Climate Master Tranquility User Manual

THE SMART SOLUTION FOR ENERGY EFFICIENCY
Water Coil Maintenance - (All other water loop applications) Generally water coil maintenance is not needed for closed loop systems. However, if the piping is known to have high dirt or debris content, it is best to establish a periodic maintenance schedule with the owner so the water coil can be checked regularly. Dirty installations are typically the result of deterioration of iron or galvanized piping or components in the system. Open cooling towers requiring heavy chemical treatment and mineral buildup through water use can also contribute to higher maintenance. Should periodic coil cleaning be necessary, use standard coil cleaning procedures, which are compatible with both the heat exchanger material and copper water lines. Generally, the more water fl owing through the unit, the less chance for scaling. However, ow rates over 3 gpm per ton (3.9 l/m per kW) can produce water (or debris) velocities that can erode the heat exchanger wall and ultimately produce leaks.
Hot Water Generator Coils - See water coil maintenance for ground water units. If the potable water is hard or not chemically softened, the high temperatures of the desuperheater will tend to scale even quicker than the water coil and may need more frequent inspections. In areas with extremely hard water, a HWG is not recommended.
Filters - Filters must be clean to obtain maximum performance. Filters should be inspected every month under normal operating conditions and be replaced when necessary. Units should never be operated without a fi lter.
Washable, high effi ciency, electrostatic fi lters, when dirty, can exhibit a very high pressure drop for the fan motor and reduce air fl ow, resulting in poor performance. It is especially important to provide consistent washing of
climatemaster.com
Tranquility
®
30 Digital (TE)
Rev.: January 30, 2019
Preventive Maintenance
these lters (in the opposite direction of the normal air ow) once per month using a high pressure wash similar
to those found at self-serve car washes. Condensate Drain - In areas where airborne bacteria
may produce a “slimy” substance in the drain pan, it may be necessary to treat the drain pan chemically with an algaecide approximately every three months to minimize the problem. The condensate pan may also need to be cleaned periodically to ensure indoor air quality. The condensate drain can pick up lint and dirt, especially with dirty fi lters. Inspect the drain twice a year to avoid the possibility of plugging and eventual overfl ow.
Compressor - Conduct annual amperage checks to ensure that amp draw is no more than 10% greater than indicated on the serial plate data.
Fan Motors - All units have lubricated fan motors. Fan motors should never be lubricated unless obvious, dry operation is suspected. Periodic maintenance oiling is not recommended, as it will result in dirt accumulating in the excess oil and cause eventual motor failure. Conduct annual dry operation check and amperage check to ensure amp draw is no more than 10% greater than indicated on serial plate data.
Air Coil - The air coil must be clean to obtain maximum performance. Check once a year under normal operating conditions and, if dirty, brush or vacuum clean. Care must be taken not to damage the aluminum fi ns while cleaning. When the heat pump has experienced less than 100 operational hours and the coil has not had suffi cient time to be “seasoned”, it is necessary to clean the coil with a mild surfactant such as Calgon to remove the oils left by manufacturing processes and enable the condensate to properly “sheet” off of the coil. CAUTION: Fin edges are sharp.
Cabinet - Do not allow water to stay in contact with the cabinet for long periods of time to prevent corrosion of the cabinet sheet metal. Generally, vertical cabinets are set up from the fl oor a few inches [7 - 8 cm] to prevent water from entering the cabinet. The cabinet can be cleaned using a mild detergent.
Refrigerant System - To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Reference the operating charts for pressures and temperatures. Verify that air and water ow rates are at proper levels before servicing the refrigerant circuit.
53
CLIMATEMASTER WATER-SOURCE HEAT PUMPS
Tranquility
Rev.: January 30, 2019
®
30 Digital (TE)
Troubleshooting
General
If operational diffi culties are encountered, perform the preliminary checks below before referring to the troubleshooting charts.
• Verify that the unit is receiving electrical supply power.
• Make sure the fuses in the fused disconnect switches are intact.
After completing the preliminary checks described above, inspect for other obvious problems such as leaking connections, broken or disconnected wires, etc. If everything appears to be in order, but the unit still fails to operate properly, refer to the “DXM2 Troubleshooting Process Flowchart” or “Functional Troubleshooting Chart.”
DXM2 Board
DXM2 board troubleshooting in general is best summarized as verifying inputs and outputs. After inputs and outputs have been verifi ed, board operation is confi rmed and the problem must be elsewhere. Below are some general guidelines for troubleshooting the DXM2 control.
Field Inputs
Conventional thermostat inputs are 24VAC from the thermostat and can be verifi ed using a voltmeter between C and Y1, Y2, W, O, G. 24VAC will be present at the terminal (for example, between “Y1” and “C”) if the thermostat is sending an input to the DXM2 board.
Proper communications with a thermostat can be verifi ed using the Fault LED on the DXM2. If the control is NOT in the Test mode and is NOT currently locked out or in a retry delay, the Fault LED on the DXM2 will fl ash very slowly (1 second on, 5 seconds off), if the DXM2 is properly communicating with the thermostat.
Outputs
The compressor and reversing valve relays are 24VAC and can be verifi ed using a voltmeter. For units with ECM blower motors, the DXM2 controls the motor using serial communications, and troubleshooting should be done with a communicating thermostat or diagnostic tool. The alarm relay can either be 24VAC as shipped or dry contacts for use with DDC controls by clipping the JW1 jumper. Electric heat outputs are 24VDC “ground sinking” and require a voltmeter set for DC to verify operation. The terminal marked “24VDC” is the 24VDC supply to the electric heat board; terminal “EH1” is stage 1 electric heat; terminal “EH2” is stage 2 electric heat. When electric heat is energized (thermostat is sending a “W” input to the DXM2 controller), there will be 24VDC between terminal “24VDC” and “EH1” (stage 1 electric heat) and/or “EH2” (stage 2 electric heat). A reading of 0VDC between “24VDC” and “EH1” or “EH2” will indicate that the DXM2 board is NOT sending an output signal to the electric heat board.
Test Mode
Test mode can be entered for 20 minutes by pressing the Test pushbutton. The DXM2 board will automatically exit test mode after 20 minutes.
WARNING!
WARNING! HAZARDOUS VOLTAGE! DISCONNECT ALL
ELECTRIC POWER INCLUDING REMOTE DISCONNECTS BEFORE SERVICING. Failure to disconnect power before servicing can cause severe personal injury or death.
Sensor Inputs
All sensor inputs are ‘paired wires’ connecting each component to the board. Therefore, continuity on pressure switches, for example can be checked at the board connector. The thermistor resistance should be measured with the connector removed so that only the impedance of the thermistor is measured. If desired, this reading can be compared to the thermistor resistance chart shown in Table 8. An ice bath can be used to check the calibration of the thermistor.
54
ClimateMaster Water-Source Heat Pumps
THE SMART SOLUTION FOR ENERGY EFFICIENCY
Advanced Diagnostics
If a communicating thermostat or diagnostic tool (ACDU) is connected to the DXM2, additional diagnostic information and troubleshooting capabilities are available. The current status of all DXM2 inputs can be verifi ed, including the current temperature readings of all temperature inputs. With a communicating thermostat the current status of the inputs can be accessed from the Service Information menu. In the manual operating mode, most DXM2 outputs can be directly controlled for system troubleshooting. With a communicating thermostat the manual operating mode can be accessed from the Installer menu. For more detailed information on the advanced diagnostics of the DXM2, see the DXM2 Application, Operation and Maintenance (AOM) manual (part #97B0003N15).
DXM2 Troubleshooting Process Flowchart/Functional Troubleshooting Chart
The “DXM2 Functional Troubleshooting Process Flowchart” is a quick overview of how to start diagnosing a suspected problem, using the fault recognition features of the DXM2 board. The “Functional Troubleshooting Chart” on the following page is a more comprehensive method for identifying a number of malfunctions that may occur, and is not limited to just the DXM2 controls. Within the chart are fi ve columns:
• The “Fault” column describes the symptoms.
• Columns 2 and 3 identify in which mode the fault is likely to occur, heating or cooling.
• The “Possible Cause column” identifies the most likely sources of the problem.
• The “Solution” column describes what should be done to
correct the problem.
Tranquility
®
30 Digital (TE)
Rev.: January 30, 2019
Troubleshooting (Continued)
climatemaster.com
55
Loading...
+ 7 hidden pages