Cirrus Logic EP7311 User Manual

Page 1

FEATURES

LCD
Controller
Boot ROM
MaverickKey
TM
ARM7TDMI CPU Core
MMU
8 KB
Cache
Write
Buffer
Internal Data Bus
EPB Bus
Memory Controller
SDRAM I/FSRAM I/F
On-chip SRAM
48 KB
ICE-JTAG
Clocks &
Timers
Keypad&
Touch
Screen I/F
Interrupts,
PWM & GPIO
Bus
Bridge
(2) UARTs
w/ IrDA
Power
Management
Serial
Interface
Multimedia Codec Port
ARM720T
MEMORY AND STORAGE
USER INTERFACE
SERIAL PORTS
ARM720T Processor
— ARM7TDMI CPU — 8 KB of four-way set-associative cache — MMU with 64-entry TLB — Thumb code support enabled
Ultra low power
— 90 mW at 74 MHz typical — 30 mW at 18 MHz typical — 10 mW in the Idle State — <1 mW in the Standby State
48 KB of on-chip SRAM
MaverickKey
— 32-bit unique ID can be used for SDMI compliance — 128-bit random ID
Dynamically programmable clock speeds of
18, 36, 49, and 74 MHz
IDs
High-performance,
Low-power, System-on-chip
with SDRAM & Enhanced
Digital Audio Interface

OVERVIEW

The Maverick™ EP7311 is designed for ultra-low-power applications such as PDAs, smart cellular phones, and industrial hand held information appliances. The core-logic functionality of the device is built around an ARM720T processor with 8 KB of four-way set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Linux
®
.
BLOCK DIAGRAM
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) MAR ‘11
(cont.)
(cont.)
DS506F2
Page 2
EP7311
High-Performance, Low-Power System on Chip
FEATURES (cont)
LCD controller
— Interfaces directly to a single-scan panel monochrome
STN LCD
— Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
Full JTAG boundary scan and Embedded ICE
support
Integrated Peripheral Interfaces
— 32-bit SDRAM Interface up to 2 external banks — 8/32/16-bit SRAM/FLASH/ROM Interface — Multimedia Codec Port — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface —8×8 Keypad Scanner — 27 General Purpose Input/Output pins — Dedicated LED flasher pin from the RTC
Internal Peripherals
OVERVIEW (cont.)
The EP7311 is designed for low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states: operating, idle and standby.
— Two 16550 compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two general purpose 16-bit timers — Interrupt Controller — Boot ROM
Package
—256-Ball PBGA
The fully static EP7311 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS process
Development Kits
— EDB7312: Development Kit with color STN LCD on
board.
Note: * Use the EDB7312 Development Kit for all the EP73xx
devices.
One of its notable features is MaverickKey unique IDs. These are factory programmed IDs in response to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs consist of two registers, one 32-bit series register and one random 128-bit register that may be used by an OEM for an authentication mechanism.
Simply by adding desired memory and peripherals to the highly integrated EP7311 completes a low-power system solution. All necessary interface logic is integrated on-chip.
2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 3
EP7311
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES.........................................................................................................................................................2
OVERVIEW..................................................................................................................................................................2
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID .....................................................................................................................................6
Memory Interfaces .............................. ... .... ... ... ... ... .... ... .......................................... ... ... .... .....................................6
Digital Audio Capability ... .......................................... ... ... ... .... ... ............................................................................7
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................7
Multimedia Codec Port (MCP) ...............................................................................................................................7
CODEC Interface ..... ... .... ... ... ... .... ... ... ... .... ... .......................................... ... ... ... .... ... ... ... .... .....................................8
SSI2 Interface ........................................................................................................................................................8
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
Interrupt Controller ................................................................................................................................................9
Real-Time Clock ....................................................................................................................................................9
PLL and Clocking ..................................................................................................................................................9
DC-to-DC converter interface (PWM) ..................................................................................................................10
Timers .................................................................................................................................................................10
General Purpose Input/Output (GPIO) ................................................................................................................10
Hardware debug Interface ...................................................................................................................................10
Internal Boot ROM ........................... ... ... .... ... .......................................... ... ... ... .... ... .............................................10
Packaging ..................................... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ... ....... .............................................10
Pin Multiplexing ...................................................................................................................................................11
System Design ....................................................................................................................................................12
ELECTRICAL SPECIFICATIONS ......................................................................................................13
Absolute Maximum Ratings .................................................................................................................................13
Recommended Operating Conditions .................................................................................................................13
DC Characteristics ....................................... ... .......................................... ... ... .... ... ... ..........................................13
Timings ........................................................................................... .............. ............................ ..........15
Timing Diagram Conventions ...................... .......................................... .... ... ... ... .... ... ... ... ... .......................15
Timing Conditions ........................ .... ... ... ... .......................................... ... .... ... ... ... .......................................15
SDRAM Interface ..... ... .... ... .......................................... ... ... .... ... ... .......................................................................16
SDRAM Load Mode Register Cycle ..........................................................................................................17
SDRAM Burst Read Cycle ........... .... ... ... ... ... .... ... ... ... .... ... ... .......................................... ... ... .... ...................18
SDRAM Burst Write Cycle ........... .... ... .......................................... ... ..........................................................19
SDRAM Refresh Cycle ....................................................... ... .......................................... ... .......................20
Static Memory ......................................................................................................................................................21
Static Memory Single Read Cycle .............................................................................................................22
Static Memory Single Write Cycle ..............................................................................................................23
Static Memory Burst Read Cycle ...............................................................................................................24
Static Memory Burst Write Cycle ...............................................................................................................25
SSI1 Interface ......................................................................................................................................................26
SSI2 Interface ......................................................................................................................................................27
LCD Interface ......................................................................................................................................................28
JTAG Interface ................................ ... ... .......................................... .... ... ... ... ... ....................................................29
Packages ...................................................................................................................... .............. ........30
256-Ball PBGA Package Characteristics ............................................................................................................30
256-Ball PBGA Package Specifications ....................................................................................................30
256-Ball PBGA Pinout (Top View) .............................................................................................................31
256-Ball PBGA Ball Listing ........................................................................................................................32
JTAG Boundary Scan Signal Ordering ...................... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ...................................35
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 3
Page 4
EP7311
High-Performance, Low-Power System on Chip
CONVENTIONS .................................................................................................................................40
Acronyms and Abbreviations .............................................................................................................................. 40
Units of Measurement ......................................................................................................................................... 40
General Conventions .......................................................... ... ... .... ... ... ... .... ... ... ... ... ............................................. 41
Pin Description Conventions ............................................................................................................................... 41
.................................................................................................................................................................. 41
Ordering Information .......................................................................................................................42
Environmental, Manufacturing, & Handling Information .............................................................42
Revision History ..............................................................................................................................42
4 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 5
EP7311
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Maximum EP7311 Based System ....... ... ... ... .... ... ... ... .... .......................................... ... ... .............................12
Figure 2. Legend for Timing Diagrams .........................................................................................................................15
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement ..................... ................................ .......................17
Figure 4. SDRAM Burst Read Cycle Timing Measurement ..........................................................................................18
Figure 5. SDRAM Burst Write Cycle Timing Measurement ..........................................................................................19
Figure 6. SDRAM Refresh Cycle Timing Measurement ......................................... ... .... ... .............................................20
Figure 7. Static Memory Single Read Cycle Timing Measurement ...............................................................................22
Figure 8. Static Memory Single Write Cycle Timing Measurement .................. ................................... ..........................23
Figure 9. Static Memory Burst Read Cycle Timing Measurement ................................................................................24
Figure 10. Static Memory Burst Write Cycle Timing Measurement ..............................................................................25
Figure 11. SSI1 Interface Timing Measurement ...........................................................................................................26
Figure 12. SSI2 Interface Timing Measurement ...........................................................................................................27
Figure 13. LCD Controller Timing Measurement ..........................................................................................................28
Figure 14. JTAG Timing Measurement ........................ .............................................................. ...................................29
Figure 15. 256-Ball PBGA Package ..............................................................................................................................30
List of Tables
Table A. Power Management Pin Assignments ..............................................................................................................6
Table B. Static Memory Interface Pin Assignments ........................................................................................................6
Table C. SDRAM Interface Pin Assignments ..................................................................................................................7
Table D. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7
Table E. MCP Interface Pin Assignments .......................................................................................................................7
Table F. CODEC Interface Pin Assignments ..................................................................................................................8
Table G. SSI2 Interface Pin Assignments .......................................................................................................................8
Table H. Serial Interface Pin Assignments ............................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ..................................8
Table I. LCD Interface Pin Assignments ............................................. ... ... ......................................................................8
Table J. Keypad Interface Pin Assignments ...................................................................................................................9
Table K. Interrupt Controller Pin Assignments ................................................................................................................9
Table L. Real-Time Clock Pin Assignments ....................................................................................................................9
Table M. PLL and Clocking Pin Assignments .................................................................................................................9
Table N. DC-to-DC Converter Interface Pin Assignments ............................................................................................10
Table O. General Purpose Input/Output Pin Assignments ...........................................................................................10
Table P. Hardware Debug Interface Pin Assignments ..................................................................................................10
Table Q. LED Flasher Pin Assignments .......................................................................................................................10
Table R. MCP/SSI2/CODEC Pin Multiplexing ...............................................................................................................11
Table S. Pin Multiplexing ..............................................................................................................................................11
Table T. 256-Ball PBGA Ball Listing ............ .......................................... ... .... ... ... ... ... .... ... ... ... .......................................32
Table U. JTAG Boundary Scan Signal Ordering .......... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................35
Table V. Acronyms and Abbreviations ..........................................................................................................................40
Table W. Unit of Measurement .................... .......................................... ... .... ... ... ... ... .... ... ... ..........................................40
Table X. Pin Description Conventions ..........................................................................................................................41
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 5
Page 6
EP7311
High-Performance, Low-Power System on Chip

Processor Core - ARM720T

The EP7311 incorporates an ARM 32-bit RISC microcontroller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include:
ARM (32-bit) and Thumb (16-bit compressed) instruction sets
Enhanced MMU for Microsoft Windows CE and other operating systems
8 KB of 4-way set-associative cache.
Translation Look Aside Buffers with 64 Translated Entries

Power Management

The EP7311 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V allowing the device to achieve a performance
level equivalent to 60 MIPS. The device has three basic power states:
• Operating — This state is the full performance state. All the clocks and peripheral logic are enabled.
• Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press.
• Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor.
Pin Mnemonic I/O Pin Description
BATOK I Battery ok input
nEXTPWR I
nPWRFL I Power fail sense input nBATCHG I Battery changed sense input
External power supply sense input
Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7311 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7311 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances.

Memory Interfaces

There are two main external memory interfaces. The first one is the ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industry-leading code density.
Pin Mnemonic I/O Pin Description
nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE/nSDCAS (Note) O ROM expansion OP enable nMWE/nSDWE (Note) O ROM expansion write enable
HALFWORD O
WORD O Word access select output WRITE/nSDRAS (Note) O Transfer direction
Table B. Static Memory Interface Pin Assignments
Halfword access select output
Table A. Power Management Pin Assignments
Note: Pins are multiplexed. See Table S on page 11 for more
information.

MaverickKey™ Unique ID

MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.
6 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 7
EP7311
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide SDRAM interface that allows direct connection of up to two banks of SDRAM, totaling 512 Mb. To assure the lowest possible power consumption, the EP7311 supports self-refresh SDRAMs, which are placed in a low-power state by the device when it enters the low-power Standby State.
Pin Mnemonic I/O Pin Description
SDCLK O SDRAM clock output SDCKE O SDRAM clock enable output nSDCS[1:0] O SDRAM chip select out WRITE/nSDRAS (Note 2) O SDRAM RAS signal output nMOE/nSDCAS (Note 2) O SDRAM CAS control signal
nMWE/nSDWE (Note 2) O
A[27:15]/DRA[0:12] (Note 1) O SDRAM address A[14:13]/DRA[12:14] O SDRAM internal bank select PD[7:6]/SDQM[1:0] (Note 2) I/O SDRAM byte lane mask SDQM[3:2] O SDRAM byte lane mask D[31:0] I/O Data I/O
Table C. SDRAM Interface Pin Assignments
SDRAM write enable control signal
UART 1 to enable these signals to drive an infrared communication interface directly.
Pin Mnemonic I/O Pin Description
TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input
Table D. Universal Asynchronous Receiver/Transmitters Pin
Assignments

Multimedia Codec Port (MCP)

The Multimedia Codec Port provides access to an audio codec, a telecom codec, a touchscreen interface, four general purpose analog-to-digital converter inputs, and ten programmable digital I/O lines.
Note: 1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See Table S on page 11 for more information.

Digital Audio Capability

The EP7311 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7311

Universal Asynchronous Receiver/T ransmitters (UARTs)

The EP7311 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit rates up to 115.2 kbps. An IrDA SIR protocol encoder/ decoder can be optionally switched into the RX/TX signals to/from
Pin Mnemonic I/O Pin Description
SIBCLK O Serial bit clock SIBDOUT O Serial data out SIBDIN I Serial data in SIBSYNC O Sample clock
Table E. MCP Interface Pin Assignments
Note: See Table R on page 11 for information on pin
multiplexes.
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 7
Page 8
EP7311
High-Performance, Low-Power System on Chip

CODEC Interface

The EP7311 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the MCP and SSI2.
Pin Mnemonic I/O Pin Description
PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync
Table F. CODEC Interface Pin Assignments
Note: See Table R on page 11 for information on pin
multiplexes.

SSI2 Interface

An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the MCP and CODEC interfaces through a multiplexer.

Synchronous Serial Interface

ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation)
Selectable serial clock polarity
Pin Mnemonic I/O Pin Description
ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock
Table H. Serial Interface Pin Assignments

LCD Controller

A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM.
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for asymmetric traffic
Pin Mnemonic I/O Pin Description
SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync
Table G. SSI2 Interface Pin Assignments
Note: See Table R on page 11 for information on pin
multiplexes.
Interfaces directly to a single-scan panel monochrome STN LCD
Interfaces to a single-scan panel color STN LCD with minimal external glue logic
Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments
Video frame buffer size programmable up to 128 KB
Bits per pixel of 1, 2, or 4 bits
Pin Mnemonic I/O Pin Description
CL1 O LCD line clock CL2 O LCD pixel clock out DD[3:0] O LCD serial display data bus FRM O LCD frame synchronization pulse M O LCD AC bias drive
Table I. LCD Interface Pin Assignments
8 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 9
EP7311
High-Performance, Low-Power System on Chip
64-Keypad Interface
Matrix keyboards and keypads can be easily read by the EP7311. A dedicated 8-bit column driver output generates strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state.
Column outputs can be individually set high with the remaining bits left at high-impedance
Column outputs can be driven all-low, all-high, or all-high­impedance
Keyboard interrupt driven by OR'ing together all Port A bits
Keyboard interrupt can be used to wake up the system
•88 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic
Pin Mnemonic I/O Pin Description
COL[7:0] O
Table J. Keypad Interface Pin Assignments
Keyboard scanner column drive

Interrupt Controller

When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7311 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources.
Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.)
Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs
Five dedicated off-chip interrupt lines operate as level sensitive interrupts
.
Pin Mnemonic I/O Pin Description
nEINT[2:1] I External interrupt EINT[3] I External interrupt nEXTFIQ I External Fast Interrupt input nMEDCHG/nBROM (Note) I Media change interrupt input
Table K. Interrupt Controller Pin Assignments
Note: Pins are multiplexed. See Table S on page 11 for more
information.

Real-Time Clock

The EP7311 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt.
Driven by an external 32.768 kHz crystal oscillator
Pin Mnemonic Pin Description
RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground
Table L. Real-Time Clock Pin Assignments

PLL and Clocking

Processor and Peripheral Clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz
Pin Mnemonic Pin Description
MOSCIN Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground
Table M. PLL and Clocking Pin Assignments
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 9
Page 10
EP7311
High-Performance, Low-Power System on Chip

DC-to-DC converter interface (PWM)

Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter
Pin Mnemonic I/O Pin Description
DRIVE[1:0] I/O PWM drive output FB[1:0] I PWM feedback input
Table N. DC-to-DC Converter Interface Pin Assignments

Timers

Internal (RTC) timer
Two internal 16-bit programmable hardware count-down timers

General Purpose Input/Output (GPIO)

Three 8-bit and one 3-bit GPIO ports
Supports scanning keyboard matrix
Pin Mnemonic I/O Pin Description
PA[7:0] I/O GPIO port A PB[7:0] I/O GPIO port B PD[0]/LEDFLSH (Note) I/O GPIO port D PD[5:1] I/O GPIO port D PD[7:6]/SDQM[1:0] (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL (Note) I/O GPIO port E
Table O. General Purpose Input/Output Pin Assignments
Note: Pins are multiplexed. See T able S on page 11 for more
information.

Hardware debug Interface

Full JTAG boundary scan and Embedded ICE support
Pin Mnemonic I/O Pin Description
TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select
Table P. Hardware Debug Interface Pin Assignments
LED Flasher
A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA.
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Pin Mnemonic I/O Pin Description
PD[0]/LEDFLSH (Note) O LED flasher driver
Table Q. LED Flasher Pin Assignments
Note: Pins are multiplexed. See Table S on page 11 for more
information.

Internal Boot ROM

The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH.

Packaging

The EP7311 is available in a 208-pin LQFP package, 256-ball PBGA package or a 204-ball TFBGA package.
10 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 11
EP7311
High-Performance, Low-Power System on Chip

Pin Multiplexing

The following table shows the pin multiplexing of the MCP, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the MCP is controlled by the MCPSEL bit in SYSCON3 (see the EP73xx User’s Manual for more information).
Pin
Mnemonic
SSICLK I/O SIBCLK SSICLK PCMCLK SSITXDA O SIBDOUT SSITXDA PCMOUT SSIRXDA I SIBDIN SSIRXDA PCMIN SSITXFR I/O SIBSYNC SSITXFR PCMSYNC SSIRXFR I p/u SSIRXFR p/u
BUZ O
Table R. MCP/SSI2/CODEC Pin Multiplexing
I/O MCP SSI2 CODEC
The following table shows the pins that have been multiplexed in the EP7311.
Signal Block Signal Block
nMOE Static Memory nSDCAS SDRAM nMWE Static Memory nSDWE SDRAM WRITE Static Memory nSDRAS SDRAM A[27:15] Static Memory DRA[0:12] SDRAM A[14:13] Static Memory DRA[13:14] SDRAM PD[7:6] GPIO SDQM[1:0] SDRAM
RUN
nMEDCHG
PD[0] GPIO LEDFLSH LED Flasher
PE[1:0] GPIO BOOTSEL[1:0]
PE[2] GPIO CLKSEL
System Configuration
Interrupt Controller
Table S. Pin Multiplexing
CLKEN
nBROM
System Configuration
Boot ROM select
System Configuration
System Configuration
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 11
Page 12
EP7311
LCD
KEYBOARD
BATTER Y
DC-TO-DC
CONVERTERS
ADC
DIGITIZER
IR LED AND
PHOTODIODE
2RS-232
TRANSCEIVERS
ADDITIONAL I/O
PC CARD
CONTROLLER
PC CARD
SOCKET
nCS[4] PB0 EXPCLK
DD[0-3]
CL1 CL2
FRM
M
D[0-31] A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK nEXTPWR nBATCHG
RUN
WAKEUP
nCS[0] nCS[1]
DRIVE[0-1]
FB[0-1]
EP7311
ADCCLK nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD1/2
TXD1/2
DSR
CTS
DCD
CS[n] WORD
nCS[2] nCS[3]
16
FLASH
16
FLASH
6
FLASH
EXTERNAL MEMORY ­MAPPED EXPANSION
BUFFERS
BUFFERS
AND
LATCHES
16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
MCP
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
RTCIN
LEDFLSH
CRYSTAL
MOSCIN
16
SDRAM
16
SDRAM
6
SDRAM
16
SDRAM
SDCS[1] SDQM[0-3]
SDCS[0] SDQM[0-3]
SDRAS/ SDCAS
High-Performance, Low-Power System on Chip

System Design

As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7311
completes a low-power system solution. All necessary interface logic is integrated on-chip.
Note: A system can only use one of the following peripheral
interfaces at any given time: SSI2,CODEC or MCP.
12 Copyright Cirrus Logic, Inc. 2011
Figure 1. A Maximum EP7311 Based System
(All Rights Reserved) DS506F2
Page 13
High-Performance, Low-Power System on Chip

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

DC Core, PLL, and RTC Supply Voltage 2.9 V
DC I/O Supply Voltage (Pad Ring) 3.6 V
DC Pad Input Current 10 mA/pin; 100 mA cumulative
Storage Temperature, No Power –40C to +125C

Recommended Operating Conditions

DC core, PLL, and RTC Supply Voltage 2.5 V 0.2 V
DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V
DC Input / Output Voltage O–I/O supply voltage
EP7311
Operating Temperature
Extended -20C to +70C; Commercial 0C to +70C; Industrial -40C to +85C

DC Characteristics

All characteristics are specified at V
DDCORE
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”
Symbol Parameter Min T yp Max Unit Conditions
VIH CMOS input high voltage
VIL CMOS input low voltage
VT+
VT-
Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH
VOH
Schmitt trigger positive going threshold
Schmitt trigger negative going threshold
CMOS output high voltage Output drive 1 Output drive 2
a a
a
= 2.5 V , V
0.65 V
DDIO
0.3
V
SS
--2.1V
0.8 - - V
VDD – 0.2
2.5
2.5
= 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C
DDIO
+ 0.3
-
-
-
-
-
V
DDIO
0.25 V
-
-
-
DDIO
V
V
V V V
V
= 2.5 V
DDIO
= 2.5 V
V
DDIO
IOH = 0.1 mA IOH = 4 mA IOH = 12 mA
CMOS output low voltage
VOL
IIN Input leakage current - - 1.0 µA
IOZ
CIN Input capacitance 8 - 10.0 pF
COUT Output capacitance 8 - 10.0 pF
Output drive 1 Output drive 2
Bidirectional 3-state leakage current
a a
b c
a
-
-
-
25 - 100 µA
-
-
-
0.3
0.5
0.5
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 13
V V V
IOL = –0.1 mA IOL = –4 mA IOL = –12 mA
VIN = V
VOUT = V
or GND
DD
DD
or GND
Page 14
EP7311
High-Performance, Low-Power System on Chip
Symbol Parameter Min T yp Max Unit Conditions
CI/O Transceiver capacitance 8 - 10.0 pF
Only nPOR, nPWRFAIL,
IDD
STANDBY
@ 25 C
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
77 41
-
µA
-
nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL,
IDD
STANDBY
@ 70 C
Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
-
-
570 111
µA
nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
VIL = GND ± 0.1 V
Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = V
IDD
STANDBY
@ 85 C
Standby current consumption Core, Osc, RTC @2.5 V
I/O @ 3.3 V
1
-
-
-
-
1693
163
µA
VIL = GND ± 0.1 V
Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V
= GND ± 0.1 V
IDD
idle
at 74 MHz
Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V
1
-
-
10
6
-
mA
-
Minimum standby voltage for
VDD
STANDBY
Standby supply voltage 2.0 - - V
state retention, internal SRAM cache, and RTC operation only
a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
± 0.1 V,
DD
± 0.1 V,
DD
± 0.1 V,
DD
± 0.1 V, VIL
DD
Note: 1) Total power consumption = IDD
CORE x
2) A typical design will provide 3.3 V to the I/O supply (i.e., V compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at V
= 3.3 V.
DD
2.5 V + IDD
IO x
3.3 V ), and 2.5 V to the remaining logic. This is to allow the I/O to be
DDIO
14 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 15
EP7311
Clock
High to Low
High/Low to High
Bus Change
Bus Valid
Undefined/Invalid
V a lid B u s to T rista te
Bus/Signal O m ission
Figure 2. Legend for Timing Diagrams
High-Performance, Low-Power System on Chip

Timings

Timing Diagram Conventions

This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at V
= 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40C to +85C. Pin loadings is 50 pF. The timing values are
DDIO
referenced to 1/2 V
DS506F2 Copyright Cirrus Logic, Inc. 2011
.
DD
(All Rights Reserved) 15
Page 16
EP7311
High-Performance, Low-Power System on Chip

SDRAM Interface

Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for
the timings of each of the SDRAM modes.
Parameter Symbol Min Typ Max Unit
SDCLK rising edge to SDCS assert delay time
SDCLK rising edge to SDCS deassert delay time
SDCLK rising edge to SDRAS assert delay time
SDCLK rising edge to SDRAS deassert delay time
SDCLK rising edge to SDRAS invalid delay time
SDCLK rising edge to SDCAS assert delay time
SDCLK rising edge to SDCAS deassert delay time
SDCLK rising edge to ADDR transition time
SDCLK rising edge to ADDR invalid delay time
SDCLK rising edge to SDMWE assert delay time
SDCLK rising edge to SDMWE deassert delay time
DATA transition to SDCLK rising edge time
SDCLK rising edge to DATA transition hold time
SDCLK rising edge to DATA transition delay time
t
CSa
t
CSd
t
RAa
t
RAd
t
RAnv
t
CAa
t
CAd
t
ADv
t
ADx
t
MWa
t
MWd
t
DAs
t
DAh
t
DAd
024ns
3 2 10 ns
137ns
3 1 10 ns
247ns
22 5ns
50 3ns
31 5ns
22 5ns
31 5ns
40 4ns
2--ns
1--ns
0 - 15 ns
16 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 17

SDRAM Load Mode Register Cycle

SDCLK
SDCS
SDRAS
SDCAS
ADDR
DATA
SDQM
SDMWE
t
CSa
t
RAa
t
CAa
t
MWa
t
ADv
t
ADx
t
RAd
t
CSd
t
CAd
t
MWd
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 17
Page 18
EP7311
ADRAS ADCAS
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[0:3]
ADDR
DATA
SDMWE
D1 D4D3D2
t
ADv
t
ADv
t
CSd
t
CSa
t
CSa
t
CAa
t
RAd
t
CSd
t
CAd
t
RAa
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
RAnv
Figure 4. SDRAM Burst Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

SDRAM Burst Read Cycle

Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.
18 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 19

SDRAM Burst Write Cycle

SDCLK
SDCS
SDRAS
SDCAS
SDQM
ADDR
DATA
SDMWE
0
D1
ADRAS
ADCAS
D4D3D2
t
CSa
t
RAa
t
CAa
t
CSa
t
CSd
t
RAd
t
CSd
t
CAd
t
ADv
t
DAd
t
ADv
t
DAd
t
DAd
t
DAd
t
MWa
t
MWd
Figure 5. SDRAM Burst Write Cycle Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 19
Page 20
EP7311
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[3:0]
SDMWE
SDATA
ADDR
t
CSa
t
RAa
t
CSd
t
RAd
t
CAa
t
CAd
Figure 6. SDRAM Refresh Cycle Timing Measurement
High-Performance, Low-Power System on Chip

SDRAM Refresh Cycle

Note: 1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
20 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 21
EP7311
High-Performance, Low-Power System on Chip

Static Memory

Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the
values for the timings of each of the Static Memory modes.
Parameter Symbol Min Typ Max Unit
EXPCLK rising edge to nCS assert delay time
EXPCLK falling edge to nCS deassert hold time
EXPCLK rising edge to A assert delay time
EXPCLK falling edge to A deassert hold time
EXPCLK rising edge to nMWE assert delay time
EXPCLK rising edge to nMWE deassert hold time
EXPCLK falling edge to nMOE assert delay time
EXPCLK falling edge to nMOE deassert hold time
EXPCLK falling edge to HALFWORD deassert delay time
EXPCLK falling edge to WORD assert delay time
EXPCLK rising edge to data valid delay time
EXPCLK falling edge to data invalid delay time
Data setup to EXPCLK falling edge time
EXPCLK falling edge to data hold time
t
CSd
t
CSh
t
t
t
MWd
t
MWh
t
MOEd
t
MOEh
t
HWd
t
WDd
t
t
Dnv
t
t
Dh
2 8 20 ns
2 7 20 ns
Ad
Ah
4 9 16 ns
31019ns
3 6 10 ns
3 6 10 ns
3 7 10 ns
2 7 10 ns
2 8 20 ns
2 8 16 ns
Dv
81321ns
61530ns
Ds
--1ns
--3ns
EXPCLK rising edge to WRITE assert delay time
EXPREADY setup to EXPCLK falling edge time
EXPCLK falling edge to EXPREADY hold time
t
WRd
t
t
EXs
EXh
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 21
51123ns
--0ns
--0ns
Page 22
EP7311
EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
nMOE
t
CSd
t
Ad
t
CSh
t
MOEh
t
Dh
t
Ds
t
HWd
t
WDd
t
WRd
t
MOEd
EXPRDY
t
EXh
t
EXs
Figure 7. Static Memory Single Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Single Read Cycle

Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
22 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 23

Static Memory Single Write Cycle

EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
t
HWd
t
WDd
t
CSd
t
Ad
t
MWd
t
Dv
t
MWh
t
CSh
nMOE
EXPRDY
t
EXh
t
EXs
Figure 8. Static Memory Single Write Cycle Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 23
Page 24
EP7311
EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
Ah
t
Ah
t
Ah
t
CSh
t
MOEh
t
MOEd
t
EXstEXh
tDst
Dh
t
Ds
t
Ds
t
Ds
t
Dh
t
Dh
t
Dh
t
WRd
t
HWd
t
WDd
Figure 9. Static Memory Burst Read Cycle Timing Measurement
High-Performance, Low-Power System on Chip

Static Memory Burst Read Cycle

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
24 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 25

Static Memory Burst Write Cycle

EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
MWd
t
MWh
t
MWd
t
MWd
t
MWd
t
MWh
t
MWh
t
MWh
t
Ah
t
Ah
t
Ah
t
EXs
t
EXh
t
CSh
t
Dv
t
Dv
t
Dv
t
Dnv
t
Dnv
t
Dnv
t
Dv
t
HWd
t
WDd
Figure 10. Static Memory Burst Write Cycle Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 25
Page 26
EP7311
ADC
CLK
nADC
CSS
ADCIN
ADC OUT
t
INs
t
INh
t
Cd
t
Od
t
Ovd
Figure 11. SSI1 Interface Timing Measurement
High-Performance, Low-Power System on Chip

SSI1 Interface

Parameter Symbol Min Max Unit
ADCCLK falling edge to nADCCSS deassert delay time
ADCIN data setup to ADCCLK rising edge time
ADCIN data hold from ADCCLK rising edge time
ADCCLK falling edge to data valid delay time
ADCCLK falling edge to data invalid delay time
t
t
t
t
t
Cd
INs
INh
Ovd
Od
910ms
-15ns
-14ns
713 ns
23ns
26 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 27

SSI2 Interface

SSI
CLK
SSIRXFR/
SSITXFR
SSI
TXDA
SSI
RXDA
D1D7
D7
D2
D2 D1
D0
D0
t
clk_per
t
clk_high
t
clk_low
t
FRd
t
FR_per
t
RXs
t
TXd
t
FRa
t
RXh
t
clkrf
t
TXv
Figure 12. SSI2 Interface Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Unit
SSICLK period (slave mode)
SSICLK high time
SSICLK low time
SSICLK rise/fall time
SSICLK rising edge to RX and/or TX frame sync high time
SSICLK rising edge to RX and/or TX frame sync low time
SSIRXFR and/or SSITXFR period
SSIRXDA setup to SSICLK falling edge time
SSIRXDA hold from SSICLK falling edge time
SSICLK rising edge to SSITXDA data valid delay time
SSITXDA valid time
t
clk_per
t
clk_high
t
clk_low
t
clkrf
t
FRd
t
FRa
t
FR_per
t
RXs
t
RXh
t
TXd
t
TXv
185 2050 ns
925 1025 ns
925 1025 ns
318ns
-3ns
-8ns
960 990 ns
37ns
37ns
-2ns
960 990 ns
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 27
Page 28
EP7311
CL[2]
CL[1]
FRM
M
DD [3:0]
t
CL1d
t
FRMd
t
Md
t
DDd
t
CL2d
Figure 13. LCD Controller Timing Measurement
High-Performance, Low-Power System on Chip

LCD Interface

Parameter Symbol Min Max Unit
CL[2] falling to CL[1] rising delay time
CL[1] falling to CL[2] rising delay time
CL[1] falling to FRM transition time
CL[1] falling to M transition time
CL[2] rising to DD (display data) transition time
t
CL1d
t
CL2d
t
FRMd
t
Md
t
DDd
10 25 ns
80 3,475 ns
300 10,425 ns
10 20 ns
10 20 ns
28 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 29

JTAG Interface

TDO
TCK
TDI
TMS
t
JPh
t
clk_high
t
clk_low
t
JPzx
t
JPco
t
JPxz
t
clk_per
t
JPs
Figure 14. JTAG Timing Measurement
EP7311
High-Performance, Low-Power System on Chip
Parameter Symbol Min Max Units
TCK clock period
TCK clock high time
TCK clock low time
JTAG port setup time
JTAG port hold time
JTAG port clock to output
JTAG port high impedance to valid output
JTAG port valid output to high impedance
t
clk_per
t
clk_high
t
clk_low
t
JPs
t
JPh
t
JPco
t
JPzx
t
JPxz
2-ns
1-ns
1-ns
-0ns
-3ns
-10ns
-12ns
-19ns
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 29
Page 30
EP7311
TOP VIEW
17.00 (0.669)
15.00
(0.590)
SIDE VIEW
BOTTOM VIEW
A
B C D
E
F G H
J
K
L M N
P R
T
1.00 (0.040)
Pin 1 Indicator
Pin 1 Corner
Pin 1 Corner
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
15.00 (0.590)
2 Layer
17.00 (0.669)
17.00 (0.669)
1.00 (0.040)
1.00 (0.040)
1.00 (0.040)
30° TYP
REF
REF
0.50
3 Places
0.85 (0.034) ±0.05 (.002)
0.40 (0.016) ±0.05 (.002)
0.36 (0.014)
17.00 (0.669)
R
D1
E1
D
E
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.09 (0.004)
JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body
High-Performance, Low-Power System on Chip

Packages

256-Ball PBGA Package Characteristics

256-Ball PBGA Package Specifications

Figure 15. 256-Ball PBGA Package
Note: 1) For pin locations see Table T.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7311 design, contact Cirrus Logic for the latest package information.
30 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 31
EP7311
High-Performance, Low-Power System on Chip

256-Ball PBGA Pinout (Top View)

1 234 5678910111213141516
A VDDIO nCS[4] nCS[1] SDCLK SDQM[3] DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] MOSCOUT VDDOSC VSSIO A
B nCS[5] VDDIO nCS[3]
C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C
WRITE/
D
nSDRAS
E RXD[2] PB[7] TDI WORD VSSIO nCS[0] SDQM[2] FRM A[0] D[5] VSSOSC VSSIO
F PB[5] PB[3] VSSIO TXD[2]
G PB[1] VDDIO TDO PB[4] PB[6] VSSRTC VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G
H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12]
J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC
K LEDDRV PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K
L RXD[1] DSR VDDIO nEINT[1]
M nTEST[0] nEINT[2] VDDIO
N nEXTFIQ
EXPRDY VSSIO VDDIO nCS[2]
PE[1]/
BOOTSEL[1]
VSSIO VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N
nMOE/
nSDCAS
PE[0]/
BOOTSEL[0]
VDDIO nSDCS[1] DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B
nMWE/
nSDCS[0] CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D
nSDWE
RUN/
CLKEN
PE[2]/
CLKSEL
VSSIO SDCKE DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F
A[17]/
DRA[10]
VSSRTC
TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO
PD[0]/
LEDFLSH
VSSRTC COL[6] D[31] VSSRTC
A[16]/
DRA[11]
DRA[12]
DRA[5]
A[15]/
A[22]/
nMEDCHG/
nBROM
A[13]/
DRA[14]
A[14]/
DRA[13]
A[21]/
DRA[6]
A[23]/
DRA[4]
VDDIO D[9] D[10] E
VSSIO D[14] D[15] H
nTRST D[16] D[17] J
A[18]/
A[20]/
A[19]/
DRA[8]
D[21] M
VSSIO
VDDIO
DRA[9]
DRA[7]
L
P VSSRTC RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P
R RTCIN VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30]
T VDDRTC
PD[7]/
SDQM[1]
PD[6]/
SDQM[0]
PD[3] SSICLK SSIRXFR VDDCORE DRIVE[0] FB[1] COL[5] VDDIO BUZ D[28]
A[27]/
DRA[0]
A[25]/
DRA[2]
A[26]/
DRA[1]
VDDIO
A[24]\
DRA[3]
D[25] VSSIO T
R
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 31
Page 32
EP7311
High-Performance, Low-Power System on Chip

256-Ball PBGA Ball Listing

The list is ordered by ball location.
Table T. 256-Ball PBGA Ball Listing
Ball Location Name Type Description
A1 VDDIO Pad power Digital I/O power, 3.3V A2 nCS[4] O Chip select out A3 nCS[1] O Chip select out A4 SDCLK O SDRAM clock out A5 SDQM[3] O SDRAM byte lane mask A6 DD[1] O LCD serial display data A7 M O LCD AC bias drive A8 VDDIO Pad power Digital I/O power, 3.3V
A9 D[0] I/O Data I/O A10 D[2] I/O Data I/O A11 A[3] O System byte address A12 VDDIO Pad power Digital I/O power, 3.3V A13 A[6] O System byte address A14 MOSCOUT O Main oscillator out
A15 VDDOSC
A16 VSSIO Pad ground I/O ground
B1 nCS[5] O Chip select out
B2 VDDIO Pad power I/O ground
B3 nCS[3] O Chip select out
B4 nMOE/nSDCAS O
B5 VDDIO Pad power Digital I/O power, 3.3V
B6 nSDCS[1] O SDRAM chip select out
B7 DD[2] O LCD serial display data
B8 CL[1] O LCD line clock
B9 VDDCORE Core power Digital core power, 2.5V B10 D[1] I/O Data I/O B11 A[2] O System byte address B12 A[4] O System byte address B13 A[5] O System byte address B14 WAKEUP I System wake up input B15 VDDIO Pad power Digital I/O power, 3.3V B16 nURESET I User reset input
C1 VDDIO Pad power Digital I/O power, 3.3V
C2 EXPCLK I Expansion clock input
C3 VSSIO Pad ground I/O ground
C4 VDDIO Pad power Digital I/O power, 3.3V
C5 VSSIO Pad ground I/O ground
C6 VSSIO Pad ground I/O ground
C7 VSSIO Pad ground I/O ground
C8 VDDIO Pad power Digital I/O power, 3.3V
C9 VSSIO Pad ground I/O ground C10 VSSIO Pad ground I/O ground C11 VSSIO Pad ground I/O ground
Oscillator
power
Oscillator power in, 2.5V
ROM, expansion OP enable/SDRAM CAS control signal
Table T. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
C12 VDDIO Pad power Digital I/O power, 3.3V C13 VSSIO Pad ground I/O ground C14 VSSIO Pad ground I/O ground C15 nPOR I Power-on reset input C16 nEXTPWR I External power supply sense input
D1 WRITE/nSDRAS O
D2 EXPRDY I Expansion port ready input D3 VSSIO Pad ground I/O ground D4 VDDIO P ad power Digital I/O power, 3.3V D5 nCS[2] O Chip select out
D6 nMWE/nSDWE O
D7 nSDCS[0] O SDRAM chip select out D8 CL[2] O LCD pixel clock out
D9 VSSRTC Core ground Real time clock ground D10 D[4] I/O Data I/O D11 nPWRFL I Power fail sense input D12 MOSCIN I Main oscillator input D13 VDDIO Pad power Digital I/O power, 3.3V D14 VSSIO Pad ground I/O ground D15 D[7] I/O Data I/O D16 D[8] I/O Data I/O
E1 RXD[2] I UART 2 receive data input
E2 PB[7] I GPIO port B
E3 TDI I JTAG data input
E4 WORD O Word access select output
E5 VSSIO Pad ground I/O ground
E6 nCS[0] O Chip select out
E7 SDQM[2] O SDRAM byte lane mask
E8 FRM O LCD frame synchronization pulse
E9 A[0] O System byte address E10 D[5] I/O Data I/O
E11 VSSOSC
E12 VSSIO Pad ground I/O ground
E13 nMEDCHG/nBROM I
E14 VDDIO Pad power Digital I/O power, 3.3V E15 D[9] I/O Data I/O E16 D[10] I/O Data I/O
F1 PB[5] I GPIO port B
F2 PB[3] I GPIO port B
F3 VSSIO Pad ground I/O ground
F4 TXD[2] O UART 2 transmit data output
F5 RUN/CLKEN O Run output / clock enable output
F6 VSSIO Pad ground I/O ground
Oscillator
ground
Transfer direction / SDRAM RAS signal output
ROM, expansion write enable/ SDRAM write enable control signal
PLL ground
Media change interrupt input / internal ROM boot enable
32 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 33
EP7311
High-Performance, Low-Power System on Chip
Table T. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
F7 SDCKE O SDRAM clock enable output F8 DD[3] O LCD serial display data F9 A[1] O System byte address
F10 D[6] I/O Data I/O
F11 VSSRTC RTC ground Real time clock ground F12 BATOK I Battery ok input F13 nBATCHG I Battery changed sense input F14 VSSIO Pad ground I/O ground F15 D[11] I/O Data I/O F16 VDDIO Pad power Digital I/O power, 3.3V
G1 PB[1] I GPIO port B G2 VDDIO Pad power Digital I/O power, 3.3V G3 TDO O JTAG data out G4 PB[4] I GPIO port B G5 PB[6] I GPIO port B G6 VSSRTC Core ground Real time clock ground G7 VSSRTC RTC ground Real time clock ground G8 DD[0] O LCD serial display data
G9 D[3] I/O Data I/O G10 VSSRTC RTC ground Real time clock ground G11 A[7] O System byte address G12 A[8] O System byte address G13 A[9] O System byte address G14 VSSIO Pad ground I/O ground G15 D[12] I/O Data I/O G16 D[13] I/O Data I/O
H1 PA[7] I GPIO port A
H2 PA[5] I GPIO port A
H3 VSSIO Pad ground I/O ground
H4 PA[4] I GPIO port A
H5 PA[6] I GPIO port A
H6 PB[0] I GPIO port B
H7 PB[2] I GPIO port B
H8 VSSRTC RTC ground Real time clock ground
H9 VSSRTC RTC ground Real time clock ground H10 A[10] O System byte address H11 A[11] O System byte address H12 A[12] O System byte address H13 A[13]/DRA[14] O System byte address / SDRAM address H14 VSSIO Pad ground I/O ground H15 D[14] I/O Data I/O H16 D[15] I/O Data I/O
J1 PA[3] I GPIO port A
J2 PA[1] I GPIO port A
J3 VSSIO Pad ground I/O ground
J4 PA[2] I GPIO port A
J5 PA[0] I GPIO port A
J6 TXD[1] O UART 1 transmit data out
Table T. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
J7 CTS I UART 1 clear to send input J8 VSSRTC RTC ground Real time clock ground
J9 VSSRTC RTC ground Real time clock ground J10 A[17]/DRA[10] O System byte address / SDRAM address J11 A[16]/DRA[11] O System byte address / SDRAM address J12 A[15]/DRA[12] O System byte address / SDRAM address J13 A[14]/DRA[13] O System byte address / SDRAM address J14 nTRST I JTAG async reset input J15 D[16] I/O Data I/O J16 D[17] I/O Data I/O
K1 LEDDRV O IR LED drivet
K2 PHDIN I Photodiode input
K3 VSSIO Pad ground I/O ground
K4 DCD I UART 1 data carrier detect
K5 nTEST[1] I Test mode select input
K6 EINT[3] I External inte rrupt
K7 VSSRTC RTC ground Real time clock ground
K8 ADCIN I SSI1 ADC serial input
K9 COL[4] O Keyboard scanner column drive
K10 TCLK I JTAG clock K11 D[20] I/O Data I/O K12 D[19] I/O Data I/O K13 D[18] I/O Data I/O K14 VSSIO Pad ground I/O ground K15 VDDIO Pad power Digital I/O power, 3.3V K16 VDDIO Pad power Digital I/O power, 3.3V
L1 RXD[1] I UART 1 receive data input
L2 DSR I UART 1 data set ready input
L3 VDDIO Pad power Digital I/O power, 3.3V
L4 nEINT[1] I External interrupt input
L5 PE[2]/CLKSEL I GPIO port E / clock input mode select
L6 VSSRTC RTC ground Real time clock ground
L7 PD[0]/LEDFLSH I/O GPIO port D / LED blinker output
L8 VSSRTC Core ground Real time clock ground
L9 COL[6] O Keyboard scanner column drive L10 D[31] I/O Data I/O L11 VSSRTC RTC ground Real time clock ground L12 A [22]/DRA[5] O System byte address / SDRAM address L13 A [21]/DRA[6] O System byte address / SDRAM address L14 VSSIO Pad ground I/O ground L15 A [18]/DRA[9] O System byte address / SDRAM address L16 A [19]/DRA[8] O System byte address / SDRAM address M1 nTEST[0] I Test mode select input M2 nEINT[2] I Externa l interrupt input M3 VDDIO Pad power Digital I/O power, 3.3V M4 PE[0]/BOOTSEL[0] I GPIO port E / Boot mode select M5 TMS I JTAG mode select M6 VDDIO Pad power Digital I/O power, 3.3V
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 33
Page 34
EP7311
High-Performance, Low-Power System on Chip
Table T. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
M7 SSITXFR I/O MCP/CODEC/SSI2 frame sync M8 DRIVE[1] I/O PWM drive output
M9 FB[0] I PWM feedback input M10 COL[0] O Keyboard scanner column drive M11 D[27] I/O Data I/O M12 VSSIO Pad ground I/O ground M13 A[23]/DRA[4] O System byte address / SDRAM address M14 VDDIO Pad power Digital I/O power, 3.3V M15 A[20]/DRA[7] O System byte address / SDRAM address M16 D[21] I/O Data I/O
N1 nEXTFIQ I External fast interrupt in put
N2 PE[1]/BOOTSEL[1] I GPIO port E / boot mode select
N3 VSSIO Pad ground I/O ground
N4 VDDIO Pad power Digital I/O power, 3.3V
N5 PD[5] I/O GPIO port D
N6 PD[2] I/O GPIO port D
N7 SSIRXDA I/O MCP/CODEC/SSI2 serial data input
N8 ADCCLK O S SI1 ADC serial clock
N9 SMPCLK O SSI1 ADC sample clock N10 COL[2] O Keyboard scanner column drive N11 D[29] I/O Data I/O N12 D[26] I/O Data I/O N13 HALFWORD O Halfword access select output N14 VSSIO Pad ground I/O ground N15 D[22] I/O Data I/O N16 D[23] I/O Data I/O
P1 VSSRTC RTC ground Real time clock ground
P2 RTCOUT O Real time clock oscillator output
P3 VSSIO Pad ground I/O ground
P4 VSSIO Pad ground I/O ground
P5 VDDIO Pad power Digital I/O power, 3.3V
P6 VSSIO Pad ground I/O ground
P7 VSSIO Pad ground I/O ground
P8 VDDIO Pad power Digital I/O power, 3.3V
P9 VSSIO Pad ground I/O ground P10 VDDIO Pad power Digital I/O power, 3.3V P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power Digital I/O power P14 VSSIO Pad ground I/O ground P15 D[24] I/O Data I/O P16 VDDIO Pad power Digital I/O power, 3.3V
R1 RTCIN I/O Real time clock oscillator input
R2 VDDIO Pad power Digital I/O power, 3.3V
R3 PD[4] I/O GPIO port D
R4 PD[1] I/O GPIO port D
R5 SSITXDA O MCP/CODEC/SSI2 serial data output
R6 nADCCS O SSI1 ADC chip select
Table T. 256-Ball PBGA Ball Listing (Continued)
Ball Location Name Type Description
R7 VDDIO Pad power Digital I/O power, 3.3V R8 ADCOUT O SSI1 ADC serial data output
R9 COL[7] O Keyboard scanner column drive R10 COL[3] O Keyboard scanner column drive R11 COL[1] O Keyboard scanner column drive R12 D[30] I/O Data I/O R13 A[27]/DRA[0] O System byte address / SDRAM address R14 A[25]/DRA[2] O System byte address / SDRAM address R15 VDDIO Pad power Digital I/O power, 3.3V R16 A[24]/DRA[3] O System byte address / SDRAM address
T1 VDDRTC RTC power Real time clock power, 2.5V
T2 PD[7]/SDQM[1] I/O GPIO port D / SDRAM byte lane mask
T3 PD[6]/SDQM[0] I/O GPIO port D / SDRAM byte lane mask
T4 PD[3] I/O GPIO port D
T5 SSICLK I/O MCP/CODEC/SSI2 serial clock
T6 SSIRXFR MCP/CODEC/SSI2 frame sync
T7 VDDCORE Core power Core power, 2.5V
T8 DRIVE[0] I/O PWM drive output
T9 FB[1] I PWM feedback input T10 COL[5] O Keyboard scanner column drive
T11 VDDIO Pad power Digital I/O power, 3.3V T12 BUZ O Buzzer drive output T13 D[28] I/O Data I/O T14 A[26]/DRA[1] O System byte address / SDRAM address T15 D[25] I/O Data I/O T16 VSSIO Pad ground I/O ground
34 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 35

JTAG Boundary Scan Signal Ordering

Table U. JTAG Boundary Scan Signal Ordering
EP7311
High-Performance, Low-Power System on Chip
PBGA
Ball
B1 nCS[5] O 1 C2 EXPCLK I/O 3 E4 WORD O 6 D1 WRITE/nSDRAS O 8 F5 RUN/CLKEN O 10 D2 EXPRDY I 13 F4 TXD2 O 14 E1 RXD2 I 16 E2 PB[7] I/O 17 G5 PB[6] I/O 20 F1 PB[5] I/O 23 G4 PB[4] I/O 26 F2 PB[3] I/O 29 H7 PB[2] I/O 32 G1 PB[1]/PRDY2 I/O 35 H6 PB[0]/PRDY1 I/O 38 H1 PA[7] I/O 41 H5 PA[6] I/O 44 H2 PA[5] I/O 47 H4 PA[4] I/O 50 J1 PA[3] I/O 53 J4 PA[2] I/O 56 J2 PA[1] I/O 59 J5 PA[0] I/O 62 K1 LEDDRV O 65 J6 TXD1 O 67 K2 PHDIN I 69 J7 CTS I 70 L1 RXD1 I 71 K4 DCD I 72 L2 DSR I 73 K5 nTEST1 I 74
M1 nTEST0 I 75
K6 EINT3 I 76
M2 nEINT2 I 77
L4 nEINT1 I 78
Signal T ype Position
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 35
Page 36
EP7311
High-Performance, Low-Power System on Chip
Table U. JTAG Boundary Scan Signal Ordering (Continued)
PBGA
Ball
N1 nEXTFIQ I 79 L5 PE[2]/CLKSEL I/O 80 N2 PE[1]/BOOTSEL1 I/O 83 M4 PE[0]/BOOTSEL0 I/O 86 T2 PD[7]/SDQM[1] I/O 89 T3 PD[6/SDQM[0]] I/O 92 N5 PD[5] I/O 95 R3 PD[4] I/O 98 T4 PD[3] I/O 101 N6 PD[2] I/O 104 R4 PD[1] I/O 107 L7 PD[0]/LEDFLSH O 110 T6 SSIRXFR I/O 122 K8 ADCIN I 125 R6 nADCCS O 126 M8 DRIVE1 I/O 128 T8 DRIVE0 I/O 131 N8 ADCCLK O 134 R8 ADCOUT O 136 N9 SMPCLK O 138 T9 FB1 I 140 M9 FB0 I 141 R9 COL7 O 142 L9 COL6 O 144
T10 COL5 O 146
K9 COL4 O 148 R10 COL3 O 150 N10 COL2 O 152 R11 COL1 O 154
M10 COL0 O 156
T12 BUZ O 158
L10 D[31] I/O 160 R12 D[30] I/O 163 N11 D[29] I/O 166 T13 D[28] I/O 169 R13 A[27]/DRA[0] Out 172 M11 D[27] I/O 174 T14 A[26]/DRA[1] O 177
Signal Type Position
36 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 37
High-Performance, Low-Power System on Chip
Table U. JTAG Boundary Scan Signal Ordering (Continued)
EP7311
PBGA
Ball
N12 D[26] I/O 179 R14 A[25]/DRA[2] O 182 T15 D[25] I/O 184 N13 HALFWORD O 187 R16 A[24]/DRA[3] O 189 P15 D[24] I/O 191
M13 A[23]/DRA[4] O 194
N16 D[23] I/O 196 L12 A[22]/DRA[5] O 199 N15 D[22] I/O 201
L13 A[21]/DRA[6] O 204 M16 D[21] I/O 206 M15 A[20]/DRA[7] O 209
K11 D[20] I/O 211
L16 A[19]/DRA[8] O 214
K12 D[19] I/O 216
L15 A[18]/DRA[9] O 219
K13 D[18] I/O 221
J10 A[17]/DRA[10] O 224 J16 D[17] I/O 226 J11 A[16]/DRA[11] O 229 J15 D[16] I/O 231 J12 A[15]/DRA[12] O 234
H16 D[15] I/O 236
J13 A[14]/DRA[13] O 239 H15 D[14] I/O 241 H13 A[13]/DRA[14] O 244 G16 D[13] I/O 246 H12 A[12] O 249 G15 D[12] I/O 251 H11 A[11] O 254 F15 D[11] I/O 256 H10 A[10] O 259 E16 D[10] I/O 261 G13 A[9] O 264 E15 D[9] I/O 266 G12 A[8] O 269 D16 D[8] I/O 271
Signal T ype Position
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 37
Page 38
EP7311
High-Performance, Low-Power System on Chip
Table U. JTAG Boundary Scan Signal Ordering (Continued)
PBGA
Ball
G11 A[7] O 274 D15 D[7] I/O 276 F13 nBATCHG I 279 C16 nEXTPWR I 280 F12 BATOK I 281 C15 nPOR I 282 E13 nMEDCHG/nBROM I 283 B16 nURESET I 284 B14 WAKEUP I 285 D11 nPWRFL I 286 A13 A[6] O 287 F10 D[6] I/O 289 B13 A[5] O 292 E10 D[5] I/O 294 B12 A[4] O 297 D10 D[4] I/O 299
A11 A[3] O 302
G9 D[3] I/O 304
B11 A[2] O 307
A10 D[2] I/O 309
F9 A[1] O 312
B10 D[1] I/O 314
E9 A[0] O 317 A9 D[0] I/O 319 D8 CL2 O 322 B8 CL1 O 324 E8 FRM O 326 A7 M O 328 F8 DD[3] I/O 330 B7 DD[2] I/O 333 A6 DD[1] I/O 336 G8 DD[0] I/O 339 B6 nSDCS[1] O 342 D7 nSDCS[0] O 344 A5 SDQM[3] I/O 346 E7 SDQM[2] I/O 349 F7 SDCKE I/O 352 A4 SDCLK I/O 355
Signal Type Position
38 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 39
High-Performance, Low-Power System on Chip
Table U. JTAG Boundary Scan Signal Ordering (Continued)
EP7311
PBGA
Ball
D6 nMWE/nSDWE O 358 B4 nMOE/nSDCAS O 360 E6 nCS[0] O 362 A3 nCS[1] O 364 D5 nCS[2] O 366 B3 nCS[3] O 368 A2 nCS[4] O 370
1) See EP7311 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.
Signal T ype Position
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 39
Page 40
EP7311
High-Performance, Low-Power System on Chip

CONVENTIONS

This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet.

Acronyms and Abbreviations

Table V lists abbreviations and acronyms used in this data sheet.
Table V. Acronyms and Abbreviations
Acronym/
Abbreviation
A/D analog-to-digital ADC analog-to-digital converter CODEC coder / decoder D/A digital-to-analog DMA direct-memory access EPB embedded peripheral bus FCS frame check sequence FIFO first in / first out FIQ fast interrupt request GPIO general purpose I/O ICT in circuit test IR infrared IRQ standard interrupt request IrDA Infrared Data Association JTAG Joint Test Action Group LCD liquid crystal display LED light-emitting diode LQFP low profile quad flat pack LSB least significant bit MIPS millions of instructions per second MMU memory management unit MSB most significant bit PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface
Definition
Table V. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver
Definition

Units of Measurement

Table W. Unit of Measurement
Symbol Unit of Measure
C
fs sample frequency Hz hertz (cycle per second) kbps kilobits per second KB kilobyte (1,024 bytes) kHz kilohertz k
kilohm
Mbps megabits (1,048,576 bits) per second MB megabyte (1,048,576 bytes) MBps megabytes per second MHz megahertz (1,000 kilohertz)
A microampereFmicrofaradWmicrowatts microsecond (1,000 nanoseconds)
mA milliampere mW milliwatt ms millisecond (1,000 microseconds) ns nanosecond Vvolt Wwatt
degree Celsius
40 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Page 41
EP7311
High-Performance, Low-Power System on Chip

General Conventions

Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal.
Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7311 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.”

Pin Description Conventions

Abbreviations used for signal directions are listed in Table X.
Table X. Pin Description Conventions
Abbreviation Direction
I Input O Output I/O Input or Output
DS506F2 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) 41
Page 42
EP7311
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE Cirrus Logic, Inc. and it s su bsi d iari e s (“Ci r ru s”) be li eve t hat the inf or mati o n con tai n ed in th i s docu ment i s acc urate and reliable. Ho wev er , th e in fo rmation is subject
to change without noti ce and is provi ded “AS I S” with out warran ty of any kind ( express or implied ). Cust omers are a dvised to obtain the latest version of relevant information to verify, before placing orders, tha t inform atio n bei ng relied on is curr ent and com plete. Al l prod ucts are sold s ubject to the ter ms and co nditio ns of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Ci rrus and by furnishing this information, Cirrus gr an ts no li cense, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for ge neral distribution, advertising or promotional purpose s, or for crea ting any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM­ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DI RECTORS, EMPL OYEES, DI STRIBUTO RS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT­TORNEYS' FEES AND COSTS, THAT MAY RESU LT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
SPI is a trademark of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation. LINUX is a registered trademark of Linus Torvalds. Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.
High-Performance, Low-Power System on Chip

Ordering Information

Model T emperature Package
EP7311M-IBZ -40 to +85 °C. 256-pin PBGA, 17mm X 17mm

Environmental, Manufacturing, & Handling Information

Model Number Peak Reflow Temp MSL Rating* Max Floor Life
EP7311M-IBZ
260 °C 3 7 Days
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.

Revision History

Revision Date Changes
PP1 NOV 2003 First preliminary release.
F1 AUG 2005 Updated SDRAM timing. Added MSL data. F2 MAR 2011 Removed all lead-containing device ordering information. Added EP7311M-IBZ.
42 Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved) DS506F2
Loading...