4 / KSI.4 P4.3 / KSI.3 P4.2 / KSI.2 P4.1 / KSI.1 P4.0 / KSI.0 P7.7 / AMI.7 / LED.7 P7.6 / AMI.6 / LED.6 P7.5 / AMI.5 / LED.5 P7.4 / AMI.4 / LED.4 P7.3 / AMI.3 / LED.3 P7.2 / AMI.2 / LED.2 P7.1 / AMI.1 / LED.1 P7.0 / AMI.0 / LED.0 HVCC P10.7 P10.6 P10.5
P9.7 / KSO.15 P9.6 / KSO.14 P9.5 / KSO.13 P9.4 / KSO.12
P9.3 / KSO.11 P9.2 / KSO.10
P9.1 / KSO.9 P9.0 / KSO.8 P8.7 / KSO.7 P8.6 / KSO.6 P8.5 / KSO.5 P8.4 / KSO.4 P8.3 / KSO.3 P8.2 / KSO.2 P8.1 / KSO.1 P8.0 / KSO.0
GND VCC
P6.7 / SOC
P6.6 P6.5 / PWI.1 P6.4 / PWI.0
P6.3 / PWO.3 P6.2 / PWO.2
P6.1 / PWO.1 P6.0 / PWO.0
P5.7 / AI.7 P5.6 / AI.6 P5.5 / AI.5 P5.4 / AI.4 P5.3 / AI.3 P5.2 / AI.2 P5.1 / AI.1 P5.0 / AI.0
GND
A0
IOW
IOR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87
86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
SMI1
KBOBF
PM1CS
KBCS
AGND
VRH
VRL
AVCC
HGND
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0
NC
NC
SMI2
PM2CS
P10.0
P10.1
P10.2
P10.3
P10.4
NC
PSEN
ALE
P0.7 / AD7
P0.6 / AD6
P0.5 / AD5
P0.4 / AD4
P0.3 / AD3
P0.2 / AD2
P0.1 / AD1
P0.0 / AD0
VCC
XTAL2
XTAL1
GND
P2.7 / A15
P2.6 / A14
P2.5 / A13
P2.4 / A12
P2.3 / A1 1
P2.2 / A10
P2.1 / A9
P2.0 / A8
RST
P3.7 / RD
P3.6 / WR
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
39404142434445464748495051525354555657585960616263
64
DS80CH11
011200 9/88
2.1 PIN FUNCTION SUMMARY
PIN SYMBOL DESCRIPTION
36 A0 Command / Data Select: Input. Address input used by the host processor in data
transfers to the keyboard controller and power management #1 and #2 interface ports to indicate whether the transfer is command (A0=1) or data (A0=0).
43 AGND Analog Ground.
106 ALE Address Latch Enable: Output. This signal functions as a clock to latch the external
address LSB from the multiplexed address/data bus on Port 0. This signal is commonly connected to the latch enable of an external 373 family transparent latch. ALE has a pulse width of 1.5 XTAL1 cycles and a period of 4 XTAL1 cycles. ALE is forced high
when the SEM is in a Reset condition. 46 AVCC Analog VCC. 17
35 86
117
GND Digital circuit ground.
47 HGND Host Interface Ground: 68 HVCC Host Interface VCC: 38 IOR I/O Read: Input. I/O Read is used to signal a read operation is in effect on the host
address/data bus. 37 IOW I/O Write: Input. I/O Write is used to signal a write operation is in effect on the host
address/data bus. 42 KBCS Keyboard Chip Select: (Input, active low). This is a chip select signal used to enable
the keyboard control host interface port. 40 KBOBF Keyboard Output Buffer Full: (Output, active high). This signal is set when the key-
board control host interface data buffer contains data to be read by the host. KBOBF will
be driven low when host reads the keyboard control data buffer register . 56
57
108
NC No Connection.
121 122 123 124 125 126 127 128
P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7)
Port 0 / Address/Data Outputs 7–0: I/O. Port 0 is an open–drain 8–bit bi–directional
I/O port. As an alternate function Port 0 can function as the multiplexed address/data
bus to access off–chip memory . During the time when ALE is high, the LSB of a memory
address is presented. When ALE falls to a logic 0, the port transitions to a bi–directional
data bus. This bus is used to read external ROM and read/write external RAM memory
or peripherals. When used as a memory bus, the port provides active high drivers. The
reset condition of Port 0 is tri–state. Pull–up resistors are required when using Port 0 as
an I/O port.
DS80CH11
011200 10/88
PIN SYMBOL DESCRIPTION
87 88 89 90 91 92 93 94
P1.0 (T2)
P1.1 (T2EX)
P1.2 SCL1 P1.3 SDA1 P1.4 SCL2 P1.5 SDA2
P1.6 P1.7
Port 1/ (Alternate Functions): – I/O. Port 1 provides eight lines which can be individu­ally selected as bi–directional I/O port pins or as the alternate functions listed below:
Alternate
Port
Function Description
P1.0 T2 External I/O for Timer/Counter 2 P1.1 T2EX Timer/Counter 2 Capture/Reload Trigger P1.2 SCL1 2–Wire Serial Clock 1 P1.3 SDA1 2–Wire Serial Data 1 P1.4 SCL2 2–Wire Serial Clock 2 P1.5 SDA2 2–Wire Serial Data 2 P1.6 (None) P1.7 (None)
Note that P1.7 – P1.2 are high–drive pins which are always open–drain and must be used with external pull–ups when used as I/O port pins. P1.1 and P1.0 have internal pull–up resistors.
109
110 111 112 113 114 115 116
P2.0 (A8)
P2.1 (A9) P2.2 (A10) P2.3 (A11) P2.4 (A12) P2.5 (A13) P2.6 (A14) P2.7 (A15)
Port 2 / Address Outputs A15–8: – I/O. Port 2 is a pseudo–bi–directional I/O port with internal pull–up resistors. As an alternate function Port 2 can function as MSB of the external address bus.
95 96 97 98
99 100 103 104
P3.0(RXD0)
P3.1 (TXD0)
P3.2 (INT0
)
P3.3 (INT1
) P3.4 (T0) P3.5 (T1)
P3.6 (WR
)
P3.7 (RD
)
Port 3 / (Alternate Functions): – I/O. Port 3 provides eight lines each of which can serve as psuedo–bi–directional I/O port pins or as the alternate functions as listed below. Internal pull–up resistors are always present on these pins.
Alternate
Port
Function Description
P3.0 RXD0 Serial Port 0 Input P3.1 TXD0 Serial Port 0 Output P3.2 INT0
External Interrupt 0
P3.3 INT1
External Interrupt 1 P3.4 T0 Timer 0 External Input P3.5 T1 Timer 1 External Input P3.6 WR
External Data Memory Write Strobe P3.7 RD
External Data Memory Read Strobe
77 78 79 80 81 82 83 84
P4.0 (KSI.0) P4.1 (KSI.1) P4.2 (KSI.2) P4.3 (KSI.3) P4.4 (KSI.4) P4.5 (KSI.5) P4.6 (KSI.6) P4.7 (KSI.7)
Port 4 / KSI.7–0: – I/O / Keyboard Scan Inputs. Port 4 provides eight lines which can be individually selected as psuedo–bi–directional I/O port pins or as an interrupt Inputs for key scanning. Port 4 pins incorporate Schmitt inputs with pull–up resistors.
DS80CH11
011200 11/88
PIN SYMBOL DESCRIPTION
34 33 32 31 30 29 28 27
P5.0 (AI.0) P5.1 (AI.1) P5.2 (AI.2) P5.3 (AI.3) P5.4 (AI.4) P5.5 (AI.5) P5.6 (AI.6) P5.7 (AI.7)
Port 5 / AI.7–0: – I/O / A/D inputs. Port 5 provides eight lines which can be individually selected as open–drain psuedo–bi–directional I/O port pins or as A/D inputs. Pull–up resistors are required when using Port 5 as an I/O port.
26 25 24 23 22 21 20 19
P6.0 (PWO.0) P6.1 (PWO.1) P6.2 (PWO.2) P6.3 (PWO.3)
P6.4 (PWI.0) P6.5 (PWI.1)
P6.6
P6.7 / SOC
Port 6 / PW0.3 – 0: – I/O / Pulse–Width Modulated Outputs. Port 6 provides eight lines which can all serve as psuedo–bi–directional I/O port pins with internal pull–up resistors. Six lines can be individually selected to serve the pulse–width modulator function indicated below:
Alternate
Port
Function Description
P6.0 PWO.0 PWM 0 output (active high drive when enabled) P6.1 PWO.1 PWM 1 output (active high drive when enabled) P6.2 PWO.2 PWM 2 output (active high drive when enabled) P6.3 PWO.3 PWM 3 output (active high drive when enabled) P6.4 PWI.0 Optional clock input for PWM channels 0 and 2 P6.5 PWI.1 Optional clock input for PWM channels 1 and 3 P6.6 (none) P6.7 SOC External A / D start of conversion signal
69 70 71 72 73 74 75 76
P7.0 (AMI.0)
(LED.0)
P7.1 (AMI.1)
(LED.1)
P7.2 (AMI.2)
(LED.2)
P7.3 (AMI.3)
(LED.3)
P7.4 (AMI.4)
(LED.4)
P7.5 (AMI.5)
(LED.5)
P7.6 (AMI.6)
(LED.6)
P7.7 (AMI.7)
(LED.7)
Port 7 / AMI.7–0 / LED.7–0: – I/O / Activity Monitor Inputs / LED Control. Port 7 provides eight lines which can serve as a psuedo–bi–directional I/O port pins with internal pull– ups or as Activity Monitor inputs. When used as Activity Monitor inputs, these pins are typically connected to the chip select line of an external peripheral device, and can be programmed to sense active–high or active–low signals. Any pin which is programmed as an Activity Monitor input by setting its AMEn bit to a 1 will have its pull–up device dis­abled and thereby function as an open–drain
pin in order to eliminate unnecessary cur-
rent drain. All port 7 pins are capable of controlling LED’s.
16 15 14 13 12 11 10
9
P8.0 (KSO.0) P8.1 (KSO.1) P8.2 (KSO.2) P8.3 (KSO.3) P8.4 (KSO.4) P8.5 (KSO.5) P8.6 (KSO.6) P8.7 (KSO.7)
Port 8 / KSO.7–0:– I/O. Port 8 provides eight lines of open–drain psuedo–bi–directional I/O port pins. Typically, these lines are used for key–scan outputs.
DS80CH11
011200 12/88
PIN SYMBOL DESCRIPTION
8 7 6 5 4 3 2 1
P9.0 (KSO.8)
P9.1 (KSO.9) P9.2 (KSO.10) P9.3 (KSO.11) P9.4 (KSO.12) P9.5 (KSO.13) P9.6 (KSO.14) P9.7 (KSO.15)
Port 9 / KSO.15–8: – I/O. Port 9 provides eight lines of open–drain psuedo–bi–direc­tional I/O port pins. Typically, these lines are used for key–scan outputs.
60 61 62 63 64 65 66 67
P10.0 P10.1 P10.2 P10.3 P10.4 P10.5 P10.6 P10.7
Port10: –I/O. Port 10 provides eight lines of general purpose Input or Output.
41 PM1CS Power Management #1 Chip Select: (Input, active low). This is a chip select signal
used to enable the power management #1 host interface port.
59 PM2CS Power Management #2 Chip Select: (Input, active low). This is a chip select signal
used to enable the power management #2 host interface port.
107 PSEN Program Store Enable: Output. This signal goes low when off–chip program memory
is being accessed via Ports 0 and 2. It is commonly connected to optional external ROM memory as a chip enable. PSEN
will provide an active low pulse and is driven high when
external ROM is not being accessed.
105 RST Reset: Input, active high The RST input pin contains a Schmitt voltage input to recog-
nize external active high Reset inputs. The pin also employs an internal pull–down resistor to allow for a combination of wired OR external Reset sources. An RC is not required for power–up, as the controller provides this function internally.
55 54 53 52 51 50 49 48
SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7
System Data Bus: (Bi–directional). SD7–0 are data bus lines used for data transfers between the host processor and the keyboard interface buffer and power management #1 and #2 interface buffers.
39 SMI1 System Management Interrupt #1: (Output, active low). This signal is driven low
when the power management #1 host interface data buffer contains data to be read by the host. SMI1
will be returned to a High Level when host reads the power management
#1 data buffer register.
58 SMI2 System Management Interrupt #2: (Output, active low). This signal is driven low
when the power management #2, host interface data buffer contains data to be read by the host. SMI2
will be returned to a high level when the host reads the power manage-
ment #2 data buffer register .
DS80CH11
011200 13/88
PIN SYMBOL DESCRIPTION
18 85
120
VCC Digital Power Supply Input: For microcontroller and associated functions.
101 VPFW Power Fail Warning: Output, active low. The VPFW pin signals an impending power
failure when VCC drops below VPFW voltage threshold.
44 VRH A/D Positive Voltage Reference: The VRH pin is the positive reference (upper voltage
limit) of the A/D Converter.
45 VRL A/D Negative Voltage Reference: The VRL pin is the negative reference (lower volt-
age limit) of the A/D Converter.
102 VRST Power Fail Reset: Output, active low. The VRST pin signals a “power not good” condi-
tion to the system when system VCC has dropped below the VRST voltage threshold.
118 119
XTAL1 XTAL2
µC Crystal Oscillator Inputs. XTAL1 and XT AL2 provide support for parallel resonant, AT cut crystals. XT AL1 acts also as an input if there is an external clock source in place of a crystal. XTAL2 serves as the output of the crystal amplifier.
DS80CH11
011200 14/88
2.2 PIN CHARACTERISTICS
PIN NAME
POWER DOWN
MODE STATE
I/O BUFFER TYPE
RESET
STATE
36 A0 I – 43 AGND
106 ALE Low O Low
46 AVCC – 17 GND – 35 GND – 86 GND
117 GND
47 HGND – 68 HVCC – 38 IOR I – 37 IOW I – 42 KBCS I – 40 KBOBF Hold O Low 57 NC
56 NC – 108 NC – 121 P0.0 / AD0 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
122 P0.1 / AD1 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
123 P0.2 / AD2 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
124 P0.3 / AD3 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
125 P0.4 / AD4 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
126 P0.5 / AD5 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
127 P0.6 / AD6 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
128 P0.7 / AD7 High–Z Open–Drain (port)
CMOS drive (bus)
High–Z
87 P1.0 / T2 Hold Pull–up Weak High
88 P1.1 / T2EX Hold Pull–up Weak High
89 P1.2 / SCL1 Hold Open–drain High–Z
90 P1.3 / SDA1 Hold Open–drain High–Z
DS80CH11
011200 15/88
2.2 PIN CHARACTERISTICS (cont’d)
PIN NAME
POWER DOWN
MODE STATE
I/O BUFFER TYPE
RESET
STATE
91 P1.4 /SCL2 Hold Open–drain High–Z 92 P1.5 /SDA2 Hold Open–drain High–Z 93 P1.6 Hold Open–drain High–Z
94 P1.7 Hold Open–drain High–Z 109 P2.0 / A8 Hold Pull–up Weak High 110 P2.1 / A9 Hold Pull–up Weak High 111 P2.2 / A10 Hold Pull–up Weak High 112 P2.3 / A11 Hold Pull–up Weak High 113 P2.4 / A12 Hold Pull–up Weak High 114 P2.5 / A13 Hold Pull–up Weak High 115 P2.6 / A14 Hold Pull–up Weak High 116 P2.7 / A15 Hold Pull–up Weak High
95 P3.0 / RXD0 Hold Pull–up Weak High
96 P3.1 / TXD0 Hold Pull–up Weak High
97 P3.2 / INT0 Hold Pull–up Weak High
98 P3.3 / INT1 Hold Pull–up Weak High
99 P3.4 / T0 Hold Pull–up Weak High 100 P3.5 / T1 Hold Pull–up Weak High 103 P3.6 / WR Hold Pull–up Weak High 104 P3.7 / RD Hold Pull–up Weak High
77 P4.0 / KSI.0 Hold Pull–up Weak High
78 P4.1 / KSI.1 Hold Pull–up Weak High
79 P4.2 / KSI.2 Hold Pull–up Weak High
80 P4.3 / KSI.3 Hold Pull–up Weak High
81 P4.4 / KSI.4 Hold Pull–up Weak High
82 P4.5 / KSI.5 Hold Pull–up Weak High
83 P4.6 / KSI.6 Hold Pull–up Weak High
84 P4.7 / KSI.7 Hold Pull–up Weak High
34 P5.0 / AI.0 Hold Open–drain High–Z
33 P5.1 / AI.1 Hold Open–drain High–Z
32 P5.2 / AI.2 Hold Open–drain High–Z
31 P5.3 / AI.3 Hold Open–drain High–Z
DS80CH11
011200 16/88
2.2 PIN CHARACTERISTICS (cont’d)
PIN NAME
POWER DOWN
MODE STATE
I/O BUFFER TYPE
RESET
STATE
30 P5.4 / AI.4 Hold Open–drain High–Z 29 P5.5 / AI.5 Hold Open–drain High–Z 28 P5.6 / AI.6 Hold Open–drain High–Z 27 P5.7 / AI.7 Hold Open–drain High–Z 26 P6.0 / PWO.0 Hold Pull–up (PWMn disabled)
CMOS drive (PWMn enabled)
Weak High
25 P6.1 / PWO.1 Hold Pull–up (PWMn disabled)
CMOS drive (PWMn enabled)
Weak High
24 P6.2 / PWO.2 Hold Pull–up (PWMn disabled)
CMOS drive (PWMn enabled)
Weak High
23 P6.3 / PWO.3 Hold Pull–up (PWMn disabled)
CMOS drive (PWMn enabled)
Weak High
22 P6.4 / PWI.0 Hold Pull–up Weak High 21 P6.5 / PWI.1 Hold Pull–up Weak High 20 P6.6 Hold Pull–up Weak High 19 P6.7 / SOC Hold Pull–up Weak High 69 P7.0 / AMI.0 /
LED.0
Hold Pull–up Weak High
70 P7.1 / AMI.1 /
LED.1
Hold Pull–up Weak High
71 P7.2 / AMI.2 /
LED.2
Hold Pull–up Weak High
72 P7.3 / AMI.3 /
LED.3
Hold Pull–up Weak High
73 P7.4 / AMI.4/
LED.4
Hold Pull–up Weak High
74 P7.5 / AMI.5/
LED.5
Hold Pull–up Weak High
75 P7.6 / AMI.6/
LED.6
Hold Pull–up Weak High
76 P7.7 / AMI.7/
LED.7
Hold Pull–up Weak High
16 P8.0 / KSO.0 Hold Open–drain High–Z 15 P8.1 / KSO.1 Hold Open–drain High–Z 14 P8.2 / KSO.2 Hold Open–drain High–Z 13 P8.3 / KSO.3 Hold Open–drain High–Z 12 P8.4 / KSO.4 Hold Open–drain High–Z 11 P8.5 / KSO.5 Hold Open–drain High–Z 10 P8.6 / KSO.6 Hold Open–drain High–Z
DS80CH11
011200 17/88
2.2 PIN CHARACTERISTICS (cont’d)
PIN NAME
POWER DOWN
MODE STATE
I/O BUFFER TYPE
RESET
STATE
9 P8.7 / KSO.7 Hold Open–drain High–Z 8 P9.0 / KSO.8 Hold Open–drain High–Z 7 P9.1 / KSO.9 Hold Open–drain High–Z 6 P9.2 / KSO.10 Hold Open–drain High–Z 5 P9.3 / KSO.11 Hold Open–drain High–Z 4 P9.4 / KSO.12 Hold Open–drain High–Z 3 P9.5 / KSO.13 Hold Open–drain High–Z 2 P9.6 / KSO.14 Hold Open–drain High–Z
1 P9.7 / KSO.15 Hold Open–drain High–Z 60 P10.0 Hold Pull–up Weak High 61 P10.1 Hold Pull–up Weak High 62 P10.2 Hold Pull–up Weak High 63 P10.3 Hold Pull–up Weak High 64 P10.4 Hold Pull–up Weak High 65 P10.5 Hold Pull–up Weak High 66 P10.6 Hold Pull–up Weak High 67 P10.7 Hold Pull–up Weak High 41 PM1CS I – 59 PM2CS I
107 PSEN Low O Low 105 RST I
55 SD0 (note 2) Bi–directional (note 2) 54 SD1 (note 2) Bi–directional (note 2) 53 SD2 (note 2) Bi–directional (note 2) 52 SD3 (note 2) Bi–directional (note 2) 51 SD4 (note 2) Bi–directional (note 2) 50 SD5 (note 2) Bi–directional (note 2) 49 SD6 (note 2) Bi–directional (note 2) 48 SD7 (note 2) Bi–directional (note 2) 39 SMI1 Hold O High 58 SMI2 Hold O High 18 VCC – 85 VCC
120 VCC
DS80CH11
011200 18/88
2.2 PIN CHARACTERISTICS (cont’d)
PIN NAME
POWER DOWN
MODE STATE
I/O BUFFER TYPE
RESET
STATE
101 VPFW (note 3) O (note 3)
44 VRH – 45 VRL
102 VRST (note 3) O (note 3)
118 XTAL1 I – 119 XTAL2 H O
PIN STATE DESCRIPTIONS
High–Z High Impedance Enabled Power applied; electrically functioning input Unchanged Previous state not affected
NOTES:
1. As shown above, the original port pins P1.7–P1.2 have been modified to open–drain instead of having “Internal” pull–up resistors.
2. This signal is independently powered from the HVCC on pin 68. As a result, the state of the reset pin and the power down mode have no effect on its operation.
3. VRST
and VPFW reflects the state of VCC with respect to the power–fail reset and power–fail warning trip points,
respectively, and is unaf fected by the RST pin and power down mode state.
DS80CH11
011200 19/88
3.0 CORE MICROCONTROLLER
3.1 CORE MICRO OVERVIEW
The SEM incorporates the Dallas High Speed Micro core which is a fully static CMOS 8051 compatible microcontroller with a new internal architecture designed for high performance. The higher speed operation of the microcontroller core comes not just from increasing the clock frequency, but from a newer, more efficient design of the internal architecture. The major features of the High Speed Micro Core include:
4 clocks/machine cycle (8032 = 12)
Wasted cycles removed
Runs DC to 25 Mhz clock rates @ 5V
Single–cycle instruction in 160 ns
Uses less power for equivalent work
Dual data pointer
Optional variable length MOVX to access fast/slow
RAM /peripherals
3.2 INSTRUCTION SET SUMMARY
All instructions in the SEM perform the same functions as their 80C32 counterparts. Their affect on bits, flags, and other status functions are identical. However, the timing of each instruction is different. This applies both in absolute and relative number of clocks.
For absolute timing of real–time events, the timing of software loops will need to be calculated using the table below. However, counter/timers default to run at the older 12 clocks per increment. Therefore, while soft­ware runs at higher speed, timer–based events need no modification to operate as before. Timers can be set to
run at 4 clocks per increment cycle to take advantage of higher speed operation.
The relative time of two instructions might be different in the new architecture than it was previously. For exam­ple, in the original architecture, the “MOVX A, @ DPTR” instruction and the “MOV direct, direct” instruction used two machine cycles or 24 oscillator cycles. Therefore, they required the same amount of time. In the GEM, the MOVX instruction can be done in two machine cycles or 8 oscillator cycles but the “MOV direct, direct” uses three machine cycles or 12 oscillator cycles. While both are faster than their original counterparts, they now have different execution times from each other. This is because in most cases, the SEM uses one cycle for each byte. The timing of each instruction should be examined for familiarity with the changes. Note that a machine cycle now requires just four clocks, and pro­vides one ALE pulse per cycle. Many instructions require only one cycle, but some require five. In the orig­inal architecture, all were one or two cycles except for MUL and DIV.
INSTRUCTION SET SUMMARY Table 3–1
Legends:
A – Accumulator Rn – Register R7–R0 direct – Internal Register address @Ri – Internal Register pointed–to by R0 or R1
(except MOVX) rel – 2’s complement offset byte bit – direct bit–address #data – 8–bit constant #data 16 – 16–bit constant addr 16 – 16–bit destination address addr 11 – 11–bit destination address
DS80CH11
011200 20/88
INSTRUCTION SET SUMMARY Table 3–1 (cont’d)
INSTRUCTION BYTE
OSCILLATOR
CYCLES
INSTRUCTION BYTE
OSCILLATOR
CYCLES
Arithmetic Instructions:
ADD A, Rn 1 4 INC A 1 4 ADD A, direct 2 8 INC Rn 1 4 ADD A, @Ri 1 4 INC direct 2 8 ADD A, #data 2 8 INC @Ri 1 4 ADDC A, Rn 1 4 INC DPTR 1 12 ADDC A, direct 2 8 DEC A 1 4 ADDC A, @Ri 1 4 DEC Rn 1 4 ADDC A, #data 2 8 DEC direct 2 8 SUBB A, Rn 1 4 DEC @Ri 1 4 SUBB A, direct 2 8 MUL AB 1 20 SUBB A, @Ri 1 4 DIV AB 1 20 SUBB A, #data 2 8 DA A 1 4
Logical Instructions:
ANL A, Rn 1 4 XRL A, Rn 1 4 ANL A, direct 2 8 XRL A, direct 2 8 ANL A, @Ri 1 4 XRL A, @Ri 1 4 ANL A, #data 2 8 XRL A, #data 2 8 ANL direct, A 2 8 XRL direct, A 2 8 ANL direct, #data 3 12 XRL direct, #data 3 12 ORL A, Rn 1 4 CLR A 1 4 ORL A, direct 2 8 CPL A 1 4 ORL A, @Ri 1 4 RL A 1 4 ORL A, #data 2 8 RLC A 1 4 ORL direct, A 2 8 RR A 1 4 ORL direct, #data 3 12 RRC A 1 4
SWAP A 1 4
Data Transfer Instructions:
MOV A, Rn 1 4 MOVC A, @A+DPTR 1 12 MOV A, direct 2 8 MOVC A, @A+PC 1 12 MOV A, @Ri 1 4 MOVX A, @Ri 1 8–36 MOV A, #data 2 8 MOVX A, @DPTR 1 8–36 MOV Rn, A 1 4 MOVX @Ri, A 1 8–36 MOV Rn, direct 2 8 MOVX @DPTR, A 1 8–36 MOV Rn, #data 2 8 PUSH direct 2 8 MOV direct, A 2 8 POP direct 2 8 MOV direct, Rn 2 8 XCH A, Rn 1 4 MOV direct1, direct2 3 12 XCH A, direct 2 8 MOV direct, @Ri 2 8 XCH A, @Ri 1 4 MOV direct, #data 3 12 XCHD A, @Ri 1 4 MOV @Ri, A 1 4 MOV @Ri, direct 2 8 MOV @Ri, #data 2 8 MOV DPTR, #data 16 3 12
DS80CH11
011200 21/88
INSTRUCTION SET SUMMARY Table 3–1 (cont’d)
Bit Manipulation Instructions:
CLR C 1 4 ANL C, bit 2 8 CLR bit 2 8 ANL C, bit
28 SETB C 1 4 ORL C, bit 2 8 SETB bit 2 8 ORL C, bit
28 CPL C 1 4 MOV C, bit 2 8 CPL bit 2 8 MOV bit, C 2 8
Program Branching Instructions:
ACALL addr 11 2 12 CJNE A, direct, rel 3 16 LCALL addr 16 3 16 CJNE A, #data, rel 3 16 RET 1 16 CJNE Rn, #data, rel 3 16 RETI 1 16 CJNE @ Ri, #data, rel 3 16 AJMP addr 11 2 12 NOP 1 4 LJMP addr 16 3 16 JC rel 2 12 SJMP rel 2 12 JNC rel 2 12 JMP @A+DPTR 1 12 JB bit, rel 3 16 JZ rel 2 12 JNB bit, rel 3 16 JNZ rel 2 12 JBC bit, rel 3 16 DJNZ Rn, rel 2 12 DJNZ direct, rel 3 16
The Table above shows the speed for each class of instruction. Note that many of the instructions have mul­tiple opcodes. There are 255 opcodes for 111 instruc­tions. Of the 255 opcodes, 159 are three times faster than the original 80C32. While a system than empha­sizes those instructions will see the most improvement, the large total number that receive a three to one improvement assure a dramatic speed increase for any system. The speed improvement summary is provided below.
3.3 SPEED IMPROVEMENT
The following table summarizes the speed improve­ment of the High Speed Micro core over a standard 12 clock / machine cycle 8052 device.
#Opcodes Speed Improvement
159 3.0 x 51 1.5 x 43 2.0 x 2 2.4 x 255 Average: 2.5
3.4 INSTRUCTION SET ADDITIONAL REFERENCES
The user should refer to the Dallas High Speed Micro User’s Guide for a complete description of the instruc­tion set including its address modes, coding, and timing for the SEM.
3.5 RESET
The High–Speed Micro has three ways of entering a reset state:
Power–On / Fail Reset
Watchdog Timer Reset
External Reset
The operation of the CPU timing and states during a reset are documented in the Dallas High Speed Micro User’s Guide under the “Reset Conditions” section. The Watchdog Timer reset is documented in the Watchdog Timer section of the Dallas High Speed Micro User’s Guide. The operation of the Power–On / Fail reset is described in the Power Management section of this doc­ument.
DS80CH11
011200 22/88
3.6 INTERRUPT CONTROL
The SEM provides 16 sources of interrupt with three priority levels. The Power–fail Interrupt (PFI), if enabled, always has the highest priority . There are two remaining user selectable priorities: high and low. If two interrupts that have the same priority occur simulta-
neously, the hardware–determined precedence given below determines which is a acted upon. Except for the PFI, all interrupts that are new to the 8051 family have a lower natural priority than the originals.
INTERRUPT PRIORITY Table 3–2
NAME DESCRIPTION VECTOR
NATURAL PRIORITY
8051/DALLAS
PFI Power Fail Interrupt 33h 1 DALLAS INT0 External Interrupt 0 03h 2 8051 TF0 Timer 0 0Bh 3 8051 INT1 External Interrupt 1 13h 4 8051 TF1 Timer 1 1Bh 5 8051 SCON0 TI0 or RI0 from Serial Port 0 23h 6 8051 TF2 Timer 2 2Bh 7 8051 AMI Activity Monitor Interrupt 3Bh 8 DALLAS 2WI1 2–Wire Serial Port 1 43h 9 DALLAS ADI A/D End of Conversion 4Bh 10 DALLAS 2WI2 2–Wire Serial Port 2 53h 11 DALLAS KBI Keyboard Buffer Input 5Bh 12 DALLAS PBI1 Power Mgmt. Buffer Input #1 63h 13 DALLAS KDI Key Detect Input 6Bh 14 DALLAS WDI WatchDog Periodic Interrupt 73h 15 DALLAS PBI2 Power Mgmt. Buffer Input #2 7Bh 16 DALLAS
INTERRUPT CONTROL SUMMARY Table 3–3
INTERRUPT
SOURCE
FLAG(S)
FLAG
LOC.
ENABLE
ENABLE
LOC.
PRIORITY
PRIORITY
LOC.
Power Fail PFI WDCON.4 EPFI WDCON.5 N/A N/A External 0 IE0 TCON.1 EX0 IE.0 PX0 IP.0 Timer 0 TF0 TCON.5 ET0 IE.1 PT0 IP.1 External 1 IE1 TCON.3 EX1 IE.2 PX1 IP.2 Timer 1 TF1 TCON.7 ET1 IE.3 PT1 IP.3 Serial Port 0 RI0,TI0 SCON0.0/
SCON0.1
ES0 IE.4 PS0 IP.4
Timer 2 TF2 T2CON.7 ET2 IE.5 PT2 IP.5 Activity monitor AMF7–0 AMF.7–0 EAM IE.6 PAM IP.6
DS80CH11
011200 23/88
INTERRUPT CONTROL SUMMARY Table 3–3 (cont’d)
INTERRUPT
SOURCE
FLAG(S)
FLAG
LOC.
ENABLE
ENABLE
LOC.
PRIORITY
PRIORITY
LOC.
2–Wire Serial Port 1 2WIF1 2WCON1.4 E2W1 EIE.0 P2W1 EIP.0 A/D End of Conv. EOC ADCON1.6 EAD EIE.1 PAD EIP.1 2–Wire Serial Port 2 2WIF2 2WCON2.4 E2W2 EIE.2 P2W2 EIP.2 Keyboard Buffer KIBF KBSTAT.1 EKB EIE.3 PKB EIP.3 Power Mgmt. #1 Buffer PIBF1 PMSTAT1.1 EPB1 EIE.4 PPB1 EIP.4 Key Detect Input KDF7–0 KDF.7–0 EKD EIE.5 PKD EIP.5 WatchDog periodic WDIF WDCON.3 EWDI EIE.6 PWDI EIP.6 Power Mgmt. #2 Buffer PIBF2 PMSTAT2.1 EPB2 EIE.7 PPB2 EIP.7
A complete description of the interrupt structure of the microcontroller core including operation of the priority scheme and acknowledgment operation is contained in the Dallas High Speed Micro User’s Guide.
DS80CH11
011200 24/88
4.0 MEMORY RESOURCES
4.1 OVERVIEW
The SEM contains the following memory resources and features:
256 bytes of on–chip direct (scratchpad) RAM
256 bytes of on–chip MOVX data RAM
Off–chip program and data memory expansion
Software enable/disable of on–chip data memory
4.2 DATA MEMORY ACCESS
Unlike many 8051 derivatives, the SEM contains on– chip data memory. Although physically on–chip, soft­ware accesses this area in the same way off–chip data memory is accessed: via the MOVX instruction. The 256 bytes of SRAM is located between address 0000h and 00FFh.
Access to the on–chip data RAM is optional under soft­ware control. When enabled by software, the data
SRAM is between 0000h and 00FFh. Any MOVX instruction that uses this area will go to the on–chip RAM while enabled. MOVX addresses greater than 256 automatically go to external memory through Ports 0 & 2.
When disabled, the 256 bytes of memory area is trans­parent to the system memory map. Any MOVX directed to the space between 0000h and FFFFh goes to the expanded bus on Ports 0 & 2. This also is the default condition. This default allows the SEM to drop into an existing system that uses these addresses for other hardware and still have full compatibility.
The on–chip data area is selected by software using two bits in the Power Management Register at location C4h. This selection is dynamically programmable. Thus access to the on–chip area becomes transparent to reach off–chip devices at the same addresses. The control bits are DME1 (PMR.1) and DME0 (PMR.0). Their operation is described in Table 4–1.
DATA MEMORY ACCESS CONTROL Table 4–1
DME1 DME0 DATA MEMORY ADDRESS MEMORY FUNCTION
0 0 0000h – FFFFh External Data Memory (Default condition) 0 1 0000h – 00FFh
0100h – FFFFh
Internal SRAM Data Memory
External Data Memory 1 0 Reserved Reserved 1 1 0000h – 00FFh
0100h – FFFBh
FFFCh
FFFDh – FFFFh
Internal SRAM Data Memory
Reserved – no external access
Read access to the status of lock bits
Reserved – no external access
Notes on the status byte read at FFFCh with DME1, 0 = 1, 1: Bits 2–0 reflect the programmed status of the security lock bits LB3–LB1. They are individually set to a logic 1 to correspond to a security lock bit that has been programmed. These status bits allow software to verify that the part has been locked before running if desired. The bits are read only.
4.2.1 Stretch Memory Cycle
The SEM allows software to adjust the speed of off–chip data memory access. The micro is capable of perform­ing the MOVX in as little as two instruction cycles. The on–chip SRAM uses this speed and any MOVX instruc­tion directed internally uses two cycles. However, the time can be stretched for interface to external devices. This allows access to both fast memory and slow memory or peripherals with no glue logic. Even in high– speed systems, it may not be necessary or desirable to
perform off–chip data memory access at full speed. In addition, there are a variety of memory mapped periph­erals such as LCDs or UARTs that are slow.
Operation of the Stretch MOVX function is fully docu­mented in the Dallas High Speed Micro User’s Guide.
DS80CH11
011200 25/88
4.2.2 Dual Data Pointer
A second data pointer register (DPTR 1) is incorporated into the SEM in addition to the standard one in the 8051. This feature allows faster execution of many operations involving data memory access, such as block moves.
Operation of the dual data pointer function is fully docu­mented in the Dallas High Speed Micro User’s Guide.
4.3 EXTERNAL MEMORY INTERFACE
Interface techniques for interfacing external memory as program or data storage to the SEM via Ports 0 and 2 are described in the Dallas High Speed Micro User’s Guide.
4.4 DIRECT (SCRATCHPAD) RAM ACCESS
The SEM incorporates a full 256 bytes of direct RAM. This RAM is accessed in a manner identical to that of a
standard 80C52 compatible device. A full description of this memory along with the instructions that access it is contained in the Dallas High Speed Micro User’s Guide.
4.5 SPECIAL FUNCTION REGISTERS
Special Function Registers (SFRs) control most special features of the SEM. This allows the SEM to have many new features but use the same instruction set as the
8051. When writing software to use a new feature, an equate statement defines the SFR to an assembler or compiler. This is the only change needed to access the new function. The SEM duplicates the SFRs contained in the standard 80C52. Table 4–2 is a summary of the values loaded into the SEM’s SFR’s on reset. T able 4–3 is a summary of all of the SFR’s and the control bits they contain.
F8h
F0h
E8h
E0h
D8h
D0h
C8h
C0h B8h
B0h
A8h
A0h
98h
90h
88h
80h
DS80CH11
011200 26/88
SPECIAL FUNCTION REGISTER RESET VALUES Table 4–2
* New functions are in bold
EIP
00000000
B
00000000
PORT10 11111111
PMSTAT2
XXXXXX00
PMDIN2
XXXXXXXX
PMDOUT2
XXXXXXXX
EIE
00000000
PORT9
11111111
PW23CON
00000000
PWM2
00000000
PWM3
00000000
ACC
00000000
PORT8
11111111
PW23CS
00000000
PW2FG
00000000
PW3FG
00000000
WDCON
0X0X0XX0
2WCON2
00000000
2WSTAT12
00000000
2WSTAT22
00000000
PW01CON
00000000
PWM0
00000000
PWM1
00000000
PSW
00000000
2WSADR2
00000000
2WDAT2
00000000
2WFS2
00000000
PORT7
11111111
PW01CS
00000000
PW0FG
00000000
PW1FG
00000000
T2CON
00000000
T2MOD
11111100
RCAP2L
00000000
RCAP2H
00000000
TL2
00000000
TH2
00000000
PMR
010X0000
STATUS
00000000
TA
11111111
IP
10000000
SADEN0
00000000
PORT6
11111111
PMSTAT1
XXXXXX00
PMDIN1
XXXXXXXX
PMDOUT1
XXXXXXXX
PORT3
11111111
ADCON1
00000000
ADCON2 00000000
ADMSB
00000000
ADLSB
00000000
WINHI
00000000
WINLO
00000000
IE
00000000
SADDR0
00000000
PORT5
11111111
KBSTAT
XXXXXX00
KBDIN
XXXXXXXX
KBDOUT
XXXXXXXX
PORT2
11111111
PORT4
11111111
KDE
00000000
KDF
00000000
SCON0
00000000
SBUF0
00000000
2WSADR1
00000000
2WDAT1
00000000
2WFS1
00000000
2WCON1 00000000
2WSTAT11
00000000
2WSTAT21
00000000
PORT1
11111111
EXIF
0000XXX0
AME
00000000
AMQ
00000000
AMP
00000000
AMF
00000000
TCON
00000000
TMOD
00000000
TL0
00000000
TL1
00000000
TH0
00000000
TH1
00000000
CKCON
00000001
PORT0
11111111SP000001 11
DPL
00000000
DPH
00000000
DPL1
00000000
DPH1
00000000
DPS
00000000
PCON
00110000
FFh
F7h
EFh
E7h
DFh
D7h
CFh
C7h
BFh
B7h
AFh
A7h
9Fh
97h
8Fh
87h
DS80CH11
011200 27/88
SPECIAL FUNCTION REGISTER LOCATIONS Table 4–3
* New functions are in bold
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS
PORT0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 80h SP 81h DPL 82h DPH 83h
DPL1 84h DPH1 85h DPS 0 0 0 0 0 0 0 SEL 86h
PCON SMOD SMOD0 GF1 GF0 STOP IDLE 87h TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h TMOD GATE C/T M1 M0 GATE C/T M1 M0 89h TL0 8Ah TL1 8Bh TH0 8Ch TH1 8Dh CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh PORT1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h
EXIF XT/RG RGMD RGSL BGS 91h AME AME7 AME6 AME5 AME4 AME3 AME2 AME1 AME0 92h AMQ AMQ7 AMQ6 AMQ5 AMQ4 AMQ3 AMQ2 AMQ1 AMQ0 93h AMP AMP7 AMP6 AMP5 AMP4 AMP3 AMP2 AMP1 AMP0 94h AMF AMF7 AMF6 AMF5 AMF4 AMF3 AMF2 AMF1 AMF0 95h
SCON0 SM0/FE SM1 SM2 REN TB8 RB8 TI0 RI0 98h SBUF0 SB7 SB6 SB5 SB4 SB3 SB2 SB1 SB0 99h
2WSADR1 SLA6 SLA5 SLA4 SLA3 SLA2 SLA1 SLA0 9Ah 2WDAT1 9Bh 2WFS1 9Ch 2WCON1 2WEN1 STA1 STO1 2WIF1 BMM1 ANAK1 9Dh 2WSTAT11 BER1 ARL1 RSTO1 TXI1 RXI1 TSTA1 RSTA1 9Eh 2WSTAT21 BB1 ADM1 X/R1 ACKS1 9Fh
PORT2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h
PORT4 P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0 A4h KDE KDE7 KDE6 KDE5 KDE4 KDE3 KDE2 KDE1 KDE0 A5h KDF KDF7 KDF6 KDF5 KDF4 KDF3 KDF2 KDF1 KDF0 A6h
IE EA EAM ET2 ES0 ET1 EX1 ET0 EX0 A8h SADDR0 A9h
Loading...
+ 61 hidden pages