Cirrus Logic CS98100-CM Datasheet

CS98100
DVD Processor for Low Cost DVD Players
Features
l 32-Bit RISC Processor, supported by RTOS, C/C++
compilers
l 32-bit DSP capable of AC-3, MPEG, DTS, MP3, and WMA l Progressive Scan (480p) with 3:2 pull down support or
Interlaced (PAL/NTSC) video encoding, both modes with Macrovision encoding, via three 10-bit Video DACs
l Serial DVD data interface for direct connection to low cost
(track buffer-less) DVD loader
l Flexible interface connects ATAPI, local bus or
microcontroller-less DVD loaders without external logic
l MPEG decoder supports VCD, VCD 3.0, SVCD, DVD video
standards
l Advanced subpicture unit handles DVD and SVCD, and
PAL<->NTSC scaling
l High quality video scaling for zoom and NTSC/PAL
conversion
l 4-bit multi-region OSD and special video effects l Simultaneous 8 channels PCM audio output and IEC-958. l 2-Channel PCM audio input for high-end karaoke
applications
l Three serial control/status ports l Low-power, ~0.5 W power dissipation
Description
Building on innovative, market-leading technology, Cirrus Logic presents the most complete DVD processor solu­tion available: CS98100. The CS98100 provides the high­performance typical of Cirrus Logic integrated circuits, and on-chip integration that allows for seamless integra­tion of functions. Among the integrated functions in this system-on-chip architecture is encoder with a triple 10-bit video DAC, allowing for a sig­nificant decrease in system cost.
Not only is the CS98100 equipped with an intuitive on­screen display and user interface, but the CS98100 also offers progressive output, DTS decoding, HDCD sup­port, and MP3 plus WMA decoding. Other advanced features include karaoke down-mix. The low cost ex­tended feature set makes the CS98100 ideal for both low-end and high-end system manufacturers.
ORDERING INFORMATION
CS98100-CM 0° to 70° C 208-pin MQFP
a high quality NTSC/PAL
Preliminary Product Information
P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
Copyright Cirrus Logic, Inc. 2002
(All Rights Reserved)
DS552PP4
JUL ‘02
1
TABLE OF CONTENTS
nformation being relied on is current and
bject to the PRC Foreign Trade Law
n this document may be trademarks
1. CHARACTERISTICS AND SPECIFICATIONS ........................................................................5
1.1 AC and DC Parametric Specifications ...............................................................................5
1.1.1 Absolute Maximum Rating .................................................................................... 5
1.1.2 Recommended Operating Conditions ...................................................................5
1.1.3 Electrical Characteristics .......................................................................................5
1.2 AC Characteristics .............................................................................................................7
1.2.1 ATAPI Interface .....................................................................................................7
1.2.2 SDRAM Interface .................................................................................................. 8
1.2.3 DVD Serial Interface Timing ................................................................................11
1.2.4 Digital Video Interface Timing .............................................................................12
1.2.5 Digital Audio Interface Timing .............................................................................13
1.2.6 ROM/NVRAM Interface ....................................................................................... 15
1.2.7 Miscellaneous Timings ........................................................................................17
2. TYPICAL APPLICATION ........................................................................................................18
2.1 CS98100 Device Summary .............................................................................................18
3. FUNCTIONAL DESCRIPTION ...............................................................................................20
3.1 RISC Processor ...............................................................................................................20
3.2 DSP Processor ................................................................................................................20
3.3 Memory Control ...............................................................................................................20
3.4 Dataflow Control (DMA) ................................................................................................... 20
3.5 System Control Functions ................................................................................................ 20
3.6 DVD/ATAPI Interface .......................................................................................................21
3.7 Serial DVD Interface ........................................................................................................21
3.8 MPEG Video Decoding .................................................................................................... 21
3.9 Audio Processing .............................................................................................................21
3.10 Video Processing ........................................................................................................... 22
3.11 Video Encoder ...............................................................................................................22
4. MEMORY MAP AND REGISTERS .........................................................................................23
4.1 Processor Memory Map ................................................................................................... 23
CS98100
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts
IMPORTANT NOTICE “Preliminary” product information describes products that are in production, but for which full characterization data is not yet available. “Advance” product information
describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that i complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manu­facture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights of the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other parts of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the “Foreign Exchange and Foreign Trade Law” is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies described in this material is su and is to be exported or taken out of the PRC.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH AP­PLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names i or service marks of their respective owners.
Purchase of I2C components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies conveys a license under the Phillips I components in a standard I2C system.
2
2
C Patent Rights to use those
4.2 Host Port Memory Map .................................................................................................... 23
4.3 Internal IO Space Map ..................................................................................................... 24
4.4 CS98100 Register Space ................................................................................................ 24
5. PIN DESCRIPTIONS .............................................................................................................. 37
6. PIN ASSIGNMENTS ............................................................................................................... 38
6.1 Miscellaneous Pins .......................................................................................................... 46
6.2 Serial Interface ................................................................................................................ 47
6.3 SDRAM Interface ............................................................................................................. 48
6.4 ROM/NVRAM Interface ................................................................................................... 49
6.5 Digital Video Output Interface .......................................................................................... 50
6.6 Audio Output/Input Interface ............................................................................................ 51
6.7 Host Master/ATAPI Interface ........................................................................................... 52
6.8 DVD I/O Channel Interface .............................................................................................. 53
6.9 DVD Serial Data Interface ............................................................................................... 54
6.10 Video Encoder Interface ................................................................................................ 55
6.11 General Purpose Input/Output (GPIO) .......................................................................... 56
6.12 Power and Ground ........................................................................................................ 57
7. 208 PIN MQFP PACKAGE SPECIFICATIONS ...................................................................... 58
LIST OF FIGURES
CS98100
Figure 1. ATAPI Interface Timing Diagram..................................................................................... 7
Figure 2. SDRAM Refresh Transaction........................................................................................... 8
Figure 3. SDRAM Burst Read Transaction..................................................................................... 9
Figure 4. SDRAM Burst Write Transaction ..................................................................................... 9
Figure 5. CS98100 SDRAM Read and Write................................................................................ 10
Figure 6. CS98100 DVD Serial Interface Timing Diagram............................................................ 11
Figure 7. CS98100 Digital Video Interface Timing Diagram ......................................................... 12
Figure 8. Digital Audio In Timing Diagram .................................................................................... 13
Figure 9. Digital Audio Out Timing Diagram.................................................................................. 14
Figure 10. ROM/NVRAM Reading Timing .................................................................................... 15
Figure 11. ROM/NVRAM Write Timing ......................................................................................... 16
Figure 12. Miscellaneous Timings................................................................................................. 17
Figure 13. CS98100 Application ................................................................................................... 18
Figure 14. CS98100 Pin Layout.................................................................................................... 37
Figure 15. CS98100 208-Pin MQFP Package Drawing................................................................ 58
LIST OF TABLES
Table 1. ATAPI Interface Characteristics........................................................................................ 7
Table 2. SDRAM Interface Characteristics ..................................................................................... 8
Table 3. CS98100 DVD Interface Characteristics......................................................................... 11
Table 4. CS98100 Digital Video Interface Characteristics............................................................ 12
Table 5. Digital Audio In Characteristics....................................................................................... 13
Table 6. Digital Audio Out Characteristics .................................................................................... 14
Table 7. RAM/NVROM Characteristics......................................................................................... 15
Table 8. Miscellaneous Timing Characteristics............................................................................. 17
Table 9. Memory Map - RISC Processor...................................................................................... 23
Table 10. Host Port Memory Map................................................................................................. 23
Table 11. Internal IO Space Map.................................................................................................. 24
Table 12. CS98100 Register Map and Blocks.............................................................................. 24
Table 13. CS98100 Registers....................................................................................................... 25
3
CS98100
Table 14. Pin Type and Direction Legend.....................................................................................37
Table 15. Pin Assignments............................................................................................................38
Table 16. Miscellaneous Interface Pins.........................................................................................46
Table 17. Serial Interface Pin Assignments ..................................................................................47
Table 18. SDRAM Interface Pin Assignments...............................................................................48
Table 19. ROM/NVRAM Interface Pin Assignments ..................................................................... 49
Table 20. Video Output Interface Pin Assignments.......................................................................50
Table 21. Audio Output Interface Pin Assignments.......................................................................51
Table 22. Host Master Interface Pin Assignments........................................................................ 52
Table 23. DVD I/O Channel Interface Pin Assignments................................................................53
Table 24. DVD Serial Data Interface Pin Assignments................................................................. 54
Table 25. Video Encoder Interface Pin Assignments....................................................................55
Table 26. General Purpose I/O Interface Pin Assignments...........................................................56
Table 27. Power and Ground........................................................................................................57
4
1. CHARACTERISTICS AND SPECIFICATIONS
1.1 AC AND DC PARAMETRIC SPECIFICATIONS
(AGND, DGND=0V, all voltages with respect to 0V)
1.1.1 ABSOLUTE MAXIMUM RATING
Symbol Description Min Max Unit
CS98100
VDD VDD V
I
I
I
I
O
T
SOL
T
VSOL
T
STOR
T
AMB
P
total
IO
CORE
Power Supply Voltage on I/O ring -0.5 4.6 Volts Power Supply Voltage on core logic and PLL -0.5 2.5 Volts Digital Input Applied Voltage (power applied) -0.5 5.5 Volts Digital Input Forced Current -10 10 mA Digital Output Forced Current -50 50 mA Lead Soldering Temperature 260 Vapor Phase Soldering Temperature 235 Storage Temperature (no power applied) -40 125 Ambient Temperature (power applied) 0 70
o
C
o
C
o
C
o
C
Total Power consumption 2 W
CAUTION: Operating beyond these Minimum and Maximum limits can result in permanent damage to the device. Cirrus Logic recommends that CS98000 devices operate at the settings described in the next table.
1.1.2 RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Min Typ Max Units
Supply Voltage, IO V Supply Voltage, core and PLL V Ambient Temperature (power applied) T
1.1.3 ELECTRICAL CHARACTERISTICS
Parameter Symbol Conditions Min Typ Max Units
Power Supply
Supply Voltage, IO V
Supply Voltage, core and PLL V
Supply Current, IO I
Supply Current, core and PLL I
Digital Pins
Input Voltage, High V
Input Voltage, Low V
DD
DD DD DD
Normal Operating 45 mA Normal Operating 210 mA
IH IL
DD DD
AMB
3.0 3.3 3.6 Volts
1.62 1.8 1.98 Volts 0 25 70
o
C
3.0 3.3 3.6 Volts
1.62 1.8 1.98 Volts
2.2 Volts
0.8 Volts
5
CS98100
Parameter Symbol Conditions Min Typ Max Units
Input Current I
Input Pull up/down resistor R
Output Voltage, High V
Output Voltage, Low V
High-Z-state Leakage I
IN
I OH OL
OZ
Analog Video Pins
Full Scale Current I
Output Voltage Range V
DAC to DAC matching
1
Output Voltage Range V
FS
IO
MAT 2 %
out
Differential Gain DG 1 % Differential Phase DP 0.5 deg Signal to Noise SNR 74 dB Chrominance AM Noise AM 80 dB Chrominance PM Noise PM 75 dB
1.
Only applies each set of three.
V
= V
IN
DD
or V
SS
-1 +1 µA 75 K
@ buffer rating 2.4 Volts @ buffer rating 0.4 Volts
V
= VSS or V
OUT
DD
-1 +1 µA
RL = 37.5 34 mA RL = 37.5 1.28 Volts
RL= 37.5 1.28 Volts
6
CS98100
1.2 AC CHARACTERISTICS
(TA= 25°C; VDD_PLL=VDD_CORE=1.8 V±10%, VDD_IO=3.3 V±10%)
1.2.1 ATAPI Interface
The CS98100 can interface with ATAPI-type slave loader gluelessly. Figure1 illustrates a read ATAPI transaction and a write ATAPI transaction. PIO mode 4 is implemented for sufficient data transfer rate be­tween ATAPI device and the CS98100.
See Table1 for the ATAPI symbols and characterization data.
Symbol Description Min Typ Max Unit
t
acyc
t
aavr
t
ah
t
arww
t
arec
t
awsu
t
awh
t
ardsu
t
arddh
t
ardts
t
arsu
t
arh
1
1
Cycle Time 87 ns Address Valid to HMRD-/HMWR- Setup 7 ns Address Hold from HMRD-/HMWR Setup 8 ns H_RD/H_WR Pulse Width 58 ns H_RD/H_WR Recovery Time 19 ns H_WR Data Setup 20 ns H_WR Data Hold 4 ns H_RD Data Setup 20 ns H_RD Data hold 0 ns H_RD Data three-state 7 ns H_RDY Setup Time 14 ns H_RDY Hold Time 0 ns
H_A[2:0] , H_CS[3:0]
H_RD/H_WR
H_D[15:0](WRITE)
H_D[15:0](READ)
H_RDY(deasserted
before tarsu)
H_RDY(asserted
before tarsu)
Table 1. ATAPI Interface Characteristics
1.
Values are guaranteed by design only
t aavr
Figure 1. ATAPI Interface Timing Diagram
tarsu
tarww
tacyc
tardsu
tarh
tarddh
t ah
tarec
tawhtawsu
tardts
7
CS98100
1.2.2 SDRAM Interface
The CS98100 interfaces with either SDRAM or SGRAM, for high data bandwidth transfer. Figure5 and
Table2 show the interface pin timing. Figure2 shows the refresh cycle performed by the CS98100. Figure3 shows a burst read (length = 8) transaction, while Figure4 shows a burst write (length=8) trans-
action. In both Figure3 and Figure4, CAS latency is programmed to 3.
Symbol Description Min Typ Max Unit
t
mco
t
mper
t
mdow
t
mhw
t
msur
t
msurd
t
mhr
t
mhrd
1
1
1
Output Delay from DR_CKO active edge 9 ns DR_CKO Period 11 12.2 ns DR_D[31:0] delay from DR_CKO 9.1 ns DR_D[31:0] valid time after DR_CKO 1.5 ns DR_D[31:0] setup to DR_CKO 3.9 ns
1
DR_D[31:0] setup to DR_CKO with delay 4.3 ns DR_D[31:0] hold time after DR_CKO 1.85 ns DR_D[31:0] hold time after DR_CKO with
1.3 ns
delay
1.
Delay is programmable by selecting the DRAM_Input_Speed bit of the Command Register(0x000)
DR_CKO
DR_A[11:0]
DR_BS_N
DR_RAS_N
DR_CAS_N
DR_WE_N
DR_D[31:0]
DR_DQM_[3:0]
DR_AP
Table 2. SDRAM Interface Characteristics
Figure 2. SDRAM Refresh Transaction
8
DR_CKO
CS98100
DR_A_[11:0]
DR_CKE
DR_RAS_N
DR_CAS_N
DR_WE_N
DR_D[31:0]
DR_DQM[3:0]
DR_CKO
DR_A_[11:0]
DR_CKE
DR_RAS_N
R0
C0
C1
C2
C3 C4 C5 C6 C7
D0 D1 D2
0F
Figure 3. SDRAM Burst Read Transaction
R0
C0
C1
C2
C3 C4 C5 C6 C7
D3
D4 D5 D6 D7
F
DR_CAS_N
DR_WE_N
DR_D[31:0]
DR_DQM[3:0]
D0
D1 D2
D3
D4 D5 D6 D7
0F
Figure 4. SDRAM Burst Write Transaction
F
9
DR_CKO
DR_RAS_N,DR_CAS_N
DR_WE_N,DR_AP,DR_DQM[3:0],
DR_CKE,DR_A[11:0]
DR_D[31:0](WRITE)
DR_D[31:0](READ)
tmpertmco
tmdow
CS98100
tmhw
tmsur
tmhr
Figure 5. CS98100 SDRAM Read and Write
10
1.2.3 DVD Serial Interface Timing
Figure6 and Table3 illustrate the signal timing for the DVD serial interface input pins.
Symbol Description Min Typ Max Unit
t
dsckper
t
dsckl
t
dsckh
t
dsdsu
t
dsdhd
t
dscdsu
t
dscdhd
1
DVDS_CLK Period 33 ns
1
DVDS_CLK Low Time 40 50 %
1
DVDS_CLK High Time 40 50 % DVDS_DATA Setup to DVDS_CLK active edge 4 ns DVDS_DATA Hold after DVDS_CLK active edge 0 ns DVDS_VLD,DVDS_SOS Setup to DVDS_CLK 3 ns DVDS_VLD,DVDS_SOS Hold after DVDS_CLK 0 ns
Table 3. CS98100 DVD Interface Characteristics
1.
Values are guaranteed by design only
t
dsckper
CS98100
DVDS_CLK
(Input)
DVDS_DATA
(Input)
DVDS_VLD, DVDS_SOS
(Input)
t
dsckl dsckh
t
t
dsdsu
t
dscdsu
t
dsdhd
t
dscdhd
Figure 6. CS98100 DVD Serial Interface Timing Diagram
11
CS98100
1.2.4 Digital Video Interface Timing
Figure7 illustrates the signal timing for the digital video interface pins. The clock is without a polarity to
show the clock may be inverted by register programming. This also illustrates that data is clocked out on both clock edges in progressive mode. The data order is Cr,Y0,Cb,Y1, and the sync outputs may be pro­grammed as active high or active low.
Symbol Description Min Typ Max Unit
t t t
1
vocper covo1 covo2
CLK27_O period 37.037 ns
2
VDAT[7:0] delay from CLK27_O -10 10 ns
2
Vsync/Hsync delay from CLK27_O -10 10 ns
Table 4. CS98100 Digital Video Interface Characteristics
1.
Values are guaranteed by design only
2.
It is recommanded that the output data should be taken at the opposite edge of the CLK27_O.
Tvocper
CLK27_O
(Output)
VDAT[7:0]
(Output)
VSYNC/HSYNC (Output)
Figure 7. CS98100 Digital Video Interface Timing Diagram
Tcovo1
Tcovo2
12
CS98100
* Active clock edge is programmable. Timing is referenced from active edge.
1.2.5 Digital Audio Interface Timing
Figure8 and Figure9 illustrate the signal timing for the digital audio pins. The bi-directional AUD_XCK
pin clocks at 8x the frequency of the AUD_BCK pin. The AUD_BCK pin outputs at 32x or 48x of the sample frequency, and transitions on the falling edge of the AUD_XCK pin. AUD_BCK is shown without polarity to indicate the polarity is programmable.
Symbol Description Min Typ Max Unit
t
slri
t
sdi
thsdi AIN_DATA hold time after AUD_BCK active edge 1 - ns
*AUD_BCK (Output)
AIN_LRCK setup to AUD_BCK active edge 25 - ns AIN_DATA setup to AUD_BCK active edge 25 - ns
Table 5. Digital Audio In Characteristics
AIN_LRCK (Input)
AIN_DATA (Input)
t
lrts
t
sdsus
Figure 8. Digital Audio In Timing Diagram
t
sdhs
13
CS98100
Symbol Description Min Typ Max Unit
t
1
axch
1
taxcl
t
axper
t
odbck
t
odbck
t
aoper
t
2
odlr
t
2
odsd
1.
Values are guaranteed by design only
2.
It is recommanded that the output data should be taken at the opposite edge of the AUD_BCK.
AUD_XCLK High Time (AUD_XCLK is Input/Output) 40 50 % AUD_XCLK Low Time (AUD_XCLK is Input/Output) 40 50 % AUD_XCLK period (Input/Output) 27 ns AUD_BCK delay from AUD_XCLK(output) active
10 ns
edge AUD_BCK delay from AUD_XCLK(input) active
21 ns
edge AUD_BCK period 216 ns
AUD_LRCK delay from AUD_BCK active edge -10 10 ns AUD_D[3:0] delay from AUD_BCK active edge -10 10 ns
Table 6. Digital Audio Out Characteristics
AUD_XCLK(Input/Output)
AUD_BCK(Output)
* AUD_BCK(Output)
AUD_LRCK(Output)
AUD_DO[3:0] (Output)
t
axper
t
odsd
t
axch
t
odlr
t
aoper
t
axcl
t
odbck
14
* Active clock edge is programmable. Timing is referenced from active edge.
Figure 9. Digital Audio Out Timing Diagram
1.2.6 ROM/NVRAM Interface
Symbol Description Min Typ Max Unit
t
rc
t
cds
t
ods
t
ads
t
aws
t
cws
t
wp
t
wdo
t
dh
Read Cycle Time 98 ns CE to Data Setup 80 ns OE to Data Setup 70 ns Address to Data Setup 90 ns Address to WE setup (Write) 20 ns CE to WE setup (Write) 5 ns WE Pulse Width (Write) 160 ns CE to Data Output (Write) -5 ns WE to Data Hold (Write) 10 ns
Table 7. RAM/NVROM Characteristics
Note:Read timing based on 10.5 ns memory clock and 4 programmed wait states.
CS98100
Address M_A[11:0], M_D[27:16]
NVM_CE_N
NVM_OE_N (M_AP)
M_D[7:0]
NVM_WE_N
t
rc
t
cds
t
ods
t
ads
Figure 10. ROM/NVRAM Reading Timing
15
Address M_A[11:0], M_D[27:16]
NVM_CE_N
t
CS98100
aws
NVM_WE_N
M_D[7:0]
NVM_OE_N (M_AP)
t
cws
t
wdo
t
wp
Figure 11. ROM/NVRAM Write Timing
t
wdh
16
1.2.7 Miscellaneous Timings
Symbol Description Min Typ Max Unit
1
txclper trstl RST_N Low Pulse Width 1000 ns tgph GPIO PW High 50 ns tgpl GPIO PW Low 50 ns
1.
XTLCLK must meet the requirement of external the video encoder for correct chroma (27 MHz ± 1 KHz).
XTLCLK period 37.037 ns
Table 8. Miscellaneous Timing Characteristics
XTLCLOCK
RESET-N
xccper
t
trstl
CS98100
GPIO
tgph
Figure 12. Miscellaneous Timings
tgpl
17
2. TYPICAL APPLICATION
Figure13 shows an example of a complete high-end DVD solution using the CS98100.
CS98100
Audio
Front Panel
Audio
ADC
IR
DVD Loader
(IO Channel,
ATPAI or
Serial)
Figure 13. CS98100 Application
ROM/
FLASH
1/
-1MB
2
27M XTAL
CS98100
SDRAM
4-8MB
2.1 CS98100 Device Summary
RISC-32
Powerful 32-bit RISC processor
Optimizing C compiler and source level debug­ger
Big or little endian data formats supported
MAC multiply/accumulate in two cycles with C support.
(4)Audio
DACs
Power
Reg.
Audio-
Up to 8 Channels
S/PDIF
Composite Video S-Video
Component Video Switch
Power
communication
32-bit timers for I/O and other uses, with pro­grammable interval rates
Both hardware and software interrupts on data or debug
Performance monitors which measures DRAM bandwidth, usage, and RSK performance
4 Kbyte instruction cache, 2 Kbyte data cache.
Single cycle instructions run at 90 MHz.
DSP-32
Powerful 24/32-bit DSP processor
24-bit fixed point logic, with 54-bit accumula­tor.
Single-cycle throughput, 2-cycle latency multi­ply accumulate, 32-bit simple integer logic.
8 Kbyte instruction cache, 12 Kbyte program visible local memory
Single cycle instructions run at 90 MHz.
SYSTEM CONTROLS
Include several hardware lockable semaphore registers
General-purpose registers for inter-processor
18
Built in PLLs generate all required clocks from 27 MHz input clock.
Memory Controller
Supports SDRAM, and SGRAM, from 2 MBytes to 32 MBytes.
Supports multiple banks of FLASH and ROM up to 32 MBytes.
32-bit data bus for DRAM, 8 or 16-bit data bus for ROM.
DATA FLOW ENGINE
Two DMA controllers – local memory based and direct memory-to-memory
2432 bytes of internal memory, DMA to/from main RAM into local SRAM.
Supports endian conversion and byte, short,
CS98100
long data formats on DMA.
Supports block transfers for graphics bit blits.
MPEG VIDEO DECODER
Supports VCD1.0, 1.1, 2.0 and 3.0, SVCD, and DVD video standards.
Supports trick features, including smooth 2x forward play.
Special anti-tearing logic controls picture de­code and presentation.
Advanced error concealment hardware.
SYSTEM SYNCHRONIZATION
System time clock (STC) for audio/video syn­chronization
Flexible interrupt structure for controlling de­code and presentation times
Hardware scheduling of sub-picture and high­light events
AUDIO INTERFACE
Supports 8 channels PCM, I2S at up to 24 bits and 96 kHz output rate.
Simultaneous IEC-958 output with program­mable channel status and user data
Also supports S/PDIF receiver for high perfor­mance applications
EXTERNAL INTERFACE
2-wire serial master and slave port, second 2­wire master port for controlling DVD device.
3- or 4-wire serial master/slave port.
Large number of programmable bi-directional I/O pins.
All pins not used for other function can be reas­signed as general purpose I/O pins
8 pins can be used as edge or level detection in­terrupt pins.
Hardware-assisted support for infrared remote devices, such as remote control, infrared key­board, mouse, printer, and more.
Programmable parallel host master interface supports formats including ATAPI, ISA, and more.
IO channel interface supports standard DVD loader protocols
Separate serial DVD interface to support low­cost (track buffer-less) loaders
VIDEO PROCESSOR
On screen display module supports 2-bit or 4­bit, pixel modes. It supports 3 separate regions and 16 transparency overlay levels
High quality scaling using 16 tap polyphase programmable vertical and horizontal filters, to support any size image up to 768x576.
Multiple video plain overlays (main video / subpicture / picture-in-picture / on-screen dis­play).
Gamma Correction.
Progressive scan video output
VIDEO ENCODER
Three 10-bit video DACs, drive 37.5load di­rectly without external buffering
Supports PAL (B,D,G,H,I,N) and NTSC
Component (RBG or YUV) or composite + S­Video output
Progressive or interlaced mode output
Macrovision 7.1 support (interlaced) and Mac­rovision 1.03 support (progressive)
Wide-screen signaling support (interlaced and progressive) and CGMS support
Closed captioning support
SUB-PICTURE PROCESSOR
Run-length decode DVD sub-pictures and SVCD OGT formats
Hardware vertical scaling supports NTSC-PAL format conversion
16 level alpha blending
System Functions
208-pin MQFP package.
All I/O pins are 3V with 5V tolerance.
Advanced 0.18 micron CMOS technology.
Chip runs at 90 MHz
Supports Low power modes and clock shutoff.
19
3. FUNCTIONAL DESCRIPTION
CS98100
3.1 RISC Processor
The CS98100 includes a powerful, proprietary 32­bit RISC processor with optimizing C compiler support. The RISC has a MAC engine which per­forms multiply/accumulate in 2 cycles in a pipe­lined fashion with C support, effectively achieving single cycle throughout. The CS98100 fully sup­ports many Real Time Operating Systems (RTOS). The RISC processor co-ordinates on-chip multi­threaded tasks, as well as supervises system activi­ties such as remote control and VFD front panel control.
3.2 DSP Processor
The CS98100 contains a proprietary digital signal processor (DSP) which is optimized for audio ap­plications. The DSP performs 32-bit simple integer operations, and has a 24-bit fixed point logic unit, with a 54-bit accumulator. There are 32 general­purpose registers, and eight independent address generation registers, featuring: post-increment ALU, linear and circular buffer operations, bit re­verse ALU operations, and dual operand read from memory. The multiply-accumulator has single-cy­cle throughput, with two cycle latency. The DSP is optimized for bit packing and unpacking opera­tions. The interface to main memory is designed for bursting flexible block sizes and skip counts.
3.3 Memory Control
The DRAM Interface performs the SDRAM con­trol and arbitration functions for all the other mod­ules in the CS98100. The DRAM interface services and arbitrates a number of clients and stores their code and/or data within the local memory. This ar­bitration and scheduling guarantees the allocation of sufficient bandwidth to the various clients. The DRAM Interface supports up to 32 MByte. For a typical DVD player application, CS98100 requires 8 MByte of SDRAM and 1 MByte of FLASH.
Sharing the same interface, the CS98100 also sup­ports flash ROM, OTP, or masked ROM interface. Code is stored in ROM. After the system is booted, the code is shadowed inside DRAM for execution. FLASH ROM interface is provided so that the code can be upgraded in field once the communication channel is established via, for example, CD-R or serial port. Utility software will be provided to de­bug and upgrade code for the system manufacturer.
3.4 Dataflow Control (DMA)
The DMA controller moves data between the exter­nal memory and an internal memory. The external memory address can be specified using a register, or in FIFO mode, using start and end address regis­ters. Separate start/end address registers are used for DMA read and write operations. The DMA in­terface also has a block transfer function, which al­lows for the transfer of one block of data from one external memory location to another external mem­ory location. In effect, combining a DMA read and write into one operation. In addition, the DMA write operation allows for byte, short, word, and other types of masking. A second dedicated DMA controller provides for fast memory-to-memory transfers.
3.5 System Control Functions
The system control functions are used to coordinate the activities of the multiple processors, and to pro­vide the supporting system operations. Four 32-bit communication registers are available inter-pro­cessor communication, and eight semaphore regis­ters are used for resource locking. Timers are available for general-purpose functions, as well as more specialized functions such as watchdog tim­ers and performance monitoring. The large number of general purpose I/Os offers flexibility in system configurations.
Three separate serial interfaces, conforming to in­dustry-standard protocols, are available for a vari-
20
CS98100
ety of system interface functions. Interrupts can be generated on specific or generic events. Infrared in­puts can be filtered of glitches or stored unfiltered into memory. Power-down control of the internal clocks is also possible. Internal PLLs are used to generate the internal system and memory clocks, and audio clocks of any widely used frequency.
3.6 DVD/ATAPI Interface
The CS98100 has a programmable interface port, which can be configured to connect to industry standard CD/DVD loaders without external glue logic. The CD/DVD interface fully supports a wide range of popular CD/DVD loaders. The interface consists of DVD control and data ports, and an op­tional CD control/data port. The CS98100 hard­ware manages the DVD interface and moving data to an arbitrary size input FIFO in DRAM.
The same interface pins can be optionally config­ured as a generic 16-bit host master port. In this mode, the CS98100 can control up to four devices (using 4 chip select outputs), each of which may use different protocol and timing. The interface can be set up in ATAPI mode, to connect directly to any ATAPI DVD loader (using two chip selects). Si­multaneously, the other two chip selects can be configured to connect to other devices, such as a super I/O chip or hard disk.
A third option is to configure the interface for mi­cro-less DVD loader operation, which may also be configured to connect without external glue logic.
3.7 Serial DVD Interface
The CS98100 has a 4-pin serial port which interfac­es to the data port of popular low-cost DVD load­ers. This type of loader provides for low system cost by eliminating the track buffer, interface FIFO, and flow control logic. The CS98100 con­tains a large internal SRAM to handle high burst data rates, without requiring reverse flow control. The track buffer resides in the CS98100 SDRAM, which reduces system complexity and simplifies the software architecture. The CS98100 performs
error detection, sector number tracking, and inter­rupt generation.
3.8 MPEG Video Decoding
Compressed MPEG data is read from the DVD disk into an input FIFO in DRAM. The data flow (DMA) controller moves Video packets from the input FIFO into the MPEG decoder’s input FIFO (also in DRAM). The DMA controller can also per­form advanced functions such as start code search, relieving the RISC processor. The System Sync function is used to control the timing of MPEG pic­ture decoding. The MPEG Video decoder process­es I, B and P frames, and writes to video frame buffers in DRAM, for output to the display. Special anti-tearing logic ensures currently displayed frame buffers are not overwritten.
3.9 Audio Processing
Compressed Audio data is read from the DVD disk into an input FIFO in DRAM. The data is decom­pressed, then written to a PCM output FIFO, also in DRAM. Presentation time stamps (PTS) are ex­tracted from the stream to update the STC, in order to maintain audio/video synchronization. The DMA and decompression stages of audio process­ing can be done with a combination of the DMA unit, DSP and RISC processors. The DSP is opti­mized for audio processing, so most common for­mats can be handled by the DSP alone, including AC-3, MPEG2 audio, and others. The DSP has enough reserve bandwidth to handle the Karaoke echo-mix and pitch shift, and AC-3 down-mix functions.
The audio output data is written into a DRAM FIFO in 16, 18, 20 or 24-bit PCM format. A flexi­ble audio output stage can simultaneously output 8 channels of PCM data to audio DACs, plus an IEC­958 encoded output, at up to 96 kHz. The IEC-958 output has fully programmable channel status (commercial), and provides a flexible solution to support all IEC-958 modes for User Data.
21
CS98100
The audio interface also includes a flexible PCM input interface, which can input a wide range of protocols from IEC-958 receiver. Another, low­cost approach for audio input is the internal sigma­delta demodulator. This module inputs a digital PWM version of the audio input, which can be cre­ated on the board using an inexpensive ramp gener­ator and comparator. The sigma-delta demodulator uses a set of programmable filters to reconstruct 9­bit (mono) audio data at up to 12 kHz sampling fre­quency.
3.10 Video Processing
The CS98100 Video processor is a powerful, fully programmable video post processing engine that displays video on an interlaced TV or a progressive HDTV. A 16-tap polyphase vertical filter is fully programmable on a line-by-line basis, to provide high quality vertical scaling and interlaced field conversion. Horizontal filtering is done with a pro­grammable 16-tap polyphase filter. This advanced filter processing is used for de-interlacing, zoom, and frame size conversion.
Source mode of interlaced or progressive is deter­mined from the disk type automatically. For pro­gressive source detection, 3:2 pulldown is detected from status flags in the video stream to ensure op­timized playback. Interlaced video source is fil­tered up to progressive size output using the bilinear vertical filter. This is visibly superior to simple line doubling. Each 240 line field being fil­tered and output at 480p. Progressive video source is output at the full progressive resolution. Each 480 line frame output at 480p. Source mode of in­terlaced or progressive is determined from the disk type. For progressive source detection, 3:2 pull­down is simply detected from status flags in the video stream. Zoom is fully programmable, from 1X to 500X zoom, with any value in between. Frame type con­version, from NTSC to PAL, or PAL to NTSC, is done with a the bilinear vertical filter, reducing
flicker and jaggies. There is a programmable gamma-correction look-
up table for the final output. Cirrus Logic provides some easy to use utilities in order to get the best ad­vantage of the powerful video filtering capabilities of the CS98100. The video encoder sends progres­sive or interlaced digital video data to the internal video encoder, and can output parallel digital data to an external video encoder.
The video processor also allows multiple video plain overlay (main video / sub-picture / on-screen display). The sub-picture unit is a hardware-only solution which performs high-quality vertical scal­ing for PAL/NTSC conversion, and full support for DVD (sub-picture) and SVCD (OGT) modes. The on-screen display unit features 2-bit and 4-bit pix­els, 16 transparency levels, and three independent regions of up to full-screen size. The picture-in-pic­ture unit can place a 1/2 or 1/4 screen sized window anywhere on the screen. This feature can be used for special effects, such as snapshot freeze and zoom assist.
3.11 Video Encoder
The video encoder uses three 10-bit DACS to con­vert digital data to component (RGB or YPRPB) or composite (composite plus S-Video) analog video. The output can be interlaced (PAL/NTSC) or high resolution progressive. In progressive mode, the video encoder will typically drive YPRPB to a 525­line television at 59.94 Hz, although other output modes are possible, such as 625 lines and RGB. The encoder performs the Macrovision copy pro­tection function for all modes (revision 7.1 for in­terlaced, revision 1.03 for progressive). Other features include built-in voltage reference, color bar generator, individual power-down control for each DAC, programmable baseband filters, col­or/contrast/tint controls, Closed Captioning (inter­laced modes), wide screen signalling (PAL mode), and Copy Generation Management System (NTSC and progressive modes).
22
CS98100
4. MEMORY MAP AND REGISTERS
4.1 Processor Memory Map
The CS98100 externally supports up to 32 Mbytes DRAM and 16 Mbytes ROM/NVRAM. Table9 lists the memory map as viewed by the RISC processor, and identifies whether each segment is mapped or cacheable.
Processor byte address Description Cacheable
0000_0000 – 07FF_FFFF DRAM (mapped) Y 8000_0000 - 81FF_FFFF DRAM (32 Mbytes) Y 9400_0000 – 9CFF_FFFF 16 bit NVRAM write (16 Mbytes) N 9C00_0000 – 9CFF_FFFF 16 bit NVRAM/ROM (16 Mbytes) Y 9D00_0000 – 9DFF_FFFF 8 bit NVRAM/ROM (16 Mbytes) Y A000_0000 – A1FF_FFFF DRAM (32 Mbytes) N B000_0000 – B003_FFFF Internal I/O (256 Kbytes) N B400_0000 – BCFF_FFFF 16 bit NVRAM write (16 Mbytes) N BC00_0000 – BCFF_FFFF 16 bit NVRAM/ROM (16 Mbytes) N BD00_0000 – BDFF_FFFF 8 bit NVRAM/ROM (16 Mbytes) N C000_0000 – FFFF_FFFF DRAM (mapped) Y
Table 9. Memory Map - RISC Processor
4.2 Host Port Memory Map
Table10 lists the memory map as viewed by host slave port.
Host byte address Description
0000 0000 – 003F FFFF Internal I/O Space 1000 0000 – 13FF FFFF DRAM space (16 Mbytes) 1400 0000 – 17FF FFFF NVRAM space (16 Mbytes)
Table 10. Host Port Memory Map
23
CS98100
4.3 Internal IO Space Map
Table11 shows how the Internal IO space is mapped between general registers, internal SRAM ports, and
the RISC processor debug port.
Byte address offset Description
0_0000 – 0_2FFF General registers 0_3000 – 1_FFFF General Internal SRAM 2_0000 – 2_FFFF RISC Internal SRAM/Registers
Table 11. Internal IO Space Map
4.4 CS98100 Register Space
Table12 lists the register groups, and how they are split among the main CS98100 functional blocks.
CS98100 Register Block
000xx, 010xx General
001xx Host 002xx DRAM Controller (DRC) 003xx DMA 004xx CD/DVD Interface 005xx Serial DVD (DVDS) 006xx DSP 007xx Sync Control 008xx MPEG Video Decoder 00Axx Picture-in-picture
00Bxx Video Processor 00Cxx Subpicture Display 00Dxx On-screen Display 00Exx PCM In/Out
02xxxx RISC Processor
Table 12. CS98100 Register Map and Blocks
Table13 lists all the registers for the CS98100 and their addresses, and indicates whether the registers are
read/write (R/W), read only (RO) or write only (WO).
24
Address Type Function Register Name
0 R/W General Command 10 R/W General InterProc_Comm_Register_0 14 R/W General InterProc_Comm_Register_1 18 R/W General InterProc_Comm_Register_2
10C R/W General InterProc_Comm_Register_3
20 R/W General Semaphore_Register_0 24 R/W General Semaphore_Register_1 28 R/W General Semaphore_Register_2
02C R/W General Semaphore_Register_3
30 R/W General Semaphore_Register_4
CS98100
34 R/W General Semaphore_Register_5 38 R/W General Semaphore_Register_6
03C R/W General Semaphore_Register_7
40 RO General (Genio) GenIO_Read_Data 44 R/W General (Genio) GenIO_Write_Data 48 R/W General (Genio) GenIO_Three_State_Enable
04C R/W General (Genio) GenIO_Positive_Edge
50 R/W General (Genio) GenIO_Negative_Edge 54 R/W General (Genio) GenIO_Interrupt_Status 58 R/W General (Genio) GenIO_Positive_Edge_Mask
05C R/W General (Genio) GenIO_Negative_Edge_Mask
60 R/W General (Genio) GenIO_Level_Mask
1040 RO General (Genio) GenIO2_Read_Data 1044 R/W General (Genio) GenIO2_Write_Data 1048 R/W General (Genio) GenIO2_Three_State_Enable 1064 R/W General (Genio) GenIO2_Mode 1068 RO General (Genio) GenIODVD_Read_Data
106C R/W General (Genio) GenIODVD_Write_Data
Table 13. CS98100 Registers
25
CS98100
Address Type Function Register Name
1070 R/W General (Genio) GenIODVD_Three_State_Enable 1074 R/W General (Genio) GenIODVD_Mode
68 R/W General (Serial IF1) Ser1_Mstr_Byte_Read_Subaddress_Write
06C R/W General (Serial IF1) Ser1_Mstr_Write_1Byte
70 R/W General (Serial IF1) Ser1_Mstr_Write_2Bytes 74 R/W General (Serial IF1) Ser1_Mstr_Control 78 RO General (Serial IF1) Ser1_Mstr_Status
07C RO General (Serial IF1) Ser1_Mstr_Read_Data
80 R/W General (Interrupt) RSK_Interrupt_Mask 84 WO General (Interrupt) RSK_Interrupt_Set 88 R/W General (Interrupt) RSK_Interrupt_Status
08C RO General (Interrupt) RSK_Interrupt_Cause
90 R/W General (Interrupt) DSP_Interrupt_Mask 94 WO General (Interrupt) DSP_Interrupt_Set 98 R/W General (Interrupt) DSP_Interrupt_Status
09C RO General (Interrupt) DSP_Interrupt_Cause
0A0 R/W General (Interrupt) RSK_Interrupt_Mask2 0A4 WO General (Interrupt) RSK_Interrupt_Set2 0A8 R/W General (Interrupt) RSK_Interrupt2_Status
0AC RO General (Interrupt) RSK_Interrupt_Cause2
0B0 R/W General (Interrupt) DSP_Interrupt_Mask2 0B4 WO General (Interrupt) DSP_Interrupt_Set2
0B8 R/W General (Interrupt) DSP_Interrupt2_Status 0BC RO General (Interrupt) DSP_Interrupt_Cause2 0C0 R/W General (Timer) Timer_0 0C4 R/W General (Timer) Timer_1 0C8 R/W General (Timer) Timer_2 0CC R/W General (Timer) Timer_3 0D0 R/W General (Timer) Timer_Control 0D4 RO General (Timer) Performance_Monitor_Count
Table 13. CS98100 Registers (Continued)
26
Address Type Function Register Name
0D8 R/W General (Timer) Timer_M_Over_N 0DC R/W General (IR) IR_Glitch_Max
0E0 R/W General (IR) IR_Control
0E4 R/W General (IR) IR_Dram_Start_Address
0E8 R/W General (IR) IR_Dram_End_Address
0EC RO General (IR) IR_Dram_Write_Address
0F0 R/W General (PLL) PLL_Control_Register1
10F0 R/W General (PLL) Low_Power_Clock_Control
0F4 R/W General (PLL) PLL_Control_Register2 0F8 R/W General (PLL) PLL_Turn_Off
10F8 R/W General (PLL) PLL_Monitor
0FC R/W General (PLL) PLL_Clock_Divider
CS98100
1000 R/W General (DMA) DMA2_Source_Addr 1004 R/W General (DMA) DMA2_Dest_Addr 1008 R/W General (DMA) DMA2_Size
10B0 R/W General (Serial IF2) Ser2_Mstr_Write_Data_0 10B4 R/W General (Serial IF2) Ser2_Mstr_Write_Data_1 10B8 R/W General (Serial IF2) Ser2_Mstr_Write_Data_2 10BC R/W General (Serial IF2) Ser2_Mstr_Write_Data_3 10C0 RO General (Serial IF2) Ser2_Mstr_Read_Data_0 10C4 RO General (Serial IF2) Ser2_Mstr_Read_Data_1 10C8 RO General (Serial IF2) Ser2_Mstr_Read_Data_2
10CC RO General (Serial IF2) Ser2_Mstr_Read_Data_3
10D0 R/W General (Serial IF2) Ser2_Mstr_Setup 10D4 R/W General (Serial IF2) Ser2_Mstr_Command_Status 10E0 R/W General (Serial IF2) Ser3_Control 10E4 R/W General (Serial IF3) Ser3_Write_Data 10E8 RO General (Serial IF3) Ser3_Read_Data
100 R/W Host Device_1_Control 104 R/W Host Device_2_Control
Table 13. CS98100 Registers (Continued)
27
Address Type Function Register Name
108 R/W Host Device_3_Control 10C R/W Host Device_4_Control
110 R/W Host Write_Data_Port
114 RO Host Read_Data_Port
120 R/W Host Host_Start_Address
124 R/W Host Dram Start Address
128 R/W Host Stream_Transfer_Size 12C R/W Host DRAM_Burst_Threshold
134 R/W General Ser1_Slave_Address 13C R/W Host Host_Master_Control
200 R/W Dram controller DRAM_Controller_Priority0
204 R/W Dram controller DRAM_Controller_Priority1
CS98100
208 R/W Dram controller DRAM_Controller_Priority2 20C R/W Dram controller DRAM_Controller_Priority3
210 R/W Dram controller DRAM_Controller_Priority4
214 R/W Dram controller DRAM_Controller_Setup
218 R/W Dram controller DRAM_Command 21C R/W Dram controller DRAM_Controller_Mb_Width
220-224 R/W Dram controller DRAM_Controller_Debug
300 WO DMA DMA_Enable
304 R/W DMA DMA_Control
308 RO DMA DMA_Status 30C R/W DMA Xfer_Byte_Cnt
310 R/W DMA Dram_Byte_Start_Addr
314 R/W DMA Sram_Byte_Start_Addr
318 R/W DMA Fifo_Start_Rd_Addr 31C R/W DMA Fifo_Start_Wr_Addr
328 R/W DMA Search_Control 32C RO DMA Search_Status
330 R/W DMA Fifo_End_Rd_Addr
Table 13. CS98100 Registers (Continued)
28
Address Type Function Register Name
334 R/W DMA Fifo_End_Wr_Addr 338 R/W DMA Lines_and_Skip
33C R/W DMA Mask_Pattern_Match
400 R/W CD/DVD DVD_Control 404 R/W CD/DVD DVD_Fifo_Base_Address 408 R/W CD/DVD DVD_Fifo_Size
40C R/W CD/DVD DVD_Sector
410 RO CD/DVD DVD_Start_of_Sector 414 RO CD/DVD DVD_Current_Dram_Address 418 R/W CD/DVD CD_Control
41C R/W CD/DVD CD_Error_Status
438 RO CD/DVD DVD_Status
CS98100
440 R/W CD/DVD DCI_Control_Reg 444 RO CD/DVD DCI_Status 448 R/W CD/DVD DCI_Dram_Rd_Start_Addr
44C R/W CD/DVD DCI_Dram_Wr_Start_Addr
450 R/W CD/DVD DCI_Mbytes_Sent 454 R/W CD/DVD DCI_Mbytes_Switch 458 RO CD/DVD DCI_Diagnostic
45C R/W CD/DVD DCI_Active
500 R/W DVDS DVDS_Control 504 R/W DVDS DVDS_DataSwap _Mode 508 R/W DVDS DVDS_Flow_Control_Ref 510 R/W DVDS Track_Buffer_Base 514 R/W DVDS Track_Buffer_End 518 RO DVDS Track_Buffer_Current_Address 534 RO DVDS DVDS_Sector_ID
53C RO DVDS DVDS_Bad_Sector_ID
544 R/W DVDS Interrupt_Status 548 R/W DVDS Interrupt_Enable
Table 13. CS98100 Registers (Continued)
29
Address Type Function Register Name
54C R/W DVDS DRAM_Underflow_Status
550 R/W DVDS Input_Data_Counter
600 WO DSP DSP_Boot_Code_Start_Address
604 WO DSP DSP_Run_Enable 6XX RO DSP DSP_Program_CntRun_Status
700 R/W Sync Control Audio_Sync_Control
704 R/W Sync Control Video_Sync_Control
708 RO Sync Control Video_Sync_Status 70C R/W Sync Control Wait_Line
710 R/W Sync Control Frame_Period
714 R/W Sync Control STC_Interval
718 R/W Sync Control System_Time_Clock
CS98100
71C R/W Sync Control Top_Bits
720 R/W Sync Control Video_PTS_FIFO_Start_Address
724 R/W Sync Control Video_PTS_FIFO_End_Address
728 R/W Sync Control Video_PTS_FIFO_Write_Address 72C RO Sync Control Video_PTS_FIFO_Read_Address
730 R/W Sync Control Subpicture_PTS_FIFO_Start_Address
734 R/W Sync Control Subpicture_PTS_FIFO_End_Address
738 R/W Sync Control Subpicture_PTS_FIFO_Write_Address 73C RO Sync Control Subpicture_PTS_FIFO_Read_Address
740 R/W Sync Control Highlight_Start_PTS
744 R/W Sync Control Highlight_End_PTS
748 R/W Sync Control Button_End_PTS 74C RW Sync Control Highlight_Control_Information_Address
750 R/W Sync Control Video_PTS
754 R/W Sync Control Audio_PTS
758 RO Sync Control Subpicture_PTS 75C RO Sync Control Audio_Time
760 RO Sync Control Video_Sync_Debug
Table 13. CS98100 Registers (Continued)
30
CS98100
Address Type Function Register Name
764 R/W Sync Control SP_DRC_VPTS_Debug 768 R/W Sync Control Frame_Count_Interrupt
76C R/W Sync Control Video_DTS
770 RO Sync Control Sync_Interrupt_Status 774 R/W Sync Control Sync_Interrupt_Control 778 WO Sync Control Sync_Interrupt_Set
77C WO Sync Control Sync_Interrupt_Clear
800 R/W MPEG Vid. Decoder MPEG_Video_Control 804 R/W MPEG Vid. Decoder MPEG_Video_Setup 808 R/W MPEG Vid. Decoder MPEG_Video_FIFO_Start_Address
80C R/W MPEG Vid. Decoder MPEG_Video_FIFO_End_Address
810 RO MPEG Vid. Decoder MPEG_Video_FIFO_Current_Address 814 RO MPEG Vid. Decoder MPEG_Video_Horiz_Pan_Vector 818 WO MPEG Vid. Decoder MPEG_Video_FIFO_Add_Bytes
81C RO MPEG Vid. Decoder MPEG_Video_FIFO_Curr_Bytes
820 R/W MPEG Vid. Decoder MPEG_Video_FIFO_Interrupt_Bytes 824 RO MPEG Vid. Decoder MPEG_Video_FIFO_Total_Bytes 828 RO MPEG Vid. Decoder MPEG_Video_Status
82C R/W MPEG Vid. Decoder Macroblock Width_Height
830 RO MPEG Vid. Decoder MPEG_Video_Debug 834 R/W MPEG Vid. Decoder MPEG_U_Offset
83C R/W MPEG Vid Decoder MPEG_I_Base_Register
840 R/W MPEG Vid Decoder MPEG_P_Base_Register 844 R/W MPEG Vid Decoder MPEG_Dest_Control 848 RO MPEG Vid Decoder MPEG_Software_Flags
84C R/W MPEG Vid Decoder MPEG_V_Offset
854 R/W MPEG Vid Decoder MPEG_AntiTearWindow
858 R/W MPEG Vid Decoder MPEG_Error_Pos A00 R/W PIP PIP_Control A04 R/W PIP PIP_VidBrdStartX
Table 13. CS98100 Registers (Continued)
31
Address Type Function Register Name
A08 R/W PIP PIP_VidBrdEndX
A0C R/W PIP PIP_VidBrdStartY
A10 R/W PIP PIP_VidBrdEndY A14 R/W PIP PIP_BorderClr A18 R/W PIP PIP_Vscale
A1C R/W PIP PIP_Line_Offnum_Bot
A20 R/W PIP PIP_FrBaseY A24 R/W PIP PIP_FrBaseU A28 R/W PIP PIP_FrBaseV
A2C R/W PIP PIP_Line_Width
A30 R/W PIP PIP_ Line_Offnum_Top A34 R/W PIP PIP_Frame_Size
CS98100
B00 R/W Video Processor Video_Processor_Control B04 R/W Video Processor Video_DRAM_Line_Length B08 R/W Video Processor Display_ActiveX
B0C R/W Video Processor Display_ActiveY
B10 R/W Video Processor Blank_Color B14 R/W Video Processor Internal_Hsync_Count B18 R/W Video Processor Internal_Vsync_Count
B1C R/W Video Processor Horizontal_Y_Offset
B20 R/W Video Processor Horizontal_UV_Offset B24 R/W Video Processor Vertical_Offset B28 R/W Video Processor Video_Line_Size
B2C R/W Video Processor Frame_Buffer_Base
B30 R/W Video Processor Video_Line_Mode_Buffer B34 R/W Video Processor Horizontal_Vertical_Filter B38 R/W Video Processor Source_X_Offset
B3C R/W Video Processor Horizontal_Video_Scaling
B40 R/W Video Processor Frame_V_Buffer_Compressed_Offset B44 WO Video Processor Mb_Width
Table 13. CS98100 Registers (Continued)
32
Address Type Function Register Name
B48 WO Video Processor Anti-Flicker B4C WO Video Processor Anti-Flicker B50 WO Video Processor Anti-Flicker B54 WO Video Processor Anti-Flicker B58 WO Video Processor Anti-Flicker
B5c WO Video Processor Gamma Control B60 WO Video Processor Gamma Control B64 WO Video Processor Gamma Control B68 WO Video Processor Gamma Control B6C WO Video Processor Gamma Control B70 WO Video Processor Gamma Control B74 WO Video Processor Gamma Control
CS98100
B78 WO Video Processor Gamma Control B7C R/W Video Processor ENC_Field_at_EAV C00 R/W Subpicture Subpicture_Color0 C04 R/W Subpicture Subpicture_Color1 C08 R/W Subpicture Subpicture_Color2
C0C R/W Subpicture Subpicture_Color3
C10 R/W Subpicture Subpicture_Color4 C14 R/W Subpicture Subpicture_Color5 C18 R/W Subpicture Subpicture_Color6
C1C R/W Subpicture Subpicture_Color7
C20 R/W Subpicture Subpicture_Color8 C24 R/W Subpicture Subpicture_Color9 C28 R/W Subpicture Subpicture_Color10
C2C R/W Subpicture Subpicture_Color11
C30 R/W Subpicture Subpicture_Color12 C34 R/W Subpicture Subpicture_Color13 C38 R/W Subpicture Subpicture_Color14
C3C R/W Subpicture Subpicture_Color15
Table 13. CS98100 Registers (Continued)
33
Address Type Function Register Name
C40 R/W Subpicture Subpicture_DCI_Address C44 R/W Subpicture Subpicture_HLI_Address C50 R/W Subpicture Subpicture_Control C54 R/W Subpicture Subpicture_Display_Offset C58 R/W Subpicture Subpicture_Display_Scale D00 RO On Screen Display OSD_Status D04 R/W On Screen Display OSD_Control D08 R/W On Screen Display OSD_Color_Number D0C R/W On Screen Display OSD_Color_Data D10 R/W On Screen Display OSD_Region1_Control D14 R/W On Screen Display OSD_Region1_Hlimits D18 R/W On Screen Display OSD_Region1_Vlimits
CS98100
D1C R/W On Screen Display OSD_Region1_DramBase D20 R/W On Screen Display OSD_Region2_Control D24 R/W On Screen Display OSD_Region2_Hlimits D28 R/W On Screen Display OSD_Region2_Vlimits D2C R/W On Screen Display OSD_Region2_DramBase D30 R/W On Screen Display OSD_Region3_Control D34 R/W On Screen Display OSD_Region3_Hlimits D38 R/W On Screen Display OSD_Region3_Vlimits D3C R/W On Screen Display OSD_Region3_DramBase D40 R/W On Screen Display OSD_Blend D44 R/W On Screen Display OSD_Debug1 D48 R/W On Screen Display OSD_Debug2
E00 R/W PCM PCM_Run_Clear E04 R/W PCM PCM_Output_Control E08 R/W PCM PCM_Out_FIFO_Start_Address
E0C R/W PCM PCM_Out_FIFO_End_Address
E10 R/W PCM PCM_Out_FIFO_Interrupt_Address E14 RO PCM PCM_Out_FIFO_Current_Address
Table 13. CS98100 Registers (Continued)
34
CS98100
Address Type Function Register Name
E18 R/W PCM IEC958_Channel_Status E20 R/W PCM PCM_Input_Control E24 R/W PCM PCM_In_FIFO_Start_Address E28 R/W PCM PCM_In_FIFO_End_Address E2C R/W PCM PCM_In_FIFO_Interrupt_Address E30 R/W PCM PCM_Out_FIFO_Interrupt_Address2 E34 R/W PCM PCM_Out_FIFO_Interrupt_Address3 E38 RO PCM PCM_In_FIFO_Current_Address E3C R/W PCM IEC958_Output_Control E40 R/W PCM IEC958_Output_FIFO_Start_Address E44 R/W PCM IEC958_Output_FIFO_End_Address E48 RO PCM IEC958_Output_FIFO_Current_Address E4C R/W PCM IEC958_Output_FIFO_Interrupt_Address E50 R/W PCM IEC958_Output_FIFO_Add_Blocks E58 R/W PCM Reserved E5C R/W PCM Reserved E60 R/W PCM User_Data_Start_Frame E64 R/W PCM User_Data_DRAM_Address E68 R/W PCM User_Data_Interrupt_Frame E6C RO PCM User_Data_Current_Address
F00 R/W Video Encoder VidEnc_PowerDown
F04 RO Video Encoder VidEnc_Status
F40 R/W Video Encoder Video_Mode
F44 R/W Video Encoder Video_Sync
F48 R/W Video Encoder Video_Setup F4C R/W Video Encoder Contrast
F50 R/W Video Encoder Brigthness
F54 R/W Video Encoder Chroma_Saturation
F58 R/W Video Encoder Tint F5C R/W Video Encoder VideoDAC_Select
Table 13. CS98100 Registers (Continued)
35
Address Type Function Register Name
F60 R/W Video Encoder Test F64 R/W Video Encoder Test F68 R/W Video Encoder Test
F6C R/W Video Encoder Burst_Gain
F70 R/W Video Encoder Component_Mode F74 R/W Video Encoder Sync_Attenuation F78 R/W Video Encoder Sync_Offset
F7C R/W Video Encoder Test
F80 R/W Video Encoder Closed_Caption_Control F84 R/W Video Encoder Closed_Caption_Data0 F88 R/W Video Encoder Closed_Caption_Data1
F8C R/W Video Encoder Closed_Caption_Data2
CS98100
F90 R/W Video Encoder Closed_Caption_Data3 F94 R/W Video Encoder WideScreen_Data0 F98 R/W Video Encoder WideScreen_Data1
F9C R/W Video Encoder WideScreen_Data2
FA0-FFC R/W Video Encoder Reserved
2xxxx R/W RISC RISC Processor Registers
Table 13. CS98100 Registers (Continued)
36
5. PIN DESCRIPTIONS
.
CS98100
DVD IF / ATAPI IF
(27 pins)
Serial DVD
(4 pins)
Misc. (13 pins)
Serial I/O (8 pins)
H_D[15:0] H_CS[3:0]
H_A[2:0]
H_ALE
H_RD
H_WR
H_RDY
DVDS_CLK DVDS_DAT DVDS_VLD DVDS_SOS
XTLCLK_I XTLCLK_O
RST_N
IR_IN
MFG_TST
GPIO[7:0]
SER_CLK
SER_CS
SER_DO
SER_DI
MS_SCL1
MS_SDA1
M_SCL2
M_SDA2
CS98100
M_A[11:0]
DR_BS_N
M_D[31:0]
DR_DQM[3:0] DR_RAS_N DR_CAS_N DR_WE_N DR_AP DR_CKE DR_CKO NVM_CE_N NVM_OE_N NVM_WR_N
HSYNC VSYNC CLK27_O
VDAT[7:0] Y_G_Y U_B_C V_R_YC
RSET COMP VREF
AUD_XCK AUD_BCK AUD_LRCK
AUD_DO[3:0]
IEC958_O
AIN_DATA
AIN_LRCK
Memory IF (58 pins)
Video out (17 pins)
Audio Out (8 pins)
Audio In (2 pins)
Figure 14. CS98100 Pin Layout
Table14 lists the conventions used to identify the pin type and direction.
Symbol Description
I Input S Schmitt trigger on input D pull down resistor U pull up resistor O Output
O4 Output – 4mA drive O8 Output – 8mA drive
B Bi-direction
B4 Bi-direction – 4mA drive B8 Bi-direction – 8mA drive
Pwr +2.5V or +3.3V power supply voltage
Gnd Power supply ground Name N Low active Name L Low active
Table 14. Pin Type and Direction Legend
37
6. PIN ASSIGNMENTS
CS98100
Table15 lists the pin number, pin name and pin
type for the 208-pin CS98100 package. For signal pins, the pin direction after reset is shown. The pri-
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
1 PLL_1V8 Pwr PLL Power 2 M_A11 O8 O DR_Addr[11] O NVM_Addr[11] O 3 M_A10 O8 O DR_Addr[10] O NVM_Addr[10] O 4 M_A9 O8 O DR_Addr[9] O NVM_Addr[9] O 5 M_D8 B8U I DR_Data[8] B NVM_Data[8] B 6 M_D7 B8U I DR_Data[7] B NVM_Data[7] B 7 M_D6 B8U I DR_Data[6] B NVM_Data[6] B 8 IO_GND Gnd I/O Ground 9 M_D5 B8U I DR_Data[5] B NVM_Data[5] B 10 IO_3V3 Pwr I/O Power
mary function and pin direction is shown for all signal pins. For some signal pins, a second or third function and direction are also shown.
11 M_D4 B8U I DR_Data[4] B NVM_Data[4] B 12 M_D3 B8U I DR_Data[3] B NVM_Data[3] B 13 M_D2 B8U I DR_Data[2] B NVM_Data[2] B 14 M_D1 B8U I DR_Data[1] B NVM_Data[1] B 15 DIG_1V8 Pwr Core Power 16 M_D0 B8U I DR_Data[0] B NVM_Data[0] B 17 DR_CKE B8 O DR_CKE O 18 DIG_GND Gnd Core Ground 19 IO_GND Gnd I/O Ground 20 DR_CKO O8 O DR_CKO O 21 IO_3V3 Pwr I/O Power 22 GPIO1 B4U I GPIO[1] B 1 23 GPIO2 B4U I GPIO[2] B 1 24 GPIO3 B4U I GPIO[3] B 1
38
Table 15. Pin Assignments
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
25 GPIO4 B4U I GPIO[4] B 1 26 GPIO5 B4U I GPIO[5] B 1 27 Not used 2 28 Not used 2 29 Not used 2 30 Not used 2 31 Not used 2 32 Not used 2 33 Not used 2 34 Not used 2 35 M_BS_N O8 O DR_BS_N O 36 DIG_1V8 Pwr Core Power 37 DR_AP O8 O DR_AP O 38 DIG_GND Gnd Core Ground 39 IO_GND Gnd I/O Ground 40 DR_RAS_N O8 O DR_RAS_N O 41 IO_3V3 Pwr I/O Power 42 DR_CAS_N O8 O DR_CAS_N O 43 M_D31 B8U I DR_Data[31] B 3 44 M_D30 B8U I DR_Data[30] B 3 45 M_D29 B8U I DR_Data[29] B 3 46 M_D28 B8U I DR_Data[28] B 3 47 M_D27 B8U I DR_Data[27] B NVM_Addr[23] O 3 48 IO_GND Gnd I/O Ground 49 M_D26 B8U I DR_Data[26] B NVM_Addr[22] O 3 50 IO_3V3 Pwr I/O Power 51 M_D25 B8U I DR_Data[23] B NVM_Addr[21] O 3
Table 15. Pin Assignments (Continued)
39
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
52 M_D24 B8U I DR_Data[24] B NVM_Addr[20] O 3 53 M_D23 B8U I DR_Data[23] B NVM_Addr[19] O 3 54 M_D22 B8U I DR_Data[22] B NVM_Addr[18] O 3 55 M_D21 B8U I DR_Data[21] B NVM_Addr[17] O 3 56 GPIO6 B4U I GPIO[6] B 1 57 GPIO7 B4U I GPIO[7] B 1 58 IO_GND Gnd I/O Ground 59 NVM_CE_N O4 O NVM_CE_N O 60 NVM_OE_N O4 O NVM_OE_N O 61 NVM_WE_N O4 O NVM_WE_N O 62 IO_3V3 Pwr I/O Power 63 M_D20 B8U I DR_Data[20] B NVM_Addr[16] O 3 64 M_D19 B8U I DR_Data[19] B NVM_Addr[15] O 3 65 M_D18 B8U I DR_Data[18] B NVM_Addr[14] O 3 66 H_A2 B4 I Hst_Addr[2] O GPIO_D[25] B 67 H_A1 B4 I Hst_Addr[1] O GPIO_D{[24] B 68 H_A0 B4 I Hst_Addr[0] O GPIO_D[23] B 69 H_ALE B4U I Hst_ALE O GPIO_D[26] B 70 M_D17 B8U I DR_Data[17] B NVM_Addr[13] O 3 71 IO_GND Gnd I/O Ground 72 M_D16 B8U I DR_Data[16] B NVM_Addr[12] O 3 73 M_D15 B8U I DR_Data[15] B NVM_Data[15] B 74 M_D14 B8U I DR_Data[14] B NVM_Data[14] B 75 IO_3V3 Pwr I/O Power 76 M_D13 B8U I DR_Data[13] B NVM_Data[13] B 77 M_D12 B8U I DR_Data[12] B NVM_Data[12] B 78 M_D11 B8U I DR_Data[11] B NVM_Data[11] B
Table 15. Pin Assignments (Continued)
40
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
79 DIG_1V8 Pwr Core Power 80 M_D10 B8U I DR_Data[10] B NVM_Data[10] B 81 DIG_GND Gnd Core Ground 82 IO_GND Gnd I/O Ground 83 M_D9 B8U I DR_Data[9] B NVM_Data[9] B 84 M_A8 O8 O DR_Addr[8] O NVM_Addr[8] O 85 M_A7 O8 O DR_Addr[7] O NVM_Addr[7] O 86 IO_3V3 Pwr I/O Power 87 H_D3 B4 I Hst_Data[3] B GPIO_D[3] B DVD_Data[3] I 88 H_D2 B4 I Hst_Data[2] B GPIO_D[2] B DVD_Data[2] I 89 H_D1 B4 I Hst_Data[1] B GPIO_D[1] B DVD_Data[1] I 90 H_D0 B4 I Hst_Data[0] B GPIO_D[0] B DVD_Data[0] I 91 H_CS3 B4 I Hst_CS[3] O GPIO_D[21] B 92 H_CS2 B4 I Hst_CS[2] O GPIO_D[20] B 93 H_CS1 B4 I Hst_CS[1] O GPIO_D[19] B DVD_Error I 94 H_CS0 B4 I Hst_CS[0] O GPIO_D[18] B DVD_SOS I 95 IO_GND Gnd I/O Ground 96 M_A6 O8 O DR_Addr[6] O NVM_Addr[6] O 97 M_A5 O8 O DR_Addr[5] O NVM_Addr[5] O 98 M_A4 O8 O DR_Addr[4] O NVM_Addr[4] O 99 IO_3V3 Pwr I/O Power 100 M_A3 O8 O DR_Addr[3] O NVM_Addr[3] O 101 M_A2 O8 O DR_Addr[2] O NVM_Addr[2] O 102 M_A1 O8 O DR_Addr[1] O NVM_Addr[1] O 103 M_A0 O8 O DR_Addr[0] O NVM_Addr[0] O 104 IO_GND Gnd I/O Ground 105 VDAT0 B4 O Vid_Data[0] O GPIO_2[0] B
Table 15. Pin Assignments (Continued)
41
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
106 VDAT1 B4 O Vid_Data[1] O GPIO_2[1] B 107 VDAT2 B4 O Vid_Data[2] O GPIO_2[2] B 108 VDAT3 B4 O Vid_Data[3] O GPIO_2[3] B 109 VDAT4 B4 O Vid_Data[4] O GPIO_2[4] B 110 VDAT5 B4 O Vid_Data[5] O GPIO_2[5] B 111 VDAT6 B4 O Vid_Data[6] O GPIO_2[6] B 112 VDAT7 B4 O Vid_Data[7] O GPIO_2[7] B 113 HSYNC O8 O Vid_Hsync O 114 VSYNC O8 O Vid_Vsync O 115 SER_RDY B4U I SER_CS B GPIO_2[8] B 116 IO_3V3 Pwr I/O Power 117 SER_DO B4U I SER_Dout B GPIO_2[9] B 118 SER_DI B4U I SER_Din B GPIO_2[10] B 119 SER_CLK B4U I SER_Clock B GPIO_2[11] B 120 AUD_XCK B4U I AUD_XCK B 121 AUD_BCK B4U O AUD_BCK O GPIO_2[12] 122 AUD_LRCK O4 O AUD_LRCK O 123 H_WR B4 I Hst_Write O GPIO_D[17] B DVD_ENA I 124 H_RD B4 I Hst_Read O GPIO_D[16] B DVD_RDY O 125 MFG_TEST I I (Tie to ground) I 126 IO_GND Gnd I/O Ground 127 DIG_GND Gnd Core Ground 128 AUD_DO0 B4 O AUD_Dout[0] O 129 DIG_1V8 Pwr Core Power 130 AUD_DO1 B4U O AUD_Dout[1] O GPIO_2[13] B 131 AUD_DO2 B4U O AUD_Dout[2] O GPIO_2[14] B 132 AUD_DO3 B4U O AUD_Dout[3] O GPIO_2[15] B
Table 15. Pin Assignments (Continued)
42
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
133 Not used 2 134 AIN_DATA B4U I AIN_DATA I GPIO_2[16] B I 135 Not used 2 136 AIN_LRCK B4U I AIN_LRCK I GPIO_2[17] B 137 IEC958_O O4 O AUD_IEC958 O 138 GPIO0 B4U I GPIO[0] B 1 139 MS_SCL1 B4SU I M_SCL2 B GPIO_2[18] B 140 MS_SDA1 B4SU I M_SDA2 B GPIO_2[19] B 141 IO_3V3 Pwr I/O Power 142 M_SCL2 B4SU I M_CLK2 B GPIO_2[20] B 143 M_SDA2 B4SU I M_DAT2 B GPIO_2[21] B 144 DVDS_CLK IU I DVDS_CLK I 145 DVDS_DAT B4U I DVDS_DAT I GPIO_2[23] B 146 DVDS_VLD B4U I DVDS_VLD B GPIO_2[25] B 147 DVDS_SOS B4U I DVDS_SOS B GPIO_2[24] B 148 CLK27_O B4U O Vid_Clock O GPIO_2[22] B 149 Not used 2 150 Not used 2 151 Not used 2 152 IR_IN IS I Infrared I 153 IO_GND Gnd I/O Ground 154 RST_N IS I Reset_L I 155 Not used 2 156 PLL_1V8 Pwr PLL Power 157 PLL_GND Gnd PLL Ground 158 H_RDY B4S I Hst_Ready O GPIO_D[22] B DVD_STB I 159 DIG_GND Gnd Core Ground
Table 15. Pin Assignments (Continued)
43
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
160 H_D15 B4 I Hst_Data[15] B GPIO_D[15] B CD_DATA I 161 DIG_1V8 Pwr Core Power 162 H_D14 B4 I Hst_Data[14] B GPIO_D[14] B CD_LRCK I 163 H_D13 B4S I Hst_Data[13] B GPIO_D[13] B CD_BCLK I 164 H_D12 B4 I Hst_Data[12] B GPIO_D[12] B CD_C2P0 I 165 H_D11 B4 I Hst_Data[11] B GPIO_D[11] B DVDL_DI I 166 H_D10 B4 I Hst_Data[10] B GPIO_D[10] B DVDL_DO O 167 H_D9 B4 I Hst_Data[9] B GPIO_D[9] B DVDL_RDY I 168 H_D8 B4 I Hst_Data[8] B GPIO_D[8] B DVDL_CK O 169 IO_3V3 Pwr I/O Power 170 H_D7 B4 I Hst_Data[7] B GPIO_D[8] B DVD_Data[7] I 171 H_D6 B4 I Hst_Data[6] B GPIO_D[8] B DVD_Data[6] I 172 H_D5 B4 I Hst_Data[5] B GPIO_D[8] B DVD_Data[5] I 173 H_D4 B4 I Hst_Data[4] B GPIO_D[8] B DVD_Data[4] I 174 Not used 2 175 Not used 2 176 Not used 2 177 Not used 2 178 DAC_GND Gnd Analog Ground 179 DAC_1V8 Pwr Digital Power 180 DAC_DGND Gnd Digital Ground 181 U_B_C Analog Video Out O 182 DAC_3V3 Pwr Analog Power 183 DAC_GND Gnd Analog Ground 184 Y_G_Y Analog Video Out O 185 DAC_3V3 Pwr Analog Power 186 DAC_GND Gnd Analog Ground
Table 15. Pin Assignments (Continued)
44
CS98100
Pin Name Type Reset Function #1 Dir Function #2 Dir Function #3 Dir Note
187 V_R_YC Analog Video O 188 DAC_3V3 Pwr Analog Power 189 DAC_GND Gnd Analog Ground 190 COMP Analog Compensation O 191 RSET Analog Current Set B 192 VREF Analog Voltage Ref B 193 DAC_3V3 Pwr Analog Power 194 DAC_GND Gnd Analog Ground 195 DAC_GND Gnd Analog Ground 196 DAC_3V3 Pwr Analog Power 197 DAC_3V3 Pwr. Analog Power 198 IO_GND Gnd I/O Ground 199 DR_WE_N O8 O DR_WE_N O 200 DR_DQM0 O8 O DR_DQM[0] O 201 DR_DQM1 O8 O DR_DQM[1] O 202 DR_DQM2 O8 O DR_DQM[2] O 203 DR_DQM3 O8 O DR_DQM[3] O 204 IO_3V3 Pwr I/O Power 205 XTLCLK_I I I 27 MHz Osc. I 206 XTLCLK_O O O 27 MHz Osc. O 207 IO_GND Gnd I/O Ground 208 PLL_GND Gnd PLL Ground
Table 15. Pin Assignments (Continued)
Note 1: Pin may be used for micro-less DVD loader interface Note 2: Pin should be left unconnected
Note 3 M_D[31:16] are driving when CS98100 is reading ROM/NVRAM on M_D[15:0], which occurs
immediately after reset.
45
CS98100
6.1 Miscellaneous Pins
These pins are used for used for basic functions, such as clocking, reset, and infrared receiver interface.
Pin Signal Name Type Description
152 IR_IN I De-modulated infrared Input, from IR receiver. 205 XTLCLK_I I 27 MHz crystal input, or 27 MHz oscillator input 206 XTLCLK_O O 27 MHz crystal output 154 RST_N I Reset Input, active low. 125 MFG_TEST I Manufacturing test pin, should always connect to ground.
Table 16. Miscellaneous Interface Pins
46
6.2 Serial Interface
There are two 2-wire serial controllers, which sup­port industry standard protocols. One controller is a combination master/slave, and is typically used for debug (slave), or to control a small non-volatile memory (master). The slave chip select address is programmable and defaults to a 7-bit value of 0x1A. The second 2-wire controller is a dedicated master and can be used for controlling certain DVD
Pin Signal Name Type Description
139 MS_SCL1 B Clock for 2-wire serial port #1 (master/slave port) 140 MS_SDA1 B Data for 2-wire serial port #1 (master/slave port) 142 M_SCL2 B Clock for 2-wire serial port #2 (master) 143 M_SDA2 B Data for 2-wire serial port #2 (master) 119 SER_CLK B Clock for 4-wire serial port (output for master mode, input
CS98100
devices. A third serial controller in the device sup­ports industry standard 3-wire and 4-wire proto­cols. In master mode, this interface can control a front panel or a small non-volatile memory. In slave mode, it can operate under control of an ex­ternal processor, for example, in a combination unit.
for slave mode)
117 SER_DO B Output data for 4-wire serial port – may function as bi-
directional data in 3-wire mode. 118 SER_DI B Input data for 4-wire serial port 115 SER_CS B Chip select for 4-wire serial port (output for master mode,
input for slave mode). Can also be used as bi-directional
ready line.
Table 17. Serial Interface Pin Assignments
47
6.3 SDRAM Interface
These pins are used to interface the CS98100 with external SDRAM of various sizes. Typical config­urations are two 1 Mbyte x16-bit, or one 2 Mbyte
Pin Signal Name Type Description
CS98100
x32-bit. Table18 gives instructions on how to in­terface any particular configuration of SDRAM.
43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 63, 64, 65, 70, 72, 73, 74, 76, 77, 78, 80, 83, 5, 6, 7, 9, 11, 12, 13, 14, 16
2, 3, 4, 84, 85, 96, 97, 98, 100,101,102, 103
20 DR_CKO O Memory Clock 17 DR_CKE O Memory Clock Enable 35 DR_BS_N O Bank Selection. Always connect to RAM BS or BS0 pin. 37 DR_AP O Memory Auto Pre-charge. Always connect to RAM AP pin. 40 DR_RAS_N O Memory Row Address Strobe 42 DR_CAS_N O Memory Column Address Strobe 199 DR_WE_N O Memory Write Enable 203,202,201,200 DR_DQM[3..0] O IO Mask of Data Bus DR_DQM[3] -> DR_Data[31:24]
M_D[31:0] B Memory Data Bus. CS98100 can use all 32 bits or can use
only M_D[15:0], in which case M_D[31:16] can be left unconnected.note: 32 bits wide is recommended
M_A[11.0] O Memory Address Bus. Connect in order starting with M_A[0]
to all RAM address pins not already connected to DR_BS_N or DR_AP.
48
Table 18. SDRAM Interface Pin Assignments
6.4 ROM/NVRAM Interface
This interface connects to the non-volatile memory that contains the firmware. The memory could be ROM, NVRAM (FLASH), EEPROM, or any com­bination of these. This interface can also connect to SRAM that can emulate a ROM on a development system. The bus width is 8 or 16 bits. Most of these
Pin Signal Name Type Description
CS98100
pins are shared with the DRAM interface, which operates simultaneously with the ROM/NVRAM interface.
73, 74, 76, 77, 78, 80, 83, 5, 6, 7, 9, 11, 12, 13, 14. 16
28 M_A[11:0] O NVM_Addr[11:0], Memory Address Bus[11:0] (shared with
47, 49, 51, 52, 53, 54, 55, 63, 64, 65, 70, 72
59 NVM_CE_N O ROM/NVRAM Chip Enable. 60 NVM_OE_N O ROM/NVRAM Output Enable. 43 M_D[31] O Copy of ROM/NVRAM Output Enable. 61 NVM_WE_N O NVRAM Write Enable.
M_D[15:0] B NVM_Data[15:0], Memory Data Bus (shared with bits
[15:0] of DRAM data bus). Use M_D[7:0] for 8-bit inter­face.
DRAM address bus)
M_D[27:16] O NVM_Addr[23:12], Memory Address Bus[23:12] (shared
with bits [27:16] of DRAM data bus)
Table 19. ROM/NVRAM Interface Pin Assignments
49
CS98100
6.5 Digital Video Output Interface
This interface can be used to drive CCIR­601/CCIR-656 digital data to an external video en­coder (such as an CS4955), for example if a fourth DAC is required. The CS98100 is sync master of
Pin Signal Name Type Description
113 HSYNC O Horizontal Sync output 114 VSYNC O Vertical or combined vertical/horizontal Sync output 148 CLK27_O O 27 MHz Clock Output.
this interface. For progressive mode, the data pins output on both edges of the clock.
Optionally, this interface can be used only to gen­erate separate or combined horizontal/ vertical sync, for example to drive syncs to a VGA monitor.
112, 111, 110, 109, 108, 107, 106, 105
VDAT[7:0] O Video Data Output[7:0] in YCrCb format.
Table 20. Video Output Interface Pin Assignments
50
6.6 Audio Output/Input Interface
This is the audio PCM interface that connects to an audio CODEC. The sample rate and the size of the
Pin Signal Name Type Description
120 AUD_XCK B Audio 256x/384x Clock input or output to Serial DAC. When
output, it’s generated from CS98100 internal PLL.
121 AUD_BCK O Audio Bit Clock output to serial DAC. Polarity is programma-
ble. 122 AUD_LRCK O Audio Out Left/Right Clock to serial DAC. 128 AUD_DO0 O Audio Serial PCM Data Out[0] (Front) 130 AUD_DO1 O Audio Serial PCM Data Out[1] (Surround) 131 AUD_DO2 O Audio Serial PCM Data Out[2] (Center + LFE) 132 AUD_DO3 O Audio Serial PCM Data Out[3] (2-channel downmix)
CS98100
samples are programmable for both input and out­put direction.
137 IEC958_O O IEC-958 Output 134 AIN_DATA I This input can come from from an external comparator. 136 AIN_LRCK I Left/Right Clock. Input from external audio ADC. The
CS98100 can be programmed to use the Audio Output func-
tion’s internally generated LR clock, in which case this pin is
not required.
Table 21. Audio Output Interface Pin Assignments
51
CS98100
6.7 Host Master/ATAPI Interface
This 16-bit parallel host interface allows the CS98100 to be a host master, controlling other de­vices that would be used on the same system. The interface supports a programmable protocols and speeds, including multiplexed and non-multiplexed addressing. Slaves with different protocols can be connected at the same time, controlled by different
Pin Signal Name Type Description
91, 92, 93, 94 H_CS[3:0] O Host Chip Select[3:0]. The host master can be programmed
69 H_ALE O Host address latch enable. Used for modes which multiplex
124 H_RD O Host Read Request. 123 H_WR O Host Write Request.
chip selects. For example, two chip selects can be used to control an ATAPI DVD device, while the other two chip selects can control another ATAPI or non-ATAPI slave device.
to use a different protocol for each of the 4 chip selects
upper address information onto the data lines
158 H_RDY I Host Ready. Connect to pull-up or pull-down if host is not
used. 66, 67, 68 H_A[2:0] O Host Address[2:0]. 160, 162, 163, 164,
165, 166, 167, 168, 170, 171, 172, 173, 87, 88, 89, 90
H_D[15:0] B Host Data Bus[15:0]. These pins can also output Host
Address during the address phase for multiplexed
address/data mode. Tie together to pull-up or pull-down if
host is not used.
Table 22. Host Master Interface Pin Assignments
52
6.8 DVD I/O Channel Interface
This interface connects to standard DVD loaders, and consists of three parts: Control, DVD Data and CD Data. This interface shares CS98100 pins with the Host Master/ATAPI interface. The pin defini-
CS98100
tion is set via register programming, and the two modes are mutually exclusive.
Pin Signal
Name
94 DVD_SOS I DVD data start sector signal from loader 93 DVD_Error I DVD data error signal from loader 124 H_RD O DVD_RDY, DVD data ready signal to loader 123 H_WR I DVD_ENA, DVD data enable signal from loader 158 H_RDY I DVD_STB, DVD data clock from loader 170, 171, 172, 173,
87, 88, 89, 90 164 CD_C2P0 I CD error signal from loader 163 CD_BCLK I CD clock from loader 162 CD_LRCK I CD left/right clock from loader 160 CD_DATA I CD serial data from loader 168 DVDL_CK O Control port clock to loader 167 DVDL_RD
H_D[7:0] I DVD_Data[7:0], DVD data port parallel data input from
Y
Type Description
loader
I Control port ready signal from loader
166 DVDL_DO O Control port serial command to loader 165 DVDL_DI I Control port serial status from loader
Table 23. DVD I/O Channel Interface Pin Assignments
53
6.9 DVD Serial Data Interface
This interface connects to the data port of low cost DVD loaders using a 4-wire serial interface. In this case, control for the loader will typically be done using the 2-wire serial interface master. The ATA­PI/IO channel pins are then free to be used for a
Pin Signal Name Type Description
144 DVDS_CLK I DVD clock input – rising edge is the active edge 145 DVDS_DAT I DVD serial data input (data can be input MSB or LSB first) 146 DVDS_VLD I DVD valid – a bit of data is clocked in when this pin is high 147 DVDS_SOS I DVD start of sector input – active high
Table 24. DVD Serial Data Interface Pin Assignments
CS98100
second DVD loader, a general purpose ATAPI, or as GPIOs.
54
6.10 Video Encoder Interface
The video encoder interface has three DAC out­puts, and operates in one of three modes: compo­nent YUV, component RGB, and S-Video plus composite. The component modes may operate ei-
Pin Signal Name Type Description
181 U_B_C O Analog video output – U(YUV), B(RGB), C(Y/C/YC) 184 Y_G_Y O Analog video output – Y(YUV), G(RGB), Y(Y/C/YC) 187 V_R_YC O Analog video output – V(YUV), R(RGB), YC(Y/C/YC) 190 COMP O Compensation pin, should be connect through 0.1µF capaci-
tor to analog 3.3V supply
191 RSET B Current adjust pin, connect through 174,1% resistor to
analog ground
192 VREF B Voltage reference pin, connect through 0.1µF capacitor to
analog ground
CS98100
ther normal interlaced resolution, or progressive (high resolution).
Table 25. Video Encoder Interface Pin Assignments
55
6.11 General Purpose Input/Output (GPIO)
The CS98100 provides a number of GPIO pins, each with individual output three-state controls. There are eight dedicated GPIO pins, which can also be used to generate internal interrupts based on edge or level events on the pins. Two groups of ad-
Pin Signal
Name Type Description
57, 56, 26, 25, 24, 23, 22, 138
146, 147, 145, 148, 143, 142, 140, 139, 136, 134, 132, 131, 130, 121, 119, 118, 117, 115, 112, 111, 110, 109, 108, 107, 106, 105
69, 66, 67, 68, 158, 91, 92, 93, 94, 123, 124, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 87, 88, 89, 90
GPIO[7:0] B 8 General purpose I/O on dedicated pins
GPIO_2[2 5:24] GPIO_2[2 3:20] GPIO_2[1 9:16] GPIO_2[1 5:12] GPIO_2[1 1:8] GPIO_2[7: 4] GPIO_2[3: 0]
GPIO_D[2 6:24] GPIO_D[2 3:20] GPIO_D[1 9:16] GPIO_D[1 5:12] GPIO_D[1 1:8] GPIO_D[7: 4] GPIO_D[3: 0]
B 28 General purpose I/Os, redefined from following pins:
DVDS_VLD, DVDS_SOS, DVDS_DAT, CLK27_O, SDA2, SCL2, SDA1, SCL1, AIN_LRCK, AIN_DATA, AUD_DO_3, AUD_DO_2, AUD_DO_1, AUD_BCK, SER_CLK, SER_DI, SER_DO, SER_RDY, VDAT_7, VDAT_6, VDAT_5, VDAT_4, VDAT_3, VDAT_2, VDAT_1, VDAT_0
B 27 General purpose I/Os, redefined from following pins:
H_ALE, H_A_2, H_A_1, H_A_0, H_RDY, H_CS_3, H_CS_2, H_CS_1, H_CS_0, H_WR, H_RD, H_D_15, H_D_14, H_D_13, H_D_12, H_D_11, H_D_10, H_D_9, H_D_8, H_D_7, H_D_6, H_D_5, H_D_4, H_D_3, H_D_2, H_D_1, H_D_0
CS98100
ditional pins may also be re-defined as GPIOs if not required for other functions. Each of these addi­tional pins has its own control register bit to select either GPIO or normal function for the pin.
56
Table 26. General Purpose I/O Interface Pin Assignments
6.12 Power and Ground
The CS98100 requires five different types of power supplies for the Plus, internal logic, IO pins, video DAC-digital and video DAC analog. The PLLs, in­ternal logic and video DAC digital use 1.8 V supply voltage. The IO pins and video DAC analog use 3.3 V supply voltage. It is recommended to use good
CS98100
layout techniques to provide isolation between the supply types on the board. Contact Cirrus Logic ap­plications engineering for layout guidelines.
Pin Signal
Name
1, 156 PLL_1V8 1.8V for internal PLLs 157, 208 PLL_GND Ground for internal PLLs 15, 36, 79, 129, 161 DIG_1V8 1.8V for internal core logic 18, 38, 81, 127, 159 DIG_GND Ground for internal core logic 10, 21, 41, 50, 62,
75, 86, 99, 116, 141, 169, 204
8, 19, 39, 48, 58, 71, 82, 95, 104, 126, 153, 198, 207
179 DAC_1V8 Digital 1.8V for video DAC 180 DAC_DGND Digital ground for video DAC 182, 185, 188, 193,
196, 197 178, 183, 186, 189,
194, 195
IO_3V3 3.3V for Digital I/Os
IO_GND Ground for Digital I/Os
DAC_3V3 Analog 3.3V for video DAC
DAC_GND Analog ground for video DAC
Type Description
Table 27. Power and Ground
57
7. 208 PIN MQFP PACKAGE SPECIFICATIONS
0.50±0.10
30.60±0.30
28.00±0.13
±0.08
1.30±0.20
±0.05
0.50±0.20
°
–0.05
0.15
CS98100
3.68(MAX)
3.23
0.10(MIN)
208
1
52
53 104
157
156
105
30.60±0.30
28.00±0.13
Detail A
58
+0.10
0~10
WITH PLATING
BASE METAL
0.20
DETAIL A
Notes: Measurement Unit = mm
Figure 15. CS98100 208-Pin MQFP Package Drawing
Loading...