11. Technical Data and short circuit isolator (page 10 & 11)
12. Service/Application Notes (page 11)
13. Parts List (page 11)
22318.31.0121.04.06
1
1. System Description.
MBD50R and MBD100R reflective beam Detectors comprise a Transmitter and Receiver contained within one
enclosure.
The Detector installs to the building fabric between 0.5 and 0.6 metres from the ceiling.
The Transmitter emits an invisible infrared light beam that is reflected via a prism mounted directly opposite and
with a clear line of sight. The reflected infrared light is detected by the Receiver and analysed.
The Detector has maximum lateral detection of 7.5 metres either side of the beam.
2. System Operation.
Smoke in the beam path will reduce the received infrared light proportionally to the density of the smoke. The
Detector analyses this attenuation or obscuration of light and acts accordingly.
Alarm thresholds of 25%, 35%, and 50% can be selected to suit the environment, where 25% is the most
sensitive. If the received infrared signal reduces to below the selected threshold, and is present for
approximately 10 seconds, a Fire condition is activated.
If latching option selected, the Detector will continue to show a Fire condition until the panel is reset. If the panel
is reset and a Fire condition is still present, the Detector will return to a Fire condition after 60 seconds.
If the infrared beam is obscured rapidly to a level of 90% or greater for approximately 10 seconds a Fault
condition is activated.
This condition can be entered in a number of ways, for example, an object being placed in the beam path,
transmitter failure, loss of the prism, or sudden misalignment of the Detector. The fault condition will reset within
5 seconds of the condition being rectified.
The Detector monitors long term degradation of signal strength caused by component ageing or build up of dirt
on optical surfaces. This operates by comparing the received infrared signal against a standard every 15
minutes; differences of less than 0.7dB/Hour are corrected automatically.
3. Detector Positioning.
It is important that the beam Detector is positioned correctly to minimise the detection time.
Experiments have shown that smoke from a fire does not rise directly upwards, but fans out or mushrooms due
to air currents and heat layering effects. The time to signal a fire condition depends on the location of the
Detector within the premises, the volume of smoke produced, construction of the roof, and ventilation
arrangements.
Smoke layering, where smoke does not reach the ceiling level due to layers of static hot air is overcome by
mounting the Detector at the recommended height below the ceiling of between 0.5 and 0.6 metres, bringing
the infrared beam below the heat layer and into the smoke layer.
The maximum distance either side of the beam axis is found to be typically 7.5 metres for satisfactory detection
under flat ceilings.
Single Beam
0.5 ↔ 0.6 m
15 m 15 m
0.5 ↔ 7.5 m
Multiple Beams
0.5 ↔ 7.5 m
22318.31.0121.04.06
2
ΧΧΧΧ
ΧΧΧΧ ≥
ΥΥΥΥ ΥΥΥΥ
ΥΥ (max) = 7.5 + (7.5 x
Φ
/100)
Limit to when a beam detector must be positioned in
In all installations the latest national fire standards must be consulted. If there is any doubt on the correct
mounting height, positioning may be determined by smoke tests.
3.1. Detector Positioning In Apex Of Sloping Ceiling.
A ceiling is defined as sloping if the distance from the top of the apex to the intersection of the ceiling and
adjacent wall is greater than 0.6 metres. See Fig. 1.
Slope if
0.6 Metres
Fig. 1. Fig. 2.
Φ
When a Detector is positioned in the apex of a ceiling (See Fig. 2), the lateral beam distance covered (Υ) can
be increased in relation to the angle of pitch (Φ).
For Example:
If the pitch angle is 20 degrees, the lateral coverage can be increased from 7.5 metres either side of the beam
(Υ) to:
Υ = 7.5 + (7.5 x 20/100) metres
Υ = 9 metres
Therefore, with a roof pitch of 20 degrees the lateral coverage can be increased from 7.5 metres either side of
the beam to 9 metres either side of the beam, but only for the beam positioned in the apex. All other
calculations remain the same.
35.0
30.0
25.0
Angle of
in degrees
20.0
Pitch
15.0
10.0
5.0
0.0
22318.31.0121.04.06
roof apex
Beam detector must be positioned in
Roof can be defined as flat
0510152025
Width of Room in metres
3
Detector
3.2. Detector Positioning In Atrium.
If the detector is to be placed in an atrium, or near glass/polished surfaces, the prism(s) should be offset from the central
line of sight (approximately 300mm), and angled back to the beam detector. This can be either on the vertical or horizontal
axis. This will reduce the amount of spurious returned signal from the glass/polished surfaces. The reflected signal from the
prism(s) will be returned to the detector in the normal way.
Normal Prism(s) position and
central line of sight
Offset Prism(s) position and beam path
Plan View
head
4. Installation.
Pre-installation at Ground Level.
Confirm that all parts have been supplied as listed in the parts list. See page 10.
Select if the beam should be latching or non-latching using switch 1. See Fig 4.
Select if the fire panel is either a JSB or Menvier and adjust switch 2 accordingly. See Fig 4
If the alarm threshold requires adjusting from the standard 35% adjust switches 3 and 4. The setting of 25%
being the most sensitive. See Fig 4.
The Detector Head Assembly is now ready for installation. If alarm sensitivity needs to be changed after
installation then a power down reset is required (entering Alignment Mode can also be used as a reset).
4.1. Detector Head Assembly Installation.
Remove the outer cover before installation; this is only to prevent the cover becoming dislodged during
handling.
Do not mount on plasterboard or cladded walls as these surfaces do, and will move.
Determine the position of the Head Assembly, which must be mounted on a solid structure between 0.3 and
0.6 metres below the ceiling, and no closer than 0.5 metres to an adjacent wall or structure. Ensure that there is
a clear line of sight to the proposed position of the prism, which is to be mounted on a solid structure between
5 and 100 metres directly opposite the Detector (range dependent on model).
Using the template provided mark and install all 4 fixing points to the structure. The rear mounting plate of the
Detector Head Assembly is provided with 4 keyhole slotted apertures to allow for easy installation onto the 4
fixing points.
Replace the outer cover.
Terminate the field wiring. See section 8.
4.2. Prism Installation.
Due to the principle of the detector i.e. reflective, the prism must NOT be mounted on glass or a
polished reflective surface.
Mount the Prism on a solid structure, 90º to the beam path, between 5 to 50 metres (MBD50R), and 50 to 100
metres (MBD100R) directly opposite the Detector.
MBD50R =MBD100R =
1 Prism 4 Prisms
22318.31.0121.04.06
4
Ensure that there is a clear line of sight to the Detector, taking care that no moving objects i.e. doors,
mechanical lifting equipment etc, will interfere with the beam path between the Detector and Prism.
Note: On ranges of ≥5 metres and ≤50 metres use a MBD50R.
On ranges of >50 metres and ≤100 metres use a MBD100R.
5. Prism Targeting Mode.
WARNING Targeting mode will place a JSB panel into ALARM.
Apply power to the Detector. There is a minimum of 20 seconds pre-charge delay after power is applied to allow
the internal circuits to stabilise correctly.
Do not remove the detector from the wall during this action.
Using the mode switch (See fig. 4) select Prism Targeting Mode (Switch will be in the up position). At this time
there be may a FIRE or FAULT condition showing on the panel.
Find the prism by adjusting the horizontal and vertical thumbwheels until the Amber LED is flashing. Both the
Red and Amber LED will be OFF when no signal is being received. The Red LED will start to flash when a weak
signal is received. When a stronger signal is received, the Red LED will extinguish and the Amber LED will start
to flash.
•
At this point it is essential to test that the prism and not another surface is
reflecting the beam
This can easily be confirmed by covering the prism with a non-reflecting surface and confirm that the AMBER
and RED indicators are OFF. Please read this in conjunction with section 10.
.
6. Alignment Mode.
Warning Alignment mode will place a JSB panel into alarm.
Mechanical alignment is provided by two adjustment thumb wheels on two sides of the Detector, positioned just
behind the Detector Head cover. Adjustment is achievable in both axes.
6.1. Enabling Alignment Mode.
Do not remove the detector from the wall during this action.
Using the mode switch (See fig. 4) select Alignment Mode (Move switch to the middle position). At this time
there be may a Fire condition showing on the panel.
6.2. Adjustment in Alignment Mode.
The Detector will automatically adjust its infrared beam power and receiver sensitivity to give an optimum
receiver signal strength.
The alignment progress is indicated by the colour and state of the indicator lamp on the front of the Detector.
• FLASHING RED
The Detector is receiving too much signal and is attempting to reduce the infrared power output to
compensate. Wait at this point until the indicator lamp is OFF.
• FLASHING AMBER
The Detector is receiving a weak signal and is attempting to increase the infrared power output. The beam
will initially start at low power and increase, therefore the amber LED will flash first.
• OFF
The Detector has optimised the infrared power and receiver gain for the current orientation of the Detector
and Prism. This does NOT mean that the Detector to Prism alignment is at its optimum, i.e. if the
power is too high, a misaligned Detector may be receiving a fringe reflection from another object.
22318.31.0121.04.06
5
Amber
Amber
After selecting alignment mode
direction of the
Mode and enter the
all four
planes should cause the Amber
LED to flash first
thumbwheel.
other thumbwheel
• FLICKERING RED/AMBER
This state can occur sometimes. It means that the infrared power is stepping through the optimum setting.
6.3. Alignment Process Flow Diagram.
wait until both LED’s stop
flashing
Slowly adjust a thumbwheel in
one direction and observe the
LED’s
The first
LED to
flash was?
Red
Stop turning the
thumbwheel and
wait for the Red
LED to stop
flashing.
Reverse the
thumbwheel
Slowly turn the
thumbwheel in the
same direction
LED
Red
flashing?
Repeat the
process for the
No
Both
thumbwheels
adjusted?
Stop turning the
Neither
Yes
For optimum alignment,
deflection of the beam in
Exit Alignment
Operating Mode
22318.31.0121.04.06
6
6.4. Exiting Alignment Mode.
Do not remove the detector from the wall during this action.
Using the mode switch (See fig. 4) select Run Mode (Switch will be in the down position).
On exiting alignment mode the Detector will perform an internal calibration check. If this fails, which would be
due to bad alignment or either electrical or optical noise, the power level will try to compensate. If, after 60
seconds, the power level is still not correct, the Fire LED will illuminate and the panel will show Fire. The
alignment procedure must be repeated.
If the internal calibration check completes satisfactory, the AMBER LED will flash once every 10 seconds. The
panel will need to be reset. The Detector will be in normal running mode.
7. System Testing.
After successful installation and alignment the System will require testing for both alarm and fault conditions.
7.1. Alarm (smoke) Test.
Taking note of the threshold selected during installation (default 35%).
Select obscuration mark on filter to correspond with the Detector alarm threshold (see fig. 3).
Place the filter over the receiver optics (Top of Detector Head − opposite end to the status indication LED’s) at
the correct obscuration value determined by the threshold selected, i.e. if a threshold of 35% has been selected
position the filter just past the 35% obscuration value on the filter (see fig 3.).
Take care not to cover the transmitter optics.
The Detector will indicate a fire within 10 seconds by flash the Red LED and indicating an at the Fire panel.
7.2. Fault Test.
Cover the Prism(s) totally with a non-reflective material and confirm that the Detector indicates a fault condition
after approximately 10 seconds. The Amber LED on the Detector will flash, and the panel will show a Fault
condition. The fault condition will automatically reset after a period of 10 seconds when the obstruction is
removed.
Align filter for correct obscuration/threshold setting
obscuration value
Receiver Optics
Transmitter Optics
Fig. 3.
Status Indication LED’s
RED
7
22318.31.0121.04.06
MBD50R & MBD100R
ve
Fit EOL if
JSB Panel
8. Connection and Configuration Settings.
8.1. Field Wiring.
The zone wiring is accessed through the back plate of the Detector Head (See Fig 4). The small 2-pin
connector on the left is not used.
8.2. DIP Switch Settings.
Access to the configuration settings is through the back plate of the Detector Head (See Fig 4).
Dip switch 1 on the four pole dip switch is used for alarm auto reset, OFF = latched alarm and ON = auto reset.
Dip switch 2 on the four pole dip switch is used to select panel type, OFF = JSB panel and ON = Menvier panel.
Dip switch 3 and 4 are used to set the alarm threshold.
8.3. Typical Single Zone Wiring.
For operation with a JSB panel wire the detector as shown below and connect an EOLM-1 active end of line
module as shown below.
When used with a Menvier panel connect the detector as shown below but DO NOT install the end of line
component.
Most reflective beams produce a focused beam to a reflector on the opposite side of the protected area. The
returned signal is then sampled and any obscuration calculated. If there are highly reflective surfaces, or
objects near the beam path, there may be a possibility that some of the beam energy is inadvertently reflected
into the receiver, rather than the reflector. This may increase the possibility of faults or false alarms. Hence the
importance of following the recommendations in Section 5 of this installation guide.
It is for this reason we recommended that the beam path should be surveyed to confirm suitability that a
reflective beam can be used. As a rule of thumb there should be at least 0.5m diameter clearance down the
entire beam path. If there are highly reflective objects within 1 metre diameter of the beam path for the first 20
metres (for the MAB100R) beam path, then tests should be carried our to see if the beam is suitable.
Beam Reflector(s)
First 20 metres
1 metre
diameter
clearance
0.5 metre diameter clearance down rest of beam path
11. Technical Data.
• Operating Range MBD50R 5 to 50 metres
• Operating Range MBD100R 50 to 100 metres
• Quiescent Supply Voltage From fire panel (recommended > 20V)
• Quiescent Current (no lamp illuminated) <3mA
• Power Up Time >20 seconds
• Power Down Time to Reset <2 seconds
• Operating Temperature -30°C to 55°C (not suitable for cold stores or areas with
condensation)
• Tolerance to Beam Misalignment at 35% Detector ± 0.8°, Prism ± 5.0°
• Fire Alarm Thresholds 2.50dB (25%), 3.74dB (35%), 6.02dB (50%)
• Optical Wavelength 880nm
• Head Maximum Size Width 130mm, Height 210mm, Depth 120mm
• Weight 740 gm
22318.31.0121.04.06
10
Loading...
+ 25 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.