■ Separate independent read and write data ports
❐ Supports concurrent transactions
■ 267 MHz clock for high bandwidth
■ 2-word burst on all accesses
■ Double Data Rate (DDR) interfaces on both read and write ports
(data transferred at 534 MHz) at 267 MHz
■ Two input clocks (K and K) for precise DDR timing
❐ SRAM uses rising edges only
■ Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
■ Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
■ Single multiplexed address input bus latches address inputs
for both read and write ports
■ Separate port selects for depth expansion
■ Synchronous internally self-timed writes
■ QDR-II operates with 1.5 cycle read latency when Delay Lock
Loop (DLL) is enabled
■ Operates like a QDR-I device with 1 cycle read latency in DLL
off mode
■ Available in x8, x9, x18, and x36 configurations
■ Full data coherency, providing most current data
■ Core V
■ Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)
■ Offered in both Pb-free and non Pb-free packages
■ Variable drive HSTL output buffers
■ JTAG 1149.1 compatible test access port
■ Delay Lock Loop (DLL) for accurate data placement
= 1.8V (±0.1V); IO V
DD
= 1.4V to V
DDQ
DD
CY7C1510JV18 – 8M x 8
CY7C1525JV18 – 8M x 9
CY7C1512JV18 – 4M x 18
CY7C1514JV18 – 2M x 36
Functional Description
The CY7C1510JV18, CY7C1525JV18, CY7C1512JV18, and
CY7C1514JV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR-II architecture. QDR-II architecture consists
of two separate ports: the read port and the write port to access
the memory array. The read port has dedicated data outputs to
support read operations and the write port has dedicated data
inputs to support write operations. QDR-II architecture has
separate data inputs and data outputs to completely eliminate
the need to “turn-around” the data bus that exists with common
IO devices. Access to each port is through a common address
bus. Addresses for read and write addresses are latched on
alternate rising edges of the input (K) clock. Accesses to the
QDR-II read and write ports are completely independent of one
another. To maximize data throughput, both read and write ports
are equipped with DDR interfaces. Each address location is
associated with two 8-bit words (CY7C1510JV18), 9-bit words
(CY7C1525JV18), 18-bit words (CY7C1512JV18), or 36-bit
words (CY7C1514JV18) that burst sequentially into or out of the
device. Because data can be transferred into and out of the
device on every rising edge of both input clocks (K and K
and C
), memory bandwidth is maximized while simplifying
system design by eliminating bus “turn-arounds”.
Depth expansion is accomplished with port selects, which
enables each port to operate independently.
All synchronous inputs pass through input registers controlled by
the K or K
input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.
and C
Selection Guide
Description267 MHz250 MHzUnit
Maximum Operating Frequency 267250MHz
Maximum Operating Current x813751245mA
x913851255
x1814951365
x3617101580
Cypress Semiconductor Corporation•198 Champion Court•San Jose, CA 95134-1709•408-943-2600
Document #: 001-14435 Rev. *C Revised March 10, 2008
CInput ClockPositive Input Clock for Output Data. C is used in conjunction with C
C
KInput ClockPositive Input Clock In put. The rising edge of K is used to capture synchronous inputs to the device
K
Input-
Synchronous
Data Input Signals. Sampled on the rising edge of K and K clocks during valid write operations.
CY7C1510JV18 − D
CY7C1525JV18 − D
CY7C1512JV18 − D
CY7C1514JV18 − D
[7:0]
[8:0]
[17:0]
[35:0]
Write Port Select − Active LOW. Sampled on the rising edge of the K clock. When asserted active, a
Synchronous
Input-
Synchronous
write operation is initiated. Deasserting deselects the write port. Deselecting the write port ignores D
Nibble Write Select 0, 1 − Active LOW(CY7C1510JV18 Only). Sampled on the rising edge of the K
and K
clocks during write operations. Used to select which nibble is written into the device during the
current portion of the write operations. Nibbles not written remain unaltered.
NWS0 controls D
All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select
and NWS1 controls D
[3:0]
[7:4].
ignores the corresponding nibble of data and it is not written into the device.
Input-
Synchronous
Byte Write Select 0, 1, 2, and 3 − Active LOW . Sampled on the rising edge of the K and K clocks during
write operations. Used to select which byte is written into the device during the current portion of the write
operations. Bytes not written remain unaltered.
CY7C1525JV18 − BWS
CY7C1512JV18 − BWS0 controls D
CY7C1514JV18 − BWS0 controls D
D
[35:27].
All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select
controls D
0
[8:0].
and BWS1 controls D
[8:0]
, BWS1 controls D
[8:0]
[17:9].
, BWS2 controls D
[17:9]
and BWS3 controls
[26:18]
ignores the corresponding byte of data and it is not written into the device.
Synchronous
Address Inputs. Sampled on the rising edge of the K (read address) and K
active read and write operations. These address inputs are multiplexed for both read and write operations.
(write address) clocks during
Internally, the device is organized as 8M x 8 (2 arrays each of 4M x 8) for CY7C1510JV18, 8M x 9
(2 arrays each of 4M x 9) for CY7C1525JV18, 4M x 18 (2 arrays each of 2M x 18) for CY7C1512JV18,
and 2M x 36 (2 arrays each of 1M x 36) for CY7C1514JV18. Therefore, only 22 address inputs are needed
to access the entire memory array of CY7C1510JV18 and CY7C1525JV18, 21 address inputs for
CY7C1512JV18, and 20 address inputs for CY7C1514JV18. These inputs are ignored when the appropriate port is deselected.
Output-
Synchronous
Data Output Signals. These pins drive out the requested data during a read operation. Valid data is
driven out on the rising edge of the C and C
clock mode. When the read port is deselected, Q
CY7C1510JV18 − Q
CY7C1525JV18 − Q
CY7C1512JV18 − Q
CY7C1514JV18 − Q
[7:0]
[8:0]
[17:0]
[35:0]
clocks during read operations, or K and K when in singl e
are automatically tri-stated.
[x:0]
Read Port Select − Active LOW . Sampled on the rising edge of positive input clock (K). When active, a
Synchronous
read operation is initiated. Deasserting deselects the read port. When deselected, the pending access is
allowed to complete and the output drivers are automatically tri-stated following the next rising edge of
the C clock. Each read access consists of a burst of four sequential transfers.
to clock out the read data from
the device. Use C and C
together to deskew the flight times of various devices on the board back to the
controller. See Application Example on page 9 for further details.
Input ClockNegative Input Clock for Output Data. C is used in conjunction with C to clock out the read data from
the device. Use C and C
together to deskew the flight times of various devices on the board back to the
controller. See Application Example on page 9 for further details.
and to drive out data through Q
edge of K.
when in single clock mode. All accesses are initiated on the rising
[x:0]
Input ClockNegative Input Clock Input. K is used to capture synchronous inputs being presented to the device and
CQEcho ClockCQ is Referenced with Respect to C. This is a free-running clock and is synchronized to the input clock
for output data (C) of the QDR-II. In single clock mode, CQ is generated with respect to K. The timing for
the echo clocks is shown in Switching Characteristics on page 22.
CQ
ZQInputOutput Impedance Matching Input. This input is used to tune the device outputs to the system data bus
DOFF
TDOOutputTDO for JTAG.
TCKInputTCK Pin for JTAG.
TDIInputTDI Pin for JTAG.
TMSInputTMS Pin for JTAG.
NCN/ANot Connected to the Die. Can be tied to any voltage level.
V
/144MInputNot Connected to the Die. Can be tied to any voltage level.
SS
V
/288MInputNot Connected to the Die. Can be tied to any voltage level.
SS
V
REF
V
DD
V
SS
V
DDQ
Echo ClockCQ is Referenced with Respect to C. This is a free-running clock and is synchronized to the input clock
for output data (C
) of the QDR-II. In single clock mode, CQ is generated with respect to K. The timing for
the echo clocks is shown in the Switching Characteristics on page 22.
impedance. CQ, CQ, and Q
between ZQ and ground. Alternatively, connect this pin directly to V
impedance mode. This pin cannot be connected directly to GND or left unconnected.
output impedance are set to 0.2 x RQ, where RQ is a resistor connected
[x:0]
, which enables the minimum
DDQ
InputDLL Turn Off − Active LOW . Connecting this pin to ground turns off the DLL inside the device. The timing
in the operation with the DLL turned off differs from those listed in this data sheet. For normal operation,
connect this pin to a pull up through a 10 KΩ or less pull up resistor. The device behaves in QDR-I mode
when the DLL is turned off. In this mode, the device can be operated at a frequency of up to 167 MHz
with QDR-I timing.
Input-
Reference
Reference Voltage Input. Static input used to set the reference level for HSTL inputs, outputs, and AC
measurement points.
Power Supply Power Supply Inputs to the Core of the Device.
GroundGround for the Device.
Power Supply Power Supply Inputs for the Outputs of the Device.
The CY7C1510JV18, CY7C1525JV18, CY7C1512JV18, and
CY7C1514JV18 are synchronous pipelined Burst SRAMs with a
read port and a write port. The read port is dedicated to read
operations and the write port is dedicated to write operations.
Data flows into the SRAM through the write port and flows out
through the read port. These devices multiplex the address
inputs to minimize the number of address pins required. By
having separate read and write ports, the QDR-II completely
eliminates the need to “turn-around” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of two 8-bit data transfers in the case of
CY7C1510JV18, two 9-bit data transfers in the case of
CY7C1525JV18, two 18-bit data transfers in the case of
CY7C1512JV18, and two 36-bit data transfers in the case of
CY7C1514JV18 in one clock cycle.
This device operates with a read latency of one and half cycles
when DOFF
connected to V
a read latency of one clock cycle.
Accesses for both ports are initiated on the rising edge of the
positive input clock (K). All synchronous input timing is referenced from the rising edge of the input clocks (K and K
output timing is referenced to the output clocks (C and C
and K
All synchronous data inputs (D
controlled by the input clocks (K and K
outputs (Q
rising edge of the output clocks (C and C
single clock mode).
All synchronous control (RPS
through input registers controlled by the rising edge of the input
clocks (K and K).
CY7C1512JV18 is described in the following sections. The same
basic descriptions apply to CY7C1510JV18, CY7C1525JV18,
and CY7C1514JV18.
Read Operations
The CY7C1512JV18 is organized internally as two arrays of 2M
x 18. Accesses are completed in a burst of two sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address is latched on the rising edge of the K clock. The address
presented to the address inputs is stored in the read address
register. Following the next K clock rise, the corresponding
lowest order 18-bit word of data is driven onto the Q
as the output timing reference. On the subsequent rising edge
C
of C, the next 18-bit data word is driven onto the Q
requested data is valid 0.45 ns from the rising edge of the output
clock (C and C
Synchronous internal circuitry automatically tri-states the outputs
following the next rising edge of the output clocks (C/C
enables for a seamless transition between devices without the
insertion of wait states in a depth expanded memory.
Write Operations
Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the same K clock
rise the data presented to D
pin is tied HIGH. When DOFF pin is set LOW or
then the device behaves in QDR-I mode with
SS
when in single clock mode).
) pass through input registers
[x:0]
) pass through output registers controlled by the
[x:0]
, WPS, BWS
). All synchronous data
, or K and K when in
[x:0]
or K and K when in single clock mode).
is latched and stored into the
[17:0]
) and all
, or K
) inputs pass
using
[17:0]
. The
[17:0]
). This
lower 18-bit write data register, provided BWS
asserted active. On the subsequent rising edge of the negative
are both
[1:0]
input clock (K), the address is latched and the information
presented to D
provided BWS
are then written into the memory array at the specified location.
is also stored into the write data register,
[17:0]
are both asserted active. The 36 bits of data
[1:0]
When deselected, the write port ignores all inputs after the
pending write operations have been completed.
Byte Write Operations
Byte write operations are supported by the CY7C1512JV18. A
write operation is initiated as described in the Write Operations
section. The bytes that are written are determined by BWS
, which are sampled with each set of 18-bit data words.
BWS
1
Asserting the byte write select input during the data portion of a
and
0
write latches the data being presented and writes it into the
device. Deasserting the byte write select input during the data
portion of a write enables the data stored in the device for that
byte to remain unaltered. This feature can be used to simplify
read, modify, or write operations to a byte write operation.
Single Clock Mode
The CY7C1510JV18 can be used with a single clock that
controls both the input and output registers. In this mode the
device recognizes only a single pair of input clocks (K and K
) that
control both the input and output registers. This operation is
identical to the operation if the device had zero skew between
the K/K
and C/C clocks. All timing parameters remain the same
in this mode. To use this mode of operation, the user must tie C
and C HIGH at power on. This function is a strap option and not
alterable during device operation.
Concurrent Transactions
The read and write ports on the CY7C1512JV18 operate
completely independently of one another. As each port latches
the address inputs on different clock edges, the user can read or
write to any location, regardless of the transaction on the other
port. The user can start reads and writes in the same clock cycle.
If the ports access the same location at the same time, the SRAM
delivers the most recent information associated with the
specified address location. This includes forwarding data from a
write cycle that was initiated on the previous K clock rise.
Depth Expansion
The CY7C1512JV18 has a port select input for each port. This
enables for easy depth expansion. Both port selects are sampled
on the rising edge of the positive input clock only (K). Each port
select input can deselect the specified port. Deselecting a port
does not affect the other port. All pending transactions (read and
write) are completed before the device is deselected.
Programmable Impedance
An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V
driver impedance. The value of RQ must be 5X the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15% is between 175Ω and 350Ω
output impedance is adjusted every 1024 cycles upon power up
to account for drifts in supply voltage and temperature.
to enable the SRAM to adjust its output
SS
, with V
=1.5V. The
DDQ
Document #: 001-14435 Rev. *CPage 8 of 26
[+] Feedback [+] Feedback
Loading...
+ 18 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.