Cirrus Logic EP7312 User Manual

FEATURES

LCD
Controller
Boot ROM
MaverickKey
TM
ARM7TDMI CPU Core
MMU
8 KB
Cache
Write
Buffe r
Intern a l D a ta B u s
EPB Bus
Memory Co ntro ller
SDRAM I/FSRA M I/F
On-chip SRAM
48 KB
ICE -J T A G
Clocks &
Timers
Keypad&
Touch
Screen I/F
Interrupts,
PWM & GPIO
Bus
Bridge
(2) UARTs
w/ IrDA
Power
Management
Serial
Interface
Digital
Audio
Interface
ARM720T
SERIAL PORTS
USER INTERFACE
FEATURES
ARM®720T Processor
— ARM7TDMI CPU Operating at Speeds of 74 and
90 MHz — 8 kBytes of Four-way Set-associative Cache — MMU with 64-entry TLB — Thumb Code Support Enabled
Ultra low power
— 90 mW at 74 MHz Typical — 108 mW at 90 MHz Typical — <.03 mW in the Standby State
Advanced Audio Decoder/decompression Capability
— Supports bit streams with adaptive bit rates. — Allows for support of multiple audio decompression
algorithms (MP3, WMA, AAC, Audible, etc.).
High-performance,
Low-power, System-on-chip
with SDRAM & Enhanced
Digital Audio Interface

OVERVIEW

OVERVIEW
The Cirrus Logic™ EP7312 is designed for ultra-low-power portable and line-powered applications such as portable consumer entertainment devices, home and car audio juke box systems, and general purpose industrial control applications, or any device that features the added capability of digital audio compression & decompression. The core-logic functionality of the device is built around an ARM720T processor with 8 kBytes of four-way set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Microsoft CE and Linux®.
®
Windows
®
BLOCK DIAGRAM
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(cont.)
MEMORY and STORAGE
(All Rights Reserved) MAR ‘11
(cont.)
DS508F2
EP7312
High-Performance, Low-Power System on Chip
FEATURES (cont)
48 KBytes of On-chip SRAM
MaverickKey
IDs
— 32-bit unique ID can be used for DRM-compliant 128-
bit random ID.
Available in 74 and 90 MHz clock speeds. LCD controller
— Interfaces directly to a single-scan panel monochrome
STN LCD.
— Interfaces to a single-scan panel color STN LCD with
minimal external glue logic.
Full JTAG Boundary Scan and Embedded ICE
Support
Integrated Peripheral Interfaces
— 32-bit SDRAM Interface, Up to 2 External Banks — 8/32/16-bit SRAM/FLASH/ROM Interface — Digital Audio Interface provides glueless interface to
low-power DACs, ADCs, and CODECs. — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface —88 Keypad Scanner — 27 General-purpose Input/Output Pins
— Dedicated LED Flasher Pin from the RTC
Internal Peripherals
— T wo 16550-compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two General-purpose 16-bit Timers — Interrupt Controller — Boot ROM
Package
—208-Pin LQFP —256-Ball PBGA
The fully static EP7312 is optimized for low power
dissipation and is fabricated using a 0.25 micron CMOS process.
OVERVIEW (cont.)
The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states: operating, idle and standby.
MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
The EP7312 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, high quality ADCs, DACs, or CODECs such as the Cirrus Logic CS53L32A, CS43L42, and CS42L50 are easily added to an EP73xx design via the DAI. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions.
Simply by adding desired memory and peripherals to the highly integrated EP7312 completes a low-power system solution. All necessary interface logic is integrated on-chip.
2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES ................................................................................................................................. ..........1
OVERVIEW ..................................................................................... ................ ................. .....................1
FEATURES (cont) .......................................................................................................................................................2
OVERVIEW (cont.) ......................................................................................................................................................2
Description of the EP7312’s Component s, Functionality, and Interfaces ....................................6
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID .....................................................................................................................................6
Memory Interfaces .............................. ... .... ... ... ... ... .... ... .........................................................................................6
Digital Audio Capability ...................................... ... .... ... ... ... .... ... ... .........................................................................7
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................7
Digital Audio Interface (DAI) .. ... .... ... ... ... .............................................................. ... ... ... .... ... ..................................7
CODEC Interface ............................................ ... ... .... ... ... ... .... ... ... ... ......................................................................8
SSI2 Interface ........................................................................................................................................................8
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
64-Key Keypad Interface .......................................................................................................................................8
Interrupt Controller ................................................................................................................................................9
Real-Time Clock ....................................................................................................................................................9
PLL and Clocking ..................................................................................................................................................9
DC-to-DC Converter Interface (PWM) ............................. ................ ................ ................. ...................................10
Timers .................................................................................................................................................................10
General Purpose Input/Output (GPIO) ................................................................................................................10
Hardware Debug Interface ..................................................................................................................................10
LED Flasher ........................................................................................................................................................10
Internal Boot ROM ........................... ... ... .... ... .......................................................... ... ... .... ...................................10
Packaging ..................................... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ... ....... .............................................10
Pin Multiplexing ...................................................................................................................................................11
System Design ....................................................................................................................................................12
ELECTRICAL SPECIFICATIONS .................................................... ................................. ................ .13
Absolute Maximum Ratings .................................................................................................................................13
Recommended Operating Conditions .................................................................................................................13
DC Characteristics ....................................... ... ... ... ........................................................... ...................................13
Timings ........................................................................................... .............. ............................ ..........15
Timing Diagram Conventions ....................................................................................................................15
Timing Conditions ........................................ .... ... ... ... .................................................................................15
SDRAM Interface ............................................ .......................................................... ... .... ...................................16
SDRAM Load Mode Register Cycle ..........................................................................................................17
SDRAM Burst Read Cycle ........... .... ... ... ... ... .... ... ... ... .... ... ... .......................................................................18
SDRAM Burst Write Cycle ........................... .... .......................................................... ... .............................19
SDRAM Refresh Cycle ....... ... ... ... .... ... ... ... ... ........................................................... ... ... ... ... .......................20
Static Memory ......................................................................................................................................................21
Static Memory Single Read Cycle .............................................................................................................22
Static Memory Single Write Cycle ..............................................................................................................23
Static Memory Burst Read Cycle ...............................................................................................................24
Static Memory Burst Write Cycle ...............................................................................................................25
SSI1 Interface ......................................................................................................................................................26
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 3
EP7312
High-Performance, Low-Power System on Chip
SSI2 Interface ..................................................................................................................................................... 27
LCD Interface ...................................................................................................................................................... 28
JTAG Interface .......................... ... ... .... ... ... ... .......................................................... .... ... ...................................... 29
Packages ...........................................................................................................................................30
208-Pin LQFP Package Characteristics ............................................................................................................. 30
208-Pin LQFP Pin Diagram ......................... .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ................................................ 31
208-Pin LQFP Numeric Pin Listing ..................................................................................................................... 32
256-Ball PBGA Package Characteristics ............................................................................................................ 38
256-Ball PBGA Pinout (Top View) ....................................................................................................................... 39
256-Ball PBGA Ball Listing ................................................................................................................................. 40
JTAG Boundary Scan Signal Ordering ..... ... .... ... ... ... ... .... ... ... ... .... ...................................................................... 45
CONVENTIONS .................................................................................................................................50
Acronyms and Abbreviations .............. ... ... ... .... ............................................................. ... ... ................................ 50
Units of Measurement ......................................................................................................................................... 50
General Conventions ............. ... .......................................................... ... .... ... ... ... ... .... ... ... ... ................................ 51
Pin Description Conventions ............................................................................................................................... 51
Ordering Information .......................................................................................................................52
Environmental, Manufacturing, & Handling Information .............................................................52
Revision History ..............................................................................................................................53
4 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Fully-Configured EP7312-Based System ...................... ... ... ... .... ... ... ..........................................................12
Figure 2. Legend for Timing Diagrams .........................................................................................................................15
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement ..................... ................................ .......................17
Figure 4. SDRAM Burst Read Cycle Timing Measurement ..........................................................................................18
Figure 5. SDRAM Burst Write Cycle Timing Measurement ..........................................................................................19
Figure 6. SDRAM Refresh Cycle Timing Measurement ......................................... ... .... ... .............................................20
Figure 7. Static Memory Single Read Cycle Timing Measurement ...............................................................................22
Figure 8. Static Memory Single Write Cycle Timing Measurement .................. ................................... ..........................23
Figure 9. Static Memory Burst Read Cycle Timing Measurement ................................................................................24
Figure 10. Static Memory Burst Write Cycle Timing Measurement ..............................................................................25
Figure 11. SSI1 Interface Timing Measurement ...........................................................................................................26
Figure 12. SSI2 Interface Timing Measurement ...........................................................................................................27
Figure 13. LCD Controller Timing Measurement ..........................................................................................................28
Figure 14. JTAG Timing Measurement ........................ .............................................................. ...................................29
Figure 15. 208-Pin LQFP Package Outline Drawing ....................................................................................................30
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................31
Figure 17. 256-Ball PBGA Package ..............................................................................................................................38
List of Tables
Table 1. Power Management Pin Assignments ..............................................................................................................6
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6
Table 3. SDRAM Interface Pin Assignments ..................................................................................................................7
Table 4. Universal Asynchronous Receiver/Transmitters Pin Assignments ....................... ... .... ... ... ... ... .... ... ... ... .. ..........7
Table 5. DAI Interface Pin Assignments .........................................................................................................................7
Table 6. CODEC Interface Pin Assignments ..................................................................................................................8
Table 7. SSI2 Interface Pin Assignments .......................................................................................................................8
Table 8. Serial Interface Pin Assignments ......................................................................................................................8
Table 9. LCD Interface Pin Assignments ........................................................................................................................8
Table 10. Keypad Interface Pin Assignments ..... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ...............................................9
Table 11. Interrupt Controller Pin Assignments ..... .........................................................................................................9
Table 12. Real-Time Clock Pin Assignments ............ ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...............................9
Table 13. PLL and Clocking Pin Assignments ................................................................................................................9
Table 14. DC-to-DC Converter Interface Pin Assignments .................... ................................ .......................................10
Table 15. General Purpose Input/Output Pin Assignments ..........................................................................................10
Table 16. Hardware Debug Interface Pin Assignments ................................................................................................10
Table 17. LED Flasher Pin Assignments ............ ... ... ... .......................................................... .... ... ................................10
Table 18. DAI/SSI2/CODEC Pin Multiplexing ........................................ ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................11
Table 19. Pin Multiplexing .............................................................................................................................................11
Table 20. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................32
Table 21. 256-Ball PBGA Ball Listing ...........................................................................................................................40
Table 22. JTAG Boundary Scan Signal Ordering ..................... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................45
Table 23. Acronyms and Abbreviations .............. ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ..........................................50
Table 24. Unit of Measurement .......... .... ... ... .......................................................... ... .... ... ... ... .......................................50
Table 25. Pin Description Conventions .................................. ... ... .... ... ... ... .... ................................................................51
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 5
EP7312
High-Performance, Low-Power System on Chip

Description of the EP7312’s Components, Functionality, and Interfaces

The following sections describe the EP7312 in more detail.

Processor Core - ARM720T

The EP7312 incorporates an ARM 32-bit RISC micro controller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include:
ARM (32-bit) and Thumb (16-bit compressed) instruction sets
Enhanced MMU for Microsoft Windows CE and other operating systems
8 KB of 4-way set-associative cache.
Translation Look Aside Buffers with 64 Translated Entries

Power Management

The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states:
• Operating — This state is the full performance state. All the clocks and peripheral logic are enabled.
• Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press.
• Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor.
Table 1 shows the power management pin assignments.
Table 1. Power Management Pin Assignments
Pin Mnemonic I/O Pin Description
BATOK I Battery ok input
nEXTPWR I
nPWRFL I Power fail sense input nBATCHG I Battery changed sense input
External power supply sense input
Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7312 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7312 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances.

Memory Interfaces

There are two main external memory interfaces. The first one is the ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industry-leading code density. shows the Static Memory Interface pin assignments.
Table 2. Static Memory Interface Pin Assignments
Pin Mnemonic I/O Pin Description
nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE/nSDCAS (Note) O ROM expansion OP enable nMWE/nSDWE (Note) O ROM expansion write enable
HALFWORD O
WORD O Word access select output WRITE/nSDRAS (Note) O Transfer direction
Halfword access select output

MaverickKey™ Unique ID

MaverickKey unique hardware programmed IDs are a solution
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.
to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
6 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide SDRAM interface that allows direct connection of up to two banks of SDRAM, totaling 512 Mb. To assure the lowest possible power consumption, the EP7312 supports self-refresh SDRAMs, which are placed in a low-power state by the device when it enters the low-power Standby State. Table 3 shows the SDRAM Interface pin assignments.
Table 3. SDRAM Interface Pin Assignments
Pin Mnemonic I/O Pin Description
SDCLK O SDRAM clock output SDCKE O SDRAM clock enable output nSDCS[1:0] O SDRAM chip select out WRITE/nSDRAS (Note 2) O SDRAM RAS signal output nMOE/nSDCAS (Note 2) O SDRAM CAS control signal
nMWE/nSDWE (Note 2) O
A[27:15]/DRA[0:12] (Note 1) O SDRAM address A[14:13]/DRA[12:14] O SDRAM internal bank select PD[7:6]/SDQM[1:0] (Note 2) I/O SDRAM byte lane mask SDQM[3:2] O SDRAM byte lane mask D[31:0] I/O Data I/O
Note: 1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See Table 19 on page 11 for more information.
SDRAM write enable control signal

Digital Audio Capability

The EP7312 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7312

Universal Asynchronous Receiver/T ransmitters (UARTs)

The EP7312 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit rates up to 115.2 kbps. An IrDA SIR proto col encoder/decoder can be optionally switched into the RX/TX signals to/from UART 1 to enable these signals to drive an infrared
communication interface directly. Table 4 shows the UART pin assignments.
Table 4. Universal Asynchronous Receiver/Transmitters Pin
Pin Mnemonic I/O Pin Description
TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input
Assignments

Digital Audio Interface (DAI)

The EP7312 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal Crystal feature digital bass and treble boost, digital volume control and compressor-limiter functions. Table 5 shows the DAI Interface pin assignments.
SCLK O Serial bit clock SDOUT O Serial data out SDIN I Serial data in LRCK O Sample clock MCLKIN I Master clock input MCLKOUT O Master clock output
Note: See Table 18 on page 11 for information on pin
CS43L41/42/43 low-power audio DACs and the
CS53L32 low-power ADC. Some of these devices
Table 5. DAI Interface Pin Assignments
Pin Mnemonic I/O Pin Description
multiplexes.
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 7
EP7312
High-Performance, Low-Power System on Chip

CODEC Interface

The EP7312 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the DAI and SSI2. Tabl e 6 shows the CODEC Interface Pin Assignments.
Table 6. CODEC Interface Pin Assignments
Pin Mnemonic I/O Pin Description
PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync
Note: See Table 18 on page 11 for information on pin
multiplexes.

SSI2 Interface

An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the DAI and CODEC interfaces through a multiplexer. The SSI2 Interface has these features:
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for asymmetric traffic
Table 7 shows the SSI2 Interface pin assignments.
Table 7. SSI2 Interface Pin Assignments
Pin Mnemonic I/O Pin Description
SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync
Note: See Table 18 on page 11 for information on pin
multiplexes.

Synchronous Serial Interface

The EP7312 Synchronous Serial Interface has these features:
ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation)
Selectable serial clock polarity
Table 8 shows the Synchronous Serial Interface pin
assignments.
Table 8. Serial Interface Pin Assignments
Pin Mnemonic I/O Pin Description
ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock

LCD Controller

A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM. The LCD controller has these features:
Interfaces directly to a single-scan panel monochrome STN LCD
Interfaces to a single-scan panel color STN LCD with minimal external glue logic
Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments
Video frame buffer size programmable up to 128 KB
Bits per pixel of 1, 2, or 4 bits
T able 9 shows the LCD Interface pin assignments.
Table 9. LCD Interface Pin Assignments
Pin Mnemonic I/O Pin Description
CL1 O LCD line clock CL2 O LCD pixel clock out DD[3:0] O LCD serial display data bus FRM O LCD frame synchronization pulse M O LCD AC bias drive

64-Key Keypad Interface

Matrix keyboards and keypads can be easily read by the EP7312. A dedicated 8-bit column driver output generates
8 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip
strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state. The Keypad Interface has these features:
Column outputs can be individually set high with the remaining bits left at high-impedance
Column outputs can be driven all-low, all-high, or all-high­impedance
Keyboard interrupt driven by OR'ing together all Port A bits
Keyboard interrupt can be used to wake up the system
•88 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic
Table 10 shows the Keypad Interface Pin Assignments.
Table 10. Keypad Interface Pin Assignments
Pin Mnemonic I/O Pin Description
COL[7:0] O
Keyboard scanner column drive

Interrupt Controller

When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7312 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources. The Interrupt controller has these features:
Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.)
Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs
Five dedicated off-chip interrupt lines operate as level sensitive interrupts
Table 11 shows the interrupt controller pin assignments.

Real-Time Clock

The EP7312 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt.
Driven by an external 32.768 kHz crystal oscillator
Table 12 shows the Real-Time Clock pin assignments.
Table 12. Real-Time Clock Pin Assignments
Pin Mnemonic Pin Description
RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground

PLL and Clocking

The EP7312 processor and peripheral clocks have these features:
Processor and peripheral clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz, and at 45 MHz when the processor is set to 90 MHz.
Table 13 shows the PLL and clocking pin assignments.
Table 13. PLL and Clocking Pin Assignments
Pin Mnemonic Pin Description
MOSCIN Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground
.
nEINT[2:1] I External interrupt EINT[3] I External interrupt nEXTFIQ I External Fast Interrupt input nMEDCHG/nBROM (Note) I Media change interrupt input
DS508F2 Copyright Cirrus Logic, Inc. 2011
Table 11. Interrupt Controller Pin Assignments
Pin Mnemonic I/O Pin Description
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.
(All Rights Reserved) 9
EP7312
High-Performance, Low-Power System on Chip

DC-to-DC Converter Interface (PWM)

Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter
Table 14 shows the DC-to-DC Converter Interface pin
assignments.
Table 14. DC-to-DC Converter Interface Pin Assignments
Pin Mnemonic I/O Pin Description
DRIVE[1:0] I/O PWM drive output FB[1:0] I PWM feedback input

Timers

Internal (RTC) timer
Two internal 16-bit programmable hardware count-down timers

General Purpose Input/Output (GPIO)

Three 8-bit and one 3-bit GPIO ports
Supports scanning keyboard matrix
Table 15 shows the GPIO pin assignments.
Table 16. Hardware Debug Interface Pin Assignments
Pin Mnemonic I/O Pin Description
TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select

LED Flasher

A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA. Table 17 shows the LED Flasher pin assignments.
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Table 15. General Purpose Input/Output Pin Assignments
Pin Mnemonic I/O Pin Description
PA[7:0] I/O GPIO port A PB[7:0] I/O GPIO port B PD[0]/LEDFLSH (Note) I/O GPIO port D PD[5:1] I/O GPIO port D PD[7:6]/SDQM[1:0] (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL (Note) I/O GPIO port E
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.

Hardware Debug Interface

Full JTAG boundary scan and Embedded ICE support
Table 16 shows the Hardware Debug Interface pin
assignments.
Table 17. LED Flasher Pin Assignments
Pin Mnemonic I/O Pin Description
PD[0]/LEDFLSH (Note) O LED flasher driver
Note: Pins are multiplexed. See Table 19 on page 11 for
more information.

Internal Boot ROM

The internal 128-byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH.

Packaging

The EP7312 is available in a 208-pin LQFP package, 256-ball PBGA package, or a 204-ball TFBGA package.
10 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
High-Performance, Low-Power System on Chip

Pin Multiplexing

Table 18 shows the pin multiplexing of the DAI, SSI2 and the
CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the EP7312 User’s Manual for more information).
Table 18. DAI/SSI2/CODEC Pin Multiplexing
Pin
Mnemonic
SSICLK I/O SCLK SSICLK PCMCLK SSITXDA O SDOUT SSITXDA PCMOUT SSIRXDA I SDIN SSIRXDA PCMIN SSITXFR I/O LRCK SSITXFR PCMSYNC SSIRXFR I MCLKIN SSIRXFR p/u BUZ O MCLKOUT
I/O DAI SSI2 CODEC
Table 19 shows the pins that have been multiplexed in the
EP7312.
Table 19. Pin Multiplexing
Signal Block Signal Block
nMOE Static Memory nSDCAS SDRAM nMWE Static Memory nSDWE SDRAM WRITE Static Memory nSDRAS SDRAM A[27:15] Static Memory DRA[0:12] SDRAM A[14:13] Static Memory DRA[13:14] SDRAM PD[7:6] GPIO SDQM[1:0] SDRAM
RUN
nMEDCHG
PD[0] GPIO LEDFLSH LED Flasher
PE[1:0] GPIO BOOTSEL[1:0]
PE[2] GPIO CLKSEL
System Configuration
Interrupt Controller
CLKEN
nBROM
System Configuration
Boot ROM select
System Configuration
System Configuration
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 11
EP7312
LCD
KEYBOARD
BATTER Y
DC-TO-DC
CONVERTERS
ADC
DIGITIZER
IR LED AND
PHOTODIODE
2RS-232
TRANSCEIVERS
ADDITIONAL I/O
DD[0-3]
CL1 CL2
FRM
M
D[0-31] A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK nEXTPWR nBATCHG
RUN
WAKEUP
nCS[0] nCS[1]
DRIVE[0-1]
FB[0-1]
EP7312
ADCCLK nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD[[1/2]
TXD[1/2]
DSR
CTS
DCD
CS[n] WORD
nCS[2] nCS[3]
16
FLASH
16
FLASH
6
FLASH
EXTERNAL MEMORY ­MAPPED EXPANSION
BUFFERS
BUFFERS
AND
LATCHES
16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
DAI
SSICLK
SSITXFR SSITXDA SSIRXDA SSIRXFR
RTCIN
LEDFLSH
CRYSTAL
MOSCIN
16
SDRAM
16
SDRAM
6
SDRAM
16
SDRAM
SDCS[1] SDQM[0-3]
SDCS[0] SDQM[0-3]
SDRAS/ SDCAS
High-Performance, Low-Power System on Chip

System Design

As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7312
completes a low-power system solution. All necessary interface logic is integrated on-chip.
Note: A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI.
12 Copyright Cirrus Logic, Inc. 2011
Figure 1. A Fully-Configured EP7312-Based System
(All Rights Reserved) DS508F2
High-Performance, Low-Power System on Chip

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

DC Core, PLL, and RTC Supply Voltage 2.9 V
DC I/O Supply Voltage (Pad Ring) 3.6 V
DC Pad Input Current 10 mA/pin; 100 mA cumulative
Storage Temperature, No Power –40C to +125C

Recommended Operating Conditions

DC core, PLL, and RTC Supply Voltage 2.5 V 0.2 V
DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V
DC Input / Output Voltage O–I/O supply voltage
EP7312
Operating Temperature
Extended -20C to +70C; Commercial 0C to +70C; Industrial -40C to +85C

DC Characteristics

All characteristics are specified at V
DDCORE
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”
Symbol Parameter Min Typ Max Unit Conditions
VIH CMOS input high voltage
VIL CMOS input low voltage
VT+
VT-
Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH
VOH
Schmitt trigger positive going threshold
Schmitt trigger negative going threshold
CMOS output high voltage Output drive 1 Output drive 2
a a
a
= 2.5 V, V
0.65 V
DDIO
0.3
V
SS
--2.1V
0.8 - - V
VDD – 0.2
2.5
2.5
= 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C
DDIO
+ 0.3
-
-
-
-
-
V
DDIO
0.25 V
-
-
-
DDIO
V
V
V V V
V
= 2.5 V
DDIO
= 2.5 V
V
DDIO
IOH = 0.1 mA IOH = 4 mA IOH = 12 mA
CMOS output low voltage
VOL
IIN Input leakage current - - 1.0 µA
IOZ
CIN Input capacitance 8 - 10.0 pF
COUT Output capacitance 8 - 10.0 pF
Output drive 1 Output drive 2
Bidirectional 3-state leakage current
a a
b c
a
-
-
-
25 - 100 µA
-
-
-
0.3
0.5
0.5
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 13
V V V
IOL = –0.1 mA IOL = –4 mA IOL = –12 mA
VIN = V
VOUT = V
or GND
DD
DD
or GND
EP7312
High-Performance, Low-Power System on Chip
Symbol Parameter Min Typ Max Unit Conditions
CI/O Transceiver capacitance 8 - 10.0 pF
IDD
STANDBY
@ 25 C
IDD
STANDBY
@ 70 C
IDD
STANDBY
@ 85 C
IDD
idle
at 74 MHz
IDD
IDLE
at 90 MHz
VDD
STANDBY
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Standby current consumption Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
1
-
-
1
-
-
1
-
-
1
-
-
77 41
10
11
-
µA
-
-
-
-
-
6
570 111
1693
163
-
µA
µA
mA
-
7
-
mA
-
Standby supply voltage 2.0 - - V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
± 0.1 V,
DD
VIL = GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
± 0.1 V, VIL
DD
= GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
± 0.1 V, VIL
DD
= GND ± 0.1 V
Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only
a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that t he pin is configured as an input pin but is not currently being driven.
Note: 1) Total power consumption = IDD
2) A typical design will provide 3.3 V to the I/O supply (i.e., V
CORE x
2.5 V + IDD
IO x
3.3 V ), and 2.5 V to the remaining logic. This is to allow the I/O to be
DDIO
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at V
= 3.3 V.
DD
14 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2
EP7312
Clock
High to Low
High/Low to H igh
Bus Change
Bus Valid
Undefined/Invalid
V a lid B u s to T ris ta te
Bus/Signal O m ission
Figure 2. Legend for Timing Diagrams
High-Performance, Low-Power System on Chip

Timings

Timing Diagram Conventions

This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at V
= 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40C to +85C. Pin loadings is 50 pF. The timing values are
DDIO
referenced to 1/2 V
DS508F2 Copyright Cirrus Logic, Inc. 2011
.
DD
(All Rights Reserved) 15
EP7312
High-Performance, Low-Power System on Chip

SDRAM Interface

Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for
the timings of each of the SDRAM modes.
Parameter Symbol Min Typ Max Unit
SDCLK falling edge to SDCS assert delay time
SDCLK falling edge to SDCS deassert delay time
SDCLK falling edge to SDRAS assert delay time
SDCLK falling edge to SDRAS deassert delay time
SDCLK falling edge to SDRAS invalid delay time
SDCLK falling edge to SDCAS assert delay time
SDCLK falling edge to SDCAS deassert delay time
SDCLK falling edge to ADDR transition time
SDCLK falling edge to ADDR invalid delay time
SDCLK falling edge to SDMWE assert delay time
SDCLK falling edge to SDMWE deassert delay time
DATA transition to SDCLK falling edge time
SDCLK falling edge to DATA transition hold time
SDCLK falling edge to DATA transition delay time
t
CSa
t
CSd
t
RAa
t
RAd
t
RAnv
t
CAa
t
CAd
t
ADv
t
ADx
t
MWa
t
MWd
t
DAs
t
DAh
t
DAd
024ns
3 2 10 ns
137ns
3 1 10 ns
247ns
22 5ns
50 3ns
31 5ns
22 5ns
31 5ns
40 4ns
2--ns
1--ns
0 - 15 ns
16 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS508F2

SDRAM Load Mode Register Cycle

SDCLK
SDCS
SDRAS
SDCAS
ADDR
DATA
SDQM
SDMWE
t
CSa
t
RAa
t
CAa
t
MWa
t
ADv
t
ADx
t
RAd
t
CSd
t
CAd
t
MWd
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
EP7312
High-Performance, Low-Power System on Chip
Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
DS508F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 17
Loading...
+ 37 hidden pages