CIRRUS LOGIC CS8421 Service Manual

CS8421
32-bit, 192 kHz Asynchronous Sample Rate Converter
Features
1:8
! Master Clock Support for 128 x Fs, 256 x Fs,
384 x Fs, and 512 x Fs (Master Mode)
! 16, 20, 24, or 32-bit Data I/O ! 32-bit Internal Signal Processing ! Dither Automatically Applied and Scaled to
Output Resolution
! Flexible 3-Wire Serial Digital Audio Input and
Output Ports
RST
! Master and Slave Modes for Both Input and
Output
! Bypass Mode ! Time Division Multiplexing (TDM) Mode ! Attenuates Clock Jitter ! Multiple Part Outputs are Phase Matched ! Linear Phase FIR Filter ! Automatic Soft Mute/Unmute ! +2.5 V Digital Supply (VD) ! +3.3 V or 5.0 V Digital Interface (VL) ! Space-Saving 20-Pin TSSOP and QFN
Packages
See page 2 for Ordering Information.
BYPASS
SDIN
Serial
ISCLK
ILRCK
Level Translators
MS_SEL
SAIF
SAOF
3.3 V or 5.0 V (VL)
Audio
Input
Sync Info
Serial
Port
Mode
Decoder
Preliminary Product Information
http://www.cirrus.com
Level Translators
Time
Data
Varying
Digital Filters
Digital
PLL
2.5 V (VD) GND
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
Copyright © Cirrus Logic, Inc. 2005
Data
Sync Info
XTI XTO
(All Rights Reserved)
Serial Audio
Data
Output
Clock
Generator
Level Translators
TDM_IN
SDOUT
OSCLK
OLRCK
SRC_UNLOCK
MCLK_OUT
JULY '05
DS641PP2
CS8421
General Description
The CS8421 is a 32-bit, high performance, monolithic CMOS stereo asynchronous sample ra te converter. Digital audio inputs and outputs can be 32, 24, 20, or 16-bits. Input and output data can be completely asynchro-
nous, synchronous to an external data clock, or the part can operate without any external clock by using an integrated oscillator.
Audio data is input and output through configur able 3-wire input/output ports. The CS8421 does no t require any soft­ware control via a control port.
Target applications include digital recording systems (DVD-R/RW, CD-R/RW, PVR, DAT, MD, and VTR), digital mix­ing consoles, high quality D/A, effects processors, computer audio systems, and automotive audio systems.
The CS8421 is also suitable for use as an asynchronous decimation or interpolation filter. See Cirrus Logic applica­tions note AN270, “Audio A/D Conversion with an Asynchronous Decimation Filter”, available at www.cirrus.com for more details.
The part is available in space saving 20-pin TSSOP and QF N pa ckag es and suppor ts sample rate s up to 211 kHz.
ORDERING INFORMATION
Product Description Package
TSSOP
CS8421
CDB8421
2 DS641PP2
32-bit Asynchronous Sample Rate
Converter
Evaluation Board for CS8421 - - - CDB8421
QFN
TSSOP -40° to +85°C
Pb-Free
YES
Temp Range Container
Rail CS8421-CZZ
Tape and Reel CS8421-CZZR
-10° to +70°C Rail CS8421-CNZ
Tape and Reel CS8421-CNZR
Rail CS8421-DZZ
Tape and Reel CS8421-DZZR
Order#
TABLE OF CONTENTS
1. PIN DESCRIPTIONS ............................................................................................................................ 6
1.1 TSSOP Pin Descriptions ................................................. .... ... ... ... .................................................. 6
1.2 QFN Pin Descriptions ............................................................. ... ... ... .... ... ... ..................................... 8
2. CHARACTERISTICS AND SPECIFICATIONS ................................................................................... 10
SPECIFIED OPERATING CONDITIONS............................................................................................ 10
ABSOLUTE MAXIMUM RATINGS...................................................................................................... 10
PERFORMANCE SPECIFICATIONS......................................... ......................................................... 11
DIGITAL FILTER CHARACTERISTICS .............................................................................................. 12
DC ELECTRICAL CHARACTERISTICS .......... ... ... ... .... .......................................... ... ... ... ... .... ... ... ... ... 12
DIGITAL INPUT CHARACTERISTICS................................................................................................ 13
DIGITAL INTERFACE SPECIFICATIONS .......................................................................................... 13
SWITCHING SPECIFICATIONS ......................................................................................................... 13
3. TYPICAL CONNECTION DIAGRAMS ................................................................................................15
4. GENERAL DESCRIPTION .................................................................................................................. 17
5. THREE-WIRE SERIAL INPUT/OUTPUT AUDIO PORT ..................................................................... 17
6. MODE SELECTION ............................................................................................................................. 19
7. SAMPLE RATE CONVERTER (SRC) ................................................................................................. 20
7.1 Data Resolution and Dither ... .... ... ... ... ... .......................................... .... ... ... ... .... ... ... ... ................... 20
7.2 SRC Locking and Varispeed ........ ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ................................................ 20
7.3 Bypass Mode ................ ... ... ... .... ... ... ... ... .......................................... ............................................. 20
7.4 Muting .................... .......................................... ... .......................................... ................................ 21
7.5 Group Delay and Phase Matching Between Multiple CS8421 Parts ............................................ 21
7.6 Master Clock ....... .......................................... ... .......................................... ................................... 21
7.6.1 Clocking .... ... .... ... ............................................................................. .... ... ... ... ... .... ............ 22
8. TIME DIVISION MULTIPLEXING (TDM) MODE ................................................................................. 23
9. PERFORMANCE PLOTS ............................................................................................................ 25
10. APPLICATIONS ...................... .......................................... ... .... ... ...................................................... 34
10.1 Reset, Power Down, and Start-Up ............................................................................................. 34
10.2 Power Supply, Grounding, and PCB Layout .............................................................................. 34
11. PACKAGE DIMENSIONS ................................................................................................................ 35
THERMAL CHARACTERISTICS.........................................................................................................35
THERMAL CHARACTERISTICS.........................................................................................................36
12. REVISION HISTORY ........................................................................................................................ 37
CS8421
DS641PP2 3
LIST OF FIGURES
Figure 1. Non-TDM Slave Mode Timing..................................................................................................... 14
Figure 2. TDM Slave Mode Timing ............................................................................................................ 14
Figure 3. Non-TDM Master Mode Timing................................................................................................... 14
Figure 4. TDM Master Mode Timing .......................................................................................................... 14
Figure 5. Typical Connection Diagram, No External Master Clock............................................................ 15
Figure 6. Typical Connection Diagram, Master and Slave Modes............................................................. 16
Figure 7. Serial Audio Interface Format - I²S ............................................................................................. 18
Figure 8. Serial Audio Interface Format - Left-Justified.............................................................................. 18
Figure 9. Serial Audio Interface Format - Right-Justified ........................................................................... 18
Figure 10. Typical Connection Diagram for Crystal Circuit ........................................................................22
Figure 11. TDM Slave Mode Timing Diagram............................... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 23
Figure 12. TDM Master Mode Timing Diagram.......................................................................................... 23
Figure 13. TDM Mode Configuration (All CS8421 Outputs are Slave)....................................................... 24
Figure 14. TDM Mode Configuration (First CS8421 Output is Master, All Others are Slave).................... 24
Figure 15. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 48 kHz:48 kHz..................................... 25
Figure 16. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 44.1 kHz:192 kHz................................ 25
Figure 17. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 44.1 kHz:48 kHz.................................. 25
Figure 18. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 48 kHz:44.1 kHz.. .... ... ... ... ... .... ... ... ... ... 25
Figure 19. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 48 kHz:96 kHz..................................... 25
Figure 20. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 96 kHz:48 kHz..................................... 25
Figure 21. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone, 192 kHz:48 kHz................................... 26
Figure 22. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 48 kHz:96 kHz............................... ... 26
Figure 23. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 48 kHz:48 kHz............................... ... 26
Figure 24. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 44.1 kHz:192 kHz.......................... ... 26
Figure 25. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 44.1 kHz:48 kHz......................... ... ... 26
Figure 26. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 48 kHz:44.1 kHz............................... 26
Figure 27. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 96 kHz:48 kHz............................... ... 27
Figure 28. IMD, 10 kHz and 11 kHz -7 dBFS, 96 kHz:48 kHz ................................................................... 27
Figure 29. Wideband FFT Plot (16k Points) -60 dBFS 1 kHz Tone, 192 kHz:48 kHz................................ 27
Figure 30. IMD, 10 kHz and 11 kHz -7 dBFS, 48 kHz:44.1 kHz ................................................................ 27
Figure 31. IMD, 10 kHz and 11 kHz -7 dBFS, 44.1 kHz:48 kHz ................................................................ 27
Figure 32. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz Tone, 44.1 kHz:48 kHz................................ 27
Figure 33. Wideband FFT Plot (16k Points) 0 dBFS 80 kHz Tone, 192 kHz:192 kHz............................... 28
Figure 34. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz Tone, 48 kHz:96 kHz................................... 28
Figure 35. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz Tone, 48 kHz:48 kHz................................... 28
Figure 36. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz Tone, 96 kHz:48 kHz................................... 28
Figure 37. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz Tone, 48 kHz:44.1 kHz................................ 28
Figure 38. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz Tone, Fsi = 192 kHz..................................... 28
Figure 39. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz Tone, Fsi = 48 kHz....................................... 29
Figure 40. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz Tone, Fsi = 96 kHz....................................... 29
Figure 41. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz Tone, Fsi = 44.1 kHz.................................... 29
Figure 42. Dynamic Range vs. Output Sample Rate, -60 dBFS 1 kHz Tone, Fsi = 192 kHz .................... 29
Figure 43. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz Tone, Fsi = 32 kHz....................................... 29
Figure 44. Dynamic Range vs. Output Sample Rate, -60 dBFS 1 kHz Tone, Fsi = 32 kHz ...................... 29
Figure 45. Dynamic Range vs. Output Sample Rate, -60 dBFS 1 kHz Tone, Fsi = 96 kHz ...................... 30
Figure 46. Dynamic Range vs. Output Sample Rate, -60 dBFS 1 kHz Tone, Fsi = 44.1 kHz ................... 30
Figure 47. Frequency Response with 0 dBFS Input ..................................................................................30
Figure 48. Passband Ripple, 192 kH z: 48 kHz ..................................................... ... ... ................................ 30
Figure 49. Dynamic Range vs. Output Sample Rate, -60 dBFS 1 kHz Tone, Fsi = 48 kHz ...................... 30
Figure 50. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 48 kHz:48 kHz ....................................... 30
Figure 51. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 48 kHz:44.1 kHz.................................... 31
Figure 52. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 48 kHz:96 kHz ....................................... 31
CS8421
4 DS641PP2
Figure 53. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 96 kHz:48 kHz.................... ... .... ... ... ... ... 31
Figure 54. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 44.1 kHz:192 kHz.................. .... ... ... ... ... 31
Figure 55. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 44.1 kHz:48 kHz................. ... .... ... ... ... ... 31
Figure 56. Linearity Error, 0 to -140 dBFS Input, 200 Hz Tone, 192 kHz:44.1 kHz...................... ... ... ... ... 31
Figure 57. THD+N vs. Input Amplitude, 1 kHz Tone, 48 kHz:44.1 kHz ..................................................... 32
Figure 58. THD+N vs. Input Amplitude, 1 kHz Tone, 48 kHz:96 kHz ........................................................ 32
Figure 59. THD+N vs. Input Amplitude, 1 kHz Tone, 96 kHz:48 kHz ........................................................ 32
Figure 60. THD+N vs. Input Amplitude, 1 kHz Tone, 44.1 kHz:192 kHz ................................... .... ... ... ... ... 32
Figure 61. THD+N vs. Input Amplitude, 1 kHz Tone, 44.1 kHz:48 kHz ..................................................... 32
Figure 62. THD+N vs. Input Amplitude, 1 kHz Tone, 192 kHz:48 kHz ...................................................... 32
Figure 63. THD+N vs. Frequency Input, 0 dBFS, 48 kHz:44.1 kHz........................................................... 33
Figure 64. THD+N vs. Frequency Input, 0 dBFS, 48 kHz:96 kHz.............................................................. 33
Figure 65. THD+N vs. Frequency Input, 0 dBFS, 44.1 kHz:48 kHz..................... ... ... .... ... ... ... ... .... ... ... ...... 33
Figure 66. THD+N vs. Frequency Input, 0 dBFS, 96 kHz:48 kHz.............................................................. 33
LIST OF TABLES
Table 1. TSSOP Pin Descriptions................................................................................................................ 7
Table 2. QFN Pin Descriptions..................................................................................................................... 9
Table 3. Serial Audio Port Master/Slave and Clock Ratio Select Start-Up Options (MS_SEL) ................. 19
Table 4. Serial Audio Input Port Start-Up Options (SAIF)................................................. ......................... 19
Table 5. Serial Audio Output Port Start-Up Options (SAOF) ..................................................................... 19
CS8421
DS641PP2 5

1. PIN DESCRIPTIONS

1.1 TSSOP PIN DESCRIPTIONS

CS8421
XTO SRC_UNLOCK
XTI SAIF
VD SAOF
GND VL
RST GND
BYPASS MS_SEL
ILRCK OLRCK ISCLK OSCLK
SDIN SDOUT
MCLK_OUT TDM_IN
1 2 3 4 5 6 7
20 19 18 17 16 15 14
813
Top-Down View
9
20-pin TSSOP Package
12
10 11
6 DS641PP2
Pin Name # Pin Description
CS8421
XTO 1
XTI 2
VD 3
GND 4
RST 5
BYPASS 6
ILRCK 7 ISCLK 8
SDIN 9
MCLK_OUT 10
TDM_IN 11
Crystal Out (Output) - Crystal output for Master clock. See “Master Clock” on page 21. Crystal/Oscillator In (Input) - Crystal or digital clock input for Master clock. See “Master Clock”
on page 21.
Digital Power (Input) - Digital core power supply. Typically +2.5 V. Ground (Input) - Ground for I/O and core logic. Reset (Input) - When RST is low the CS8421 enters a low power mode and all internal states are
reset. On initial power up RST must be held low until the power supply is stable and all input clocks are stable in frequency and phase.
Sample Rate Converter Bypass (Input) - When BYP ASS is high, the sample rate converter will be bypassed and any data input through the serial audio input port will be directly output on the serial audio output port. When Bypass is low the sample rate converter will operate normally.
Serial Audio Input Left/Right Cl oc k (Input/Output) - Word rate clock for the audio dat a on th e SDIN pin.
Serial Audio Bit Clock (Input/Output) - Serial bit clock for audio data on the SDIN pin. Serial Audio Input Data Port (Input) - Audio data serial input pin. Master Clock Output (Output) - Buffered and level shifted output for Master clock. If MCLK_OUT
is not required, this pin should be pulled high through a 47 k resistor to turn the output off. See
“Master Clock” on page 21.
Serial Audio TDM Input (Input) - Time Division Multiplexing serial audio data input. Grounded when not used. See
“Time Division Multiplexing (TDM) Mode” on page 23
SDOUT 12 OSCLK 13 OLRCK 14
MS_SEL 15
GND 16
VL 17
SAOF 18
SAIF 19
SRC_UNLOCK 20
Serial Audio Output Data Port (Output) - Audio data serial output pin. Optionally this pin may be pulled low through a 47 k resistor, but should not be pulled high.
Serial Audio Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin. Serial Audio Input Left/Right Cl oc k (Input/Output) - Word rate clock for the audio dat a on th e
SDOUT pin. Master/Slave Select (Input) - Used to select Master or Slave for the input and output serial audio
ports at startup and reset. See
Ground (Input) - Ground for I/O and core logic. Logic Power (Input) - Input/Output power supply. Typically +3.3 V or +5.0 V. Serial Audio Output Format Select (Input) - Used to select the serial audio output format at star-
tup and reset. See Table 5 on page 19 for format settings. Serial Audio Input Format Select (Input) - Used to select the serial audio input format at startup
and reset. See Table 4 on page 19 for format settings. SRC Unlock Indicator (Output) - Indicates when the SRC is unlocked. See “SRC Locking and
Table 3 on page 19 for settings.
Varispeed” on page 20.

Table 1. TSSOP Pin Descriptions

DS641PP2 7

1.2 QFN PIN DESCRIPTIONS

CS8421
VD
GND
RST
BYPASS
ILRCK
XTI
XTO
181920
1
2
3
4
5
Thermal Pad
Top-Down View
20-pin QFN Package
SRC_UNLOCK
17
SAIF
SAOF
16
15
14
13
12
11
VL
GND
MS_SEL OLRCK
OSCLK
76
8
SDIN
ISCLK
MCLK_OUT
10
9
SDOUT
TDM_IN
8 DS641PP2
Pin Name # Pin Description
CS8421
VD 1
GND 2
RST 3
BYPASS 4
ILRCK 5 ISCLK 6
SDIN 7
MCLK_OUT 8
TDM_IN 9
SDOUT 10
OSCLK 11
Digital Power (Input) - Digital core power supply. Typically +2.5 V. Ground (Input) - Ground for I/O and core logic. Reset (Input) - When RST is low the CS8421 enters a low power mode and all internal states are
reset. On initial power up RST must be held low until the power supply is stable and all input clocks are stable in frequency and phase.
Sample Rate Converter Bypass (Input) - When BYPASS is high, the sample rate converter will be bypassed and any data input through the serial audio input port will be directly output on the serial audio output port. When Bypass is low the sample rate converter will operate normally.
Serial Audio Input Left/Right Clock (Input/Output) - Word rate clock for the audio data on the SDIN pin.
Serial Audio Bit Clock (Input/Output) - Serial bit clock for audio data on the SDIN pin. Serial Audio Input Data Port (Input) - Audio data serial input pin. Master Clock Output (Output) - Buffered and level shifted output for Master clock. If MCLK_OUT
is not required, this pin should be pulled high through a 47 k resistor to turn the output off. See
“Master Clock” on page 21.
Serial Audio TDM Input (Input) - Time Division Multiplexing serial audio data input. Grounded when not used. See
Serial Audio Output Data Port (Output) - Audio data serial output pin. Optionally this pin may be pulled low through a 47 k resistor, but should not be pulled high.
Serial Audio Bit Clock (Input/Output) - Serial bit clock for audio data on the SDOUT pin.
“Time Division Multiplexing (TDM) Mode” on page 23
OLRCK 12
MS_SEL 13
GND 14
VL 15
SAOF 16
SAIF 17
SRC_UNLOCK 18
XTO 19
XTI 20
THERMAL PAD -
Serial Audio Input Left/Right Clock (Input/Output) - Word rate clock for the audio data on the SDOUT pin.
Master/Slave Select (Input) - Used to select Master or Slave for the input and output serial audio ports at startup and reset. See
Ground (Input) - Ground for I/O and core logic. Logic Power (Input) - Input/Output power supply. Typically +3.3 V or +5.0 V. Serial Audio Output Format Select (Input) - Used to select the serial audio output format at star-
tup and reset. See Serial Audio Input Format Select (Input) - Used to select the serial audio input format at startup
and reset. See Table 4 on page 19 for format settings. SRC Unlock Indicator (Output) - Indicates when the SRC is unlocked. See “SRC Locking and
Table 5 on page 19 for format settings.
Table 3 on page 19 for settings.
Varispeed” on page 20.
Crystal Out (Output) - Crystal output for Master clock. See “Master Clock” on page 21. Crystal/Oscillator In (Input) - Crystal or digital clock input for Master clock. See “Master Clock”
on page 21.
Thermal Pad - Thermal relief pad for optimized heat dissipation.

Table 2. QFN Pin Descriptions

DS641PP2 9
CS8421

2. CHARACTERISTICS AND SPECIFICATIONS

(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and spe cif icat ion s ar e de riv e d from measurements taken at nominal supply voltages and T
= 25°C.)
A

SPECIFIED OPERATING CONDITIONS

(GND = 0 V, all voltages with respect to 0 V)
Parameter Symbol Min Nominal Max Units
Power Supply Voltage
Ambient Operating Temperature: ‘-CZ’
‘-CNZ’
‘-DZ’
VD
VL T
2.38
3.14
A
-10
-10
-40
2.5
3.3 or 5.0
-
-
-
2.62
5.25 +70
+70 +85
V V
°C °C °C

ABSOLUTE MAXIMUM RATINGS

(GND = 0 V; all voltages with respect to 0 V. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaran te e d at th es e extremes.)
Parameter Symbol Min Max Units
Power Supply Voltage
Input Current, Any Pin Except Supplies (Note 1) Input Voltage Ambient Operating Temperature (power applied) Storage Temperature
VD
VL
I
V
T
T
in
stg
-0.3
-0.3
3.5
6.0
V V
10mA
in A
-0.3 VL+0.4 V
-55 +125 °C
-65 +150 °C
Notes:
1. Transient currents of up to 100 mA will not cause SCR latch-up.
2. Numbers separated by a colon indicate input and ou tput sample rates. For example, 48 kHz:96 kHz in­dicates that Fsi = 48 khz and Fso = 96 kHz.
10 DS641PP2
CS8421

PERFORMANCE SPECIFICATIONS

(XTI/XTO = 27 MHz; Input signal = 1.000 kHz, 0 dBFS, Measurement Bandwidth = 20 to Fso/2 Hz, and Word Width = 32-Bits, unless otherwise stated.)
Parameter Min Typ Max Units
Resolution Sample Rate with XTI = 27.000 MHz Slave
Master
Sample Rate with other XTI clocks Slave
Master
Sample Rate with ring oscillator (XTI to GND or VL, XTO floating) Sample Rate Ratio - Upsampling Sample Rate Ratio - Downsampling Interchannel Gain Mismatch Interchannel Phase Deviation Peak Idle Channel Noise Component (32-bit operation)
Dynamic Range (20 Hz to Fso/2, 1 kHz, -60 dBFS Input)
44.1 kHz:48 kHz A-Weighted Unweighted
44.1 kHz:192 kHz A-Weighted Unweighted
48 kHz:44.1 kHz A-Weighted
Unweighted
48 kHz:96 kHz A-Weighted
Unweighted
96 kHz:48 kHz A-Weighted
Unweighted
192kHz:32kHz A-Weighted
Unweighted
Total Harmonic Distortion + Noise (20 Hz to Fso/2, 1 kHz, 0 dBFS Input) 32 kHz:48 kHz
44.1 kHz:48 kHz
44.1 kHz:192 kHz
48 kHz:44.1 kHz 48 kHz:96 kHz 96 kHz:48 kHz 192kHz:32kHz
16 - 32 bits
7.2 53
XTI/3750
XTI/512
-
-
-
-
207 211
XTI/130 XTI/128
kHz kHz
kHz kHz
12 - 96 kHz
--1:8
- - 7.5:1
-0.0-dB
- 0.0 - Degrees
- - -192 dBFS
-
-
-
-
-
-
-
-
-
-
-
-
180 177
175 172
180 177
179 176
176 173
175 172
-
-
-
-
-
-
-
-
-
-
-
-
- -161 - dB
- -171 - dB
- -130 - dB
- -160 - dB
- -148 - dB
- -168 - dB
- -173 - dB
dB dB
dB dB
dB dB
dB dB
dB dB
dB dB
DS641PP2 11

DIGITAL FILTER CHARACTERISTICS

Parameter Min Typ Max Units
Passband (Upsampling or Downsampling) Passband Ripple Stopband Stopband Attenuation Group Delay
3. The equation for the group delay through the sample rate converter is (56.581 / Fsi) + (55.658 / Fso). For example, if the input sample rate is 192 kHz and the outp ut samp le rate is 96 kHz, the g roup dela y through the sample rate converter is (56.581/192,000) + (55.658/96,000) =.875 milliseconds.

DC ELECTRICAL CHARACTERISTICS

(GND = 0 V; all voltages with respect to 0 V.)
Parameters Symbol Min Typ Max Units
Power-down Mode (Note 4)
Supply Current in power down VD (Oscillator attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
Supply Current in power down VD (Crystal attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
Normal Operation (Note 5)
Supply Current at 48 kHz Fsi and Fso VD (Oscillator attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
Supply Current at 192 kHz Fsi and Fso VD (Oscillator attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
Supply Current at 48 kHz Fsi and Fso VD (Crystal attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
Supply Current at 192 kHz Fsi and Fso VD (Crystal attached to XTI-XTO) VL = 3.3 V
VL = 5.0 V
CS8421
- - 0.4535*Fso Hz
- - ±0.007 dB
0.5465*Fso - - Hz 125 - - dB
(Note 3) ms
50 100 200
100
1.5 4
24
2.5 4
80
8
13 24
3 7
80
4
6.5
µA µA µA
µA
mA mA
mA mA mA
mA mA mA
mA mA mA
mA mA mA
4. Power Down Mode is defined as RST
= LOW with all clocks and data lines held static, except when a
crystal is attached across XTI-XTO, in which case the crystal will begin oscillating.
5. Normal operation is defined as RST
= HI.
12 DS641PP2

DIGITAL INPUT CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Input Leakage Current Input Capacitance Input Hysteresis

DIGITAL INTERFACE SPECIFICATIONS

(GND = 0 V; all voltages with respect to 0 V.)
Parameters Symbol Min Max Units
High-Level Output Voltage, except MCLK_OUT and SDOUT (IOH=-4 mA) Low-Level Output Voltage, except MCLK_OUT and SDOUT (IOL=4 mA) High-Level Output Voltage, MCLK_OUT (IOH=-6 mA) Low-Level Output Voltage, MCLK_OUT (IOL=6 mA) High-Level Output Voltage, SDOUT (IOH=-8 mA) Low-Level Output Voltage, SDOUT (IOL=8 mA) High-Level Input Voltage Low-Level Input Voltage
CS8421
I
in
I
in
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
IH
V
IL
--±10µA
-8- pF
- 250 - mV
0.77xVL - V
-.6V
0.77xVL - V
-.6V
0.77xVL - V
-.6V
0.58xVL VL+0.3 V
-0.3 0.8 V

SWITCHING SPECIFICATIONS

(Inputs: Logic 0 = 0 V, Logic 1 = VL; CL = 20 pF)
Parameters Symbol Min Max Units
RST pin Low Pulse Width
XTI Frequency (Note 7)
XTI Pulse Width High/Low MCLK_OUT Duty Cycle
Slave Mode
I/OSCLK Frequency OLRCK High Time
I/OSCLK High Time I/OSCLK Low Time I/OLRCK Edge to I/OSCLK Rising OLRCK Rising Edge to OSCLK Rising Edge (TDM) I/OSCLK Rising Edge to I/OLRCK Edge OSCLK Rising Edge to OLRCK Falling Edge (TDM) OSCLK Falling Edge/OLRCK Edge to SDOUT Output Valid SDIN/TDM_IN Setup Time Before I/OSCLK Rising Edge SDIN/TDM_IN Hold Time After I/OSCLK Rising Edge
(Note 6)
Crystal
Digital Clock Source
(Note 8)
t
lrckh
t
sckh
t
sckl
t
lcks
t
fss
t
lckd
t
fsh
t
dpd
t t
ds dh
1-ms
16.384
1.024
27.000
27.000
MHz MHz
14.8 - ns 45 55 %
- 24.576 MHz
326 - ns
9-ns 9-ns 6-ns 5-ns 5-ns 5-ns
-18ns 3-ns 5-ns
DS641PP2 13
Parameters Symbol Min Max Units
Master Mode (Note 9)
I/OSCLK Frequency (non-TDM) OSCLK Frequency (TDM) I/OLRCK Duty Cycle I/OSCLK Duty Cycle I/OSCLK Falling Edge to I/OLRCK Edge OSCLK Falling Edge to OLRCK Edge (TDM) OSCLK Falling Edge to SDOUT Output Valid SDIN/TDM_IN Setup Time Before I/OSCLK Rising Edge SDIN/TDM_IN Hold Time After I/OSCLK Rising Edge
I/OLRCK
(input)
I/OSCLK
(input)
SDIN
(input)
SDOUT
(output)
t
lckd
t
lcks
t
dpd
t
sckh
t
t
ds
dh
MSB
MSB
t
sckl
MSB-1
MSB-1
OLRCK
(input)
OSCLK
(input)
TDM_IN
(input)
SDOUT
(output)
CS8421
64*Fsi/o MHz
256*Fso MHz 45 55 % 45 55 %
t
lcks
t
fss
t
dpd
t
ds
t
dh
t
lrckh
t
fss
t
fsh
-5ns
-5ns
-7ns 3-ns 5-ns
t
sckh
t
t
ds
dh
MSB
t
dpd
MSB
t
sckl
MSB-1
MSB-1
I/OLRCK
(output)
I/OSCLK
(output)
SDIN
(input)
SDOUT
(output)

Figure 1. Non-TDM Slave Mode Timing Figure 2. TDM Slave Mode Timing

6. After powering up the CS8421, RST should be held low until the power supplies and clocks are se ttled.
7. The maximum possible sample rate is XTI/128.
8. OLRCK must remain high for at least 8 OSCLK periods in TDM mode.
9. Only the input or the output serial port can be set as master at a given time.
t
lcks
t
t
ds
dh
MSB
t
dpd
MSB
MSB-1
MSB-1

Figure 3. Non-TDM Master Mode Timing Figure 4. TDM Master Mode Timing

OLRCK
(output)
OSCLK
(output)
TDM_IN
(input)
SDOUT
(output)
t
fss
t
t
ds
dh
MSB
t
dpd
MSB
MSB-1
MSB-1
14 DS641PP2

3. TYPICAL CONNECTION DIAGRAMS

+2.5 V +3.3 V or +5.0 V
0.1 µF0.1 µF
VD VL
CS8421
1 k
*
Hardware Control
Settings
Serial Audio
Source
**
ILRCK ISCLK SDIN TDM_IN
MS_SEL SAIF SAOF SRC_UNLOCK BYPASS RST
CS8421
GND
GND
OLRCK OSCLK SDOUT
XTI
Serial Audio
Input
Device

Figure 5. Typical Connection Diagram, No External Master Clock

* When no external master clock is supplied to the part, both input and output must be set to slave mode for the part to operate properly. This is done by connecting the MS_SEL pin to ground through a resistance of 0 to 1 k + 1% as stated in
Table 3, “Serial Audio Port Master/Slave and Clock Ratio Select Start-Up Options (MS_SEL),” on page 19.
** The connection (VL or GND) and value of these two resistors determines the mode of operation for the input and output serial ports as described in
DS641PP2 15
Table 4 and Table 5 on page 19.
+2.5 V +3.3 V or +5.0 V
0.1 µF0.1 µF
VD VL
CS8421
Serial Audio
Source
* **
Hardware Control
Settings
ILRCK ISCLK SDIN TDM_IN
MS_SEL SAIF SAOF SRC_UNLOCK BYPASS RST
CS8421
GND
MCLK_OUT
GND
OLRCK OSCLK SDOUT
XTI
XTO
47 k
Serial Audio
Input
Device
Crystal /Clock
Source
To external
hardware

Figure 6. Typical Connection Diagram, Master and Slave Modes

* The connection (VL or GND) and value of these three resistors determines the mode of operation for the input and output serial ports as described in
Table 3 Serial Audio Port Master/Slave and Clock Ratio Select Start-Up Options (MS_SEL), Table 4 Serial Audio Input Port Start-Up Options (SAIF), and Table 5 Serial Audio Output Port Start-Up Options (SAOF)
** MCLK_OUT pin should be pulled high through a 47 k resistor if an MCLK output is not needed.
, all on page 19.
16 DS641PP2
CS8421

4. GENERAL DESCRIPTION

The CS8421 is a 32-bit, high performance, monolithic CMOS stereo asynchronous sample rate converter. The digital audio data is input and output through configurable 3-wire serial ports. The digital audio input/output ports
offer Left Justified, Right Justified, and I²S serial a udio f orm ats. The CS 8421 also supp orts a T DM m ode which al ­lows multiple channels of digital audio data on on e se rial line . A b ypass mo de allows the data to be p asse d dire ctly to the output port without sample rate conversion.
The CS8421 does not require a control port interface, helping to speed design time by not requiring the user to de­velop software to configure the part. Pins that are sensed after reset allow the part to be configured. See “Reset,
Power Down, and Start-Up” on page 34.
Target applications include digital recording systems (DVD-R/RW, CD-R/RW, PVR, DAT, MD, and VTR), digital mix­ing consoles, high quality D/A, effects processors and computer audio systems.
Figure 5 and 6 show the supply and external connections to the CS8421.

5. THREE-WIRE SERIAL INPUT/OUTPUT AUDIO PORT

A 3-wire serial audio input/output port is provided. The interface format should be chosen to suit the attached device through the MS_SEL, SAIF, and SAOF pins. Tables 3, 4, and 5 show the pin functions and their correspon ding set­tings. The following parameters are adjustable:
Master or slave.
Master clock (MCLK) frequencies of 128*Fsi/o, 256*Fsi/o, 384*Fsi/o, and 512*Fsi/o (Master mode).
Audio data resolution of 16, 20, 24, or 32-bits.
Left or right justification of the data relative to left/right clock (LRCK) as well as I²S.
Figures 7, 8, and 9 show the input/output formats available.
In master mode, the left/right clock and the serial bit clock are outputs, derived from the XTI input pin master clock. In slave mode, the left/right clock and the serial bit clock are inputs and may be asynchronous to the XTI master
clock. The left/right clock should be continuous, but the duty cycle can be less than 50% if enough serial clocks are present in each phase to clock all of the data bits.
ISCLK is always set to 64*Fsi when the input is set to master. In normal operation, OSCLK is set to 64*Fso. In TDM slave mode, OSCLK must operate at N*64*Fso, where N is the number of CS8421’s connected together. In TDM master mode, OSCLK is set to 256*Fso
For more information about serial audio formats, refer to the Cirrus Logic applications note AN282, “The 2-Channel Serial Audio Interface: A Tutorial”, available at www.cirrus.com
.
DS641PP2 17
CS8421
I/OLRCK I/OSCLK
SDIN
SDOUT
I/OLRCK I/OSCLK
SDIN
SDOUT
I/OLRCK
I/OSCLK
SDIN
SDOUT
Channel A
MSB LSB
Figure 7. Serial Audio Interface Format - I²S
Channel A Channel B
MSB LSB
MSB

Figure 8. Serial Audio Interface Format - Left-Justified

Channel A
MSB
MSB Extended MSB Extended
MSB
LSB
LSB

Figure 9. Serial Audio Interface Format - Right-Justified

MSB
Channel B
LSB
LSB
Channel B
MSB
MSB LSB
MSB
MSB
LSB
18 DS641PP2
CS8421

6. MODE SELECTION

The CS8421 uses the resistors attached to the MS_SEL, SAIF, and SAOF pins to determine the mod es of operation. After reset, the resistor value and condition (VL or GND) are sensed. This operation will take approximately 4 µs to complete. The SRC_UNLOCK pin will remain high and the SDOUT pin will be muted until the mode detection se­quence has completed. After this, if all clocks are stable, SRC_UNLOCK will be brought low when audio output is valid and normal operation will occur. Tables3, 4, and 5 show the pin functions and their corresponding settings. If the 1.0 kΩ option is selected for MS_SEL, SAIF, or SAOF, the resistor connected to that pin may be replaced by a direct connection to VL or GND as appropriate.
The resistor attached to each mode selection pin should be placed physically close to the CS8421. The end of the resistor not connected to the mode selection pins should be connected as close as possible to VL and GND to min­imize noise. Tables 3, 4, and 5 show the pin functions and their corresponding settings.
MS_SEL pin Input M/S Output M/S
1.0 k± 1% to GND Slave Slave
1.96 k± 1% to GND Slave
4.02 k± 1% to GND Slave
8.06 k± 1% to GND Slave
16.2 k± 1% to GND Slave
1.0 k±1% to VL
1.96 k± 1% to VL
4.02 k± 1% to VL
8.06 k± 1% to VL

Table 3. Serial Audio Port Master/Slave and Clock Ratio Select Start-Up Options (MS_SEL)

Master ( Master (256 x Fsi) Master (
Master (
128 x Fsi)
384 x Fsi)
512 x Fsi)
Master ( Master (
Master (384 x Fso) Master (
128 x Fso) 256 x Fso)
512 x Fso)
Slave Slave Slave Slave
SAIF pin Input Port Configuration
1.0 k± 1% to GND I²S up to 32-bit data
1.96 k± 1% to GND Left Justified up to 32-bit data
4.02 k± 1% to GND Right Justified 16-bit data
1.0 k± 1% to VL Right Justified 20-bit data
1.96 k± 1% to VL Right Justified 24-bit data
4.02 k± 1% to VL Right Justified 32-bit data

Table 4. Serial Audio Input Port Start-Up Options (SAIF)

SAOF pin Output Port Configuration
1.0 k± 1% to GND I²S 16-bit data
1.96 k± 1% to GND I²S 20-bit data
4.02 k± 1% to GND I²S 24-bit data
8.06 k± 1% to GND I²S 32-bit data
16.2 k± 1% to GND Left Justified 16-bit data
32.4 k± 1% to GND Left Justified 20-bit data
63.4 k± 1% to GND Left Justified 24-bit data
127.0 k± 1% to GND Left Justified 32-bit data
1.0 k± 1% to VL Right Justified 16-bit data
1.96 k± 1% to VL Right Justified 20-bit data
4.02 k± 1% to VL Right Justified 24-bit data
8.06 k± 1% to VL Right Justified 32-bit data
16.2 k± 1% to VL TDM Mode 16-bit data
32.4 k± 1% to VL TDM Mode 20-bit data
63.4 k± 1% to VL TDM Mode 24-bit data
127.0 k± 1% to VL TDM Mode 32-bit data

Ta bl e 5 . Seria l Au di o Output Port Start-Up Options (SAOF)

DS641PP2 19
CS8421

7. SAMPLE RATE CONVERTER (SRC)

Multirate digital signal processing techniques are used to conceptually upsample the incoming data to a very high rate and then downsample to the outgo ing rate. The internal data path is 32-bits wide even if a lower bit depth is selected at the output. The filtering is designed so that a full input audio bandwidth of 20 kHz is preserved if the input sample and output sample rates are greater than or equal to 44.1 kHz. When the output sample rate becomes less than the input sample rate, the input is automatically band limited to avoid aliasing products in the output. Careful design ensures minimum ripple and distortion products are added to the incoming signal. The SRC also determines the ratio between the incoming and outgoing sa mple rates, and sets the filter corn er frequenci es appropriately. An y jitter in the incoming signal has little impact on the dynamic performance of the rate converter and has no influence on the output clock.

7.1 Data Resolution and Dither

When using the serial audio input port in left justified and I²S modes all input data is treated as 32-bits wide. Any truncation that has been done prior to the CS8421 to less than 32-bits should have been done using an appropriate dithering process. If the serial audio input port is in right justified mode, the input data will be truncated to the bit depth set by SAIF pin setting. If the SAIF bit depth is set to 16, 20, or 24-bits, and the input data is 32-bits wide, then truncation distortion will occur. Similarly, in any serial audio input port mode, if an inadequate number of bit clocks are entered (i.e. 16 clocks instead of 20 clocks), then the input wo rds will be truncated, causing truncation distortion at low levels. In summary, there is no dithering mechanism on the input side of the CS8421, and care must be taken to ensure that no truncation occurs.
Dithering is used internally where appropriate inside the SRC block. The output side of the SRC can be set to 16, 20, 24, or 32-bits. Dithering is applied and is automatically
scaled to the selected output word length. This dither is not correlated betw ee n lef t and ri gh t ch an ne ls.

7.2 SRC Locking and Varispeed

The SRC calculates the ratio between the input sample rate and the output sample rate, and uses this in­formation to set up various parameters inside the SRC block. The SRC takes some time to make this cal­culation, approximately 4200/Fso (8.75 ms at Fso of 48 kHz).
If Fsi is changing, as in a varispeed application, the SRC will track the incoming sample rate. During this tracking mode, the SRC will still rate convert the audio data, but at increased distortion levels. Once the in­coming sample rate is stable the SRC will return to normal levels of audio quality. The data buffer in the SRC can overflow if the input sample rate changes at greater than 10%/sec.
The SRC_UNLOCK pin is used to indicate when the SRC is not locked. When RST is a change in Fsi or Fso, SRC_UNLOCK will be set high. The SRC_UNLOCK pin will continue to be high until the SRC has reacquired lock and settled, at which point it will transition low. When the SRC_UNLOCK pin is set low, SDOUT is outputting valid audio data. This can be used to signal a DAC to unmute its output.

7.3 Bypass Mode

When the BYPASS pin is set high, the input data bypasses the sample rate converter and is sent directly to the serial audio output port. No dithering is performed on the output data. This mode is ideal for passing non-audio data through without a sample rate conversion. ILRCK and OLRCK should be the same sample rate and synchronous in this mode.
is asserted, or if there
20 DS641PP2

7.4 Muting

The SDOUT pin is set to all zero output (full mute) immediately after the RST pin is set high. When the output from the SRC becomes valid, though the SRC may not have reached full performance, SDOUT is unmuted over a period of approximately 4096 OLRCK cycles (soft unmuted). When the outp ut becomes invalid, de­pending on the condition, SDOUT is either immediately set to all zero output (hard muted) or SDOUT is mut­ed over a period of approximately 4096 OLRCK cycles until it reaches full mute (soft muted). The SRC will soft mute SDOUT if there is an illegal ratio between ILRCK and the XTI master clock. Conditions that will cause the SRC to hard mute SDOUT include removing OLRCK, the RST between OLRCK and the XTI master clock. After all invalid states have been cleared, the SRC will soft un­mute SDOUT.
pin being set low, or illegal ratios

7.5 Group Delay and Phase Matching Between Multiple CS8421 Parts

The equation for the group delay through the sample rate converter is shown in “Digital Filter Characteris-
tics” on page 12. This phase delay is equal across multiple parts. Therefore, when multiple parts operate at
the same Fsi and Fso and use a common XTI/XTO clock, their output data is phase matched.

7.6 Master Clock

The CS8421 uses the clock signal supplied through XTI as its master clock (MCLK). MCLK can be supplied from a digital clock source, a crystal oscillator, or a fundamental mode crystal. Figure 10 shows the typical connection diagram for using a fundamental mode crystal. Please refer to the crystal manufacturer’s spec­ifications for the external capacitor recommendations. If XTO is not used, such as with a digital clock source or crystal oscillator, XTO should be left unconnected or pulled low through a 47 k resistor to GND.
CS8421
If either serial audio port is set as master, MCLK will be used to supply the sub-clocks to the master SCLK and LRCK. In this case MCLK will be synchronous to the master serial audio port. If both serial audio ports are set as slave, MCLK can be asynchronous to either or both ports. If the user needs to change the clock source to XTI while the CS8421 is still powered on and running, a RESET must be issued once the XTI clock source is present and valid to ensure proper operation.
When both serial ports are configured as slave and operating at sample rates less than 96 kHz, the CS8421 has the ability to operate without a master clock input through XT I. This benefits the design by not requiring extra external clock components (lowering production cost) and not requiring a master clock to be routed to the CS8421, resulting in lowered noise contribution in the system. In this mode, an inte rnal oscillator pro­vides the clock to run all of the internal logic. To enable the internal oscillator simply tie XTI to GND or VL. In this mode, XTO should be left unconnected.
The CS8421 can also provide a buffered MCLK output through the MCLK_OUT pin. This pin can be used to supply MCLK to other system components that operate synchronously to MCLK. If MCLK_OUT is not needed, the output of the pin can be disabled by pulling the pin high through a 47 k resistor to VL. MCLK_OUT is also disabled when using the internal oscillator mode. The MCLK_OUT pin will be set low when disabled by using the internal oscillator mode.
DS641PP2 21

7.6.1 Clocking

In order to ensure proper operation of the CS8421, the clock or crystal attached to XTI must simultaneously satisfy the requirements of LRCK for both the input and output as follows:
If the input is set to master, Fsi XTI/128 and Fso ≤ XTI/130.
If the output is set to master, Fso XTI/128 and Fsi ≤ XTI/130.
If both input and output are set to slave, XTI 130*[maximum(Fsi,Fso)], XTI/Fsi < 3750, and XTI/Fso <
3750.
CS8421
XTI XTO
R
CC
Figure 10. Typical Connection Diagram for Crystal Circuit
22 DS641PP2
CS8421

8. TIME DIVISION MULTIPLEXING (TDM) MODE

TDM mode allows several CS8421 to be serially connected together allowing their corresponding SDOUT data to be multiplexed onto one line for input into a DSP or other TDM capable multichann el device.
The CS8421 can operate in two TDM modes. The first mode consists of all of the CS8421’s output ports se t to slave as shown in Figure 13. The second mode consists of one CS8421 output port set to master and the remaining CS8421’s output ports set to slave as shown in Figure 14.
The TDM_IN pin is used to input the data while the SDOUT pin is used to output the data. The first CS 8421 in t he chain should have its TDM_IN set to GND. Data is transmitted from SDOUT most significant bit first on the first OSCLK falling edge after an OLRCK transition and is valid on the rising edge of OSCLK.
In TDM slave mode, the number of channels that can by multiplexed to one serial data line depends on the output sampling rate. For slave mode, OSCLK must operate at N*64*Fso, where N is the number of CS8421’s connected together. The maximum allowable OSCLK frequency is 24.576 MHz, so for Fso = 48 kH z, N = 8 (16 channels of serial audio data).
In TDM master mode, OSCLK operates at 256*Fso, which is equivalent to N = 4, so a maximum of 8 channels of digital audio can be multiplexed together. Note that fo r TDM master mode, MCLK must be at least 256*Fso, where Fso 96 kHz. OLRCK identifies the start of a new frame. Each time slot is 32-bits wide, with the valid data sample left justified within the time slot. Valid data lengths are 16, 20, 24 or 32-bits. Figures 11 and 12 show the interface format for master and slave TDM modes with a 32-bit word-length.
OLRCK
OSCLK
SDOUT/ TDM_IN
OLRCK
OSCLK
SDOUT/ TDM_IN
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB
SDOUT 3 (Left) SDOUT 3 (Right)
32 clks 32 clks 32 clks 32 clks 32 clks 32 clks
SDOUT 2 (Left)
SDOUT 2 (Right) SDOUT 1 (Left) SDOUT 1 (Right) SDOUT 0 (Left) SDOUT 0 (Right)

Figure 11. TDM Slave Mode Timing Diagram

256 OSCLKs
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB
SDOUT 3 (Left) SDOUT 3 (Right)
32 clks 32 clks 32 clks 32 clks 32 cl ks 32 clks
SDOUT 2 (Left)
SDOUT 2 (Right) SDOUT 1 (Left) SDOUT 1 (Right) SDOUT 0 (Left) SDOUT 0 (Right)

Figure 12. TDM Master Mode Timing Diagram

LSBMSB LSBMSB
32 clks 32 clks
LSBMSB LSBMSB
32 clks 32 clks
DS641PP2 23
CS8421
Output
Clock
Source
OLRCK OSCLK SDOUT
LRCK
SCLK
PCM Source 0
CS8421
ILRCK
ISCLK
SDIN
Phase
Master/
Slave
0
OLRCK
OSCLK
SDOUTTDM_IN
OLRCK OSCLK SDOUT
PCM Source 1
CS8421
ILRCK
ISCLK
SDIN
1
OLRCK
OSCLK
SDOUTTDM_IN
Slave
OLRCK OSCLK SDOUT
PCM Source n
CS8421
ILRCK
ISCLK
SDIN
Slave

Figure 13. TDM Mode Configuration (All CS8421 Outputs are Slave)

N
OLRCK
OSCLK
SDOUTTDM_IN
DSP
LRCK
SCLK
SDIN
Slave
OLRCK OSCLK SDOUT
PCM Source 0

Figure 14. TDM Mode Configuration (First CS8421 Output is Master, All Others are Slave)

CS8421
ILRCK
ISCLK
SDIN
Clock
and
Phase
Master
0
OLRCK
OSCLK
SDOUTTDM_IN
OLRCK OSCLK SDOUT
PCM Source 1
CS8421
ILRCK
ISCLK
SDIN
Slave
1
OLRCK
OSCLK
SDOUTTDM_IN
OLRCK OSCLK SDOUT
PCM Source n
CS8421
ILRCK
ISCLK
SDIN
Slave
N
OLRCK
OSCLK
SDOUTTDM_IN
DSP
LRCK
SCLK
SDIN
Slave
24 DS641PP2

9. PERFORMANCE PLOTS

CS8421
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 15. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz
Tone, 48 kHz:48 kHz
+0
-20
-40
-60
-80
d
B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
+0
-20
-40
-60
-80
d
B
-100
F
S
-120
-140
-160
-180
-200 20k 80k40k 60k
Hz
Figure 16. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz
Tone, 44.1 kHz:192 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200
2.5k 20k5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 17. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz
Tone, 44.1 kHz:48 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 10k 40k20k 30k
Hz
Figure 19. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz
Tone, 48 kHz:96 kHz
Figure 18. Wideband FFT Plot (16k Po ints) 0 dBFS 1 kHz
Tone, 48 kHz:44.1 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 20. Wideband FFT Plot (16k Po ints) 0 dBFS 1 kHz
Tone, 96 kHz:48 kHz
DS641PP2 25
CS8421
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 21. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz
Tone, 192 kHz:48 kHz
-60
-80
-100
d
-120
B F S
-140
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200 10k 40k20k 30k
Hz
Figure 22. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 48 kHz:96 kHz
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 23. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 48 kHz:48 kHz
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200
5k 20k10k 15k
Hz
Figure 25. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 44.1 kHz:48 kHz
-160
-180
-200 20k 80k40k 60k
Hz
Figure 24. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 44.1 kHz:192 kHz
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200
2.5k 20k5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 26. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 48 kHz:44.1 kHz
26 DS641PP2
CS8421
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 27. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 96 kHz:48 kHz
-60
-80
-100
d
-120
B F S
-140
-160
-180
-200 5k 20k10k 15k
Hz
+0
-20
-40
-60
-80
d
B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 28. IMD, 10 kHz and 11 kHz -7 dBFS,
96 kHz:48 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200
2.5k 20k5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 29. Wideband FFT Plot (16k Points) -60 dBFS
1 kHz Tone, 192 kHz:48 kHz
+0
-20
-40
-60
-80
d
B
-100
F
S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 31. IMD, 10 kHz and 11 kHz -7 dBFS,
44.1 kHz:48 kHz
Figure 30. IMD, 10 kHz and 11 kHz -7 dBFS,
48 kHz:44.1 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
Figure 32. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz
Tone, 44.1 kHz:48 kHz
DS641PP2 27
CS8421
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200 20k 80k40k 60k
Hz
Figure 33. Wideband FFT Plot (16 k Points) 0 dBFS 80 kHz
Tone, 192 kHz:192 kHz
+0
-20
-40
-60
-80
d
B
-100
F S
-120
-140
-160
-180
-200 5k 20k10k 15k
Hz
+0
-20
-40
-60
-80
d
B
-100
F S
-120
-140
-160
-180
-200 10k 40k20k 30k
Hz
Figure 34. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz
Tone, 48 kHz:96 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200
5k 20k10k 15k
Hz
Figure 35. Wideband FFT Plot (16 k Points) 0 dBFS 20 kHz
Tone, 48 kHz:48 kHz
+0
-20
-40
-60
-80
d B
-100
F S
-120
-140
-160
-180
-200
2.5k 20k5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 37. Wideband FFT Plot (16 k Points) 0 dBFS 20 kHz
Tone, 48 kHz:44.1 kHz
Figure 36. Wideband FFT Plot (16k Points) 0 dBFS 20 kHz
Tone, 96 kHz:48 kHz
-120
-122.5
-125
-127.5
-130
-132.5
d
B
-135
F S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 38. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz
Tone, Fsi = 192 kHz
28 DS641PP2
d B F S
-120
-122.5
-125
-127.5
-130
-132.5
-135
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
CS8421
-120
-122.5
-125
-127.5
-130
-132.5
d B
-135
F S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 39. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz
Tone, Fsi = 48 kHz
-120
-122.5
-125
-127.5
-130
-132.5
d
B
-135
F
S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 41. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz
Tone, Fsi = 44.1 kHz
-120
-122.5
-125
-127.5
-130
-132.5
d B
-135
F S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 40. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz
Tone, Fsi = 96 kHz
-135
-136
-137
-138
-139
d
B
-140
F
S
-141
-142
-143
-144
-145 50k 175k75k 100k 125k 150k
Hz
Figure 42. Dynamic Range vs. Output Sample Rate, -
60 dBFS 1 kHz Tone, Fsi = 192 kHz
-120
-122.5
-125
-127.5
-130
-132.5
d
B
-135
F
S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 43. THD+N vs. Output Sample Rate, 0 dBFS 1 kHz
Tone, Fsi = 32 kHz
Figure 44. Dynamic Range vs. Output Sample Rate, -
60 dBFS 1 kHz Tone, Fsi = 32 kHz
DS641PP2 29
CS8421
-120
-122.5
-125
-127.5
-130
-132.5
d
B
-135
F
S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
-120
-122.5
-125
-127.5
-130
-132.5
d B
-135
F S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
Figure 45. Dynamic Range vs. Output Sample Rate, -
60 dBFS 1 kHz Tone, Fsi = 96 kHz
+0
-20
-40
-60
d B F
-80
S
-100
-120
-140
192 kHz:32 kHz
0 60k10k 20k 30k 40k 50k
192 kHz:48 kHz
192 kHz:96 kHz
Hz
Figure 46. Dynamic Range vs. Output Sample Rate, -
60 dBFS 1 kHz Tone, Fsi = 44.1 kHz
+0
-0.02
-0.04
-0.06
-0.08
d
B
-0.1
F S
-0.12
-0.14
-0.16
-0.18
-0.2
0 25k5k 10k 15k 20k
Hz
Figure 47. Frequency Response with 0 dBFS Input Figure 48. Passband Ripple, 192 kHz:48 kHz
-120
-122.5
-125
-127.5
-130
-132.5
d B
-135
F S
-137.5
-140
-142.5
-145
-147.5
-150 50k 175k75k 100k 125k 150k
Hz
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 49. Dynamic Range vs. Output Sample Rate, -
60 dBFS 1 kHz Tone, Fsi = 48 kHz
Figure 50. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 48 kHz:48 kHz
30 DS641PP2
CS8421
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 51. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 48 kHz:44.1 kHz
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F
S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 52. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 48 kHz:96 kHz
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 53. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 96 kHz:48 kHz
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 55. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 44.1 kHz:48 kHz
Figure 54. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 44.1 kHz:192 kHz
+0
-10
-20
-30
-40
-50
d
-60
B
-70
F S
-80
-90
-100
-110
-120
-130
-140
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 56. Linearity Error, 0 to -140 dBFS Input, 200 Hz
Tone, 192 kHz:44.1 kHz
DS641PP2 31
CS8421
-110
-115
-120
-125
-130
-135
-140
d
B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 57. THD+N vs. Input Amplitude, 1 kHz Tone,
48 kHz:44.1 kHz
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 58. THD+N vs. Input Amplitude, 1 kHz Tone,
48 kHz:96 kHz
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 59. THD+N vs. Input Amplitude, 1 kHz Tone,
96 kHz:48 kHz
-110
-115
-120
-125
-130
-135
-140
d
B
-145
F
S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 61. THD+N vs. Input Amplitude, 1 kHz Tone,
44.1 kHz:48 kHz
Figure 60. THD+N vs. Input Amplitude, 1 kHz Tone,
44.1 kHz:192 kHz
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 62. THD+N vs. Input Amplitude, 1 kHz Tone,
192kHz:48kHz
32 DS641PP2
CS8421
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180 0 20k2.5k 5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 63. THD+N vs. Frequency Input, 0 dBFS,
48 kHz:44.1 kHz
-110
-115
-120
-125
-130
-135
-140
d
B
-145
F S
-150
-155
-160
-165
-170
-175
-180 0 20k2.5k 5k 7.5k 10k 12.5k 15k 17.5k
Hz
-110
-115
-120
-125
-130
-135
-140
d
B
-145
F S
-150
-155
-160
-165
-170
-175
-180
-140 +0-120 -100 -80 -60 -40 -20
dBFS
Figure 64. THD+N vs. Frequency Input, 0 dBFS,
48 kHz:96 kHz
-110
-115
-120
-125
-130
-135
-140
d B
-145
F S
-150
-155
-160
-165
-170
-175
-180 0 20k2.5k 5k 7.5k 10k 12.5k 15k 17.5k
Hz
Figure 65. THD+N vs. Frequency Input, 0 dBFS,
44.1 kHz:48 kHz
Figure 66. THD+N vs. Frequency Input, 0 dBFS,
96 kHz:48 kHz
All performance plots represent typical performance. Measurements for a ll performance plots were taken under the following conditions, unless otherwise stated:
VD = 2.5 V, VL = 3.3 V
Serial Audio Input port set to slave
Serial Audio Output port set to slave
Input and output clocks and data are asynchronous
XTI/XTO = 27 MHz
Input signal = 1.000 kHz, 0 dBFS
Measurement Bandwidth = 20 to (Fso/2) Hz
Word Width = 24 Bits
DS641PP2 33

10.APPLICATIONS

10.1 Reset, Power Down, and Start-Up

When RST is low the CS8421 enters a low power mode, all internal states are reset, and the outputs are disabled. After RST (MS_SEL, SAIF, and SAOF) and sets the appropriate mode of operation. After the mo de has been se t (ap­proximately 4 µs) the part is set to normal operation and all outputs are functional.

10.2 Power Supply, Grounding, and PCB Layout

The CS8421 operates from a VD = +2.5 V and VL = +3.3 V or +5.0 V supply. These supplies may be set independently. Follow normal supply decoupling practices, see Figure 6.
Extensive use of power and ground planes, ground plane fill in unused areas, and surface mount decoupling capacitors are recommended. Decoupling capacitors should be mounted on the same side of the b oard a s the CS8421 to minimize inductance effects and all decoupling capacitors sho uld be as close to the CS8421 as possible. The pin of the configuration resistors not connected to MS_SEL, SAIF, and SAOF should be connected as close as possible to VL or GND.
transitions from low to high the part senses the resistor value on the configuration pins
CS8421
34 DS641PP2

11. PACKAGE DIMENSIONS 20L TSSOP (4.4 mm BODY) PACKAGE DRAWING

N
CS8421
1
23
TOP VIEW
D
E
e
2
b
SIDE VIEW
A2
A1
A
SEATING
PLANE
L
INCHES MILLIMETERS
1
E1
END VIEW
NOTE
DIM MIN NOM MAX MIN NOM MAX
A -- -- 0.043 -- -- 1.10 A1 0.002 0.004 0.006 0.05 -- 0.15 A2 0.03346 0.0354 0 .037 0.85 0.90 0.95
b 0.00748 0.0096 0.012 0.19 0.245 0.30 2,3 D 0.252 0.256 0.259 6.40 6.50 6.60 1 E 0.248 0.2519 0.256 6.30 6.40 6.50
E1 0.169 0.1732 0.177 4.30 4.40 4.50 1
e -- -- 0.026 -- -- 0.65
L 0.020 0.024 0.028 0.50 0.60 0.70
µ
JEDEC #: MO-153
Controlling Dimension is Millimeters.
Notes:
1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not re­duce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
THERMAL CHARACTERISTICS
Parameter Symbol Min Typ Max Units
Junction to Ambient Thermal Impedance 2 Layer Board
4 Layer Board
θ
JA
-
-
DS641PP2 35
48 38
-
-
°C/Watt °C/Watt
20-PIN QFN (5 × 5 MM BODY) PACKAGE DRAWING
CS8421
D
Pin #1 Corner
Top View
b
E
A1 A
Side View
E2
L
Bottom View
INCHES MILLIMETERS
D2
e
Pin #1 Corner
NOTE
DIM MIN NOM MAX MIN NOM MAX
A----0.0394----1.001
A1 0.0000 -- 0.0020 0.00 -- 0.05 1
b 0.0091 0.0110 0.0130 0.23 0.28 0.33 1,2
D 0.1969 BSC 5.00 BSC 1
D2 0.1201 0.1220 0.1240 3.05 3.10 3.15 1
E 0.1969 BSC 5.00 BSC 1
E2 0.1202 0.1221 0.1241 3.05 3.10 3.15 1
e 0.0256 BSC 0.65 BSC 1 L 0.0197 0.0236 0.0276 0.50 0.60 0.70 1
JEDEC #: MO-220
Controlling Dimension is Millimeters.
Notes:
1. Dimensioning and tolerance per ASME Y 14.5M-1995.
2. Dimensioning lead width applies to the plated terminal and is m easured between 0 .23mm and 0.33mm from the terminal tip.
THERMAL CHARACTERISTICS
Parameter Symbol Min Typ Max Units
Junction to Ambient Thermal Impedance 2 Layer Board
4 Layer Board
θ
JA
-
-
36 DS641PP2
128
35
-
-
°C/Watt °C/Watt

12.REVISION HISTORY

Release Date Changes
A1 July 2004 Initial Advance Release
CS8421
PP1 January 2005 -Updated
-Updated
-Updated
-Updated
-Updated
-Updated Figure 6. “Typical Connection Diagram, Master and Slave Modes”
on page 16
-Added
page 15
Figure 5. “Typical Connection Diagram, No External Master Clock” on
.
-Corrected reference to bypass mode to output only data on
-Added
Section 7.6.1 “Clocking” on page 22.
-Updated
-Updated
-Added Thermal Pad label
-Added Thermal Pad pin description to
-Updated
PP2 July 2005 -Updated
-Corrected
-Corrected
“Features” on page 1. “Sample Rate with other XTI clocks” on page 11. “DC Electrical Characteristics” on page 12. “Digital Input Characteristics” on page 13. “Digital Interface Specifications” on page 13
.
page 17.
“Master Clock” on page 21. “Time Division Multiplexing (TDM) Mode” on page 23.
“Pin Descriptions” on page 6.
“QFN Pin Descriptions” on page 8.
“Performance Plots” on page 25. “Characteristics and Specifications” on page 10.
Section 7.6.1 “Clocking” on page 22. “Thermal Characteristics” on page 36.
Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to
IIMPORTANT NOTICE “Preliminary” product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its sub-
sidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” wi thout warrant y of any kind ( express or imp lied). Custo mers are advised to obtain the l atest versi on of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, includ ing tho se p e rtainin g to war ranty , inde mni fic ation, a nd lim itation o f liab ility . N o re sp ons ibility is as sum ed by C irrus for the use of this info rma ­tion, including us e of this information as the basis for manufacture or sale of any items, or f or infringement of p atents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or ot her int ellectua l propert y right s. Cirr us owns the c opyright s associat ed with t he informa tion cont ained her ein and gives c onsent f or copie s to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not exte nd to other copying such as copying for general distribution, advertising or promotional purposes , or for crea ting any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE­VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA­TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY I NDEMNIFY CIRRUS , ITS OFFI CERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILIT Y, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo design s ar e tra de m a rks of Cir rus Lo gic, Inc. A ll oth er bra nd an d p ro du c t names in this document may be trademarks or service marks of their respective owners.
www.cirrus.com
DS641PP2 37
Loading...