Cypress STK14D88 User Manual

STK14D88
32Kx8 AutoStore™ nvSRAM

Features

A0 A1 A2 A3 A4 A
10
COLUMN I/O
COLUMN DEC
STATIC RAM
ARRAY
512 x 512
ROW DECODER
INPUT BUFFERS
Quantum Trap
512 x 512
STORE/ RECALL
CONTROL
STORE
RECALL
POWER
CONTROL
A
5
A
6
A
7
A
8
A
9
A
11
A
12
A
13
A
14
DQ
0
DQ
1
DQ
2
DQ
3
DQ
4
DQ
5
DQ
6
DQ
7
SOFTWARE
DETECT
G
E W
HSB
V
CCXVCAP
A0 - A
13
Logic Block Diagram

Description

25, 35, 45 ns Read Access and R/W Cycle Time
Unlimited Read/Write Endurance
Nonvolatile STORE Under Hardware or Software Control
Automatic RECALL to SRAM on Power Up
Unlimited RECALL Cycles
200K STORE Cycles
20-Year Nonvolatile Data Retention
Single 3.0V +20%, -10% Power Supply
Commercial, Industrial Temperatures
Small Footprint SOIC and SSOP Packages (RoHS-Compliant)
The Cypress STK14D88 is a 256Kb fast static RAM with a nonvolatile Quantum Trap™ storage element included with each memory cell.
The SRAM provides fast access and cycle times, ease of use, and unlimited read and write endurance of a normal SRAM.
Data transfers automatically to the nonvolatile storage cells when power loss is detected (the STORE operation). On power up, data is automatically restored to the SRAM (the RECALL operation). Both STORE and RECALL operations are also available under software control.
The Cypress nvSRAM is the first monolithic nonvolatile memory to offer unlimited writes and reads. It is the highest performance, most reliable nonvolatile memory available.
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600 Document Number: 001-52037 Rev. ** Revised March 02, 2009
[+] Feedback
STK14D88

Pin Configurations

48-Pin SSOP
TOP
V
SS
A
14
A
12
A
7
A
6
DQ
0
DQ
1
V
CC
DQ
2
A
3
A
2
A
1
V
CAP
A
13
A
8
A
9
A
11
A
10
DQ
7
DQ
6
V
SS
A
0
NC
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
NC
E
NC NC
23 24
A
5
NC
NC NC NC
NC
NC
A
4
48 47 46 45
V
CC
HSB
NC NC
W
NC
NC
DQ
5
DQ
3
DQ
4
G
NC NC
32-SOIC
TOP
V
SS
A
14
A
12
A
7
A
6
DQ
0
V
CAP
A
13
A
8
A
9
A
11
28 27 26 25 24 23 22 21 20 19 18 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A
5
A
4
32 31 30 29
V
CC
HSB W
A
3
A
2
A
1
A
0
DQ
1
DQ
2
A
10
DQ
7
DQ
5
DQ
3
DQ
4
DQ
6
NCNC
E
G
SSOP
Relative PCB Area Usage
[1]
Note
1. See “Package Diagrams” on page 15 for detailed package size specifications.
Figure 1. Pin Diagram 48-Pin SSOP/32-SOIC

Pin Descriptions

Pin Name I/O Description
A
14-A0
DQ
V
HSB
V
V
Document Number: 001-52037 Rev. ** Page 2 of 17
-DQ
7
0
E
W
G Input Output Enable: The active low G input enables the data output buffers during read cycles.
CC
CAP
SS
NC No Connect Unlabeled pins have no internal connections.
Input Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array
I/O Data: Bi-directional 8-bit data bus for accessing the nvSRAM Input Chip Enable: The active low E input selects the device Input Write Enable: The active low W enables data on the DQ pins to be written to the address location
Power Supply Power: 3.0V, +20%, -10%
I/O Hardware Store Busy: When low this output indicates a Store is in progress. When pulled low
Power Supply AutoStore™ Capacitor: Supplies power to nvSRAM during power loss to store data from SRAM to
Power Supply Ground
latched by the falling edge of E
De-asserting G
high caused the DQ pins to tri-state.
external to the chip, it will initiate a nonvolatile STORE operation. A weak pull up resistor keeps this pin high if not connected. (Connection Optional).
nonvolatile storage elements.
[+] Feedback
STK14D88

Absolute Maximum Ratings

Note:
2. The HSB
pin has I
OUT
=-10uA for VOH of 2.4V , this parameter is characterized but not tested
Voltage on Input Relative to Ground.................–0.5V to 4.1V
Voltage on Input Relative to V Voltage on DQ
or HSB................. ... ..–0.5V to (VCC + 0.5V)
0-7
...........–0.6V to (VCC + 0.5V)
SS
Temperature under Bias............................... –55°C to 125°C
Storage Temperature.................................... –65°C to 140°C
Power Dissipation.............................................................1W
DC Output Current (1 output at a time, 1s duration).....15mA
NF (SOP-32) PACKAGE THERMAL CHARACTERISTICS
θ
5.4 C/W; θja 44.3 [0fpm], 37.9 [200fpm], 35.1 C/W [500fpm].
jc
RF (SSOP-48) PACKAGE THERMAL CHARACTERISTICS
θ
6.2 C/W; θja 51.1 [0fpm], 44.7 [200fpm], 41.8 C/W [500fpm].
jc

DC Characteristics

(VCC = 2.7V-3.6V)
Symbol Parameter
I
CC
I
CC
I
CC
Average VCC Current 65
1
Average VCC Current during
2
STORE
3
Average V 200ns
Current at t
CC
3V, 25°C, Typi ca l
I
CC
I
SB
Average V
4
AutoStore Cycle
V
CC
(Standby, Stable CMOS Input
CAP
Standby Current
Current during
Levels)
I
ILK
I
OLK
V V V
IH IL OH
Input Leakage Current ±1 ±1 μAV
Off-State Output Leakage Current ±1 ±1 μAV
Input Logic “1” Voltage 2.0 VCC + .5 2.0 VCC + .5 V All Inputs Input Logic “0” Voltage VSS – .5 0.8 VSS – .5 0.8 V All Inputs Output Logic “1” Voltage 2.4 2.4 V I
[2]
=
AVAV
Commercial Industrial
Min Max Min Max
Note: Stresses greater than those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational section s of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Unit Notes
t
mA mA mA
= 25ns
AVAV
t
= 35ns
AVAV
t
= 45ns
AVAV
Dependent on output loading and
55 50
70 60 55
cycle rate. Values obtained without output loads.
3 3 mA All Inputs Don’t Care, VCC = max
Average current for duration of STORE cycle (t
10 10 mA W
All Others Cycling, CMOS Levels
(V
CC
– 0.2V)
STORE
)
Dependent on output loading and cycle rate. Values obtained without output loads.
3 3 mA All Inputs Don’t Care
Average current for duration of STORE cycle (t
STORE
)
33mAE (VCC – 0.2V)
All Others V
0.2V)
0.2V or (VCC –
IN
Standby current level after nonvol­atile cycle complete
= max
CC
V
= VSS to V
IN
= max
CC
V
= VSS to VCC, E or G VIH
IN
= –2mA
OUT
CC
Document Number: 001-52037 Rev. ** Page 3 of 17
[+] Feedback
STK14D88
DC Characteristics (continued)
Input Pulse Levels....................................................0V to 3V
Input Rise and Fall Times ............................................ <5 ns
Input and Output Timing Reference Levels.................... 1.5V
Output Load..................................See Figure 2 and Figure 3
577
Ω
30 pF
789
Ω
3.0V
INCLUDING
SCOPE AND
OUTPUT
FIXTURE
577
Ω
5 pF
789
Ω
3.0V
INCLUDING
SCOPE AND
OUTPUT
FIXTURE
Note
3. These
parameters are guaranteed but not tested.
(VCC = 2.7V-3.6V)
Symbol Parameter
V
OL
T
A
V
CC
V
CAP
DATA NV
Output Logic “0” Voltage 0.4 0.4 V I Operating Temperature 0 70 -40 85 °C Operating Voltage 2.7 3.6 2.7 3.6 V 3.3V +20%, -10% Storage Capacitance 17 120 17 120 μFBetween V
Data Retention 20 20 K
R
Nonvolatile STORE Operations 200 200 Years @ 55°C
C

AC Test Conditions

[2]
Commercial Industrial
Min Max Min Max
Unit Notes
= 4mA
OUT
pin and VSS, 5V
Rated
CAP
Figure 2. AC Output Loading
Figure 3. AC Output Loading for Tri-state Specs (t

Capacitance

[3]
Description Test Conditions Max Unit Conditions
Input Capacitance TA = 25°C, f = 1 MHz, 7 pF ΔV = 0 to 3V Output Capacitance 7 pF ΔV = 0 to 3V
Parameter
C
IN
C
OUT
Document Number: 001-52037 Rev. ** Page 4 of 17
, tLZ, t
HZ
WLQZ
, t
WHQZ
, t
, t
GLQX
GHQZ
[+] Feedback
STK14D88

SRAM READ Cycles #1 and #2

Notes
4. W
must be high during SRAM READ cycles.
5. Device is continuously selected with E
and G both low.
6. Measured ± 200mV from steady state output voltage.
7. HSB
must remain high during READ and WRITE cycles.
DATA VALID
5
t
AXQX
3
t
AVQV
DQ (DATA OUT)
ADDRESS
2
t
AVAV
2
29
11
7
9
10
8
4
3
6
1
[4]
[5]
[5]
Symbols
ELQV
[4]
tELEH
[5]
t
AVQV GLQV
[5]
t
AXQX ELQX
[6]
EHQZ
GLQX
[6]
GHQZ ELICCH EHICCL
NO.
1t 2t
AVAV
3t
AVQV
4t 5t
AXQX
6t
7t
8t
9t 10 t 11 t
Parameter
t
ACS
t
RC
t
AA
t
OE
t
OH
t
LZ
t
HZ
t
OLZ
t
OHZ
[3]
t
PA
[3]
t
PS
Chip Enable Access Time 25 35 45 ns Read Cycle Time 25 35 45 ns Address Access Time 25 35 45 ns Output Enable to Data Valid 12 15 20 ns Output Hold after Address Change 3 3 3 ns Address Change or Chip Enable to
Output Active Address Change or Chip Disable to
Output Inactive Output Enable to Output Active 0 0 0 ns Output Disable to Output Inactive 10 13 15 ns Chip Enable to Power Active 0 0 0 ns Chip Disable to Power Standby 25 35 45 ns
Figure 4. SRAM READ Cycle 1: Address Controlled
STK14D88-25 STK14D88-35 STK14D88-45
Min Max Min Max Min Max#1 #2 Alt.
Unit
333ns
10 13 15 ns
[4, 5, 6]
Document Number: 001-52037 Rev. ** Page 5 of 17
Figure 5. SRAM READ Cycle 2: E Controlled
[4, 7]
[+] Feedback
STK14D88

SRAM WRITE Cycle #1 and #2

DATA OUT
E
ADDRESS
W
DATA IN
PREVIOUS DATA
12
t
AVAV
13
t
WHDX
19
t
WHAX
13
t
WLWH
18
t
AVWL
17
t
AVWH
DATA VALID
20
t
WLQZ
15
t
DVWH
HIGH IMPEDANCE
21
t
WHQX
14
t
ELWH
12
t
AVAV
16
t
EHDX
13
t
WLEH
19
t
EHAX
18
t
AVEL
17
t
AVEH
DATA VALID
15
t
DVEH
HIGH IMPEDANCE
14
t
ELEH
DATA OUT
E
ADDRESS
W
DATA IN
Notes
8. If W
is low when E goes low, the outputs remain in the high-impedance state.
9. E
or W must be VIH during address transitions.
[6, 8]
Symbols
t
AVAV
t
WLEH
t
ELEH
t
DVEH
t
EHDX
t
AVEH
t
AVEL
t
EHAX
t t t t
t
t
t t t t
NO.
12 t 13 t 14 t 15 t 16 t 17 t 18 t 19 t 20 t 21 t
AVAV WLWH ELWH DVWH WHDX AVWH
AVWL
WHAX
WLQZ
WHQX
Parameter
Write Cycle Time 25 35 45 ns
WC
Write Pulse Width 20 25 30 ns
WP
Chip Enable to End of Write 20 25 30 ns
CW
Data Set-up to End of Write 10 12 15 ns
DW
Data Hold after End of Write 0 0 0 ns
DH
Address Set-up to End of Write 20 25 30 ns
AW
Address Set-up to Start of Write 0 0 0 ns
AS
Address Hold after End of Write 0 0 0 ns
WR
Write Enable to Output Disable 10 13 15 ns
WZ
Output Active after End of Write 3 3 3 ns
OW
STK14D88-25 STK14D88-35 STK14D88-45
Min Max Min Max Min Max#1 #2 Alt.
Unit
Figure 6. SRAM WRITE Cycle 1: W
Controlled
Figure 7. SRAM WRITE Cycle 2: E Controlled
[8, 9]
[8, 9]
Document Number: 001-52037 Rev. ** Page 6 of 17
[+] Feedback
Loading...
+ 11 hidden pages