Cirrus Logic EP7312 User Manual

FEATURES

LCD
Controller
Boot ROM
MaverickKey
TM
ARM7TDMI CPU Core
MMU
8 KB
Cache
Write
Buffe r
Intern a l D a ta B u s
EPB Bus
Memory Co ntro ller
SDRAM I/FSRA M I/F
On-chip SRAM
48 KB
ICE -J T A G
Clocks &
Timers
Keypad&
Touch
Screen I/F
Interrupts,
PWM & GPIO
Bus
Bridge
(2) UARTs
w/ IrDA
Power
Management
Serial
Interface
Digital
Audio
Interface
ARM720T
SERIAL PORTS
USER INTERFACE
FEATURES
ARM®720T Processor
— ARM7TDMI CPU Operating at Speeds of 74 and
90 MHz — 8 kBytes of Four-way Set-associative Cache — MMU with 64-entry TLB — Thumb Code Support Enabled
Ultra low power
— 90 mW at 74 MHz Typical — 108 mW at 90 MHz Typical — <.03 mW in the Standby State
Advanced Audio Decoder/decompression Capability
— Supports bit streams with adaptive bit rates. — Allows for support of multiple audio decompression
algorithms (MP3, WMA, AAC, Audible, etc.).
High-performance,
Low-power, System-on-chip
with SDRAM & Enhanced
Digital Audio Interface

OVERVIEW

OVERVIEW
The Cirrus Logic™ EP7312 is designed for ultra-low-power portable and line-powered applications such as portable consumer entertainment devices, home and car audio juke box systems, and general purpose industrial control applications, or any device that features the added capability of digital audio compression & decompression. The core-logic functionality of the device is built around an ARM720T processor with 8 kBytes of four-way set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Microsoft CE and Linux®.
®
Windows
®
BLOCK DIAGRAM
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(cont.)
MEMORY and STORAGE
(All Rights Reserved) MAR ‘11
(cont.)
DS508F2
EP7312
High-Performance, Low-Power System on Chip
FEATURES (cont)
48 KBytes of On-chip SRAM
MaverickKey
IDs
— 32-bit unique ID can be used for DRM-compliant 128-
bit random ID.
Available in 74 and 90 MHz clock speeds. LCD controller
— Interfaces directly to a single-scan panel monochrome
STN LCD.
— Interfaces to a single-scan panel color STN LCD with
minimal external glue logic.
Full JTAG Boundary Scan and Embedded ICE
Support
Integrated Peripheral Interfaces
— 32-bit SDRAM Interface, Up to 2 External Banks — 8/32/16-bit SRAM/FLASH/ROM Interface — Digital Audio Interface provides glueless interface to
low-power DACs, ADCs, and CODECs. — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface —88 Keypad Scanner — 27 General-purpose Input/Output Pins
— Dedicated LED Flasher Pin from the RTC
Internal Peripherals
— T wo 16550-compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two General-purpose 16-bit Timers — Interrupt Controller — Boot ROM
Package
—208-Pin LQFP —256-Ball PBGA
The fully static EP7312 is optimized for low power
dissipation and is fabricated using a 0.25 micron CMOS process.
OVERVIEW (cont.)
The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states: operating, idle and standby.
MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
The EP7312 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, high quality ADCs, DACs, or CODECs such as the Cirrus Logic CS53L32A, CS43L42, and CS42L50 are easily added to an EP73xx design via the DAI. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions.
Simply by adding desired memory and peripherals to the highly integrated EP7312 completes a low-power system solution. All necessary interface logic is integrated on-chip.
2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES ................................................................................................................................. ..........1
OVERVIEW ..................................................................................... ................ ................. .....................1
FEATURES (cont) .......................................................................................................................................................2
OVERVIEW (cont.) ......................................................................................................................................................2
Description of the EP7312’s Component s, Functionality, and Interfaces ....................................6
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID .....................................................................................................................................6
Memory Interfaces .............................. ... .... ... ... ... ... .... ... .........................................................................................6
Digital Audio Capability ...................................... ... .... ... ... ... .... ... ... .........................................................................7
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................7
Digital Audio Interface (DAI) .. ... .... ... ... ... .............................................................. ... ... ... .... ... ..................................7
CODEC Interface ............................................ ... ... .... ... ... ... .... ... ... ... ......................................................................8
SSI2 Interface ........................................................................................................................................................8
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
64-Key Keypad Interface .......................................................................................................................................8
Interrupt Controller ................................................................................................................................................9
Real-Time Clock ....................................................................................................................................................9
PLL and Clocking ..................................................................................................................................................9
DC-to-DC Converter Interface (PWM) ............................. ................ ................ ................. ...................................10
Timers .................................................................................................................................................................10
General Purpose Input/Output (GPIO) ................................................................................................................10
Hardware Debug Interface ..................................................................................................................................10
LED Flasher ........................................................................................................................................................10
Internal Boot ROM ........................... ... ... .... ... .......................................................... ... ... .... ...................................10
Packaging ..................................... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ... ....... .............................................10
Pin Multiplexing ...................................................................................................................................................11
System Design ....................................................................................................................................................12
ELECTRICAL SPECIFICATIONS .................................................... ................................. ................ .13
Absolute Maximum Ratings .................................................................................................................................13
Recommended Operating Conditions .................................................................................................................13
DC Characteristics ....................................... ... ... ... ........................................................... ...................................13
Timings ........................................................................................... .............. ............................ ..........15
Timing Diagram Conventions ....................................................................................................................15
Timing Conditions ........................................ .... ... ... ... .................................................................................15
SDRAM Interface ............................................ .......................................................... ... .... ...................................16
SDRAM Load Mode Register Cycle ..........................................................................................................17
SDRAM Burst Read Cycle ........... .... ... ... ... ... .... ... ... ... .... ... ... .......................................................................18
SDRAM Burst Write Cycle ........................... .... .......................................................... ... .............................19
SDRAM Refresh Cycle ....... ... ... ... .... ... ... ... ... ........................................................... ... ... ... ... .......................20
Static Memory ......................................................................................................................................................21
Static Memory Single Read Cycle .............................................................................................................22
Static Memory Single Write Cycle ..............................................................................................................23
Static Memory Burst Read Cycle ...............................................................................................................24
Static Memory Burst Write Cycle ...............................................................................................................25
SSI1 Interface ......................................................................................................................................................26
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 3
EP7312
High-Performance, Low-Power System on Chip
SSI2 Interface ..................................................................................................................................................... 27
LCD Interface ...................................................................................................................................................... 28
JTAG Interface .......................... ... ... .... ... ... ... .......................................................... .... ... ...................................... 29
Packages ...........................................................................................................................................30
208-Pin LQFP Package Characteristics ............................................................................................................. 30
208-Pin LQFP Pin Diagram ......................... .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ................................................ 31
208-Pin LQFP Numeric Pin Listing ..................................................................................................................... 32
256-Ball PBGA Package Characteristics ............................................................................................................ 38
256-Ball PBGA Pinout (Top View) ....................................................................................................................... 39
256-Ball PBGA Ball Listing ................................................................................................................................. 40
JTAG Boundary Scan Signal Ordering ..... ... .... ... ... ... ... .... ... ... ... .... ...................................................................... 45
CONVENTIONS .................................................................................................................................50
Acronyms and Abbreviations .............. ... ... ... .... ............................................................. ... ... ................................ 50
Units of Measurement ......................................................................................................................................... 50
General Conventions ............. ... .......................................................... ... .... ... ... ... ... .... ... ... ... ................................ 51
Pin Description Conventions ............................................................................................................................... 51
Ordering Information .......................................................................................................................52
Environmental, Manufacturing, & Handling Information .............................................................52
Revision History ..............................................................................................................................53
4 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Fully-Configured EP7312-Based System ...................... ... ... ... .... ... ... ..........................................................12
Figure 2. Legend for Timing Diagrams .........................................................................................................................15
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement ..................... ................................ .......................17
Figure 4. SDRAM Burst Read Cycle Timing Measurement ..........................................................................................18
Figure 5. SDRAM Burst Write Cycle Timing Measurement ..........................................................................................19
Figure 6. SDRAM Refresh Cycle Timing Measurement ......................................... ... .... ... .............................................20
Figure 7. Static Memory Single Read Cycle Timing Measurement ...............................................................................22
Figure 8. Static Memory Single Write Cycle Timing Measurement .................. ................................... ..........................23
Figure 9. Static Memory Burst Read Cycle Timing Measurement ................................................................................24
Figure 10. Static Memory Burst Write Cycle Timing Measurement ..............................................................................25
Figure 11. SSI1 Interface Timing Measurement ...........................................................................................................26
Figure 12. SSI2 Interface Timing Measurement ...........................................................................................................27
Figure 13. LCD Controller Timing Measurement ..........................................................................................................28
Figure 14. JTAG Timing Measurement ........................ .............................................................. ...................................29
Figure 15. 208-Pin LQFP Package Outline Drawing ....................................................................................................30
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................31
Figure 17. 256-Ball PBGA Package ..............................................................................................................................38
List of Tables
Table 1. Power Management Pin Assignments ..............................................................................................................6
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6
Table 3. SDRAM Interface Pin Assignments ..................................................................................................................7
Table 4. Universal Asynchronous Receiver/Transmitters Pin Assignments ....................... ... .... ... ... ... ... .... ... ... ... .. ..........7
Table 5. DAI Interface Pin Assignments .........................................................................................................................7
Table 6. CODEC Interface Pin Assignments ..................................................................................................................8
Table 7. SSI2 Interface Pin Assignments .......................................................................................................................8
Table 8. Serial Interface Pin Assignments ......................................................................................................................8
Table 9. LCD Interface Pin Assignments ........................................................................................................................8
Table 10. Keypad Interface Pin Assignments ..... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ...............................................9
Table 11. Interrupt Controller Pin Assignments ..... .........................................................................................................9
Table 12. Real-Time Clock Pin Assignments ............ ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...............................9
Table 13. PLL and Clocking Pin Assignments ................................................................................................................9
Table 14. DC-to-DC Converter Interface Pin Assignments .................... ................................ .......................................10
Table 15. General Purpose Input/Output Pin Assignments ..........................................................................................10
Table 16. Hardware Debug Interface Pin Assignments ................................................................................................10
Table 17. LED Flasher Pin Assignments ............ ... ... ... .......................................................... .... ... ................................10
Table 18. DAI/SSI2/CODEC Pin Multiplexing ........................................ ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................11
Table 19. Pin Multiplexing .............................................................................................................................................11
Table 20. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................32
Table 21. 256-Ball PBGA Ball Listing ...........................................................................................................................40
Table 22. JTAG Boundary Scan Signal Ordering ..................... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................45
Table 23. Acronyms and Abbreviations .............. ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ..........................................50
Table 24. Unit of Measurement .......... .... ... ... .......................................................... ... .... ... ... ... .......................................50
Table 25. Pin Description Conventions .................................. ... ... .... ... ... ... .... ................................................................51
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 5
EP7312
High-Performance, Low-Power System on Chip

Description of the EP7312’s Components, Functionality, and Interfaces

The following sections describe the EP7312 in more detail.

Processor Core - ARM720T

The EP7312 incorporates an ARM 32-bit RISC micro controller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include:
ARM (32-bit) and Thumb (16-bit compressed) instruction sets
Enhanced MMU for Microsoft Windows CE and other operating systems
8 KB of 4-way set-associative cache.
Translation Look Aside Buffers with 64 Translated Entries

Power Management

The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states:
• Operating — This state is the full performance state. All the clocks and peripheral logic are enabled.
• Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press.
• Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor.
Table 1 shows the power management pin assignments.
Table 1. Power Management Pin Assignments
Pin Mnemonic I/O Pin Description
BATOK I Battery ok input
nEXTPWR I
nPWRFL I Power fail sense input nBATCHG I Battery changed sense input
External power supply sense input
Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7312 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7312 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances.

Memory Interfaces

There are two main external memory interfaces. The first one is the ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industry-leading code density. shows the Static Memory Interface pin assignments.
Table 2. Static Memory Interface Pin Assignments
Pin Mnemonic I/O Pin Description
nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE/nSDCAS (Note) O ROM expansion OP enable nMWE/nSDWE (Note) O ROM expansion write enable
HALFWORD O
WORD O Word access select output WRITE/nSDRAS (Note) O Transfer direction
Halfword access select output

MaverickKey™ Unique ID

MaverickKey unique hardware programmed IDs are a solution
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.
to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
6 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide SDRAM interface that allows direct connection of up to two banks of SDRAM, totaling 512 Mb. To assure the lowest possible power consumption, the EP7312 supports self-refresh SDRAMs, which are placed in a low-power state by the device when it enters the low-power Standby State. Table 3 shows the SDRAM Interface pin assignments.
Table 3. SDRAM Interface Pin Assignments
Pin Mnemonic I/O Pin Description
SDCLK O SDRAM clock output SDCKE O SDRAM clock enable output nSDCS[1:0] O SDRAM chip select out WRITE/nSDRAS (Note 2) O SDRAM RAS signal output nMOE/nSDCAS (Note 2) O SDRAM CAS control signal
nMWE/nSDWE (Note 2) O
A[27:15]/DRA[0:12] (Note 1) O SDRAM address A[14:13]/DRA[12:14] O SDRAM internal bank select PD[7:6]/SDQM[1:0] (Note 2) I/O SDRAM byte lane mask SDQM[3:2] O SDRAM byte lane mask D[31:0] I/O Data I/O
Note: 1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See Table 19 on page 11 for more information.
SDRAM write enable control signal

Digital Audio Capability

The EP7312 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7312

Universal Asynchronous Receiver/T ransmitters (UARTs)

The EP7312 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit rates up to 115.2 kbps. An IrDA SIR proto col encoder/decoder can be optionally switched into the RX/TX signals to/from UART 1 to enable these signals to drive an infrared
communication interface directly. Table 4 shows the UART pin assignments.
Table 4. Universal Asynchronous Receiver/Transmitters Pin
Pin Mnemonic I/O Pin Description
TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input
Assignments

Digital Audio Interface (DAI)

The EP7312 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal Crystal feature digital bass and treble boost, digital volume control and compressor-limiter functions. Table 5 shows the DAI Interface pin assignments.
SCLK O Serial bit clock SDOUT O Serial data out SDIN I Serial data in LRCK O Sample clock MCLKIN I Master clock input MCLKOUT O Master clock output
Note: See Table 18 on page 11 for information on pin
CS43L41/42/43 low-power audio DACs and the
CS53L32 low-power ADC. Some of these devices
Table 5. DAI Interface Pin Assignments
Pin Mnemonic I/O Pin Description
multiplexes.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 7
EP7312
High-Performance, Low-Power System on Chip

CODEC Interface

The EP7312 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the DAI and SSI2. Tabl e 6 shows the CODEC Interface Pin Assignments.
Table 6. CODEC Interface Pin Assignments
Pin Mnemonic I/O Pin Description
PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync
Note: See Table 18 on page 11 for information on pin
multiplexes.

SSI2 Interface

An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the DAI and CODEC interfaces through a multiplexer. The SSI2 Interface has these features:
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for asymmetric traffic
Table 7 shows the SSI2 Interface pin assignments.
Table 7. SSI2 Interface Pin Assignments
Pin Mnemonic I/O Pin Description
SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync
Note: See Table 18 on page 11 for information on pin
multiplexes.

Synchronous Serial Interface

The EP7312 Synchronous Serial Interface has these features:
ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation)
Selectable serial clock polarity
Table 8 shows the Synchronous Serial Interface pin
assignments.
Table 8. Serial Interface Pin Assignments
Pin Mnemonic I/O Pin Description
ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock

LCD Controller

A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM. The LCD controller has these features:
Interfaces directly to a single-scan panel monochrome STN LCD
Interfaces to a single-scan panel color STN LCD with minimal external glue logic
Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments
Video frame buffer size programmable up to 128 KB
Bits per pixel of 1, 2, or 4 bits
T able 9 shows the LCD Interface pin assignments.
Table 9. LCD Interface Pin Assignments
Pin Mnemonic I/O Pin Description
CL1 O LCD line clock CL2 O LCD pixel clock out DD[3:0] O LCD serial display data bus FRM O LCD frame synchronization pulse M O LCD AC bias drive

64-Key Keypad Interface

Matrix keyboards and keypads can be easily read by the EP7312. A dedicated 8-bit column driver output generates
8 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state. The Keypad Interface has these features:
Column outputs can be individually set high with the remaining bits left at high-impedance
Column outputs can be driven all-low, all-high, or all-high­impedance
Keyboard interrupt driven by OR'ing together all Port A bits
Keyboard interrupt can be used to wake up the system
•88 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic
Table 10 shows the Keypad Interface Pin Assignments.
Table 10. Keypad Interface Pin Assignments
Pin Mnemonic I/O Pin Description
COL[7:0] O
Keyboard scanner column drive

Interrupt Controller

When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7312 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources. The Interrupt controller has these features:
Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.)
Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs
Five dedicated off-chip interrupt lines operate as level sensitive interrupts
Table 11 shows the interrupt controller pin assignments.

Real-Time Clock

The EP7312 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt.
Driven by an external 32.768 kHz crystal oscillator
Table 12 shows the Real-Time Clock pin assignments.
Table 12. Real-Time Clock Pin Assignments
Pin Mnemonic Pin Description
RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground

PLL and Clocking

The EP7312 processor and peripheral clocks have these features:
Processor and peripheral clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz, and at 45 MHz when the processor is set to 90 MHz.
Table 13 shows the PLL and clocking pin assignments.
Table 13. PLL and Clocking Pin Assignments
Pin Mnemonic Pin Description
MOSCIN Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground
.
nEINT[2:1] I External interrupt EINT[3] I External interrupt nEXTFIQ I External Fast Interrupt input nMEDCHG/nBROM (Note) I Media change interrupt input
DS508F2 Copyright Cirrus Logic, Inc. 2011
Table 11. Interrupt Controller Pin Assignments
Pin Mnemonic I/O Pin Description
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.
(All Rights Reserved) 9
EP7312
High-Performance, Low-Power System on Chip

DC-to-DC Converter Interface (PWM)

Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter
Table 14 shows the DC-to-DC Converter Interface pin
assignments.
Table 14. DC-to-DC Converter Interface Pin Assignments
Pin Mnemonic I/O Pin Description
DRIVE[1:0] I/O PWM drive output FB[1:0] I PWM feedback input

Timers

Internal (RTC) timer
Two internal 16-bit programmable hardware count-down timers

General Purpose Input/Output (GPIO)

Three 8-bit and one 3-bit GPIO ports
Supports scanning keyboard matrix
Table 15 shows the GPIO pin assignments.
Table 16. Hardware Debug Interface Pin Assignments
Pin Mnemonic I/O Pin Description
TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select

LED Flasher

A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA. Table 17 shows the LED Flasher pin assignments.
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Table 15. General Purpose Input/Output Pin Assignments
Pin Mnemonic I/O Pin Description
PA[7:0] I/O GPIO port A PB[7:0] I/O GPIO port B PD[0]/LEDFLSH (Note) I/O GPIO port D PD[5:1] I/O GPIO port D PD[7:6]/SDQM[1:0] (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL (Note) I/O GPIO port E
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.

Hardware Debug Interface

Full JTAG boundary scan and Embedded ICE support
Table 16 shows the Hardware Debug Interface pin
assignments.
Table 17. LED Flasher Pin Assignments
Pin Mnemonic I/O Pin Description
PD[0]/LEDFLSH (Note) O LED flasher driver
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.

Internal Boot ROM

The internal 128-byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH.

Packaging

The EP7312 is available in a 208-pin LQFP package, 256-ball PBGA package, or a 204-ball TFBGA package.
10 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip

Pin Multiplexing

Table 18 shows the pin multiplexing of the DAI, SSI2 and the
CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the EP7312 User’s Manual for more information).
Table 18. DAI/SSI2/CODEC Pin Multiplexing
Pin
Mnemonic
SSICLK I/O SCLK SSICLK PCMCLK SSITXDA O SDOUT SSITXDA PCMOUT SSIRXDA I SDIN SSIRXDA PCMIN SSITXFR I/O LRCK SSITXFR PCMSYNC SSIRXFR I MCLKIN SSIRXFR p/u BUZ O MCLKOUT
I/O DAI SSI2 CODEC
Table 19 shows the pins that have been multiplexed in the
EP7312.
Table 19. Pin Multiplexing
Signal Block Signal Block
nMOE Static Memory nSDCAS SDRAM nMWE Static Memory nSDWE SDRAM WRITE Static Memory nSDRAS SDRAM A[27:15] Static Memory DRA[0:12] SDRAM A[14:13] Static Memory DRA[13:14] SDRAM PD[7:6] GPIO SDQM[1:0] SDRAM
RUN
nMEDCHG
PD[0] GPIO LEDFLSH LED Flasher
PE[1:0] GPIO BOOTSEL[1:0]
PE[2] GPIO CLKSEL
System Configuration
Interrupt Controller
CLKEN
nBROM
System Configuration
Boot ROM select
System Configuration
System Configuration
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 11
EP7312
LCD
KEYBOARD
BATTER Y
DC-TO-DC
CONVERTERS
ADC
DIGITIZER
IR LED AND
PHOTODIODE
2RS-232
TRANSCEIVERS
ADDITIONAL I/O
DD[0-3]
CL1 CL2
FRM
M
D[0-31] A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK nEXTPWR nBATCHG
RUN
WAKEUP
nCS[0] nCS[1]
DRIVE[0-1]
FB[0-1]
EP7312
ADCCLK nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD[[1/2]
TXD[1/2]
DSR
CTS
DCD
CS[n] WORD
nCS[2] nCS[3]
16
FLASH
16
FLASH
6
FLASH
EXTERNAL MEMORY ­MAPPED EXPANSION
BUFFERS
BUFFERS
AND
LATCHES
16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
DAI
SSICLK
SSITXFR SSITXDA SSIRXDA SSIRXFR
RTCIN
LEDFLSH
CRYSTAL
MOSCIN
16
SDRAM
16
SDRAM
6
SDRAM
16
SDRAM
SDCS[1] SDQM[0-3]
SDCS[0] SDQM[0-3]
SDRAS/ SDCAS
High-Performance, Low-Power System on Chip

System Design

As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7312
completes a low-power system solution. All necessary interface logic is integrated on-chip.
Note: A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI.
12 Copyright Cirrus Logic, Inc. 2011
Figure 1. A Fully-Configured EP7312-Based System
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

DC Core, PLL, and RTC Supply Voltage 2.9 V
DC I/O Supply Voltage (Pad Ring) 3.6 V
DC Pad Input Current 10 mA/pin; 100 mA cumulative
Storage Temperature, No Power –40C to +125C

Recommended Operating Conditions

DC core, PLL, and RTC Supply Voltage 2.5 V 0.2 V
DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V
DC Input / Output Voltage O–I/O supply voltage
EP7312
Operating Temperature
Extended -20C to +70C; Commercial 0C to +70C; Industrial -40C to +85C

DC Characteristics

All characteristics are specified at V
DDCORE
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”
Symbol Parameter Min Typ Max Unit Conditions
VIH CMOS input high voltage
VIL CMOS input low voltage
VT+
VT-
Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH
VOH
Schmitt trigger positive going threshold
Schmitt trigger negative going threshold
CMOS output high voltage Output drive 1 Output drive 2
a a
a
= 2.5 V, V
0.65 V
DDIO
0.3
V
SS
--2.1V
0.8 - - V
VDD – 0.2
2.5
2.5
= 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C
DDIO
+ 0.3
-
-
-
-
-
V
DDIO
0.25 V
-
-
-
DDIO
V
V
V V V
V
= 2.5 V
DDIO
= 2.5 V
V
DDIO
IOH = 0.1 mA IOH = 4 mA IOH = 12 mA
CMOS output low voltage
VOL
IIN Input leakage current - - 1.0 µA
IOZ
CIN Input capacitance 8 - 10.0 pF
COUT Output capacitance 8 - 10.0 pF
Output drive 1 Output drive 2
Bidirectional 3-state leakage current
a a
b c
a
-
-
-
25 - 100 µA
-
-
-
0.3
0.5
0.5
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 13
V V V
IOL = –0.1 mA IOL = –4 mA IOL = –12 mA
VIN = V
VOUT = V
or GND
DD
DD
or GND
EP7312
High-Performance, Low-Power System on Chip
Symbol Parameter Min Typ Max Unit Conditions
CI/O Transceiver capacitance 8 - 10.0 pF
IDD
STANDBY
@ 25 C
IDD
STANDBY
@ 70 C
IDD
STANDBY
@ 85 C
IDD
idle
at 74 MHz
IDD
IDLE
at 90 MHz
VDD
STANDBY
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Standby current consumption Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
1
-
-
1
-
-
1
-
-
1
-
-
77 41
10
11
-
µA
-
-
-
-
-
6
570 111
1693
163
-
µA
µA
mA
-
7
-
mA
-
Standby supply voltage 2.0 - - V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
± 0.1 V, VIL
DD
= GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
± 0.1 V, VIL
DD
= GND ± 0.1 V
Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only
a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that t he pin is configured as an input pin but is not currently being driven.
Note: 1) Total power consumption = IDD
2) A typical design will provide 3.3 V to the I/O supply (i.e., V
CORE x
2.5 V + IDD
IO x
3.3 V ), and 2.5 V to the remaining logic. This is to allow the I/O to be
DDIO
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at V
= 3.3 V.
DD
14 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
Clock
High to Low
High/Low to H igh
Bus Change
Bus Valid
Undefined/Invalid
V a lid B u s to T ris ta te
Bus/Signal O m ission
Figure 2. Legend for Timing Diagrams
High-Performance, Low-Power System on Chip

Timings

Timing Diagram Conventions

This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at V
= 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40C to +85C. Pin loadings is 50 pF. The timing values are
DDIO
referenced to 1/2 V
DS508F2 Copyright Cirrus Logic, Inc. 2011
.
DD
(All Rights Reserved) 15
EP7312
High-Performance, Low-Power System on Chip

SDRAM Interface

Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for
the timings of each of the SDRAM modes.
Parameter Symbol Min Typ Max Unit
SDCLK falling edge to SDCS assert delay time
SDCLK falling edge to SDCS deassert delay time
SDCLK falling edge to SDRAS assert delay time
SDCLK falling edge to SDRAS deassert delay time
SDCLK falling edge to SDRAS invalid delay time
SDCLK falling edge to SDCAS assert delay time
SDCLK falling edge to SDCAS deassert delay time
SDCLK falling edge to ADDR transition time
SDCLK falling edge to ADDR invalid delay time
SDCLK falling edge to SDMWE assert delay time
SDCLK falling edge to SDMWE deassert delay time
DATA transition to SDCLK falling edge time
SDCLK falling edge to DATA transition hold time
SDCLK falling edge to DATA transition delay time
t
CSa
t
CSd
t
RAa
t
RAd
t
RAnv
t
CAa
t
CAd
t
ADv
t
ADx
t
MWa
t
MWd
t
DAs
t
DAh
t
DAd
024ns
3 2 10 ns
137ns
3 1 10 ns
247ns
22 5ns
50 3ns
31 5ns
22 5ns
31 5ns
40 4ns
2--ns
1--ns
0 - 15 ns
16 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

SDRAM Load Mode Register Cycle

SDCLK
SDCS
SDRAS
SDCAS
ADDR
DATA
SDQM
SDMWE
t
CSa
t
RAa
t
CAa
t
MWa
t
ADv
t
ADx
t
RAd
t
CSd
t
CAd
t
MWd
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 17
EP7312
ADRAS ADCAS
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[0:3]
ADDR
DATA
SDMWE
D1 D4D3D2
t
ADv
t
ADv
t
CSd
t
CSa
t
CSa
t
CAa
t
RAd
t
CSd
t
CAd
t
RAa
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
RAnv
Figure 4. SDRAM Burst Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

SDRAM Burst Read Cycle

Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.
18 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

SDRAM Burst Write Cycle

SDCLK
SDCS
SDRAS
SDCAS
SDQM
ADDR
DATA
SDMWE
0
D1
ADRAS
ADCAS
D4D3D2
t
CSa
t
RAa
t
CAa
t
CSa
t
CSd
t
RAd
t
CSd
t
CAd
t
ADv
t
DAd
t
ADv
t
DAd
t
DAd
t
DAd
t
MWa
t
MWd
Figure 5. SDRAM Burst Write Cycle Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 19
EP7312
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[3:0]
SDMWE
SDATA
ADDR
t
CSa
t
RAa
t
CSd
t
RAd
t
CAa
t
CAd
Figure 6. SDRAM Refresh Cycle Timing Measurement
High-Performance, Low-Power System on Chip

SDRAM Refresh Cycle

Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
20 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip

Static Memory

Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the
values for the timings of each of the Static Memory modes.
Parameter Symbol Min Typ Max Unit
EXPCLK rising edge to nCS assert delay time
EXPCLK falling edge to nCS deassert hold time
EXPCLK rising edge to A assert delay time
EXPCLK falling edge to A deassert hold time
EXPCLK rising edge to nMWE assert delay time
EXPCLK rising edge to nMWE deassert hold time
EXPCLK falling edge to nMOE assert delay time
EXPCLK falling edge to nMOE deassert hold time
EXPCLK falling edge to HALFWORD deassert delay time
EXPCLK falling edge to WORD assert delay time
EXPCLK rising edge to data valid delay time
EXPCLK falling edge to data invalid delay time
Data setup to EXPCLK falling edge time
EXPCLK falling edge to data hold time
t
CSd
t
CSh
t
Ad
t
Ah
t
MWd
t
MWh
t
MOEd
t
MOEh
t
HWd
t
WDd
t
Dv
t
Dnv
t
Ds
t
Dh
2 8 20 ns
2 7 20 ns
4 9 16 ns
31019ns
3 6 10 ns
3 6 10 ns
3 7 10 ns
2 7 10 ns
2 8 20 ns
2 8 16 ns
81321ns
61530ns
--1ns
--3ns
EXPCLK rising edge to WRITE assert delay time
EXPREADY setup to EXPCLK falling edge time
EXPCLK falling edge to EXPREADY hold time
t
WRd
t
EXs
t
EXh
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 21
51123ns
--0ns
--0ns
EP7312
EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
nMOE
t
CSd
t
Ad
t
CSh
t
MOEh
t
Dh
t
Ds
t
HWd
t
WDd
t
WRd
t
MOEd
EXPRDY
t
EXh
t
EXs
Figure 7. Static Memory Single Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Single Read Cycle

Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
22 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

Static Memory Single Write Cycle

EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
t
HWd
t
WDd
t
CSd
t
Ad
t
MWd
t
Dv
t
MWh
t
CSh
nMOE
EXPRDY
t
EXh
t
EXs
Figure 8. Static Memory Single Write Cycle Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 23
EP7312
EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
Ah
t
Ah
t
Ah
t
CSh
t
MOEh
t
MOEd
t
EXs
t
EXh
tDst
Dh
t
Ds
t
Ds
t
Ds
t
Dh
t
Dh
t
Dh
t
WRd
t
HWd
t
WDd
Figure 9. Static Memory Burst Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Burst Read Cycle

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
24 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

Static Memory Burst Write Cycle

EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
MWd
t
MWh
t
MWd
t
MWd
t
MWd
t
MWh
t
MWh
t
MWh
t
Ah
t
Ah
t
Ah
t
EXs
t
EXh
t
CSh
t
Dv
t
Dv
t
Dv
t
Dnv
t
Dnv
t
Dnv
t
Dv
t
HWd
t
WDd
Figure 10. Static Memory Burst Write Cycle Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 25
EP7312
ADC
CLK
nADC
CSS
ADCIN
ADC
OUT
t
INs
t
INh
t
Cd
t
Od
t
Ovd
Figure 11. SSI1 Interface Timing Measurement
High-Performance, Low-Power System on Chip

SSI1 Interface

Parameter Symbol Min Max Unit
ADCCLK falling edge to nADCCSS deassert delay time
ADCIN data setup to ADCCLK rising edge time
ADCIN data hold from ADCCLK rising edge time
ADCCLK falling edge to data valid delay time
ADCCLK falling edge to data invalid delay time
t
t
t
t
Cd
INs
INh
Ovd
t
Od
910ms
-15ns
-14ns
713ns
23ns
26 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

SSI2 Interface

SSI
CLK
SSIRXFR/
SSITXFR
SSI
TXDA
SSI
RXDA
D1D7
D7
D2
D2 D1
D0
D0
t
clk_per
t
clk_high
t
clk_low
t
FRd
t
FR_per
t
RXs
t
TXd
t
FRa
t
RXh
t
clkrf
t
TXv
Figure 12. SSI2 Interface Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Unit
SSICLK period (slave mode)
SSICLK high time
SSICLK low time
SSICLK rise/fall time
SSICLK rising edge to RX and/or TX frame sync high time
SSICLK rising edge to RX and/or TX frame sync low time
SSIRXFR and/or SSITXFR period
SSIRXDA setup to SSICLK falling edge time
SSIRXDA hold from SSICLK falling edge time
SSICLK rising edge to SSITXDA data valid delay time
SSITXDA valid time
t
clk_per
t
clk_high
t
clk_low
t
clkrf
t
FRd
t
FRa
t
FR_per
t
RXs
t
RXh
t
TXd
t
TXv
185 2050 ns
925 1025 ns
925 1025 ns
318ns
-3ns
-8ns
960 990 ns
37ns
37ns
-2ns
960 990 ns
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 27
EP7312
CL[2]
CL[1]
FRM
M
DD [3:0]
t
CL1d
t
FRMd
t
Md
t
DDd
t
CL2d
Figure 13. LCD Controller Timing Measurement
High-Performance, Low-Power System on Chip

LCD Interface

Parameter Symbol Min Max Unit
CL[2] falling to CL[1] rising delay time
CL[1] falling to CL[2] rising delay time
CL[1] falling to FRM transition time
CL[1] falling to M transition time
CL[2] rising to DD (display data) transition time
t
CL1d
t
CL2d
t
FRMd
t
t
DDd
Md
10 25 ns
80 3,475 ns
300 10,425 ns
10 20 ns
10 20 ns
28 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

JTAG Interface

TDO
TCK
TDI
TMS
t
JPh
t
clk_high
t
clk_low
t
JPzx
t
JPco
t
JPxz
t
clk_per
t
JPs
Figure 14. JTAG Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Units
TCK clock period
TCK clock high time
TCK clock low time
JTAG port setup time
JTAG port hold time
JTAG port clock to output
JTAG port high impedance to valid output
JTAG port valid output to high impedance
t
clk_per
t
clk_high
t
clk_low
t
JPs
t
JPh
t
JPco
t
JPzx
t
JPxz
2-ns
1-ns
1-ns
-0ns
-3ns
-10ns
-12ns
-19ns
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 29
EP7312
Figure 15. 208-Pin LQFP Package Outline Drawing
Pin 1 Indicator
29.60 (1.165)
30.40 (1.197)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
0.50
(0.0197)
BSC
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
1.35 (0.053)
1.45 (0.057)
0
MIN
7
MAX
0.09 (0.004)
0.20 (0.008)
1.40 (0.055)
0.45 (0.018)
0.75 (0.030)
0.05 (0.002)
1.00 (0.039) BSC
Pin 1
Pin 208
1.60 (0.063)
0.15 (0.006)
EP7312
208-Pin LQFP
High-Performance, Low-Power System on Chip

Packages

208-Pin LQFP Package Characteristics

Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
4) For pin locations, please see Figure 16. For pin descriptions see the EP7312 User’s Manual.
30 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

208-Pin LQFP Pin Diagram

160
159
158
157
53
54
55
56
57
58
59
60
61
62
63
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
106
107
108
109
110
112
113
114
115
116
117
118
119
120
121
64
65
67
68
69
70
71
72
73
74
75
66
98
99
100
101
102
103
104
122
124
125
126
127
128
129
130
105
131
132
133
134
156
155
154
153
152
151
150
149
148
147
146
145
144
143
140
139
138
137
136
141
142
135
161 162 163 164 165 166 167 168 169 170 171 172 173 174
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
201 202 203 204 205 206 207 208
200
175 176 177 178 179
123
111
EP7312
208-Pin LQFP
(Top View)
2345678910111213141516171819202122232425262728293031323334353637383940414243444546474849515052
1
nEXTPWR
BATOK
nPOR
VSSOSC
VDDOSC
MOSCIN
MOSCOUT
nURESET
WAKEUP
A[6] D[6] A[5] D[5]
VDDIO
VSSIO
A[4] D[4] A[3]
D[3]
nPWRFL
A[2] D[2]
A[1] A[0]
D[0]
VDDCORE
VSSIO VDDIO
CL[2] CL[1]
FRM
M DD[2] DD[1]
DD[0]
nSDCS[1]
SDQM[3] SDQM[2]
VDDIO
VSSIO
SDCLK
nMWE/nSDWE
nMOE/nSDCAS
nCS[0] nCS[1] nCS[2] nCS[3]
D[7]
A[7]
D[8]
A[8]
D[9]
D[10]
A[10]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]\DRA[14]
D[14]
DD[3]
D[17]
D[15]
A[17]
/DRA[10]
nTRST
VSSIO
VDDIO
D[18]
A[18
/DRA[9]
D[19]
A[19]
/DRA[8]
D[20]
VSSIO
A[21]
/DRA[6]
D[22]
D[23]
A[23]
/DRA[4]
D[24]
VSSIO
VDDIO
A[24]
/DRA[3]
HALFWORD
A[14]/DRA[13]
nBATCHG
A[25]/DRA[2]
D[25]
D[27] A[27]/DRA[0] VSSIO D[28] D[29] D[30] D[31] BUZ COL[0] COL[1] TCLK VDDIO COL[2] COL[3] COL[4] COL[5] COL[6] COL[7] FB[0] VSSIO FB[1]
ADCOUT ADCCLK DRIVE[0]
VDDIO
PD[2]
VSSIO VSSCORE
nADCCS ADCIN
SSIRXDA
SSIRXFR SSITXDA
SSITXFR VSSIO SSICLK PD[0]/LEDFLSH PD[1]
PD[3]
A[22]
/DRA[5]
PD[4]
VDDIO PD[5]
PD[6]/SDQM[0]
DRIVE[1]
PD[7]/SDQM[1]
D[26]
A[15]
/DRA[12]
D[16]
A[16]
/DRA[11]
nCS[4]
VDDCORE
A[26]/DRA[1]
D[21]
TMS
A[20]
/DRA[7]
SMPCLK
D[11]
A[9]
D[1]
VSSCORE
nSDCS[0]
SDCKE
VSSIO
VSSIO
VSSIO
VSSIO
EXPCLK
WORD
WRITE/nSDRAS
RUN/CLKEN
EXPRDY
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]
VSSIO
TDI
VDDIO
TDO
PE[2]/CLKSEL
nEXTFIQ
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[2]
PHDIN
CTS
RXD[2]
DCD
DSR
RTCOUT
RTCIN
VSSIO
PA[7]
VDDIO
VSSIO
nCS[5]
PB[0]
TXD[1]
RXD[1]
nTEST[1]
nTEST[0]
EINT[3]
nEINT[2]
nEINT[1]
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
N/C
VSSRTC
VDDRTC
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
nMEDCHG/nBROM
EP7312
High-Performance, Low-Power System on Chip
Note: 1. N/C should not be grounded but left as no connects.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 31
EP7312
High-Performance, Low-Power System on Chip

208-Pin LQFP Numeric Pin Listing

Table 20. 208-Pin LQFP Numeric Pin Listing
Pin No.
1 nCS[5] 1 Low O Chip select 5 2 VDDIO Pad Pwr Digital I/O power, 3.3 V 3 VSSIO Pad Gnd I/O ground 4 EXPCLK 1 I Expansion clock input 5 WORD 1 Low O Word access select output
6 WRITE/nSDRAS 1 Low O
7 RUN/CLKEN 1 Low O
8 EXPRDY 1 I Expansion port ready input
9 TXD[2] 1 High O UART 2 transmit data output 10 RXD[2] I UART 2 receive data input 11 TDI with p/u* I JTAG data input 12 VSSIO Pad Gnd I/O ground
13 PB[7] 1
14 PB[6] 1
15 PB[5] 1
16 PB[4] 1
17 PB[3] 1
18 PB[2] 1
19 PB[1] 1
20 PB[0] 1
21 VDDIO Pad Pwr Digital I/O power, 3.3 V
22 TDO 1
23 PA[7] 1
24 PA[6] 1
25 PA[5] 1
26 PA[4] 1
27 PA[3] 1
28 PA[2] 1
29 PA[1] 1
30 PA[0] 1
31 LEDDRV 1 Low O IR LED drive 32 TXD[1] 1 High O UA RT 1 transmit data out 33 VSSIO 1 High Pad Gnd I/O ground 34 PHDIN I Photodiode input 35 CTS I UART 1 clear to send input 36 RXD[1] I UART 1 receive data input 37 DCD I UART 1 data carrier detect
Signal
Strength
Reset
State
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Type Description
Transfer direction / SDRAM
RAS signal output
Run output / clock enable
output
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
I/O GPIO port B
O JTAG data out
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
32 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
EP7312
Pin No.
38 DSR I UART 1 data set ready input 39 nTEST[1] With p/u* I Test mode select input 40 nTEST[0] With p/u* I Test mode select input 41 EINT[3] I External in terrupt 42 nEINT[2] I External interrupt input 43 nEINT[1] I External interrupt input 44 nEXTFIQ I External fast interrupt input
45 PE[2]/CLKSEL 1
46 PE[1]/BOOTSEL[1] 1
47 PE[0]/BOOTSEL[0] 1
48 VSSRTC RTC Gnd Real time clock ground
49 RTCOUT O
50 RTCIN I
51 VDDRTC RTC power Real time clock power, 2.5 V 52 N/C
53 PD[7]/SDQM[1] 1 Low I/O
54 PD[6]/SDQM[0] 1 Low I/O
55 PD[5] 1 Low I/O GPIO port D 56 PD[4] 1 Low I/O GPIO port D 57 VDDIO Pad Pwr Digital I/O power, 3.3 V 58 TMS with p/u* I JTAG mode select 59 PD[3] 1 Low I/O GPIO port D 60 PD[2] 1 Low I/O GPIO port D 61 PD[1] 1 Low I/O GPIO port D
62 PD[0]/LEDFLSH 1 Low I/O
63 SSICLK 1
64 VSSIO Pad Gnd I/O ground 65 SSITXFR 1 Low I/O DAI/CODEC/SSI2 serial clock
66 SSITXDA 1 Low O
67 SSIRXDA I
68 SSIRXFR
69 ADCIN I SSI1 ADC serial input 70 nADCCS 1 High O SSI1 ADC chip select 71 VSSCORE Core ground Core ground 72 VDDCORE Core Pwr Core power, 2.5 V 73 VSSIO Pad Gnd I/O ground 74 VDDIO Pad Pwr Digital I/O power, 3.3 V
75 DRIVE[1] 2
76 DRIVE[0] 2
77 ADCCLK 1 Low O SSI1 ADC serial clock 78 ADCOUT 1 Low O SSI1 ADC serial data output
Signal
Strength
Reset State
Input
Input
Input
Input
Input
High /
Low
High /
Low
Type Description
I/O
I/O
I/O
I/O DAI/CODEC/SSI2 serial clock
I/O DAI/CODEC/SSI2 frame sync
I/O PWM drive output
I/O PWM drive output
GPIO port E / clock input
mode select
GPIO port E / boot mode
select
GPIO port E / Boot mode
select
Real time clock oscillator
output
Real time clock oscillator
input
GPIO port D / SDRAM byte
lane mask
GPIO port D / SDRAM byte
lane mask
GPIO port D / LED blinker
output
DAI/CODEC/SSI2 serial data
DAI/CODEC/SSI2 serial data
output
input
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 33
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
79 SMPCLK 1 Low O SSI1 ADC sample clock 80 FB[1] I P W M feedback input 81 VSSIO Pad Gnd I/O ground 82 FB[0] I P W M feedback input
83 COL[7] 1 High O
84 COL[6] 1 High O
85 COL[5] 1 High O
86 COL[4] 1 High O
87 COL[3] 1 High O
88 COL[2] 1 High O
89 VDDIO Pad Pwr Digital I/O power, 3.3 V 90 TCLK I JTAG clock
91 COL[1] 1 High O
92 COL[0] 1 High O
93 BUZ 1 Low O Buzzer drive output 94 D[31] 1 Low I/O Data I/O 95 D[30] 1 Low I/O Data I/O 96 D[29] 1 Low I/O Data I/O 97 D[28] 1 Low I/O Data I/O 98 VSSIO Pad Gnd I/O ground
99 A[27]/DRA[0] 2 Low O
100 D[27] 1 Low I/O Data I/O
101 A[26]/DRA[1] 2 Low O
102 D[26] 1 Low I/O Data I/O
103 A[25]/DRA[2] 2 Low O
104 D[25] 1 Low I/O Data I/O 105 HALFWORD 1 Low O Halfword access select output
106 A[24]/DRA[3] 1 Low O
107 VDDIO Pad Pwr Digital I/O power, 3.3 V 108 VSSIO Pad Gnd I/O ground 109 D[24] 1 Low I/O Data I/O
110 A[23]/DRA[4] 1 Low O
111 D[23] 1 Low I/O Data I/O
112 A[22]/DRA[5] 1 Low O
113 D[22] 1 Low I/O Data I/O
114 A[21]/DRA[6] 1 Low O
115 D[21] 1 Low I/O Data I/O 116 VSSIO Pad Gnd I/O ground
117 A[20]/DRA[7] 1 Low O
Signal
Strength
Reset
State
Type Description
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
Keyboard scanner column
drive
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
34 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
EP7312
Pin No.
118 D[20] 1 Low I/O Data I/O
119 A[19]/DRA[8] 1 Low O
120 D[19] 1 Low I/O Data I/O
121 A[18]/DRA[9] 1 Low O
122 D[18] 1 Low I/O Data I/O 123 VDDIO Pad Pwr Digital I/O power, 3.3 V 124 VSSIO Pad Gnd I/O ground 125 nTRST I JTAG async reset input
126 A[17]/DRA[10] 1 Low O
127 D[17] 1 Low I/O Data I/O
128 A[16]/DRA[11] 1 Low O
129 D[16] 1 Low I/O Data I/O
130 A[15]/DRA[12] 1 Low O
131 D[15] 1 Low I/O Data I/O
132 A[14]/DRA[13] 1 Low O
133 D[14] 1 Low I/O Data I/O
134 A[13]/DRA[14] 1 Low O
135 D[13] 1 Low I/O Data I/O 136 A[12] 1 Low O System byte address 137 D[12] 1 Low I/O Data I/O 138 A[11] 1 Low O System byte address 139 VDDIO Pad Pwr Digital I/O power, 3.3 V 140 VSSIO Pad Gnd I/O ground 141 D[11] 1 Low I/O Data I/O 142 A[10] 1 Low O System byte address 143 D[10] 1 Low I/O Data I/O 144 A[9] 1 Low O System byte address 145 D[9] 1 Low I/O Data I/O 146 A[8] 1 Low O System byte address 147 D[8] 1 Low I/O Data I/O 148 A[7] 1 Low O System byte address 149 VSSIO Pad Gnd I/O ground 150 D[7] 1 Low I/O Data I/O 151 nBATCHG I Battery changed sense input
152 nEXTPWR I
153 BATOK I Battery OK input 154 nPOR Schmitt I Power-on reset input
155 nMEDCHG/nBROM I
156 nURESET Schmitt I User reset input 157 VDDOSC Oscillator Power Oscillator power in, 2.5 V 158 MOSCIN I Main oscillator input 159 MOSCOUT O Main oscillator output 160 VSSOSC Oscillator Ground Oscillator Ground
Signal
Strength
Reset State
Type Description
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
System byte address /
SDRAM address
External power supply sense
Media change interrupt input /
input
internal ROM boot enable
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 35
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin No.
161 WAKEUP Schmitt I System wake up input 162 nPWRF L I Power fail sen s e input 163 A[6] 1 Low O System byte address 164 D[6] 1 Low I/O Data I/O 165 A[5] 1 Low Out System byte address 166 D[5] 1 Low I/O Data I/O 167 VDDIO Pad Pwr Digital I/O power, 3.3 V 168 VSSIO Pad Gnd I/O ground 169 A[4] 1 Low O System byte address 170 D[4] 1 Low I/O Data I/O 171 A[3] 2 Low O System byte address 172 D[3] 1 Low I/O Data I/O 173 A[2] 2 Low O System byte address 174 VSSIO Pad Gnd I/O ground 175 D[2] 1 Low I/O Data I/O 176 A[1] 2 Low O System byte address 177 D[1] 1 Low I/O Data I/O 178 A[0] 2 Low O System byte address 179 D[0] 1 Low I/O Data I/O 180 VSSCORE Core ground Core ground 181 VDDCORE Core Pwr Core power, 2.5 V 182 VSSIO Pad ground I/O ground 183 VDDIO Pad Power Digital I/O power, 3.3 V 184 CL[2] 1 Low O LCD pixel clock out 185 CL[1] 1 Low O LCD line clock
186 FRM 1 Low O
187 M 1 Low O LCD AC bias drive 188 DD[3] 1 Low I/O LCD serial display data 189 DD[2] 1 Low I/O LCD serial display data 190 VSSIO Pad Gnd I/O ground 191 DD[1] 1 Low I/O LCD serial display data 192 DD[0] 1 Low I/O LCD serial display data 193 nSDCS[1] 1 High O SDRAM chip select 1 194 nSDCS[0] 1 High O SDRAM chip select 0 195 SDQM[3] 2 Low I/O SDRAM byte lane mask 196 SDQM[2] 2 Low I/O SDRAM byte lane mask 197 VDDIO Pad Pwr Digital I/O power, 3.3 V 198 VSSIO Pad Gnd I/O ground 199 SDCKE 2 Low I/O SDRAM clock enable output 200 SDCLK 2 Low I/O SDRAM clock out
201 nMWE/nSDWE 1 High O
202 nMOE/nSDCAS 1 High O
203 VSSIO Pad Gnd I/O ground 204 nCS[0] 1 High O Chip select 0 205 nCS[1] 1 High O Chip select 1
Signal
Strength
Reset
State
Type Description
LCD frame synchronization
pulse
ROM, expansion write
enable/ SDRAM write enable
control signal
ROM, expansion OP
enable/SDRAM CAS control
signal
36 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
EP7312
Pin No.
206 nCS[2] 1 High O Chip select 2 207 nCS[3] 1 High O Chip select 3 208 nCS[4] 1 High O Chip select 4
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.
Strength 1 = 4 ma
Signal
Strength
Reset State
Strength 2 = 12 ma
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
Type Description
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 37
EP7312
TOP VIEW
17.00 (0.669)
15.00
(0.590)
SIDE VIEW
BOTTOM VIEW
A
B C D
E
F G H
J
K
L M N
P R
T
1.00 (0.040)
Pin 1 Indicator
Pin 1 Corner
Pin 1 Corner
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
15.00
(0.590)
2 Layer
17.00 (0.669)
17.00 (0.669)
1.00 (0.040)
1.00 (0.040)
1.00 (0.040)
30° TYP
REF
REF
0.50
3 Places
0.85 (0.034) ±0.05 (.002)
0.40 (0.016) ±0.05 (.002)
0.36 (0.014)
17.00 (0.669)
R
D1
E1
D
E
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.09 (0.004)
JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body
High-Performance, Low-Power System on Chip

256-Ball PBGA Package Characteristics

Figure 17. 256-Ball PBGA Package
Note: 1) For pin locations see Table 21.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7312 design, contact Cirrus Logic for the latest package information.
38 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip

256-Ball PBGA Pinout (Top View)

1 234 5678910111213141516
A VDDIO nCS[4] nCS[1] SDCLK SDQM[3] DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] MOSCOUT VDDOSC VSSIO A
B nCS[5] VDDIO nCS[3]
C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C
WRITE/
D
nSDRAS
E RXD[2] PB[7] TDI WORD VSSIO nCS[0] SDQM[2] FRM A[0] D[5] VSSOSC VSSIO
F P B[5] PB[3] VSSIO TXD[2]
G PB[1] VDDIO TDO PB[4] PB[6] VSSCore VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G
H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12]
J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC
K LEDDRV PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K
L RXD[1] DSR VDDIO nEINT[1]
M nTEST[0] nEINT[2] VDDIO
N nEXTFIQ
EXPRDY VSSIO VDDIO nCS[2]
PE[1]/
BOOTSEL[1]
VSSIO VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N
nMOE/
nSDCAS
PE[0]/
BOOTSEL[0]
VDDIO nSDCS[1] DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B
nMWE/
nSDCS[0] CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D
nSDWE
RUN/
CLKEN
PE[2]/
CLKSEL
VSSIO SDCKE DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F
A[17]/
DRA[10]
VSSRTC
TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO
PD[0]/
LEDFLSH
VSSRTC COL[6] D[31] VSSRTC
A[16]/
DRA[11]
DRA[12]
DRA[5]
A[15]/
A[22]/
nMEDCHG/
nBROM
A[13]/
DRA[14]
A[14]/
DRA[13]
A[21]/
DRA[6]
A[23]/
DRA[4]
VDDIO D[9] D[10] E
VSSIO D[14] D[15] H
nTRST D[16] D[17] J
A[18]/
A[20]/
A[19]/
DRA[8]
D[21] M
VSSIO
VDDIO
DRA[9]
DRA[7]
L
P VSSRTC RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P
R RTCIN VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30]
T VDDRTC
PD[7]/
SDQM[1]
PD[6]/
SDQM[0]
PD[3] SSICLK SSIRXFR VDDCORE DRIVE[0] FB[1] COL[5] VDDIO BUZ D[28]
A[27]/
DRA[0]
A[25]/
DRA[2]
A[26]/
DRA[1]
VDDIO
A[24]\
DRA[3]
D[25] VSSIO T
R
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 39
EP7312
High-Performance, Low-Power System on Chip

256-Ball PBGA Ball Listing

The list is ordered by ball location.
Table 21. 256-Ball PBGA Ball Listing
Reset
Ball Location Name
A1 VDDIO Pad power Digital I/O power, 3.3 V A2 nCS[4] 1 High O Chip select 4 A3 nCS[1] 1 High O Chip select 1 A4 SDCLK 2 Low O SDRAM clock out A5 SDQM[3] 2 Low O SDRAM byte lane mask A6 DD[1] 1 Low O LCD serial display data A7 M 1 Low O LCD A C bias drive A8 VDDIO Pad power Digital I/O power, 3.3 V
A9 D[0] 1 Low I/O Data I/O A10 D[2] 1 Low I/O Data I/O A11 A[3] 2 Low O System byte address A12 VDDIO Pad power Digital I/O power, 3.3V A13 A[6] 1 Low O System byte address A14 MOSCOUT O Main oscillator out A15 VDDOSC Oscillator power Oscillator power in, 2.5 V A16 VSSIO Pad ground I/O ground
B1 nCS[5] 1 Low O Chip select 5
B2 VDDIO Pad power Digital I/O power, 3.3 V
B3 nCS[3] 1 High O Chip select 3
B4 nMOE/nSDCAS 1 High O ROM, expansion OP enable/SDRAM CAS control signal
B5 VDDIO Pad power Digital I/O power, 3.3 V
B6 nSDCS[1] 1 High O SDRAM chip select 1
B7 DD[2] 1 Low O LCD serial display data
B8 CL[1] 1 Low O LCD line clock
B9 VDDCORE Core power Digital core power, 2.5V B10 D[1] 1 Low I/O Data I/O B11 A[2] 2 Low O System byte address B12 A[4] 1 Low O System byte address B13 A[5] 1 Low O System byte address B14 WAKEUP Schmitt I System wake up input B15 VDDIO Pad power Digital I/O power, 3.3 V B16 nURESET Schmitt I User reset input
C1 VDDIO Pad power Digital I/O power, 3.3V
C2 EXPCLK 1 I Expansion clock input
C3 VSSIO Pad ground I/O ground
C4 VDDIO Pad power Digital I/O power, 3.3 V
C5 VSSIO Pad ground I/O ground
C6 VSSIO Pad ground I/O ground
C7 VSSIO Pad ground I/O ground
C8 VDDIO Pad power Digital I/O power, 3.3 V
C9 VSSIO Pad ground I/O ground
C10 VSSIO Pad ground I/O ground C11 VSSIO Pad ground I/O ground C12 VDDIO Pad power Digital I/O power, 3.3 V C13 VSSIO Pad ground I/O ground
Strength
State
Type Description
40 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 21. 256-Ball PBGA Ball Listing (Continued)
Reset
Ball Location Name
C14 VSSIO Pad ground I/O ground C15 nPOR Schmitt I Power-on reset input C16 nEXTPWR I External power supply sense input
D1 WRITE/nSDRAS 1 Low O Transfer direction / SDRAM RAS signal output D2 EXPRDY 1 I Expansion port ready input D3 VSSIO Pad ground I/O ground D4 VDDIO Pad power Digital I/O power, 3.3V D5 nCS[2] 1 High O Chip select 2 D6 nMWE/nSDWE 1 High O ROM, expansion write enable/ SDRAM write enable control signal D7 nSDCS[0] 1 High O SDRAM chip select 2 D8 CL[2] 1 Low O LCD pixel clock out D9 VSSRTC Core ground Real time clock ground
D10 D[4] 1 Low I/O Data I/O
D11 nPWRFL I Power fail sense input D12 MOSCIN I Main oscillator input D13 VDDIO Pad power Digital I/O power, 3.3V D14 VSSIO Pad ground I/O ground D15 D[7] 1 Low I/O Data I/O D16 D[8] 1 Low I/O Data I/O
E1 RXD[2] I UART 2 receive data input
E2 PB[7] 1
E3 TDI with p/u* I J TAG data input E4 WORD 1 Low O Word access select output E5 VSSIO Pad ground I/O ground E6 nCS[0] 1 High O Chip select 0 E7 SDQM[2] 2 Low O SDRAM byte lane mask E8 FRM 1 Low O LCD frame synchronization pulse
E9 A[0] 2 Low O System byte address E10 D[5] 1 Low I/O Data I/O E11 VSSOSC Oscillator ground PL L ground E12 VSSIO Pad ground I/O ground E13 nMEDCHG/nBROM I Media change interrupt input / internal ROM boot enable E14 VDDIO Pad power Digital I/O power, 3.3V E15 D[9] 1 Low I/O Data I/O E16 D[10] 1 Low I/O Data I/O
F1 PB[5] 1
F2 PB[3] 1
F3 VSSIO Pad ground I/O ground
F4 TXD[2] 1 High O UART 2 transmit data output
F5 RUN/CLKEN 1 Low O Run output / clock enable output
F6 VSSIO Pad ground I/O ground
F7 SDCKE 2 Low O SDRAM clock enable output
F8 DD[3] 1 Low O LCD serial display data
F9 A[1] 2 Low O System byte address F10 D[6] 1 Low I/O Data I/O F11 VSSRTC RTC ground Real time clock ground F12 BATOK I Battery OK input
Strength
State
Input
Input
Input
Type Description
IGPIO port B
IGPIO port B
IGPIO port B
EP7312
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 41
EP7312
High-Performance, Low-Power System on Chip
Table 21. 256-Ball PBGA Ball Listing (Continued)
Reset
Ball Location Name
F13 nBATCHG I Battery changed sense input F14 VSSIO Pad ground I/O ground F15 D[11] 1 Low I/O Data I/O F16 VDDIO Pad power Digital I/O power, 3.3V
G1 PB[1] 1
G2 VDDIO Pad power Digital I/O power, 3.3V
G3 TDO 1
G4 PB[4] 1
G5 PB[6] 1
G6 VSSCore Core ground Core ground G7 VSSRTC RTC ground Real time clock ground G8 DD[0] 1 Low O LCD serial display data
G9 D[3] 1 Low I/O Data I/O G10 VSSRTC RTC ground Real time clock ground G11 A[7] 1 Low O System byte address G12 A[8] 1 Low O System byte address G13 A[9] 1 Low O System byte address G14 VSSIO Pad ground I/O ground G15 D[12] 1 Low I/O Data I/O G16 D[13] 1 Low I/O Data I/O
H1 PA[7] 1
H2 PA[5] 1
H3 VSSIO Pad ground I/O ground
H4 PA[4] 1
H5 PA[6] 1
H6 PB[0] 1
H7 PB[2] 1
H8 VSSRTC RTC ground Real time clock ground
H9 VSSRTC RTC ground Real time clock ground H10 A[10] 1 Low O System byte address H11 A[11] 1 Low O System byte address H12 A[12] 1 Low O System byte address H13 A[13]/DRA[14] 1 Low O System byte address / SDRAM address H14 VSSIO Pad ground I/O ground H15 D[14] 1 Low I/O Data I/O H16 D[15] 1 Low I/O Data I/O
J1 PA[3] 1
J2 PA[1] 1
J3 VSSIO Pad ground I/O ground
J4 PA[2] 1
J5 PA[0] 1
J6 TXD[1] 1 High O UART 1 transmit data out
Strength
State
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Type Description
IGPIO port B
O JTAG data out
IGPIO port B
IGPIO port B
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port B
I/O GPIO port B
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
I/O GPIO port A
42 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 21. 256-Ball PBGA Ball Listing (Continued)
Reset
Ball Location Name
J7 CTS I UART 1 clear to send input J8 VSSRTC RTC ground Real time clock ground
J9 VSSRTC RTC ground Real time clock ground J10 A[17]/DRA[10] 1 Low O System byte address / SDRAM address J11 A[16]/DRA[11] 1 Low O System byte address / SDRAM address J12 A[15]/DRA[12] 1 Low O System byte address / SDRAM address J13 A[14]/DRA[13] 1 Low O System byte address / SDRAM address J14 nTRST I JTAG async reset input J15 D[16] 1 Low I/O Data I/O J16 D[17] 1 Low I/O Data I/O
K1 LEDDRV 1 Low O IR LED drive
K2 PHDIN I Photodiode input
K3 VSSIO Pad ground I/O ground
K4 DCD I UART 1 data carrier detect
K5 nTEST[1] With p/u* I Test mode select input
K6 EINT[3] I External interrupt
K7 VSSRTC RTC ground Real time clock ground
K8 ADCIN I SSI1 ADC serial input
K9 COL[4] 1 High O Keyboard scanner column drive K10 TCLK I JTAG clock K11 D[20] 1 Low I/O Data I/O K12 D[19] 1 Low I/O Data I/O K13 D[18] 1 Low I/O Data I/O K14 VSSIO Pad ground I/O ground K15 VDDIO Pad power Digital I/O power, 3.3V K16 VDDIO Pad power Digital I/O power, 3.3V
L1 RXD[1] I UART 1 receive data input
L2 DSR I UART 1 data set ready input
L3 VDDIO Pad power Digital I/O power, 3.3V
L4 nEINT[1] I External interrupt input
L5 PE[2]/CLKSEL 1
L6 VSSRTC RTC ground Real time clock ground
L7 PD[0]/LEDFLSH 1 Low I/O GPIO port D / LED blinker output
L8 VSSRTC Core gr ound Real time clock ground
L9 COL[6] 1 High O Keyboard scanner column drive L10 D[31] 1 Low I/O Data I/O L11 VSSRTC RTC ground Real time clock ground L12 A[22]/DRA[5] 1 Low O System byte address / SDRAM address L13 A[21]/DRA[6] 1 Low O System byte address / SDRAM address L14 VSSIO Pad ground I/O ground L15 A[18]/DRA[9] 1 Low O System byte address / SDRAM address L16 A[19]/DRA[8] 1 Low O System byte address / SDRAM address
M1 nTEST[0] With p/u* I Test mode select input M2 nEINT[2] I External interrupt input M3 VDDIO Pad power Digital I/O power, 3.3V
M4 PE[0]/BOOTSEL[0] 1
M5 TMS with p/u* I JTAG mode select
Strength
State
Input
Input
Type Description
I/O GPIO port E / clock input mode select
I GPIO port E / Boot mode select
EP7312
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 43
EP7312
High-Performance, Low-Power System on Chip
Table 21. 256-Ball PBGA Ball Listing (Continued)
Reset
Ball Location Name
M6 VDDIO Pad power Digital I/O power, 3.3V M7 SSITXFR 1 Low I/O DAI/CODEC/SSI2 frame sync
M8 DRIVE[1] 2
M9 FB[0] I PWM feedback input
M10 COL[0] 1 High O Keyboard scanner column drive
M11 D[27] 1 Low I/O Data I/O M12 VSSIO Pad ground I/O ground M13 A[23]/DRA[4] 1 Low O System byte address / SDRAM address M14 VDDIO Pad power Digital I/O power, 3.3V M15 A[20]/DRA[7] 1 Low O System byte address / SDRAM address M16 D[21] 1 Low I/O Data I/O
N1 nEXTFIQ I External fast interrupt input
N2 PE[1]/BOOTSEL[1] 1
N3 VSSIO Pad ground I/O ground N4 VDDIO Pad power Digital I/O power, 3.3V N5 PD[5] 1 Low I/O GPIO port D N6 PD[2] 1 Low I/O GPIO port D N7 SSIRXDA I/O DAI/CODEC/SSI2 serial data input N8 ADCCLK 1 Low O SSI1 ADC serial clock
N9 SMPCLK 1 Low O SSI1 ADC sample clock N10 COL[2] 1 High O Keyboard scanner column drive N11 D[29] 1 Low I/O Data I/O N12 D[26] 1 Low I/O Data I/O N13 HALFWORD 1 Low O Halfword access select output N14 VSSIO Pad ground I/O ground N15 D[22] 1 Low I/O Data I/O N16 D[23] 1 Low I/O Data I/O
P1 VSSRTC RTC ground Real time clock ground
P2 RTCOUT O Real time clock oscillator output
P3 VSSIO Pad ground I/O ground
P4 VSSIO Pad ground I/O ground
P5 VDDIO Pad power Digital I/O power, 3.3V
P6 VSSIO Pad ground I/O ground
P7 VSSIO Pad ground I/O ground
P8 VDDIO Pad power Digital I/O power, 3.3V
P9 VSSIO Pad ground I/O ground P10 VDDIO Pad power Digital I/O power, 3.3V P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power Digital I/O power P14 VSSIO Pad ground I/O ground P15 D[24] 1 Low I/O Data I/O P16 VDDIO Pad power Digital I/O power, 3.3V
R1 RTCIN I/O Real time clock oscillator input
R2 VDDIO Pad power Digital I/O power, 3.3V
R3 PD[4] 1 Low I/O GPIO port D
R4 PD[1] 1 Low I/O GPIO port D
Strength
State
High /
Low
Input
Type Description
I/O PWM drive output
I/O GPIO port E / boot mode select
44 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 21. 256-Ball PBGA Ball Listing (Continued)
Reset
Ball Location Name
R5 SSITXDA 1 Low O DAI/CODEC/SSI2 serial data ou tpu t R6 nADCCS 1 High O SSI1 ADC chip select R7 VDDIO Pad power Digital I/O power, 3.3V R8 ADCOUT 1 Low O SSI1 ADC serial data output R9 COL[7] 1 High O Keyboard scanner column drive
R10 COL[3] 1 High O Keyboard scanner column drive
R11 COL[1] 1 High O Keyboard scanner column drive R12 D[30] 1 Low I/O Data I/O R13 A[27]/DRA[0] 2 Low O System byte address / SDRAM address R14 A[25]/DRA[2] 2 Low O System byte address / SDRAM address R15 VDDIO Pad power Digital I/O power, 3.3V R16 A[24]/DRA[3] 1 Low O System byte address / SDRAM address
T1 VDDRTC RTC power Real time clock power, 2.5V T2 PD[7]/SDQM[1] 1 Low I/O GPIO port D / SDRAM byte lane mask T3 PD[6]/SDQM[0] 1 Low I/O GPIO port D / SDRAM byte lane mask T4 PD[3] 1 Low I/O GPIO port D
T5 SSICLK 1
T6 SSIRXFR 1
T7 VDDCORE Core power Core power, 2.5V
T8 DRIVE[0] 2
T9 FB[1] I PWM feedback input T10 COL[5] 1 High O Keyboard scanner column drive T11 VDDIO Pad power Digital I/O power, 3.3V T12 BUZ 1 Low O Buzzer drive output T13 D[28] 1 Low I/O Data I/O T14 A[26]/DRA[1] 2 Low O System byte address / SDRAM address T15 D[25] 1 Low I/O Data I/O T16 VSSIO Pad ground I/O ground
Strength
State
Input
Input
High /
Low
Type Description
I/O DAI/CODEC/SSI2 serial clock
I/O DAI/CODEC/SSI2 frame sync
I/O PWM drive output
EP7312
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.
Strength 1 = 4 ma
Strength 2 = 12 ma
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.

JTAG Boundary Scan Signal Ordering

Table 22. JTAG Boundary Scan Signal Ordering
LQFP
Pin No.
1B1 nCS[5] O 1 4 C2 EXPCLK I/O 3 5E4 WORD O 6 6 D1 WRITE/nSDRAS O 8 7 F5 RUN/CLKEN O 10 8 D2 EXPRDY I 13
DS508F2 Copyright Cirrus Logic, Inc. 2011
PBGA
Ball
Signal Type Position
(All Rights Reserved) 45
EP7312
High-Performance, Low-Power System on Chip
Table 22. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
9F4 TXD2 O 14 10 E1 RXD2 I 16 13 E2 PB[7] I/O 17 14 G5 PB[6] I/O 20 15 F1 PB[5] I/O 23 16 G4 PB[4] I/O 26 17 F2 PB[3] I/O 29 18 H7 PB[2] I/O 32 19 G1 PB[1] I/O 35 20 H6 PB[0] I/O 38 23 H1 PA[7] I/O 41 24 H5 PA[6] I/O 44 25 H2 PA[5] I/O 47 26 H4 PA[4] I/O 50 27 J1 PA[3] I/O 53 28 J4 PA[2] I/O 56 29 J2 PA[1] I/O 59 30 J5 PA[0] I/O 62 31 K1 LEDDRV O 65 32 J6 TXD1 O 67 34 K2 PHDIN I 69 35 J7 CTS I 70 36 L1 RXD1 I 71 37 K4 DCD I 72 38 L2 DSR I 73 39 K5 nTEST1 I 74 40 M1 nTEST0 I 75 41 K6 EINT3 I 76 42 M2 nEINT2 I 77 43 L4 nEINT1 I 78 44 N1 nEXTFIQ I 79 45 L5 PE[2]/CLKSEL I/O 80
46 N2
47 M4 PE[0]/BOOTSEL0 I/O 86 53 T2 PD[7]/SDQM[1] I/O 89 54 T3 PD[6/SDQM[0]] I/O 92 55 N5 PD[5] I/O 95 56 R3 PD[4] I/O 98 59 T4 PD[3] I/O 101 60 N6 PD[2] I/O 104
PBGA
Ball
Signal Type Position
PE[1]/
BOOTSEL[1]
I/O 83
46 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 22. JTAG Boundary Scan Signal Ordering (Continued)
EP7312
LQFP
Pin No.
61 R4 PD[1] I/O 107 62 L7 PD[0]/LEDFLSH O 110 68 T6 SSIRXFR I/O 122 69 K8 ADCIN I 125 70 R6 nADCCS O 126 75 M8 DRIVE1 I/O 128 76 T8 DRIVE0 I/O 131 77 N8 ADCCLK O 134 78 R8 ADCOUT O 136 79 N9 SMPCLK O 138 80 T9 FB1 I 140 82 M9 FB0 I 141 83 R9 COL7 O 142 84 L9 COL6 O 144 85 T10 COL5 O 146 86 K9 COL4 O 148 87 R10 COL3 O 150 88 N10 COL2 O 152 91 R11 COL1 O 154 92 M10 COL0 O 156 93 T12 BUZ O 158 94 L10 D[31] I/O 160 95 R12 D[30] I/O 163 96 N11 D[29] I/O 166 97 T13 D[28] I/O 169
99 R13 A[27]/DRA[0] Out 172 100 M11 D[27] I/O 174 101 T14 A[26]/DRA[1] O 177 102 N12 D[26] I/O 179 103 R14 A[25]/DRA[2] O 182 104 T15 D[25] I/O 184 105 N13 HALFWORD O 187 106 R16 A[24]/DRA[3] O 189 109 P15 D[24] I/O 191 110 M13 A[23]/DRA[4] O 194 111 N16 D[23] I/O 196 112 L12 A[22]/DRA[5] O 199 113 N15 D[22] I/O 201 114 L13 A[21]/DRA[6] O 204 115 M16 D[21] I/O 206 117 M15 A[20]/DRA[7] O 209
PBGA
Ball
Signal Type Position
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 47
EP7312
High-Performance, Low-Power System on Chip
Table 22. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
118 K11 D[20] I/O 211 119 L16 A[19]/DRA[8] O 214 120 K12 D[19] I/O 216 121 L15 A[18]/DRA[9] O 219 122 K13 D[18] I/O 221 126 J10 A[17]/DRA[10] O 224 127 J16 D[17] I/O 226 128 J11 A[16]/DRA[11] O 229 129 J15 D[16] I/O 231 130 J12 A[15]/DRA[12] O 234 131 H16 D[15] I/O 236 132 J13 A[14]/DRA[13] O 239 133 H15 D[14] I/O 241 134 H13 A[13]/DRA[14] O 244 135 G16 D[13] I/O 246 136 H12 A[12] O 249 137 G15 D[12] I/O 251 138 H11 A[11] O 254 141 F15 D[11] I/O 256 142 H10 A[10] O 259 143 E16 D[10] I/O 261 144 G13 A[9] O 264 145 E15 D[9] I/O 266 146 G12 A[8] O 269 147 D16 D[8] I/O 271 148 G11 A[7] O 274 150 D15 D[7] I/O 276 151 F13 nBATCHG I 279 152 C16 nEXTPWR I 280 153 F12 BATOK I 281 154 C15 nPOR I 282 155 E13 nMEDCHG/nBROM I 283 156 B16 nURESET I 284 161 B14 WAKEUP I 285 162 D11 nPWRFL I 286 163 A13 A[6] O 287 164 F10 D[6] I/O 289 165 B13 A[5] O 292 166 E10 D[5] I/O 294 169 B12 A[4] O 297 170 D10 D[4] I/O 299
PBGA
Ball
Signal Type Position
48 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip
Table 22. JTAG Boundary Scan Signal Ordering (Continued)
EP7312
LQFP
Pin No.
171 A11 A[3] O 302 172 G9 D[3] I/O 304 173 B11 A[2] O 307 175 A10 D[2] I/O 309 176 F9 A[1] O 312 177 B10 D[1] I/O 314 178 E9 A[0] O 317 179 A9 D[0] I/O 319 184 D8 CL2 O 322 185 B8 CL1 O 324 186 E8 FRM O 326 187 A7 M O 328 188 F8 DD[3] O 330 189 B7 DD[2] O 333 191 A6 DD[1] O 336 192 G8 DD[0] O 339 193 B6 nSDCS[1] O 342 194 D7 nSDCS[0] O 344 195 A5 SDQM[3] I/O 346 196 E7 SDQM[2] I/O 349 199 F7 SDCKE I/O 352 200 A4 SDCLK I/O 355 201 D6 nMWE/nSDWE O 358 202 B4 nMOE/nSDCAS O 360 204 E6 nCS[0] O 362 205 A3 nCS[1] O 364 206 D5 nCS[2] O 366 207 B3 nCS[3] O 368 208 A2 nCS[4] O 370
PBGA
Ball
Signal Type Position
1) See EP7312 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 49
EP7312
High-Performance, Low-Power System on Chip

CONVENTIONS

This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet.

Acronyms and Abbreviations

Table 23 lists abbreviations and acronyms used in this data
sheet.
Table 23. Acronyms and Abbreviations
Acronym/
Abbreviation
A/D analog-to-digital ADC analog-to-digital converter CODEC coder / decoder D/A digital-to-analog DMA direct-memory access EPB embedded peripheral bus FCS frame check sequence FIFO first in / first out FIQ fast interrupt request GPIO general purpose I/O ICT in circuit test IR infrared IRQ standard interrupt request IrDA Infrared Data Association JTAG Joint Test Action Group LCD liquid crystal display LED light-emitting diode LQFP low profile quad flat pack LSB least significant bit MIPS millions of instructions per second MMU memory management unit MSB most significant bit PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface
Definition
Table 23. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver
Definition

Units of Measurement

Table 24. Unit of Measurement
Symbol Unit of Measure
C
fs sample frequency Hz hertz (cycle per second) kbps kilobits per second KB kilobyte (1,024 bytes) kHz kilohertz k
kilo Ohm
Mbps megabits (1,048,576 bits) per second MB megabyte (1,048,576 bytes) MBps megabytes per second MHz megahertz (1,000 kilohertz)
A microampereFmicrofaradWmicrowatts microsecond (1,000 nanoseconds)
mA milliampere mW milliwatt ms millisecond (1,000 microseconds) ns nanosecond Vvolt Wwatt
degree Celsius
50 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

General Conventions

Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal.
Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7312 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.”

Pin Description Conventions

Abbreviations used for signal directions are listed in Table 25.
Table 25. Pin Description Conventions
Abbreviation Direction
EP7312
High-Performance, Low-Power System on Chip
I Input O Output I/O Input or Output
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 51
EP7312
High-Performance, Low-Power System on Chip

Ordering Information

Model T emperature Package
EP7312-CBZ 0 to +70 °C
EP7312-IBZ -40 to +85 °C.
EP7312-CVZ
0 to +70 °C
EP7312-CV-90Z (90 MHz)
E
P7312-IVZ -40 to +85 °C.

Environmental, Manufacturing, & Handling Information

Model Number Peak Reflow Temp MSL Rating* Max Floor Life
EP7312-CBZ EP7312-CVZ
EP7312-CV-90Z (90 MHz) EP7312-IBZ EP7312-IVZ
260 °C 3 7 Days
256-pin PBGA, 17mm X 17mm
208-pin LQFP.
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020. All devices are now lead (Pb) free.
52 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip

Revision History

Revision Date Changes
PP5 JAN 2004 Preliminary release. Updated SDRAM timing.
F1 AUG 2005 Updated ordering information. Added MSL data. F2 MAR 2011 Removed all lead-containing device ordering information. Removed 204-pin
TFBGA package option.
EP7312
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 53
EP7312
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE Cirrus Logic, Inc. and it s su bsi d iari e s (“Ci r ru s”) be li eve t hat the inf or mati o n con tai n ed in th i s docu ment i s acc urate and reliable. However, t he in f o rmat io n i s su bj e ct
to change without noti ce and is provi ded “AS I S” with out warran ty of any kind ( express or implied ). Cust omers are a dvised to obtain the latest version of relevant information to verify, before placing orders, tha t inform atio n bei ng relied on is curr ent and com plete. Al l prod ucts are sold s ubject to the ter ms and co nditio ns of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of pate nts or other righ ts of thir d parties. This document is the property of Ci rrus and by furnishing this information, Cirrus gr an ts no li cense, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for ge neral distribution, advertising or promotional purpose s, or for crea ting any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM­ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DI RECTORS, EMPL OYEES, DI STRIBUTO RS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT­TORNEYS' FEES AND COSTS, THAT MAY RESU LT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
SPI is a trademark of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. LINUX is a registered trademark of Linus Torvalds. Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.
High-Performance, Low-Power System on Chip
54 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
Loading...