Cirrus Logic CS8952-CQ Datasheet

CS8952
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

Features

! Single-Chip IEEE802.3Physical Interface IC
for 100BASE-TX, 100BASE-FX and 10BASE-T
! Adaptive Equalizer provides Extended
Length Operation (>160 m) with Superior Noise Immunity and NEXT Margin
! Extremely Low Transmit Jitter (<400 ps) ! Low Common Mode Noise on TX Driver for
Reduced EMI Problems
! Integrated RX and TX Filters for 10BASE-T ! Compensation for Back-to-Back “Killer
Packets”
! Digital Interfaces Supported
– Media Independent Interface (MII) for
100BASE-X and 10BASE-T
– Repeater 5-bit code-group interface
(100BASE-X)
– 10BASE-T Serial Interface
! Register Set Compatible with DP83840A ! IEEE802.3Auto-Negotiationwith Next Page
Support
! Six LED drivers (LNK, COL, FDX, TX, RX,
and SPD)
! Low power (135 mA Typ) CMOS design
operates on a single 5 V supply

Description

The CS8952 uses CMOS technology to deliver a high­performance, low-cost 100BASE-X/10BASE-T Physical Layer (PHY) line interface. It makes use of an adaptive equalizer optimized for noise and near end crosstalk (NEXT) immunity to extend receiver operation to cable lengths exceeding 160 m. In addition, the transmit cir­cuitry has been designed to provide extremely low transmit jitter (<400 ps) for improved link partner perfor­mance. Transmit driver common mode noise has been minimized to reduce EMI for simplified FCC certification.
The CS8952 incorporates a standard Media Indepen­dent Interface (MII) for easy connection to a variety of 10 and 100 Mb/s Media Access Controllers (MACs). The CS8952 also includes a pseudo-ECL interface for use with 100Base-FX fiber interconnect modules.
ORDERING INFORMATION
CS8952-CQ 0 to 70 °C 100-pin TQFP CDB8952 Evaluation Board
CS8952 10BaseT/100Base-X
Transceiver
TX_EN
TX_ER/TXD4
TXD[3:0]
TX_CLK
MDC
MII_IRQ
MDIO
CRS
COL
RX_ER/RXD4
RX_DV RXD[3:0] RX_CLK
RX_EN
10/100
(MII)
M U
Media Independent Interface
X
Preliminary Product Information
P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com
10/100
10BaseT
Filter
Slew Rate
Control
100BaseT
Slicer
10BaseT
Slicer
Auto
Negotiation
M U X
ECL Driver
ECL Receiver
Adaptive Eq. &
Baseline Wander
Compensation
10BaseT
Filter
LED
Drivers
TX+, TX-
TX_NRZ+, TX_NRZ-
RX_NRZ+, RX_NRZ-
RX+, RX-
LED1 LED2 LED3 LED4 LED5
4B/5B
Encoder
4B/5B
Decoder
MII
Control/Status
Registers
Manchester
Encoder
Scrambler
Fiber NRZI
Interface
Descrambler
Link
Management
MLT-3
Encoder
Fiber NRZI
Interface
MLT-3
Decoder
Manchester
Decoder
Timing
Recovery
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
Copyright  Cirrus Logic, Inc. 2001
(All Rights Reserved)
DS206PP3
1
OCT ‘01
TABLE OF CONTENTS
SPECIFICATIONS AND CHARACTERISTICS............................................................. 4
ABSOLUTE MAXIMUM RATINGS .......................................................................4
RECOMMENDED OPERATING CONDITIONS ...................................................4
QUARTZ CRYSTAL REQUIREMENTS ...............................................................4
DC CHARACTERISTICS ..................................................................................... 5
10BASE-T CHARACTERISTICS .........................................................................7
100BASE-X CHARACTERISTICS ....................................................................... 8
100BASE-TX MII RECEIVE TIMING - 4B/5B ALIGNED MODES ........................ 9
100BASE-TX MII RECEIVE TIMING - 5B BYPASS ALIGN MODE ................... 10
100BASE-TX MII TRANSMIT TIMING - 4B/5B ALIGN MODES ........................ 11
100BASE-TX MII TRANSMIT TIMING - 5B BYPASS ALIGN MODE ................ 12
10BASE-T MII RECEIVE TIMING ...................................................................... 13
10BASE-T MII TRANSMIT TIMING ...................................................................14
10BASE-T SERIAL RECEIVE TIMING ..............................................................15
10BASE-T SERIAL TRANSMIT TIMING ............................................................16
AUTO NEGOTIATION / FAST LINK PULSE TIMING ........................................ 17
SERIAL MANAGEMENT INTERFACE TIMING ................................................. 18
INTRODUCTION ..........................................................................................................19
High Performance Analog ...................................................................................19
Low Power Consumption ....................................................................................19
Application Flexibility...........................................................................................19
Typical Connection Diagram ...............................................................................19
FUNCTIONAL DESCRIPTION ....................................................................................21
Major Operating Modes.......................................................................................21
100BASE-X MII Application (TX and FX) ..................................................... 21
Symbol Encoding and Decoding ...........................................................22
100 Mb/s Loopback ............................................................................... 23
100BASE-X Repeater Application ............................................................... 23
10BASE-T MII Application ...........................................................................24
Full and Half Duplex operation .............................................................. 24
Collision Detection ................................................................................. 24
Jabber ................................................................................................... 24
Link Pulses ............................................................................................ 24
Receiver Squelch .................................................................................. 25
10BASE-T Loopback ............................................................................. 25
Carrier Detection ................................................................................... 25
CS8952
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor­mation describes products whichare in development and subject to development changes. Cirrus Logic, Inc. has made best effortsto ensure that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertainingto warranty, patent infringement,and limitation of liability. No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, including use of this information as the basis for manufacture or sale of any items, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus Logic, Inc. and by furnishing this information, Cirrus Logic, Inc. grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights of Cirrus Logic, Inc. Cirrus Logic, Inc., copyright owner of the information contained herein, gives consent for copies to be made of the information only for use within your organization with respect to Cirrus Logic integrated circuits or other parts of Cirrus Logic, Inc. The same consent is given for similar information contained on any Cirrus Logic website or disk. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. Alist of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com
2 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
.
10BASE-T Serial Application ....................................................................... 25
Auto-Negotiation ................................................................................................. 25
Reset Operation.................................................................................................. 26
LED Indicators..................................................................................................... 26
MEDIA INDEPENDENT INTERFACE (MII) ................................................................. 27
MII Frame Structure ............................................................................................ 27
MII Receive Data................................................................................................. 28
MII Transmit Data................................................................................................ 28
MII Management Interface .................................................................................. 29
MII Management Frame Structure...................................................................... 29
CONFIGURATION ...................................................................................................... 30
Configuration At Power-up/Reset Time............................................................... 30
Configuration Via Control Pins............................................................................ 30
Configuration via the MII ..................................................................................... 30
CS8952 REGISTERS .................................................................................................. 31
Basic Mode Control Register - Address 00h ..................................................... 32
Basic Mode Status Register - Address 01h ...................................................... 34
PHY Identifier, Part 1 - Address 02h ................................................................. 36
PHY Identifier, Part 2 - Address 03h ................................................................. 37
Auto-Negotiation Advertisement Register - Address 04h .................................. 38
Auto-Negotiation Link Partner Ability Register - Address 05h ........................... 39
Auto-Negotiation Expansion Register - Address 06h ........................................ 40
Auto-Negotiation Next-Page Transmit Register - Address 07h ......................... 41
Interrupt Mask Register - Address 10h ............................................................. 42
Interrupt Status Register - Address 11h ............................................................ 45
Disconnect Count Register - Address 12h ........................................................ 48
False Carrier Count Register - Address 13h ..................................................... 49
Scrambler Key Initialization Register - Address 14h ......................................... 50
Receive Error Count Register - Address 15h .................................................... 51
Descrambler Key Initialization Register - Address 16h ..................................... 52
PCS Sub-Layer Configuration Register - Address 17h ..................................... 53
Loopback, Bypass, and Receiver Error Mask Register - Address 18h ............. 56
Self Status Register - Address 19h ................................................................... 59
10BASE-T Status Register - Address 1Bh ........................................................ 61
10BASE-T Configuration Register - Address 1Ch ............................................ 62
DESIGN CONSIDERATIONS ...................................................................................... 64
Twisted Pair Interface ......................................................................................... 64
100BASE-FX Interface........................................................................................ 64
Internal Voltage Reference ................................................................................. 64
Clocking Schemes .............................................................................................. 65
Recommended Magnetics .................................................................................. 66
Power Supply and Decoupling............................................................................ 66
General Layout Recommendations..................................................................... 66
PIN DESCRIPTIONS ................................................................................................... 69
PACKAGE DIMENSIONS ........................................................................................... 81
CS8952
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 3
CS8952

1. SPECIFICATIONS AND CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (AVSS,DVSS = 0 V, all voltages with respect to 0 V.)

Parameter Symbol Min Max Unit
Power Supply V
Input Current Except Supply Pins - +/-10.0 mA Input Voltage -0.3 V Ambient Temperature Power Applied -55 +125 °C Storage Temperature -65 +150 °C
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
V
DD_MII
DD

RECOMMENDED OPERATING CONDITIONS (AVSS, DVSS = 0 V, all voltages with respect

to 0 V.)
Parameter Symbol Min Max Unit
Power Supply Core
MII
Operating Ambient Temperature T
V
V
DD_MII
DD
A
-0.3
-0.3
4.75
3.0 070°C
6.0
6.0
+0.3 V
DD
5.25
5.25
V
V V

QUARTZ CRYSTAL REQUIREMENT S (If a 25 MHz quartz crystal is used, it must meet the fol-

lowing specifications.)
Parameter Min Typ Max Unit
Parallel Resonant Frequency - 25.0 - MHz Resonant Frequency Error (CL = 15 pF) -50 - +50 ppm Resonant Frequency Change Over Operating Temperature -40 - +40 ppm Crystal Load Capacitance - 15 - pF Motional Crystal Capacitance - 0.021 - pF Series Resistance - - 18 Shunt Capacitance - - 7 pF
4 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
DC CHARACTERISTICS (Over recommended operating conditions)
Parameter Symbol Min Typ Max Unit
External Oscillator
XTAL_I Input Low Voltage V XTAL_I Input High Voltage V XTAL_I Input Low Current I XTAL_I Input High Current I XTAL_I Input Capacitance C XTAL_I Input Cycle Time t XTAL_I Input Low Time t XTAL_I Input High Time t
Power Supply
Power Supply Current 100BASE-TX (Note 1)
I
100BASE-FX (Note 1)
10BASE-T (Note 1) Hardware Power-Down (Note 1)I Software Power-Down (Note 1)I Low Power Power-Up (Note1)I
DDHPDN DDSPDN
DDSLPUP
Digital I/O
Output Low Voltage CLK25, MII_IRQ
, SPD10, SPD100 IOL=4.0mA
V
IXH IXH
IXL
IXH
L
IXC
IXL XH
DD
OL
-0.3 - 0.5 V
3.5 - VDD+0.5 V
-40 - - µA
--40µA
39.996 - 40.004 ns 18 - 22 ns 18 - 22 ns
-
-
-
-900-µA
-20-mA
-900-µA
-
CS8952
-35pF
135
90 80
-
145
-
-
0.4
mA
V
LED[4:0] I Output Low Voltage (MII_DRV = 1)
COL, CRS, MDIO, RXD[3:0], RX_CLK, RX_DV, RX_ER, TX_CLK I
VDD_MII = 5V; I
VDD_MII = 3.3V, I
Output Low Voltage (MII_DRV = 0) COL, CRS, MDIO, RXD[3:0], RX_CLK, RX_DV, RX_ER, TX_CLK I
Output High Voltage CLK25, SPD10, SPD100 I
Output High Voltage (MII_DRV = 1) COL, CRS, MDIO, RXD[3:0], RX_CLK, RX_DV, RX_ER, TX_CLK I
VDD_MII=5V;I
VDD_MII=3.3V,I
OH OH
=10.0mA
OL
=4.0mA
OL
=43.0mA
OL
=26.0mA
OL
=4.0mA
OL
=-4.0mA
OH
=-4.0mA
OH
=-20.0mA =-20.0mA
-
V
OL
-
-
-
V
OL
-
0.4
V
-
-
-
0.4
3.05
2.1 V
--0.4
V
OH
V
2.4 - -
V
OH
2.4
1.1
1.1
-
-
-
-
-
-
V
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 5
DC CHARACTERISTICS (CONTINUED) (Over recommended operating conditions)
Parameter Symbol Min Typ Max Unit
Output High Voltage (MII_DRV = 0) COL, CRS, MDIO, RXD[3:0], RX_CLK, RX_DV, RX_ER, TX_CLK I
=-4.0mA
OH
V
OH
2.4 - -
CS8952
V
Input Low Voltage All Inputs Except AN[1:0], TCM, TXSLEW[1:0]
Input High Voltage All Inputs Except AN[1:0], TCM, TXSLEW[1:0]
Tri-Level Input Voltages AN[1:0], TCM, TXSLEW[1:0]
Input Low Current MDC, TXD[3:0], TX_CL K, TX_EN, TX_ER V
MDIO V
=0.0V
I
=0.0V
I
Input High Current MDC, TXD[3:0], TX_CL K, TX_EN, TX_ER V
MDIO V
=5.0V
I
=5.0V
I
V
IL
V
IH
V
IL
--0.8V
2.0 - - V
-
-
1/3 V
DD_MII
V
-20%
V
IM
1/3 V
DD_MII
-
+20%
V
IH
2/3 V
DD_MII
-
2/3 V
-20%
DD_MII
-
+20%
I
IL
-20
-3800
I
IH
-
-
-
-
-
-
-
-
200
20
µA
µA
Input Leakage Current All Other Inputs 0<=V<=V
DD
I
LEAK
µA
-10 - +10
Notes: 1. With digital outputs connected to CMOS loads.
6 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
CS8952

10BASE-T CHARACTERISTICS

Parameter Symbol Min Typ Max Unit
10BASE-T Interface
Transmitter Differential Output Voltage (Peak) V Receiver Normal Squelch Level (Peak) V Receiver Low Squelch Level (LoRxSquelch bit
V
OD
ISQ
SQL
set)
10BASE-T Transmitter
TXD Pair Jitter into 100 Load t TXD Pair Return to ≤50 mV after Last Positive
TTX1
t
TTX2
Transition TXD Pair Positive Hold Time at End of Packet t
TTX3
10BASE-T Receiver
Allowable Received Jitter at Bit Cell Center t Allowable Received Jitter at Bit Cell Boundary t
TRX1 TRX2
10BASE-T Link Integrity
First Transmitted Link Pulse after Last Transmit-
t
LN1
ted Packet Time Between Transmitted Link Pulses t Width of Transmitted Link Pulses t Minimum Received Link Pulses Separation t Maximum Received Link Pulse Separation t Last Receive Activity to Link Fail (Link Loss
LN2 LN3 LN4 LN5
t
LN6
Timer) 10Base-T Jabber/Unjabber Timing Maximum Transmit Time - 105 - ms Unjabber Time - 406 - ms
2.2 - 2.8 V 300 - 525 mV 125 - 290 mV
--8ns
--4.5µs
250 - - ns
- - +/-13.5 ns
- - +/-13.5 ns
15 16 17 ms
15 16 17 ms 60 - 200 ns
257ms 25 52 150 ms 50 52 150 ms
t
TTX2
TXD±
t
RXD±
Carrier Sense
(Internal)
TXD±
RXD±
LINKLED
t
RTX3
t
RTX1
t
LN1
t
LN6
TTX1
RTX4
t
t
RTX2
t
LN2
t
LN4
t
LN3
t
LN5
t
TTX3
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 7
CS8952

100BASE-X CHARACTERISTICS

Parameter Symbol Min Typ Max Unit
100BASE-TX Transmitter
TX Differential Output Voltage (Peak) V Signal Amplitude Symmetry V Signal Rise/Fall Time t Rise/Fall Symmetry t Duty Cycle Distortion t Overshoot/Undershoot t Transmit Jitter t TX Differential Output Impedance Z
OP
SYM
RF
RFS
DCD
OS
JT
OUT
100BASE-TX Receiver
Receive Signal Detect Assert Threshold - - 1.0 V Receive Signal Detect De-assert Threshold 0.2 - - V Receive Signal Detect Assert Time - - 1000 µs Receive Signal Detect De-assert Time - - 350 µs
100BASE-FX Transmitter
TX_NRZ+/- Output Voltage - Low V TX_NRZ+/- Output Voltage - High V Signal Rise/Fall Time T
1 2
RF
100Base-FX Receiver
RX_NRZ+/- Input Voltage - Low V RX_NRZ+/- Input Voltage - High V Common Mode Input Range V
3 4
CMIP
0.95 - 1.05 V 98 - 102 %
3.0 - 5.0 ns
--0.5ns
--+/-0.5ns
--5%
- 400 1400 ps
-100-ohms
-1.830 - -1.605 V
-1.035 - -0.880 V
--1.6ns
-1.830 - -1.605 V
-1.035 - -0.880 V
-3.56-V
p-p p-p
RX/TX Signaling for 100Base-FX
V
DD
TX_NRZ+/-
V
V
1
2
V
3
RX_NRZ+/-
V
4
0
8 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

100BASE-TX MII RECEIVE TIMING - 4B/5B ALIGNED MODES

Parameter Symbol Min Typ Max Unit
RX_CLK Period t RX_CLK Pulse Width t
WL,tWH
RXD[3:0],RX_ER/RXD4,RX_DV setup to rising edge of RX_CLK
RXD[3:0],RX_ER/RXD4,RX_DV hold from rising edge of RX_CLK
CRStoRXDlatency 4BAligned
t
5B Aligned
Start of Streamto CRS asserted tEnd of Streamto CRS de-asserted tStart of Streamto COL asserted tEnd of Streamto COL de-asserted t
CRS1 CRS2 COL1 COL2
RX_EN asserted to RX_DV, RXD[3:0] valid t RX_EN de-asserted to RX_DV, RXD[3:0].
RX_ER/RXD4 in high impedance state
P
t
SU
t
HD
DLAT
EN
t
DIS
-40-ns
-20-ns
10 - - ns
10 - - ns
2 2
3-6 3-6
-1011BT
--21BT
--11BT
--21BT
-TBD-ns
-TBD-ns
CS8952
8 8
BT
RX+/-
CRS
COL
RX_EN
RX_DV
RXD[3:0],
RX_ER/RXD4
RX_CLK
Start of
Stream
t
CRS1
t
COL1
t
WL
t
RLAT
t
P
t
WH
End of Stream
t
CRS2
t
COL2
t
EN
t
DIS
t
t
HD
SU
IN
OUT
OUT
IN
OUT
OUT
OUT
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 9

100BASE-TX MII RECEIVE TIMING - 5B BYPASS ALIGN MODE

Parameter Symbol Min Typ Max Unit
RX_CLK Period t RX_CLK Pulse Width t
WL,tWH
RXD[4:0]setuptorisingedgeofRX_CLK t RXD[4:0] hold after rising edge of RX_CLK t Start of 5B symbol to symbol output on RX[4:0]
t
5B Mode
P
SU HD
RLAT
-40-ns
-20-ns 10 - - ns 10 - - ns
5-9BT
CS8952
RX+/-
RXD[4:0],
RX Symbol
0
t
RLAT
RX Symbol
N-1
t
SU
t
P
t
HD
RX Data
0
RX Symbol
N
RX Data
1
IN
OUT
RX_CLK
OUT
t
t
WL
WH
10 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

100BASE-TX MII TRANSMIT TIMING - 4B/5B ALIGN MODES

Parameter Symbol Min Typ Max Unit
TXD[3:0] Setup to TX_CLK High t TX_EN Setup to TX_CLK High t TXD[3:0] Hold after TX_CLK High t TX_ER Hold after TX_CLK High t TX_EN Hold after TX_CLK High t TX_EN highto CRS asserted latency t
TX_EN lowto CRS de-asserted latency t TX_EN highto TX+/- output (TX Latency) t
SU1
SU2 HD1 HD2 HD3
CRS1 CRS2
LAT
10 - - ns 10 - - ns
0--ns 0--ns 0--ns
-8BT
-8BT
678BT
CS8952
TX_CLK
TX_EN
TXD[3:0],
TX_ER/TXD4
CRS
TX+/-
t
SU2
t
SU1
Data
IN
t
CRS1
t
HD2
t
HD1
t
LAT
Symbol
Out
t
CRS2
Input/Output
Input
Input
Output
Output
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 11

100BASE-TX MII TRANSMIT TIMING - 5B BYPASS ALIGN MODE

Parameter Symbol Min Typ Max Unit
TXD[4:0] Setup to TX_CLK High t TXD[4:0] Hold after TX_CLK High t TX_ER Hold after TX_CLK High t TXD[4:0] Sampled to TX+/- output (TX Latency) t
SU1 HD1 HD2
LAT
10 - - ns
0--ns 0--ns
-67ns
CS8952
TX_CLK
TXD[4:0]
TX+/-
t
SU1
Data
IN
t
LAT
t
HD1
Symbol
OUT
Input/Output
Input
Output
12 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

10BASE-T MII RECEIVE TIMING

Parameter Symbol Min Typ Max Unit
RX_CLK Period t RX_CLK Pulse Width t RXD[3:0],RX_ER,RX_DVsetuptorisingedgeof
RX_CLK RXD[3:0], RX_ER, RX_DV hold from rising edge
of RX_CLK RX data valid from CRS t RX+/- preamble to CRS asserted t RX+/- end of packet to CRS de-asserted t RX+/- preamble to COL asserted t RX+/- end of packet to COL de-asserted t RX_EN asserted to RX_DV, RXD[3:0], RX_ER
valid RX_ENde-assertedto RX_DV, RXD[3:0]. RX_ER
in high impedance state
WL,tWH
P
t
SU
t
HD
RLAT CRS1 CRS2 COL1 COL2
t
EN
t
DIS
CS8952
-400-ns
-200-ns
30 - - ns
30 - - ns
-810BT
-57BT
2.5 3 BT
0-7BT
--3BT
- - 60 ns
- - 60 ns
RX+/-
CRS
COL
RX_EN
RX_DV
RXD[3:0],
RX_ER
RX_CLK
t
CRS1
t
COL1
t
WL
t
RLAT
t
t
P
WH
IN
t
CRS2
t
COL2
t
EN
t
DIS
t
t
HD
SU
OUT
OUT
IN
OUT
OUT
OUT
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 13

10BASE-T MII TRANSMIT TIMING

Parameter Symbol Min Typ Max Unit
TXD[3:0] Setup to TX_CLK High t TX_ER Setup to TX_CLK High t TX_EN Setup to TX_CLK High t TXD[3:0] Hold after TX_CLK High t TX_ER Hold after TX_CLK High t TX_EN Hold after TX_CLK High t TX_EN highto CRS asserted latency t TX_EN lowto CRS de-asserted latency t TX_EN highto TX+/- output (TX Latency) t
SQE Timing
COL (SQE) Delay after CRS de-asserted t COL (SQE) Pulse Duration t
SU1 SU2 SU3 HD1 HD2
HD3 CRS1 CRS2
LAT
COL COLP
CS8952
10 - - ns 10 - - ns 10 - - ns
0--ns 0--ns 0--ns 0-4BT 0-16BT 6-14BT
0.65 0.9 1.6 µs
0.65 1.0 1.6 µs
TX_CLK
TX_EN
TX_ER
TXD[3:0]
CRS
TX+/-
TX_CLK
t
t
SU3
SU1
t
SU2
t
CRS1
t
t
HD2
t
HD3
HD1
10BASE-T Transmit Timing
t
LAT
Valid Data
SQE Timing
t
CRS2
Input/Output
Input
Input
Input
Output
Output
Input/Output
t
COL
SQE
t
SQEP
Output
14 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

10BASE-T SERIAL RECEIVE TIMING

Parameter Symbol Min Typ Max Unit
RX+/- active to RXD[0] active t RX+/- active to CRS active t RXD[0] setup from RX_CLK t RXD[0] hold from RX_CLK t RX_CLK hold after CRS off t RXD[0] throughput delay t CRS turn off delay t
DATA
CRS
RDS
RDH
RCH
RD
CRSOFF
CS8952
- - 1200 ns
--600ns 35 - - ns 50 - - ns
5--ns
--250ns
--400ns
RX+/-
CRS
t
CRS
t
RD
t
CRSOFF
t
RCH
IN
OUT
RX_CLK
OUT
t
t
HD
SU
OUT
RXD[0]
t
DATA
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 15

10BASE-T SERIAL TRANSMIT TIMING

Parameter Symbol Min Typ Max Unit
TX_EN Setup from TX_CLK t TX_EN Hold after TX_CLK t TXD[0] Setup from TX_CLK t TXD[0] Hold after TX_CLK t Transmit start-up delay t Transmit throughput delay t
EHCH
CHEL DSCH CHDU
STUD
TPD
CS8952
10 - - ns 10 - - ns 10 - - ns 10 - - ns
--500ns
--500ns
TX_CLK
TX_EN
TXD[3:0]
TX+/-
t
EHCH
t
STUD
t
DSCH
Valid
Data
t
CHEL
t
CHDU
t
PD
Input/Output
Input
Input
Output
16 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver

AUTO NEGOTIATION / FAST LINK PULSE TIMING

Parameter Symbol Min Typ Max Unit
FLP burst to FLP burst t FLP burst width t Clock/Data pulses per burst Clock/Data pulse width t Clock pulse to Data pulse t Clock pulse to clock pulse t
BTB
FLPW
-
PW CTD CTC
15 16 17 ms
-2-ms
17 - 33 ea.
-100-ns
55.5 64 69.5 µs 111 128 139 µs
CS8952
TX+/-
t
FLPW
t
BTB
Clock Pulse
Data Pulse
Clock Pulse
TX+/-
t
t t
PW
CTD CTC
t
PW
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 17

SERIAL MANAGEMENT INTERFACE TIMING

Parameter Symbol Min Typ Max Unit
MDC Period t MDC Pulse Width t MDIO Setup to MDC (MDIO as input) t MDIO Hold after MDC (MDIO as input) t MDC to MDIO valid (MDIO as output) t
p
WL,tWH
MD1 MD2 MD3
CS8952
60 - - ns 40 - 60 % 10 - - ns 10 - - ns
0 - 40 ns
DIRECTION:
IN or OUT of chip
MDC
MDIO
MDIO
t
MD1tMD2
Valid Data
t
MD3
Valid Data
Valid Data
IN
IN
OUT
18 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
CS8952

2. INTRODUCTION

The CS8952 is a complete physical-layer transceiv­er for 100BASE-TX and 10BASE-T applications. Additionally, the CS8952 can be used with an ex­ternal optical module for 100BASE-FX.

2.1 High Performance Analog

The highly integrated mixed-signal design of the CS8952 eliminates the need for external analog cir­cuitry such as external transmit or receive filters. The CS8952 builds upon Cirrus Logic’s experience in pioneering the high-volume manufacturing of 10BASE-T integrated circuits with “true” internal filters. The CS8952, CS8920, CS8904, and CS8900 include fifth-order, continuous-time But­terworth 10BASE-T transmit and receive filters, al­lowing those products to meet 10BASE-T wave shape, emission, and frequency content require­ments without external filters.

2.2 Low Power Consumption

The CS8952 is implemented in low power CMOS, consuming only 135 mA typically. Three low-pow­er modes are provided to make the CS8952 ideal for power sensitive applications such as CardBus.

2.3 Application Flexibility

The CS8952’s digital interface and operating modes can be tailored to efficiently support a wide variety of applications. For example, the Media In­dependent Interface (MII) supports 100BASE-TX, 100BASE-FX and 10BASE-T NIC cards, switch ports and router ports. Additionally, the low-laten­cy “repeater” interface mode minimizes data delay through the CS8952, facilitating system compli­ance with overall network delay budgets. To sup­port 10BASE-T applications, the CS8952 provides a 10BASE-T serial port (Seven-wire ENDEC inter­face).

2.4 Typical Connection Diagram

Figure 1 illustrates a typical MII to CS8952 appli-
cation with twisted-pair and fiber interfaces. Refer
to the Analog Design Considerations section for detailed information on power supply requirements and decoupling, crystal and magnetics require­ments, and twisted-pair and fiber transceiver con­nections.

3. FUNCTIONAL DESCRIPTION

The CS8952is a complete physical-layer transceiv­er for 100BASE-TX and 10BASE-T applications. It provides a Physical Coding Sub-layer for com­munication with an external MAC (Media Access Controller). The CS8952 also includes a complete Physical Medium Attachment layer and a 100BASE-TX and 10BASE-T Physical Medium Dependent layer. Additionally, the CS8952 pro­vides a PECL interface to an external optical mod­ule for 100BASE-FX applications.
The primary digital interface to the CS8952 is an enhanced IEEE 802.3 Media Independent Interface (MII). The MII supports parallel data transfer, ac­cess to the CS8952 Control and Status registers, and several status and control pins. The CS8952's operating modes can be tailored to support a wide variety of applications, including low-latency 100BASE-TX repeaters, switches and MII-based network interface cards.
For 100BASE-TX applications, the digital data in­terface can be either 4-bit parallel (nibbles) or 5-bit parallel (code-groups). For 10BASE-T applica­tions, the digital data format can be either 4-bit par­allel (nibbles) or one-bit serial.
The CS8952 is controlled primarily by configura­tion registers via the MII Management Interface. Additionally, a number of the most fundamental register bits can be set at power-up and reset time by connecting pull-up or pull-down resistors to ex­ternal pins.
The CS8952's MII interface is enhanced beyond IEEE requirements by register extensions and the addition of pins for MII_IRQ DEF signals. The MII_IRQ
,RX_EN,andISO-
pin provides an inter-
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 19
CS8952
MII I/F
CONTROL
I/F
10 µF 0.1µF
VDD_MII
VDD_MII
4.7 k
1.5 k
4.7 k
4
33 33
33
33
33
33
Ω Ω
33
33
33 33
VDD_MII
4.7 k
680
680
680
680
680
680
680
+5 V
10 µF 0.1 µF
25 MHz
XTAL_I XTAL_O
MDIO MDC
TXD
TX_ER/TXD[4] TX_EN TX_CLK RX_CLK RXD[0] RXD[1]/PHYAD[1] RXD[2]
RXD[3]/PHYAD[3]
RX_ER/RXD[4]/PHYAD[4] RX_DV/MII_DRV COL/PHYAD0 CRS/PHYAD[2]
LPSTRT RX_EN PWRDN REPEATER BPSCR BP4B5B BPALIGN LPBK ISODEF 10BT_SER RESET MII_IRQ
SPEED10
SPEED100
LED1
LED2
LED3
LED4
LED5
3
VDD_MII
11
VDD
RSVD VSS TEST0 TEST1
7 21
VSS18 RES VSS17
CS8952
4.99 k
49.9
RX+
RX-
TX+
TX-
0.1 µF 0.1 µF
SIGNAL+
SIGNAL-
82
TX_NRZ­TX_NRZ+ RX_NRZ-
RX_NRZ+
TXSLEW0 TXSLEW1NCNC
AN0
AN1NCNC
TCM
+5 V
130
0.1 µF
49.9
82
82
49.9Ω49.9
0.1 µF
130
68
63.4
+5 V
0.1 µF 0.1 µF
51
0.01 µF 2KV
0.1 µF
Ω Ω
51
51
+5 V
TRANSCEIVER
VEE SD+ TD­TD+ VCC VCC RD­RD+ VEE
51
51 51
0.1 µF
FIBER
Ω Ω
75
75
130 191
SHLD 8 7 6
5
4 3 2 1 SHLD
RJ45

Figure 1. Typical Connection Diagram

20 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
CS8952
rupt signal to the controller when a change of state has occurred in the CS8952, eliminating the need for the system to poll the CS8952 for state changes. The RX_EN signal allows the receiver outputs to be electrically isolated. The ISODEF pin controls the value of register bit ISOLATE in the Basic Mode Control Register (address 00h) which in turn electrically isolates the CS8952's MII data path.

3.1 Major Operating Modes

The following sections describe the four major op­erating modes of the CS8952:
- 100BASE-X MII Modes (TX and FX)
- 100BASE-X Repeater Modes
- 10BASE-T MII Mode
- 10BASE-T Serial Mode
The choice of operating speed (10 Mb/s versus 100 Mb/s) is made using the auto-negotiation input pins (AN0, AN1) and/or the auto-negotiation MII registers. The auto-negotiation capability also is used to select a duplex mode (full or half duplex). Both speed and duplex modes can either be forced or negotiated with the far-end link partner.
The digital interface mode (MII, repeater, or 10BASE-T serial) is selected by input pins BPALIGN, BP4B5B and 10BT_SER as shown in Table 1. Speed and duplex selection are made through the AN[1:0] pins as shown in Table 5.
Operating Mode BPALIGN BP4B5B 10BT_SER
100BASE-X MII 0 0 0 10BASE-T MII 0 0 0

Table 1.

Operating Mode BPALIGN BP4B5B 10BT_SER
100BASE-X Repeater
10BASE-T Serial Don’t
1Don’t
Care
01 0
Don’t
Care
Table 1.
Care
0
1

3.1.1 100BASE-X MII Application (TX and FX)

The CS8952 provides an IEEE 802.3-compliant MII interface. Data is transferred across the MII in four-bit parallel (nibble) mode. TX_CLK and RX_CLK are nominally 25 MHz for 100BASE-X.
The 100BASE-X mode includes both the TX and FX modes, as determined by pin BPSCR (bypass scrambler), or the BPSCR bit (bit 13) in the Loop­back, Bypass, and Receiver Error Mask Register (address 18h). In FX mode, an external optical module is connected to the CS8952 via pins TX_NRZ+, TX_NRZ-, RX_NRZ+, RX_NRZ-, SIGNAL+, and SIGNAL-. In FX mode, the MLT­3/NRZI conversion blocks and the scrambler/de­scrambler are bypassed.
3.1.1.1 Symbol Encoding and Decoding
In 100BASE-X modes, 4-bit nibble transmit data is encoded into 5-bit symbols for transmission onto the media as shown in Tables 2 and 3. The encod­ing is necessary to allow data and control symbols to be sent consecutively along the same media transparent to the MAC layer. This encoding caus­es the symbol rate transmitted across the wire (125 symbols/second) to be greater than the actual data rate of the system (100 symbols/second).
DATA and CONTROL Codes (RX_ER = 0 or TX_ER = 0)
Name 5-bit Symbol 4-bit Nibble Comments
DATA (Note 1)
0 11110 0000 1 01001 0001
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 21
DATA and CONTROL Codes (RX_ER = 0 or TX_ER = 0)
Name 5-bit Symbol 4-bit Nibble Comments
2 10100 0010 3 10101 001 1 4 01010 0100 5 01011 0101 6 01110 0110 7 01111 0111 8 10010 1000
9 10011 1001 A 10110 1010 B 10111 1011
C 11010 1100 D 11011 1101
E 11100 1110 F 11101 1111
CONTROL (Note 2)
I 11111 0101 IDLE (Note 3)
J 11000 0101 First Start of Stream Symbol K 10001 0101 Second Start of Stream Symbol T 01101 0000 First End of Stream Symbol
R 00111 0000 Second End of Stream Symbol
1. DATA code groups are indicated by RX_DV = 1
2. CONTROL code groups areinserted automatically during transmission in response to TX_EN. They are not generated through any combination of TXD[3:0] or TX_ER.
3. IDLE is indicated by RX_DV = 0.
Table 2. 4B5B Symbol Encoding/Decoding
CS8952
Code Violations (RX_ER = 1 or TX_ER = 1)
Error Report
Normal Mode 4-bit
Name 5-bit Symbol
CONTROL (Note 1)
I 11111 0000 0000 This portion of the table relates received
J 11000 0000 0000 K 10001 0000 0000 T 01101 0000 0000 R 00111 0000 0000
CODE VIOLATIONS
H 00100 0000 0000
V0 00000 0110 or 0101 (Note 2) 0001 V1 00001 0110 or 0101 (Note 2) 0111 V2 00010 0110 or 0101 (Note 2) 1000 V3 00011 0110 or 0101 (Note 2) 1001 V4 00101 0110 or 0101 (Note 2) 1010 V5 00110 0110 or 0101 (Note 2)1011
22 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
Nibble
Mode 4-bit
Nibble Comments
5-bit symbols to received 4-bit nibbles only . The control code groups may not be transmitted in the data portion of the frame.
Code Violations (RX_ER = 1 or TX_ER = 1)
Error Report
Normal Mode 4-bit
Name 5-bit Symbol
V6 01000 0110 or 0101 (Note 2)1100 V7 01100 0110 or 0101 (Note 2)1101 V8 10000 0110 or 0101 (Note 2)1110 V9 11001 0110 or 0101 (Note 2) 1111
1. CONTROL code groups become violations when found in the data portion of the frame.
2. Invalid code groups are mapped to 5h unless the Code Error Report select bit in the Loopback, Bypass,and Receiver Error Mask Register(address 18h) is set, in which case invalid code groupsare mapped to 6h.
Nibble
Table3. 4B5BCodeViolationDecoding
Mode 4-bit
Nibble Comments
CS8952
3.1.1.2 100 Mb/s Loopback
One of two internal 100BASE-TX loopback modes can be selected. Local loopback redirects the TXD[3:0] input data to RXD[3:0] data outputs through the 4B5B coders and scramblers. Local loopback is selected by asserting pin LPBK, by set­ting the LPBK bit (bit 14) in the Basic Mode Con­trol Register (address 00h) or by setting bits 8 and 11 in the Loopback, Bypass, and Receiver Error Mask Register (address 18h) as shown in Table 4.
Remote loopback redirects the analog line interface inputs to the analog line driver outputs. Remote loopback is selected by setting bit 9 in the Loop­back, Bypass, and Receiver Error Mask Register (address 18h) as shown in Table 4.
Remote
Loopback
(bit 9)
0 0 No Loopback 0 1 Local Loopback (toward MII) 1 0 Remote Loopback (toward line) 1 1 Operation is undefined
When changing between local and non-loopback modes, the data on RXD[3:0] will be undefined for approximately 330 µs.
PMD
Loopback
(bit 8)
Function
Table 4.

3.1.2 100BASE-X Repeater Application

The CS8952 provides two low latency modes for repeater applications. These are selected by assert­ing either pin BPALIGN or BP4B5B. Both pins have the effect of bypassing the 4B5B encoder and decoder. Bypassing the coders decreases latency, and uses a 5-bit wide parallel code group interface on pins RXD[4:0] and TXD[4:0] instead of the 4­bit wide MII nibble interface on pins RXD[3:0] and TXD[3:0]. In repeater mode, pin RX_ER is rede­fined as the fifth receive data bit (RXD4), and pin TX_ER is redefined as the fifth transmit data bit (TXD4).
BPALIGN can also be selected by setting bit 12 in Loopback, Bypass, and Receiver Error Mask Reg­ister (address 18h). BP4B5B can be selected by set­ting bit 14 of the same register.
Pin BPALIGN causes more of the CS8952 to be bypassed than the BP4B5B pin. BPALIGN also by­passes the scrambler/descrambler, and the NRZI to NRZ converters (see Figure 1). Also, for repeater applications, pin REPEATER should be asserted to redefine the function of the CRS (carrier sense) pin. The REPEATER function may also be invoked by setting bit 12 in the PCS Sublayer Configuration Register (address 17h).
For repeater applications, the RX_EN pin can be used to gate the receive data pins (RXD[4:0],
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 23
CS8952
RX_CLK, RX_DV, COL, and CRS) onto a shared, external repeater system bus.

3.1.3 10BASE-T MII Application

The digital interface used in this mode is the same as that used in the 100BASE-X MII mode except that TX_CLK and RX_CLK are nominally
2.5 MHz. The CS8952 includes a full-featured 10BASE-T in-
terface, as described in the following sections.
3.1.3.1 Full and Half Duplex operation
The 10BASE-T function supports full and half du­plex operation as determined by pins AN[1:0] and/or the corresponding MII register bits. (See Ta­ble 5).
3.1.3.2 Collision Detection
If half duplex operation is selected, the CS8952 de­tects a 10BASE-T collision whenever the receiver and transmitter are active simultaneously. When a collision is present, the collision is reported on pin COL. Collision detection is undefined for full-du­plex operation.
3.1.3.3 Jabber
The jabber timer monitors the transmitter and dis­ables the transmissionif the transmitter is active for greaterthan approximately 105 ms. The transmitter stays disabled until approximately 406 ms after the internal transmit request is no longer enabled.
3.1.3.4 Link Pulses
To prevent disruption of network operation due to a faulty link segment, the CS8952 continually moni­tors the 10BASE-T receive pair (RXD+ and RXD-) for packets and link pulses. After each packet or link pulse is received, an internal Link-Loss timer is started. As long as a packet or link pulse is received before the Link-Loss timer finishes (between 50 and 100 ms), the CS8952 maintains normal operation. If no receive activity is detected, the CS8952 disables
packet transmission to prevent “blind” transmis­sions onto the network (link pulses are still sent while packet transmission is disabled). To reactivate transmission, the receiver must detect a single pack­et (the packet itself is ignored), or two normal link pulses separated by more than 6 ms and no more than 50 ms.
The CS8952 automatically checks the polarity of the receive half of the twisted pair cable. To detect a reversed pair, the receiver examines received link pulses and the End-of-Frame (EOF) sequence of incoming packets. If it detects at least one reversed link pulse and at least four frames in a row with negative polarity after the EOF, the receive pair is considered reversed. If the polarity is reversed and bit 1 of the 10BASE-T Configuration Register (ad­dress 1Ch), is set, the CS8952 automatically cor­rects a reversal.
In the absence of transmit packets, the transmitter generates link pulses in accordance with Section 14.2.1.1 of the Ethernet standard. Trans­mitted link pulses are positive pulses, one bit time wide, typically generated at a rate of one every 16 ms. The 16 ms timer also starts whenever the transmitter completes an End-of-Frame (EOF) se­quence. Thus, a link pulse will be generated 16 ms after an EOF unless there is another transmitted packet.
3.1.3.5 Receiver Squelch
The 10BASE-T squelch circuit determines when valid data is present on the RXD+/RXD- pair. In­coming signals passing through the receive filter are tested by the squelch circuit. Any signal with amplitude less than the squelch threshold (either positive or negative, depending on polarity) is re­jected.
3.1.3.6 10BASE-T Loopback
When Loopback is selected, the TXD[3:0] pins are looped back into the RXD[3:0] pins through the
24 CrystalLAN™ 100BASE-X and 10BASE-T Transceiver
CS8952
Manchester Encoder and Decoder. Selection is made via:
- setting bit 14 in the Basic Mode Control Register (address 00h) or
- setting bits 8 and 11 in the Loopback, By­pass, and Receiver Error Mask Register (address 18h) or
- asserting the LPBK pin.
3.1.3.7 Carrier Detection
The carrier detect circuit informs the MAC that val­id receive data is present by asserting the Carrier Sense signal (CRS) as soon it detects a valid bit pat­tern (1010b or 0101b for 10BASE-T). During nor­mal packet reception, CRS remains asserted while the frame is being received, and is de-asserted within 2.3 bit times after the last low-to-high tran­sition of the End-of-Frame (EOF) sequence. When­ever the receiver is idle (no receive activity), CRS is de-asserted.

3.1.4 10BASE-T Serial Application

This mode is selected when pin 10BT_SERis as­serted during power-up or reset, and operates simi­lar to the 10BASE_T MII mode except that data is transferred serially on pins RXD0 and TXD0 using
a10MHzRX_CLKandTX_CLK.Receivedatais framed by CRS rather than RX_DV.

3.2 Auto-Negotiation

The CS8952 supports auto-negotiation, which is the mechanism that allows the two devices on ei­ther end of an Ethernet link segment to share infor­mation and automatically configure both devices for maximum performance. When configured for auto-negotiation, the CS8952 will detect and auto­matically operate full-duplex at 100 Mb/s if the de­vice on the other end of the link segment also supports full-duplex, 100 Mb/s operation, and auto-negotiation. The CS8952 auto-negotiation ca­pability is fully compliant with the relevant por­tions of section 28 of the IEEE 802.3u standard.
The CS8952 can auto-negotiate both operating speed (10 versus 100 Mb/s), duplex mode (half du­plex versus full duplex), and flow control (pause frames), or alternatively can be set not to negotiate. At power-up and reset times, the auto-negotiation mode is selected via the auto-negotiation input pins (AN[1:0]). This selection can later be changed us­ing the Auto-Negotiation Advertisement Register (address 04h).
Pins AN[1:0] are three level inputs, and have the function shown in Table 5.
CrystalLAN™ 100BASE-X and 10BASE-T Transceiver 25
Loading...
+ 57 hidden pages