Cirrus Logic CS8416-IZ, CS8416-IS, CS8416-CZ, CS8416-CS Datasheet

CS8416
192 kHz Digital Audio Interface Receiver

Features

Complete EIAJ CP1201, IEC-60958, AES3, S/PDIF compatible receiver
+3.3 V Analog Supply(VA)
+3.3 V to +5.0 V Digital Interface Supply (VL)
+3.3 V Digital Supply (VD)
8:2 S/PDIF Input MUX
AES/SPDIF input pins selectable in hardware mode
3 General Purpose Outputs (GPO) allow signal routing
Selectable signal routing to GPO pins
S/PDIF to TX inputs selectable in hardware mode
Flexible 3-wire serial digital output port
32 kHz to 192 kHz sample frequency range
Low jitter clock recovery
Pin and microcontroller read access to Channel Status and User data
SPI or I2C control port Software Mode and standalone Hardware Mode
Differential cable receiver
On-chip Channel Status data buffer memories
Auto-detection of compressed audio input streams
Decodes CD Q sub-code
OMCK System Clock Mode

General Description

The CS8416 is a monolithic CMOS device which re­ceives and decodes one of 8 channels of audio data according to the IEC60958, S/PDIF, EIAJ CP1201, or AES3 interface standards. The CS8416 has a serial dig­ital audio output port and comprehensive control ability through a selectable control port in Software Mode or through selectable pins in Hardware Mode. Channel sta­tus data are assembled in buffers, making read access easy.
GPO pins may be assigned to route a variety of signals to output pins
A low jitter clock recovery mechanism yields a very clean recoveredclockfromtheincomingAES3stream.
Stand-alone operation allows systems with no microcon­troller to operate the CS8416 with dedicated output pins for channel status data.
Target applications include A/V receivers, CD-R, DVD receivers, multimedia speakers, digital mixing consoles, effects processors, set-top boxes, and computer and au­tomotive audio systems.
ORDERING INFORMATION
CS8416-CS 28-pin SOIC -10 to +70°C CS8416-CZ 28-pin TSSOP -10 to +70°C CS8416-IS 28-pin SOIC -40 to +85°C CS8416-IZ 28-pin TSSOP -40 to +85°C
VA+ AG ND FI LT
RXN
RXP0 RXP1 RXP2 RXP3 RXP4 RXP5 RXP6 RXP7
Receiver
8:2
MUX
Clock & Data Recovery
Misc. Control
RST
Advance Product Information
http://www.cirrus.com
RMCK
AES3 S/PDIF Decod er
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
VD+
SDA/ CDOUT
CopyrightCirrus Logic, Inc. 2002
VL+ DGND
De-emphasis
Filter
C&Ubit
Data Buffer
Control Port & Registe rs
SCL/
AD1/ CDIN
AD0/ CS
CCLK
(All Rights Reserved)
OMCK
Serial Audi o Outpu t
MUX
n:3
OLRCK OSCLK SDOUT
GPO0 GPO1
AD2/GPO2
AUG ‘02
DS578PP2
1
TABLE OF CONTENTS
1 CHARACTERISTICS AND SPECIFICATIONS ......................................................................... 5
Power and Thermal Characteristics..........................................................................................5
Absolute Maximum Ratings ...................................................................................................... 5
Digital Characteristics............................................................................................................... 6
Switching Characteristics - Serial Audio Ports.......................................................................... 7
Switching Characteristics - Control Port - SPI Mode ................................................................ 8
Switching Characteristics - Control Port- I
2 TYPICAL CONNECTION DIAGRAMS .................................................................................... 10
3 GENERAL DESCRIPTION ......................................................................................................12
3.1 AES3 and S/PDIF Standards Documents ........................................................................ 12
4 SERIAL AUDIO OUTPUT PORT ............................................................................................. 13
4.1 Slip/Repeat Behavior ....................................................................................................... 13
4.2 AES11 Behavior .............................................................................................................. 14
5 S/PDIF RECEIVER .................................................................................................................. 16
5.1 8:2 S/PDIF Input Multiplexer ............................................................................................16
5.2 PLL, Jitter Attenuation, and Clock Switching ................................................................... 16
5.2.1 OMCK System Clock Mode ................................................................................ 17
5.2.2 PLL External Components .................................................................................. 17
5.3 Error Reporting and Hold Function .................................................................................. 17
5.4 Channel Status Data Handling ......................................................................................... 18
5.5 User Data Handling .......................................................................................................... 18
5.5.1 Non-Audio Auto-Detection .................................................................................. 18
6 CONTROL PORT DESCRIPTION AND TIMING ..................................................................... 20
6.1 SPI Mode ......................................................................................................................... 20
2
6.2 I
C Mode .......................................................................................................................... 21
6.3 General Purpose Outputs ................................................................................................ 22
6.4 Interrupts ..........................................................................................................................22
7 CONTROL PORT REGISTER SUMMARY .............................................................................23
8 CONTROL PORT REGISTER BIT DEFINITIONS ................................................................... 25
8.1 Control0 (00h)................................................................................................................... 25
8.2 Control1 (01h)................................................................................................................... 25
CS8416
2
C format................................................................. 9
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to <http://www.cirrus.com/corporate/contacts/sales.cfm>
IMPORTANT NOTICE
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. "Advance" product inf or­mation describes products that are i n development and subject to development changes. Cirrus Logic, I nc. and its subsidiaries ("Cirrus") believe that the infor­mation contained in this document is accurate and reliable. However, the informati on is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant i nformation to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility i s assumed by Cirrus f or the use of this informati on, i ncludi ng use of this information as the basis for manufacture or sale of any items, or for i nfringement of patents or other rights of third parties. This document is the property of Cir rus and by furnishi ng this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property ri ghts. Ci rrus owns the copyrights of the information contained herein and gives consent for copies to be made of the info rmation only for use within your organization wi th respect to Cirrus integr ated ci rcuits or other parts of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or pr omotional purposes, or for creating any work for resale.
An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in thisma­terial and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export li cense and/or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies describ ed in this material is subject to the PRC Foreign Trade Law and i s to be exported or taken out of the PRC.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (" CRITICAL APPLICATIONS") . CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANT­ED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.
Cirrus Logic, Cirrus, and the Cirrus Logi c logo desi gns are trademarks of Cirrus Logic, Inc. All other brand and product names in this d ocument may be trade­marks or service marks of their respective owners.
2 DS578PP2
CS8416
8.3 Control2 (02h)................................................................................................................... 26
8.4 Control3 (03h)................................................................................................................... 26
8.5 Control4 (04h)................................................................................................................... 27
8.6 Serial Audio Data Format (05h)........................................................................................ 27
8.7 Receiver Error Mask (06h) .............................................................................................. 29
8.8 Interrupt Mask (07h) ......................................................................................................... 29
8.9 Interrupt Mode MSB (08h) and Interrupt Mode LSB(09h) ................................................ 29
8.10 Receiver Channel Status (0Ah) ..................................................................................... 30
8.11 Format Detect Status (0Bh)............................................................................................ 30
8.12 Receiver Error (0Ch) ..................................................................................................... 31
8.13 Interrupt 1 Status (0Dh) ................................................................................................. 32
8.14 Q-Channel Subcode (0Eh - 17h) .................................................................................... 32
8.15 OMCK/RMCK Ratio (18h) .............................................................................................. 33
8.16 Channel Status Registers (19h - 22h) ............................................................................ 33
8.17 IEC61937 PC/PD Burst preamble (23h - 26h)................................................................ 33
8.18 CS8416 I.D. and Version Register (7Fh)........................................................................ 33
8.19 Memory Address Pointer (MAP)..................................................................................... 34
9. PIN DESCRIPTION - SOFTWARE MODE ............................................................................ 35
10 HARDWARE MODE .............................................................................................................. 37
10.1 Serial Audio Port Formats ............................................................................................. 37
11 PIN DESCRIPTION - HARDWARE MODE ........................................................................... 38
11.1 Hardware Mode Function Selection .............................................................................. 40
11.2 Hardware Mode Settings (Defaults & Controls) ............................................................. 40
12 APPLICATIONS .................................................................................................................... 42
12.1 Reset, Power Down and Start-up .................................................................................. 42
12.2 ID Code and Revision Code .......................................................................................... 42
12.3 Power Supply, Grounding, and PCB layout ................................................................... 42
13 PACKAGE DIMENSIONS ..................................................................................................... 43
14 APPENDIX A: EXTERNAL AES3/SPDIF/IEC60958 RECEIVER COMPONENTS .............. 45
14.1 AES3 Receiver External Components ........................................................................... 45
14.2 Isolating Transformer Requirements ............................................................................. 45
15 APPENDIX B: CHANNEL STATUS BUFFER MANAGEMENT .......................................... 47
15.1 AES3 Channel Status (C) Bit Management ................................................................... 47
15.2 Accessing the E buffer ................................................................................................... 47
15.2.1 Serial Copy Management System (SCMS) ....................................................... 47
DS578PP2 3
LIST OF FIGURES
Figure 1. Audio Port Master Mode Timing....................................................................................... 7
Figure 2. Audio Port Slave Mode and Data Input Timing ................................................................ 7
Figure 3. SPI Mode Timing.............................................................................................................. 8
Figure 4. I2C Mode Timing.............................................................................................................. 9
Figure 5. Typical Connection Diagram - Software Mode............................................................... 10
Figure 6. Typical Connection Diagram - Hardware Mode ............................................................. 11
Figure 7. AES3 Data Format ......................................................................................................... 14
Figure 8. Serial Audio Output Example Formats........................................................................... 15
Figure 9. C/U data outputs ............................................................................................................ 19
Figure 10. De-emphasis filter ........................................................................................................ 19
Figure 11. Control Port Timing In SPI Mode .................................................................................20
Figure 12. Control Port Timing in I
Figure 13. Hardware Mode Data Flow ..........................................................................................37
Figure 14. Professional Input Circuit ............................................................................................. 46
Figure 15. Transformerless Professional Input Circuit ..................................................................46
Figure 16. Consumer Input Circuit ................................................................................................ 46
Figure 17. S/PDIF MUX Input Circuit ............................................................................................ 46
Figure 18. TTL/CMOS Input Circuit............................................................................................... 46
Figure 19. Channel Status Data Buffer Structure .......................................................................... 47
Figure 20. Flowchart for Reading the E Buffer.............................................................................. 47
CS8416
2
C Mode .................................................................................. 21
LIST OF TABLES
Table 1. Delays by Frequency Values ................................................................................................. 14
Table 2. External PLL Component Values........................................................................................... 17
Table 3. GPO Pin Configurations ........................................................................................................ 22
Table 4. Hardware Mode Serial Audio Format Select ......................................................................... 41
4 DS578PP2

1 CHARACTERISTICS AND SPECIFICATIONS

POWER AND THERMAL CHARACTERISTICS
(AGND, DGND = 0 V, all voltages with respect to ground)
Parameter Symbol Min Typ Max Unit
Power Supply Voltage
Supply Current at 48 KHz frame rate
Supply Current at 192 KHz frame rate (Note 1)
Supply Current in Power Down
Ambient Operating Temperature: ‘-CS’ & ‘-CZ’ (Note 2)
‘-IS’ & ‘-IZ’ (Note 3)
CS8416
VA+ 3.13 3.3 3.46 V
VD+ 3.13 3.3 3.46 V
VL+ 3.13 3.3 5.5 V
IA - 5.7 - mA
ID - 5.9 - mA
IL - 2.8 - mA
IA - 9.4 - mA
ID - 23 - mA
-7.8-mA
IL
IA - 10 - uA
ID - 70 - uA
IL - 10 - uA
T
A
-10°
-40°
25°
-
70° 85°
°C
Notes: 1. Assumes that no digital inputs are left floating. It is recommended that all digital inputs be driven high
or low at all times.
2. ‘-CS’ and ‘-CZ’ parts are specified to operate over -10° C to 70° C but are tested at 25° C only.
3. ‘-IS’ and ‘-IZ’ parts are tested over the full -40° C to 85° C temperature range.
ABSOLUTE MAXIMUM RATINGS
(AGND, DGND = 0 V, all voltages with respect to ground)
Parameter Symbol Min Max Unit
Power Supply Voltage VD+, VA+, VL+ - 6 Volts
Input Current, Any Pin Except Supplies (Note 4)
Input Voltage V
Ambient Operating Temperature
Notes: 4. Transient currents of up to 100mA will not cause SCR latch-up.
I
in
in
T
A
CS8416-C
CS8416-I
-10 10 mA
-0.3 VL+.03 Volts
-10°
-40°
70° 85°
°C °C
DS578PP2 5
CS8416
DIGITAL CHARACTERISTICS
(TA= 25 °C for suffixes ‘CS’ &’CZ’, TA= -40 to 85 °C for ‘IS’ & ‘IZ’ ; VA+ = VD+ = 3.3 V ± 5%, VL+ = 3.135 V to 5.5 V
Parameter Symbol Min Typ Max Units
High-Level Input Voltage except RX
Low-Level Input Voltage except RX
Low-Level Output Voltage (I
High-Level Output Voltage (I
O
O
Input hysteresis V
Input Leakage Current I
Differential Input Sensitivity RXPn to RXN0 - 150 200 mV
SWITCHING CHARACTERISTICS
(TA= 25 °C for suffixes ‘CS’ &’CZ’, TA= -40 to 85°C for ‘IS’ & ‘IZ’ ; VA+ = VD+ = 3.3 V ± 5%, VL+ = 3.135 V to 5.5 V, Inputs: Logic 0 = 0V, Logic 1 = VL+; C
Parameter Symbol Min Typ Max Units
RST/Pin Low Pulse Width 200 - - uS
PLL Clock Recovery Sample Rate Range 30 - 200 kHz
RMCK Output Jitter (Time Deviation) - - 200 ps RMS
RMCK Output Duty-Cycle 45 50 55 %
:VIH2 - (VL+)+0.3 Volts
n
:VIL-0.3 - 0.8 Volts
n
=3.2mA) V
=3.2mA) V
=20pF)
L
OL
OH
H
IN
- - 0.5 Volts
(VL+) - 1 - VL+ Volts
0.25 - 1.0 Volts
-10 - 10 uA
)
6 DS578PP2
CS8416
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORTS
(TA= 25 °C for suffixes ‘CS’ & ’CZ’, TA= -40 to 85 °C for ‘IS’ & ‘IZ’ ; VA+ = VD+ = 3.3 V ± 5%, VL+ = 3.135 V to 5.5 V, Inputs: Logic 0 = 0 V, Logic 1 = VL+; C
Parameter Symbol Min Typ Max Units
OSCLK Active Edge to SDOUT Output Valid (Note 5)t
Master Mode
RMCK to OSCLK active edge delay (Note 5)t
RMCK to OLRCK delay (Note 6)t
OSCLK and OLRCK Duty Cycle - 50 - %
Slave Mode
OSCLK Period t
OSCLK Input Low Width t
OSCLK Input High Width t
OSCLK Active Edge to OLRCK Edge (Notes 5,6,7)t
OSCLK Edge Setup Before OSCLK Active-Edge (Notes 5,6,8)t
Notes: 5. In Software mode the active edges of OSCLK are programmable.
6. In Software mode the polarity of OLRCK is programmable.
7. This delay is to prevent the previous OSCLK edge from being interpreted as the first one after OLRCK has changed.
8. This setup time ensures that this OSCLK edge is interpreted as the first one after OLRCK has changed.
=20pF)
L
dpd
smd
lmd
sckw
sckl
sckh
lrckd
lrcks
- - 15 ns
0 - 10 ns
0 - 10 ns
36 - - ns
14 - - ns
14 - - ns
10 - - ns
10 - - ns
OSCLK
(output)
OLRCK (output)
RMCK
(output)
t
smd
t
lmd
OLRCK
(input)
OSCLK
(input)
SDOUT
t
lrckd
t
lrcks
t
sckh
t
sckw
t
sckl
t
dpd

Figure 1. Audio Port Master Mode Timing Figure 2. Audio Port Slave Mode and Data Input Timing

DS578PP2 7
CS8416
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI MODE
(TA= 25 °C for suffixes ‘CS’ &’CZ’, TA= -40 to 85°C for ‘IS’ & ‘IZ’ ; VA+ = VD+ = 3.3 V ± 5%, VL+ = 3.135 to 5.5V, Inputs: Logic 0 = 0 V, Logic 1 = VL+; C
Parameter Symbol Min Max Unit
CCLK Clock Frequency (Note 9)f
High Time Between Transmissions
CS
CS
Falling to CCLK Edge
CCLK Low Time t
CCLK High Time t
CDIN to CCLK Rising Setup Time t
CCLK Rising to DATA Hold Time (Note 10)t
CCLK Falling to CDOUT Stable t
Rise Time of CDOUT t
Fall Time of CDOUT t
Rise Time of CCLK and CDIN (Note 11)
Fall Time of CCLK and CDIN (Note 11)t
=20pF)
L
t
t
sck
csh
css
scl
sch
dsu
dh
pd
r1
f1
t
r2
r2
06.0MHz
1.0 - µs
20 - ns
66 - ns
66 - ns
40 - ns
15 - ns
-50ns
-25ns
-25ns
- 100 ns
- 100 ns
Notes: 9. If Fs is lower than 46.875 kHz, the maximum CCLK frequency should be less than 128 Fs. This is
dictated by the timing requirements necessary to access the Channel Status memory. Access to the control register file can be carried out at the full 6 MHz rate. The minimum allowable input sample rate is 32 kHz, so choosing CCLK to be less than or equal to 4.1 MHz should be safe for all possible conditions.
10. Data must be held for sufficient time to bridge the transition time of CCLK.
11. For f
sck
<1 MHz.
CDOUT
CS
CCLK
CDIN
t
css
t
t
sch
scl
t
r2
t
dsu
t
f2
t
dh
t
pd
t
csh

Figure 3. SPI Mode Timing

8 DS578PP2
CS8416
SWITCHING CHARACTERISTICS - CONTROL PORT- I2CFORMAT
(TA= 25° C; VA+ = VD+ = 3.3 V ± 5%, VL = 3.135 V to 5.5 V Inputs: Logic 0 = GND, Logic 1 = VL,CL=20pF)
Parameter Symbol Min Max Unit
SCL Clock Frequency f
Bus Free Time Between Transmissions t
Start Condition Hold Time (prior to first clock pulse) t
Clock Low time t
Clock High Time t
Setup Time for Repeated Start Condition t
SDA Hold Time from SCL Falling (Note 12)t
SDA Setup time to SCL Rising t
Rise Time of SCL and SDA t
Fall Time SCL and SDA t
Setup Time for Stop Condition t
Notes: 12. Data must be held for sufficient time to bridge the 25 ns transition time of SCL.
scl
buf
hdst
low
high
sust
hdd
sud
r
f
susp
- 100 kHz
4.7 - µs
4.0 - µs
4.7 - µs
4.0 - µs
4.7 - µs
10 - ns
250 - ns
-25ns
-25ns
4.7 - µs
SDA
SCL
Stop Start
t
buf
t
hdst
t
low
t
high
t
hdd

Figure 4. I2CModeTiming

t
sud
Repeated
Start
t
t
sust
hdst
Stop
t
f
t
r
t
susp
DS578PP2 9

2 TYPICAL CONNECTION DIAGRAMS

+3.3V
*
+3.3V Analog Supply
Ferrite Bead
*
10 Fµ
VL+
VL+
0.1 Fµ
AES3 /
**
S/PDIF
Sources
Microcontroller SCL / CCLK
1nF
VA+
RXN
RXP0
RXP1
RXP2
RXP3
RXP4
RXP5
RXP6
RXP7
AD0 / CS AD1 / CDIN
SDA / CDOUT
RST
10 Fµ 0.1 Fµ 1nF
VD+
CS8416
VL+
SDOUT
OLRCK OSCLK
RMCK
OMCK
GPO0
GPO1
AD2/GPO2
0.1 Fµ
47K
Clock Control
Clock Source
CS8416
+3.3V to +5V
1nF
Serial Audio
Input
Device
External
Interface
FILT DGNDAGND
Rflt
Cflt Crip
***
A seperate analog supply is only necessary in applications where RMCK is used for a jitter
*
sensitive tast. For applications where RMCK is not used for a jitter sensitive task, connect VA+ to VD+ via a ferrite bead. Keep decoupling capacitors between VA+ and AGND.
Please see section 5.1 "8:2 S/PDIF Input Multiplexer" and Appendix
**
A for typical input configurations and recommended input circuits.
For best jitter performance connect the filter ground directly to the AGND pin.
***
SeeTable2forPLLfiltervalues.

Figure 5. Typical Connection Diagram - Software Mode

10 DS578PP2
+3.3V Analog Supply
**
Ferrite Bead
VL+
VL+
**
10 Fµ
***
0.1 Fµ 1nF
AES3 / S/PDIF
Sources
Hardware
Control
+3.3V
VD+
VA+
RXN
RXP0
RXP1
RXP2
RXP3
RST
RXSEL0
RXSEL1
TXSEL0
TXSEL1
NV/RERR
*
AUDIO
96KHZ
*
RCBL
*
*
U
C
*
10 Fµ 0.1 Fµ 1nF
VL+
OLRCK
OSCLK
SDOUT
CS8416
RMCK
*
OMCK Clock Source
TX
0.1 Fµ
Serial Audio
Input Device
47K
Clock Control
External
Interface
CS8416
+3.3V to +5V
1nF
FILT DGNDAGND
Rflt
Cflt Crip
****
These pins must be pulled high to VL+ or low to DGND through a 47Kresistor.
*
A seperate analog supply is only necessary in applications where RMCK is used for a jitter
**
sensitive tast. For applications where RMCK is not used for a jitter sensitive task, connect VA+ to VD+ via a ferrite bead. Keep decoupling capacitors between VA+ and AGND.
Please see section 5.1 "8:2 S/PDIF Input Multiplexer" and Appendix
***
A for typical input configurations and recommended input circuits.
For best jitter performance connect the filter ground directly to the AGND pin.
****
See Table 2 for PLL filter values.

Figure 6. Typical Connection Diagram - Hardware Mode

DS578PP2 11
CS8416

3 GENERAL DESCRIPTION

The CS8416 is a monolithic CMOS device which receives and decodes audio data according to the AES3, IEC60958, S/PDIF, and EIAJ CP1201 inter­face standards.
The CS8416 utilizes an 8:2 multiplexer to select between eight inputs for decoding and to allow an input signal to be routed to an output of the CS8416. Input data is either differential or single­ended. A low jitter clock is recovered from the in­coming data using a PLL. The decoded audio data is output through a configurable, 3-wire output port. The channel status and Q-channel subcode portion of the user data are assembled in registers and may be accessed through an SPI or I
Three General Purpose Output (GPO) pins are pro­vided to allow a variety of signals to be accessed under software control. In hardware mode, dedicat­ed pins are used to select audio stream inputs for decoding and transmission to a dedicated TX pin. Hardware mode also allows direct access to chan­nel status and user data output pins.
Figure 5 and Figure 6 show the power supply and
external connections to the CS8416 when config­ured for software and hardware modes. Please note
2
C port.
that all I/O pins, including RXN and RXP[7:0], op­erate at the VL+ voltage.

3.1 AES3 and S/PDIF Standards Documents

This document assumes that the user is familiar with the AES3 and S/PDIF data formats. It is advis­able to have current copies of the AES3, IEC60958, and IEC61937 specifications on hand for easy ref­erence.
The latest AES3 standard is available from the Au­dio Engineering Society or ANSI at www.aes.org or at www.ansi.org. Obtain a copy of the latest IEC60958/61937 standard from ANSI or from the International Electrotechnical Commission at
www.iec.ch
available from the Japanese Electronics Bureau.
Application Note 22: Overview of Digital Audio In- terface Data Structures contains a useful tutorial on digital audio specifications, but it should not be considered a substitute for the standards.
The paper An Understanding and Implementation
of the SCMS Serial Copy Management System for Digital Audio Transmission, by Clifton Sanchez, is
an excellent tutorial on SCMS. It is available from the AES as reprint 3518.
. The latest EIAJ CP-1201 standard is
12 DS578PP2
CS8416

4 SERIAL AUDIO OUTPUT PORT

A 3-wire serial audio output port is provided. The port can be adjusted to suit the attached device set­ting the control registers. The following parameters are adjustable: master or slave, serial clock fre­quency, audio data resolution, left or right justifica­tion of the data relative to left/right clock, optional one-bit cell delay of the first data bit, the polarity of the bit clock, and the polarity of the left/right clock. By setting the appropriate control bits, many for­mats are possible.
Figure 8 shows a selection of common output for-
mats, along with the control bit settings. A special AES3 direct output format is included, which al­lows the serial output port access to the V, U, and C bits embedded in the serial audio data stream. The P bit, which would normally be a parity bit, is replaced by a Z bit, which is used to indicate the start of each block. The received channel status block start signal is also available as the RCBL pin in hardware mode and through a GPO pin in soft­ware mode.
In master mode, the left/right clock (OLRCK) and the serial bit clock (OSCLK) are outputs, derived from the recovered RMCK clock. In slave mode, OLRCK and OSCLK are inputs. OLRCK is nor­mally synchronous to the appropriate master clock, but OSCLK can be asynchronous and discontinu­ous if required. By appropriate phasing of OLRCK and control of the serial clocks, multiple CS8416’s can share one serial port. OLRCK should be con­tinuous, but the duty cycle can be less than the specified typical value of 50% if enough serial clocks are present in each phase to clock all the data bits. When in slave mode, the serial audio output port cannot be set for right-justified data. The CS8416 allows immediate mute of the serial audio output port audio data by the MUTESAO bit of Control Register 1.

4.1 Slip/Repeat Behavior

When using the serial audio output port in slave mode with an OLRCK input that is asynchronous to the incoming AES3 data, the interrupt bit OSLIP (bit 5 in the Interrupt 1 Status register, 0Dh) is pro­vided to indicate when repeated or dropped sam­ples occur. Refer to Figure 7 for a AES3 data format diagram.
When the serial output port is configured as slave, depending on the relative frequency of OLRCK to the input AES3 data (Z/X) preamble frequency, the data will be slipped or repeated at the output of the CS8416.
After a fixed delay from the Z/X preamble (a few periods of the internal clock, which is running at 256Fs), the circuit will look back in time until the previous Z/X preamble:
1) If during that time, the internal data buffer was not updated, then a slip has occurred. Data from the previous frame will be output and OSLIP will be set to 1. Due to the OSLIP bit being “sticky,” it will remain 1 until the register is read. It will then be reset until another slip/re­peat condition occurs.
2) If during that time the internal data buffer did not update between two positive or negative edges (depending on OLRPOL) of OLRCK, then a repeat has occurred. In this case the buff­er data was updated twice, so the part has lost one frame of data. This event will also trigger OSLIP to be set to 1. Due to the OSLIP bit be­ing “sticky,” it will remain 1 until the register is read. It will then be reset until another slip/re­peat condition occurs.
3) If during that time, it did see a positive edge on OLRCK (or negative edge if the SOLRPOL is set to 1) then no slip or repeat has happened. Due to the OSLIP bit being “sticky,” it will re­main in its previous state until either the regis­ter is read or a slip/repeat condition occurs.
DS578PP2 13
Frame 191 Frame 0 Frame 1
CS8416
Channel A
X
Data
Y
Channel B
Data
Channel A
Z Y X Y
Data
Preambles
OLRCK (in slave mode)

Figure 7. AES3 Data Format

If the user reads OSLIP as soon as the event trig­gers, over a long period of time the rate of occur­ring INT will be equal to the difference in frequency between the input AES data and the slave serial output LRCK. The CS8416 uses a hys­teresis window when a slip/repeat event occurs. The slip/repeat is triggered when an edge of OL­RCK passes a window size from the beginning of the Z/X preamble. Without the hysteresis window, jitter on OLRCK with a frequency very close to Fs could slip back and forth, causing multiple slip/re­peat events. The CS8416 uses a hysteresis window to ensure that only one slip/repeat happens even with jitter on OLRCK.

4.2 AES11 Behavior

When OLRCK is configured as a master, the posi­tive or negative edge of OLRCK (depending on the setting of SOLRPOL in register 05h) will be within
-1.0%(1/Fs) to 1.1%(1/Fs) from the start of the pre­amble X/Z. In master mode, the latency through the part is dependent on the input sample frequency. The delay through the part from the beginning of the preamble to the active edge of OLRCK for the various sample frequencies is given in Table 1.In
Channel B
Data
Channel A
Data
Channel B
Data
master mode without the de-emphasis filter en­gaged, the latency of the audio data will be 3 frames.
Fs (kHz) Delay (ns)
32 96.6
44.1 78.6
48 74.6
64 60.6
96 50.6
192 TBD

Table 1. Delays by Frequency Values

When OLRCK is configured as a slave any syn­chronized input within +/-28%(1/Fs) from the pos­itive or negative edge of OLRCK (depending on the setting of SOLRPOL in register 05h) will be treated as being sampled at the same time. Since the CS8416 has no control of the OLRCK in slave mode, the latency of the data through the part will be a multiple of 1/Fs plus the delay between OL­RCK and the preambles.
Both of these conditions are within the tolerance range set forth in the AES11 standard.
14 DS578PP2
CS8416
AES3 Direct (Out)
Left Justified
(Out)
2
IS (Out)
Right
Justified (Out)
OLRCK
OSCLK
SDOUT
OLRCK
OSCLK
SDOUT
OLRCK
OSCLK
SDOUT
OLRCK
OSCLK
SDOUT
LSB
Right
MSB
LSB
Right
Right
MSB
UC
VZ
Left
MSB LSB MSB LSB MSB
Left Right
MSB
MSB Extende d MSB Extended
LSB MSB LSB
VZ
MSB
MSB LSB
Left
UCLSB
LSB
Left
MSB
MSB Ex
LSB
SOMS* SOSF* SORES[1:0]* SOJUST* SODEL* SOSPOL* SOLRPOL*
Left Justified X X XX 0 0 0 0
2
S
I
XXXX0101
Right Justified 1 X XX 1 0 0 0
AES3 Direct X X 11 0 0 0 0
X = don’t care to match format, but does need to be set to the desired setting
* See Serial Output Data Format Register Bit Descriptions for an explanation of the meaning of each bit

Figure 8. Serial Audio Output Example Formats

DS578PP2 15
Loading...
+ 33 hidden pages