CRYSTAL Logic CS5101A, CS5102A User Manual

查询CS5101A供应商查询CS5101A供应商
16-Bit, 100 kHz / 20 kHz A/D Converters
CS5101A CS5102A
Features
l Monolithic CMOS A/D Converters
- Inherent Sampling Architecture
- 2-Channel Input Multiplexer
- Flexible Serial Output Port
l Ultra-Low Distortion
- S/(N+D): 92 dB
- THD: 0.001%
l Conversion Time
- CS5101A: 8 µs
- CS5102A: 40 µs
l Linearity Error: ±0.001% FS
- Guaranteed No Missing Codes
l Self-Calibration Maintains Accuracy
- Over Time and Temperature
l Low Power Consumption
- CS5101A: 320 mW
- CS5102A: 44 mW
- Power-down Mode: <1 mW
l Evaluation Board Available
Description
The CS5101A and CS5102A are 16-bit monolithic CMOS analog-to-digita l converters capable of 1 00 kHz (5101A) and 20 kHz (5102A) throughput. The CS5102A’s low power consumption of 44 mW, couple d with a power down m ode, makes it particularl y suitable for battery powered operation.
On-chip self-calibration circuitry achieves nonlinearity of
±0.001% of FS and guarantees 16-bit no miss in g co des over the entire specified temperature range. Superior lin­earity also leads to 92 dB S/(N+D) with harmonics below
-100 dB. Offse t and fu ll-scale errors are m inimized dur­ing the calibration cycle, eliminating the need for external trimming.
The CS5101A and CS5102A ea ch consist of a 2-chan­nel input multiplexer, DAC, conversion and calibration microcontroller, cloc k generator, comp arator, and ser ial communications port. The inherent sampling architec­ture of the device eliminates the need for an external track and hold amplifier.
The converters' 16-bit data is output in serial form with ei­ther binary or 2's complement coding. Three output timing modes are available for easy interfacing to micro­controllers and shift registers. Unipolar and bipolar input ranges are digitally selectable.
I
HOLD SLEEPRST CODEBP/UP
12 28 2 5 16 17 8 9 11 15
3
CLKIN
4
XOUT
REFBUF
VREF
AIN1
AIN2
CH1/2
AGND
Generator
21
20
19
24 13
22
Cirrus Logic, Inc. Crystal Semiconductor Products Division
P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.crystal.com
STBY
Clock
-
+
-
+
-
+
25 23
ORDERING INFORMATION
See page 36.
TRK1
CRS/FIN
10
Control
Calibration
SRAM
16-Bit Ch arge Redistribution
DAC
DGND VD- VD+VA-VA+
Copyright  Cirrus Logic, Inc. 1997
(All Rights Reserved)
TRK2
Microcontroller
-
+
Comparator
SSH/SDL
716
SDATA
14
26
27
18
SCLK
TEST
SCKMOD
OUTMOD
MAR ‘95
DS45F2
1
CS5101A
ANALOG CHARACTERISTICS (T
VREF = 4.5V; Full-Scale Input Si newave, 1 kHz; CLKIN = 4 MHz for -16, 8 MHz for -8; f
A
= T
MIN
to T
; VA+, VD+ = 5V; VA-, VD- = -5V;
MAX
= 50 kHz for -16,
s
100 kHz for -8; Bipolar Mode; FRN Mode; AIN1 and AIN2 tied together, each c hannel tested separately; A nalog Source Impedance = 50 Ω with 1000 pF to AGND unless otherwise specified)
CS5101A-J,KCS5101A-A,B
Parameter*MinTypMaxMinTypMax Units
Specified Temperature Range0 to +70-40 to +85
°
C
Accuracy
Linearity Error -J,A,S (Note 1)
-K,B,T Drift (Note 2)
-
0.002
-
0.001
-
±
1/4
0.003
0.002
-
-
0.002
-
0.001
-
±
1/4
0.003
0.002
-
%FS %FS
LSB Differential Linearity(Notes 3, 4)16--16-- Bits Full Scale Error -J,A, S ( No te 1 )
-K,B,T Drift (Note 2)
Unipolar Offset -J,A,S (Note 1)
-K,B,T Drift (Note 2)
Bipolar Offset -J,A,S (Note 1)
-K,B,T Drift (Note 2)
-
±
-
±
-
±
-
±
-
±
-
±
-
±
-
±
-
±
1 1 1
1
1
±
4
±
3
-
±
2
5
±
2
4
-
±
2
5
±
2
3
-
-
±
-
±
-
±
-
±
-
±
-
±
-
±
-
±
-
±
1
±
1
4
±
1
3
-
1
±
2
5
±
2
4
-
±
2
5
±
2
3
-
2
LSB LSB
LSB
LSB LSB
LSB
LSB LSB
LSB Bipolar Negative Ful l- S ca l e E rr o r
-J,A,S (Note 1)
-K,B,T Drift (Note 2)
Dynamic Performance
(Bipolar Mode)
-
±
-
±
-
±
1 1 1
±
4
±
3
-
-
±
-
±
-
±
1 1 1
±
4
±
3
-
LSB LSB
LSB
Peak Harmonic or Spurious Noise (Note 1) 1 kHz Input -J,A,S
-K,B,T
12 kHz Input -J,A,S
-K,B,T
Total Harmoni c Dist ort ion -J,A, S
-K,B,T
100
98
102 85 85
88 91
--0.002
0.001--
-
96
100
-
98
102
-
85
-
85
88 91
--0.002
0.001--
-
-
-
-
dB dB dB dB
% %
96
Signal-to-Noise Ratio (Note 1) 0dB Input -J,A,S
-K,B,T
-60 dB Input -J,A,S
-K,B,T
87 90
90 92
-
30
-
32
-
87
-
90
-
-
90 92
-
30
-
32
-
-
-
-
dB dB dB dB
Noise (Note 5)
Unipolar Mode
Bipolar Mode
-
35
-
70
-
-
-
35
-
70
-
-
µV µV
rms rms
Notes: 1. Applies after calibration at any temperature within the specified temperature range. At temp
2. Total drift over specified temperature range after calibration at power-up at 25 °C.
3. Minimum resolution for which no mis sing codes is guaranteed ov er the specified temperature range.
4. Clock speeds of less than 1.0 MHz, at temperatures >100°C will degrade DNL performance.
5. Wideband noise aliased into the baseband. Referred to the input.
*Refer to
Parameter Definitions
(immediately following the pin descriptions at the end of this data sheet).
Specifications are subject to change without notice.
2 DS45F2
CS5101A
ANALOG CHARACTERISTICS (continued)
CS5101A -J,KCS5101A -A,B
Parameter*SymbolMinTypMaxMinTypMax Units
Specified Temperature Range-0 to +7040 to +85
Analog In put
Aperture Time--25--25- ns Aperture Jitter--100--100- ps Input Capacitance (Note 6)
Unipolar Mode Bipolar Mode
-
-
--320 200
425 265--
320 200
425 265
Conversi on & Th roughput
Conversion Time (Note 7)
-8
-16
-
--8.12
16.25--
t
c
tc
--8.12
16.25
-
Acquisition Time (Note 8)
-8
-16
t
a
ta
-
--2.6
1.88
3.75---2.6
1.88
3.75
Throughput (Note 9)
-8
-16
tp tp
10050-
f f
-
--10050-
-
Power Supplies
Power Supply Current (Note 10)
Positive Analog Negative Analog
(SLEEP High) Positi ve Digital
Negative Digital
+
I
A
-
I
A
+
I
D
-
I
D
-
21
28
-
-21
-28
-
11
15
-
-11
-15
-
21
28
-
-21
-28
-
11
15
-
-11
-15
Power Consumption (Notes 10, 11)
(SLEEP High) (SLEEP Low)
P
do
P
ds
--3201430---3201430
Power Supply Rejection: (Note 12)
Positive Supplies
Negative Supplies
PSR PSR
--8484-
--8484-
-
°
-
-
-
-
pF pF
µ µ
µ µ
kHz kHz
mA mA mA mA
mW mW
dB dB
C
s s
s s
Notes : 6. Applies only in the track mode. When converting or calibrating, input capacitance will not exceed 30 pF.
7. Conversion time scales directly to the master clock speed. The times shown are for synchronous, internal loop back ( FRN mode ) with 8 .0 MHz CLKIN . In PD T, RBT, and SSC m odes, as ynchro nous d elay between the falling edge of
HOLD and the start of conversion may add to the apparent conversion time. This delay will not exceed 1.5 master clock cycles + 10 ns. In PDT, RBT, and SSC modes, CLKIN can be increased as long as the
HOLD sample rate is 100 kHz max.
8. The CS5101A requires 6 clock cycles of coarse charge, followed by a minimum of 1.125 µs of fine charge. FRN mode allows 9 clock cycles for fine charge which provides for the minimum 1.125 µs with an 8 MHz
clock, however; in PDT, RBT, or SSC modes, at clock frequencies of 8 MHz or less, fine charge may be less than 9 clock cycles. This reflects the typ. specification (6 clock cycles + 1.125 µs).
9. Throughput is the sum of the acquisition and conversion times. It will vary in accordance with conditions affecting acquisition and conversion times, as described above.
10. All outputs unloaded. All inputs at VD+ or DGND.
11. Power co nsump tion i n the sl eep mo de appl ies with no m aster cloc k appli ed (C LKIN h eld hi gh or l ow).
12. With 300 mV p-p, 1 kHz ripple applied to each supply separately in the bipolar mode. Rejection improves by 6 dB in the uni polar mode to 90 dB. Figure 2 3 show s a pl ot of ty pical power supp ly rejection ve rsus f reque ncy.
DS45F2 3
CS5101A
SWITCHING CHARACTERISTICS (T
VA-, VD- = -5V ± 10%; Inputs: Logic 0 = 0V, Logi c 1 = VD+; C
= T
A
MIN
to T
L
; VA+, VD+ = 5V ± 10%;
MAX
= 50 pF)
Parameter Symbol Min Typ Max Units
CLKIN Period (Note 4)
-8
-16 CLKIN Low Time t CLKIN High Time t
t
clk
t
clk
clkl
clkh
108 250
-
-
10,000 10,000
ns ns
37.5 - - ns
37.5 - - ns
Crystal Frequency (Note 13)
-8
-16
f
xtal
f
xtal
2.0
2.0
-
-
9.216
4.0
MHz
MHz SLEEP Rising to Oscillator Stable (Note 14) - - 2 - ms RST Pulse Width t RST to STBY Falling t RST Rising to STBY Rising t CH1/2 Edge to TRK1, TRK2 Rising (Note 15) t CH1/2 Edge to TRK1, TRK2 Falling (Note 15) t HOLD to SSH Falling (Note 16) t HOLD to TRK1, TRK2, Falling (Note 16) t HOLD to TRK1, TRK2, SSH Rising (Note 16) t HOLD Pulse Width (Note 17) t HOLD to CH1/2 Edge (Note 16) t HOLD Falling to CLKIN Falling (Note 17) t
rst
drrs
cal drsh1 dfsh4 dfsh2 dfsh1
drsh
hold dhlri
hcf
150 - - ns
- 100 - ns
- 11,528,160 - t
-80-ns
- - 68t
+260 ns
clk
-60 ns
66t
clk
- 68t
+260 ns
clk
- 120 - ns
1t
+20 - 63t
clk
15 - 64t
clk clk
ns ns
95 - 1tc lk+10 ns
clk
Notes: 13. External loading capacitors are required to allow the crystal to oscillate. Maximum crystal frequency
is 8.0 MHz in FRN mode (100 kHz sample rate).
14. With a 8 MHz crystal, two 10 pF loading capacitors and a 10 MΩ parallel resistor (see Figure 8).
15. These times are for FRN mode.
16. SSH only works correctly if occurs after
17. When
HOLD rises to 64 t
HOLD goes low, the analog sample is captured immediately. To start conversion, HOLD must
HOLD falling edge is within +15 to +30 ns of CH1/ 2 edge or if CH1/2 edge
after HOLD has fallen. These times are for P DT and RBT modes.
clk
be latched by a falling edge of CLKIN. Conversion will begin on the next rising edge of CLKIN after HOLD is latched. If HOLD is operated synchronous to CLKIN, the HOLD pulse width may be as narrow as 150 ns for all CLKIN frequencies if CLKIN falls 95 ns after ensures that the
HOLD pulse will meet the minimum specification for t
HOLD falls. This
.
hcf
4 DS45F2
CS5102A
ANALOG CHARACTERISTICS (T
VREF = 4.5V; Full-Scale Input Si newave, 200 Hz; CLKIN = 1.6 MHz; f
A
= T
MIN
to T
; VA+, VD+ = 5V; VA-, VD- = -5V;
MAX
= 20 kHz; Bipolar Mode; FRN Mode;
s
AIN1 and AIN2 tied together, each channel tested separately; Anal og Source Impedance = 50 Ω with 1000pF to AGND unless otherwise specified)
CS5102A-J,KCS5102A-A,B
Parameter*MinTypMaxMinTypMax Units
Specified Temperature Range0 to +70-40 to +85
°
C
Accuracy
Linearity Error -J,A,S (Note 1)
-K,B,T Drift (Note 2)
-
0.002
-
0.001
-
±
1/4
0.003
0.0015
-
-
0.002
-
0.001
-
±
1/4
0.003
0.0015
-
%FS %FS
LSB Differential Linearity(Notes 3, 18)16--16-- Bits Full Scale Error -J,A,S (Note 1)
-K,B,T Drift (Note 2)
Unipolar Offset -J,A,S (Note 1)
-K,B,T Drift (Note 2)
Bipolar Offset -J,A,S (Note 1)
-K,B,T Drift (Note 2)
Bipolar Negative -J,A,S (No te 1 ) Full-Scale Error -K,B,T
Drift (Note 2)
Dynamic Performance
(Bipolar Mode)
Peak Harmonic or -J,A,S (Note 1) Spurious Noise -K,B,T
Total Harmoni c Dist ort ion -J,A, S
-K,B,T
-
±
2
-
±
-
-
-
-
-
-
-
-
-
-
2
±
1
± ± ±
1
± ± ±
1
±
2
±
2
±
1
9698100
102
--0.002
0.001--
±
4
±
3
-
±
1
4
±
1
3
-
±
1
4
±
1
3
-
±
4
±
3
-
-
-
-
±
-
±
-
±
-
±
-
±
-
±
1
-
±
-
±
-
±
-
±
2
-
±
-
2
±
2
9698100
102
±
2
4
±
2
3
-
1
±
1
4
±
1
3
-
±
1
4
±
1
3
-
2
±
4
±
3
-
-
-
--0.002
0.001--
LSB LSB
LSB
LSB LSB
LSB
LSB LSB
LSB
LSB LSB
LSB
dB
dB
% %
Signal-to-Noise Ratio (Note 1) 0dB Input -J,A,S
-K,B,T
-60 dB Input -J,A,S
-K,B,T
87 90
90 92
-
30
-
32
-
87
-
90
-
-
90 92
-
30
-
32
-
-
-
-
dB
dB
dB
dB Noise (Note 5)
Unipolar Mode
Bipolar Mode
-
35
-
70
-
-
-
35
-
70
-
-
µV µV
rms rms
Note: 18. Clock speeds of less than 1.6 MHz, at temperatures >100°C will degrade DNL performance.
*Refer to
Parameter Definitions
(immediately following the pin descriptions at the end of this data sheet).
Specifications are subject to change without notice.
DS45F2 5
ANALOG CHARACTERISTICS (continued)
CS5102A -J,KCS5102A -A,B
Parameter*SymbolMinTypMaxMinTypMax Units
CS5102A
Specified Temperature Range-0 to +7040 to +85
°
C
Analog In put
Aperture Time--30--30- ns Aperture Jitter--100--100- ps Input Capacitance (Note 6)
Unipolar Mode
-
-
--320 200
425 265--
320 200
425 265
pF pF
Bipolar Mode
Conversi on & Th roughput
Conversion Time(Note 19)t Acquisition Time(Note 20)t Throughput(Note 21)f
a
tp
--40.625--40.625
c
--9.375--9.375
µ µ
20--20-- kHz
Power Supplies
Power Supply Current (Note 22)
+
Positive Analog Negative Analog
(SLEEP High) Positi ve Digital
Negative Digital
I
A
I
A
I
D
I
D
-
2.4
3.5
-
-
-2.4
-3.5
+
-
2.5
3.5
-
-
-1.5
-2.5
-
2.4
3.5
-
-2.4
-3.5
-
2.5
3.5
-
-1.5
-2.5
mA mA mA mA
Power Consumption (Notes 11, 22)
(SLEEP High) (SLEEP Low)
P
do
P
ds
--44165
-
--44165
mW
-
mW
Power Supply Rejection: (Note 23)
Positive Supplies Negative Supplies
PSR PSR--8484
-
--84
-
84
-
-
dB dB
s
s
Notes : 19. Conversion time scales directly to the master clock speed. The times shown are for synchronous,
internal loopback (FRN mode). In PDT, RBT, and SSC modes, asynchronous delay between the falling edge of
HOLD and the start of conversion may add to the apparent conversion time. This delay will
not exceed 1 master clock cycle + 140 ns.
20. The CS5102A requires 6 clock cycles of coarse charge, followed by a minimum of 5.625 µs of fine charge. FRN mode allows 9 clock cycles for fine charge which provides for the minimum 5.625 µs with an 1. 6 MHz
clock, however; in PDT, RBT, or SSC modes, at clock frequencies less than 1.6 MHz, fine charge may be less than 9 clock cycles.
21. Throughput is the sum of the acquisition and conversion times. It will vary in accordance with conditions affecting acquisition and conversion times, as described above.
22. All outputs unloaded. All inputs at VD+ or DGND. See table below for power dissipation vs. clock frequency.
23. With 300 mV p-p, 1 kHz ripple applied to each supply separately in the bipolar mode. Rejection improves by 6 dB in the uni polar mode to 90 dB. Figure 2 3 show s a pl ot of ty pical power supp ly rejection ve rsus f reque ncy.
Typ. Power (mW) CLKIN (MHz)
34 0.8 37 1.0 39 1.2 41 1.4 44 1.6
6 DS45F2
CS5102A
SWITCHING CHARACTERISTICS (T
VA+, VD+ = 5V ± 10%; VA-, VD- = -5V ± 10%; Inputs: Logic 0 = 0V, Logic 1 = VD+; C
= T
A
MIN
to T
MAX
;
= 50 pF)
L
Parameter Symbol Min Typ Max Units
CLKIN Period (Note 18,24) t CLKIN Low Time t
CLKIN High Time t Crystal Frequency (Note 24, 25) f
clk
clkl
clkh
xtal
0.5 - 10
µ
200 - - ns 200 - - ns
0.9 1.6 2.0 MHz SLEEP Rising to Oscillator Stable (Note 26) - - 20 - ms RST Pulse Width t RST to STBY Falling t RST Rising to STBY Rising t CH1/2 Edge to TRK1, TRK2 Rising (Note 27) t CH1/2 Edge to TRK1, TRK2 Falling (Note 27) t HOLD to SSH Falling (Note 28) t HOLD to TRK1, TRK2, Falling (Note 28) t HOLD to TRK1, TRK2, SSH Rising (Note 28) t HOLD Pulse Width (Note 29) t HOLD to CH1/2 Edge (Note 28) t HOLD Falling to CLKIN Falling (Note 29) t
rst
drrs
cal drsh1 dfsh4 dfsh2 dfsh1
drsh
hold dhlri
hcf
150 - - ns
- 100 - ns
- 2,882,040 - t
-80-ns
- - 68t
+260 ns
clk
-60 ns
66t
clk
- 68t
+260 ns
clk
- 120 - ns
1t
+20 - 63t
clk
15 - 64t
clk clk
ns ns
55 - 1tc lk+10 ns
s
clk
Note: 24. Minimum CLKIN period is 0.625 µs in FRN mode (20 kHz sample rate). A t temperatures >+85 °C,
and with clock frequencies <1.6 MHz, anal og performance may be degraded.
25. External loading capacitors are required to allow the crystal to oscillate. Maximum crystal frequency is 1.6 MHz in FRN mode (20 kHz sample rate).
26. With a 2.0 MHz crystal, two 33 pF loading capacitors and a 10 MΩ parallel resistor (see Figure 8).
27. These times are for FRN mode.
28. SSH only works correctly if occurs after
29. When
HOLD rises to 64 t
HOLD goes low, the analog sample is captured immediately. To start conversion, HOLD must
HOLD falling edge is within +15 to +30 ns of CH1/ 2 edge or if CH1/2 edge
after HOLD has fallen. These times are for P DT and RBT modes.
clk
be latched by a falling edge of CLKIN. Conversion will begin on the next rising edge of CLKIN
HOLD is latched. If HOLD is operated synchronous to CLKIN, the HOLD pulse width may be as
after narrow as 150 ns for all CLKIN frequencies if CLKIN falls 55 ns after ensures that the
HOLD pulse will meet the minimum specification for t
HOLD falls. This
.
hcf
DS45F2 7
t
rst
RST
STBY
t
drrs
Reset and Calibration Timing
CS5101A CS5102A
t
cal
CH1/2
TRK1,TRK2
TRK1,TRK2
HOLD
SSH/SDL
t
drsh1
t
dfsh4
SSH,TRK1,TRK2
TRK1,TRK2
t
dfsh2
t
drsh
t
dfsh1
a. FRN Mode b. PDT, RBT Mode
Control Output Timing
t
hcf
CH1/2
CLKIN HOLD
Start Conversion Timing
HOLD
t
dhlri
t
hold
Channel Selection Timing
8 DS45F2
SWITCHING CHARACTERISTICS (Continued)
Parameter Symbol Min Typ Max Units
PDT and RBT Modes
SCLK Input Pulse Period t SCLK Input Pulse Width Low t SCLK Input Pulse Width High t SCLK Input Falling to SDATA Vali d t HOLD Falling to SDATA Valid PDT Mode t TRK1, TRK2 Falling to SDATA Valid (Note 30) t
FRN and SSC Modes
SCLK Output Pulse Width Low t SCLK Output Pulse Width High t SDATA Valid Before Rising SCLK t SDATA Valid After Rising SCLK t SDL Falling to 1st Rising SCLK t Last Rising SCLK to SDL Rising CS5101A
CS5102A
HOLD Falling to 1st Falling SCLK CS5101A
CS5102A
CH1/2 Edge to 1st Falling SCLK t
sclk
sclkl
sclkh
dss dhs
dts
slkl
slkh
ss sh
rsclk
t
rsdl
t
rsdl
t
hfs
thfs
chfs
CS5101A CS5102A
200 - - ns
50 - - ns 50 - - ns
- 100 150 ns
- 140 230 ns
- 65 125 ns
-2t
-2t
2t
-100 - - ns
clk
2t
-100 - - ns
clk
-2t
-
-
6tclk
6t
clk
2t
2tclk
clk clk
clk clk
-
-
-7tclk-t
-t
-t
-ns
2tclk+165
+200nsns
2t
clk
8t
+165
clk
+200nsns
8t
clk
clk clk
clk
Note: 30. Only valid for TRK1, TRK2 falling when SCLK is low. If SCLK is high when TRK1, TRK2 falls, then
SDATA is valid t
DIGITAL CHARACTERISTICS (T
VD- =
5V ± 10%)
time after the next falling SCLK .
dss
= T
A
min
to T
; VA+, VD+ = 5V ± 10%; VA-,
max
Parameter Symbol Min Typ Max Units
Calibration Memory Retention (Note 31)
V
MR
2.0 - - V
Power Supply Voltage VA+ and VD+ High-Level Input Voltage V Low-Level Input Voltage V High-Level Output Voltage (Note 32) V Low-Level Output Voltage I
= 1.6 mA V
OUT
Input Leakage Current I Digital Output Pin Capacitance C
IH IL
OH
OL in
out
2.0 - - V
--0.8V
(VD+)-1.0 - - V
--0.4V
--10
µA
-9-pF
Notes: 31. VA- and VD- can be any value from zero to -5V for memory retention. Neither VA- or VD- should be
allowed to go positive. AIN1, AIN2 or VREF must not be greater than VA+ or VD+. This parameter is guaranteed by characterization.
32. I
= -100 µA. This specification guarantees TTL compatibility (VOH = 2.4V @ Iout = -40 µA).
OUT
DS45F2 9
CS5101A CS5102A
t
HOLD
CH1/2
SSH/SDL
t
sclkltsclkh
SCLK
t
SCLK
SDATA
t
dss
sclk
SDATA
a. SCLK input (RBT and PDT mode) b. SCLK output (SSC and FRN modes)
Serial Data Timing
hfs
t
chfs
t
rsclk
slkl
t
slkh
t
dss
t
sh
t
t
ss
MSB
LSB
t
rsdl
HOLD
SDATA
SCLK
t
dhs
MSB
TRK1, TRK2
SDATA
SCLK
t
dts
MSB
t
dss
a. Pipelined Data Transmission (PDT) b. Register Burst Transmission (RBT) Mode
Data Transmission Timing
MSB-1
10 DS45F2
CS5101A CS5102A
RECOMMENDED OPERATING CONDITIONS (AGND, DGND = 0V, see Note 33)
Parameter Symbol Min Typ Max Units
DC Power Supplies: Positive Digital
Negative Digital Positive Analog Negative Analog
VD+
VD-
VA+
VA-
4.5
-4.5
4.5
-4.5
5.0
-5.0
5.0
-5.0
VA+
-5.5
5.5
-5.5
V V V
V Analog Reference Voltage VREF 2.5 4.5 (VA+)-0.5 V Analog Input Voltage: (Note 34)
Unipolar Bipolar
V
AIN
V
AIN
AGND
-VREF
-
-
VREF VREF
V
V
Notes: 33. All voltages with respect to ground.
34. The CS5101A and CS5102A can accept input voltages up to the analog supplies (VA+ and VA-). They
will produce an output of all 1’s for inputs above VREF and all 0’s for inputs below AGND in unipolar mode and -VREF in bipolar mode, with binar y coding (CODE = low).
ABSOLUTE MAXIMUM RATINGS* (AGND, DGND = 0V, all voltages with respect to ground)
Parameter Symbol Min Typ Max Units
DC Power Supplies: Positive Digital (Note 35)
Negative Digital Positive Analog Negative Analog
Input Current, Any Pin Except Supplies (Note 36) I Analog Input Voltage (AIN and VREF pins) V
Digital Input Voltage V Ambient Operating Temperature T
Storage Temperature T Ambient Operating Temperature T Storage Temperature T
VD+
VD-
VA+
VA-
in
INA
IND
A
stg
A
stg
-0.3
0.3
-0.3
0.3
--
-
-
-
-
6.0
-6.0
6.0
-6.0
±
10
mA
(VA-)-0.3 - (VA+)+ 0.3 V
-0.3 - (VA+)+0.3 V
-55 - 125
-65 - 150
-55 - 125
-65 - 150
° ° ° °
V
V
V
V
C C C C
Notes: 35. In addition, VD+ must not be greater than ( VA+) +0.3V
36. Transient currents of up to 100 mA will not cause SCR latch-up.
*WARNING: Operation beyond these limits may result in permanent damage to the devi ce.
DS45F2 11
CS5101A CS5102A
GENERAL DESCRIPTION
The CS5101A and CS5102A are 2-channel, 16­bit A/D converters. The devices include an inherent sample/hold and an on-chip analog switch for 2-channel operation. Both channels can thus be sampled and converted at rates up to 50 kHz each (CS5101A) or 10 kHz each (CS5102A). Alternatively, each of the devices can be operate d as a single channel ADC operat­ing at 100 kHz (CS5101A) or 20 kHz (CS5102A).
Both the CS5101A and CS5102A can be config­ured to accept either unipolar or bipolar input ranges, and data is output serially in either binary
or 2’s complement coding. The devices can be configured in 3 different output modes, as w ell as an internal, synchronous loopback mode. The CS5101A and CS5102A provide coarse charge/fine charge control, to allow accurate tracking of high-slew sign als.
THEORY OF OPERATION
The CS5101A and CS5102A implement the suc­cessive approximation algorithm using a charge redistribution architecture. Instead of the tradi­tional resistor network, the DAC is an array of binary-weighted capacitors. All capacitors in the
array share a common node at the comparator’s input. As shown in Figure 1, their other terminals are capable of being connected to AGND, VRE F, or AIN (1 or 2). When the device is not calibrat­ing or converting, all capacitors are tied to AIN. Switch S1 is closed and the charge on the array, tracks the input signal.
When the conversion command is issued, switch S1 opens. This traps the charge on the compara­tor side of the capacitor array and creates a floating node at the comparator ’s input. The co n­version algorithm operates on this fixed charge, and the signal at the analog input pin is ignored. In effect, the entire DAC capacitor array serves as analog memory during conversion much like a hold capacitor in a sample/hold amplifier.
The conversion consists of manipulating the free plates of th e capacitor array to VREF and AGND to form a capacitive divider. Since the charge at the floating node remains fixed, the voltage at that point depends on the proportion of capaci­tance tied to VREF versus AGND. The successive-approximation algorithm is used to find the proportion of capacitance, which when connected to the reference will drive the voltage at the floating node to zero. That binary fraction of capacitance represents the converter’s digital output.
AIN
Fine
+
-
VREF
+
-
AGND
+
-
12 DS45F2
Coarse Fine
Coarse Fine
Coarse
Figure 1. Coarse Charge Input Buffers and Charge Redistribution DAC
C
Bit 15 Bit 14 Bit 13 Bit 0 MSB LSB
C/2 C/32,768
C = C + C/2 + C/4 + C/8 + ... C/32,768
tot
C/4
C/32,768
Dummy
S1
-
+
Loading...
+ 28 hidden pages