Cirrus Logic CS5534-BS, CS5534-AS, CS5533-AS, CS5532-BS, CS5532-AS Datasheet

...
CS5531/32/33/34
16-Bit and 24-Bit ADCs with Ultra Low Noise PGIA

Features

Chopper Stabilized PGIA (Programmable Gain Instrumentation Amplifier, 1x to 64x)
6nV/√Hz @ 0. 1 Hz (No 1/f noise) at64x 500 pA Input Current with Gains >1
Delta-Sigma Analog-to-Digital Converter
Linearity Error: 0.0007% FS Noise Free Resolution: Up to 23 bits
Two or Four Channel Differential MUX
Scalable Input Span via Calibration
±5 mV to differential ±2.5V
Scalable V
Simple three-wire serial interface
SPIand Microwire™ Com patible Schmitt Trigger on Serial Clock (SCLK)
R/W Calibration Registers Per Channel
Selectable Word Rates: 6.25 to 3,840 Sps
Selectable 50 or 60 Hz Rejection
Power Supply Configurations
VA+=+5V;VA-=0V;VD+=+3Vto+5V VA+=+2.5V;VA-=-2.5V;VD+=+3Vto+5V VA+ = +3 V; VA- = -3 V; VD+ = +3 V
Input: Up to Analog Supply
REF

General Description

The CS5531/32/33/34 are highly integrated ∆Σ Analog­to-Digital Converters (ADCs) which use charge-balance techniques to achieve 16-bit (CS5531/33) and 24-bit (CS5532/34) performance. The ADCs are optimized f or measuring low-level unipolar or bipolar signals in weigh scale, process control, scientific, and medical applications.
To accommodate these applications, the ADCs c ome as either two-channel (CS5531/ 32) or four-channel (CS5533/34) devices and include a very low noise chop­per-stabilized instrum entation amplifier (6 nV/Hz Hz) with selectable gains of 1×, 2×, 4×, 8×, 16×, 32×, and 64×. These ADCs also include a fo urth order ∆Σ modu­lator followed by a digital filter
which provides twenty selectableoutput wordrates of 6.25, 7.5, 12.5, 15, 25, 30, 50, 60, 100, 120, 200, 240, 400, 480, 800, 960, 1600, 1920, 3200, and 3840 Sps (MCLK = 4.9152 MHz).
To ease communication between the ADCs and a micro­controller, the c onv ert ers include a simple three-wire se­rial interface which is SPI and Microwire compatible with a S c hmi tt Trigger input on the serial c lock (SCLK).
High dynamic range, programmable output rates, and flexible power supp ly options makes these ADCs ideal solutions for weigh scale and process control applications.
@0.1
VA+ C1 C2 VREF+ VREF- VD+
AIN1+
AIN1-
AIN2+
AIN2-
AIN3+
AIN3-
AIN4+
AIN4-
MUX
(CS5533/34
SHOWN)
PGIA 1,2,4,8,16
32,64
Preliminary Product Information
ORDERING INFORM ATION
See page 48
CS
SDI SDO
SCLK
LATCH
DIFFERENTIAL
TH
4
ORDER
MODULATOR
∆Σ
PROGRAMMABLE
SINC FIR FILTER
CLOCK
GENERATOR
OSC2OSC1A1A0/GUARDVA-
SERIAL
INTERFACE
CALIBRATION
SRAM/CONTROL
LOGIC
DGND
This document contains information for a new product. Cirrus Logic reserves the right to modify this product withoutnotice.
CopyrightCirrus Logic, Inc. 2002
(All Rights Reserved)
MAR ‘02
DS289PP5
1

TABLE OF CONTENTS

1. CHARACTERISTICS AND SPECIFICATIONS ..........................................................5
ANALOG CHARACTERISTICS..........................................................................5
TYPICAL RMS NOISE (NV), C S5531/32/33/34-AS...........................................8
TYPICAL NOISE FREE RESOLUTION(BITS), CS5532/34-AS.........................8
TYPICAL RMS NOISE (NV), C S5532/34-BS.....................................................9
TYPICAL NOISE FREE RESOLUTION(BITS), CS5532/34-BS.........................9
5 V DIGITAL CHARACTERISTICS ..................................................................10
3 V DIGITAL CHARACTERISTICS ..................................................................10
DYNAMIC CHARACTERISTICS......................................................................11
ABSOLUTE MAXIMUM RATINGS...................................................................11
SWITCHING CHARACTERISTICS..................................................................12
2. GENERAL DESCRIPTION .......................................................................................14
2.1. Analog Input ....................................................................................................14
2.1.1. Analog Input Span .................................................................................... 15
2.1.2. Multiplexed Settling Limitations ............................................................15
2.1.3. Voltage Noise Density Performance .....................................................15
2.1.4. No Offset DAC ......................................................................................15
2.2. Overview o f ADC Register Structure and Operating Modes ............................16
2.2.1. System Initialization ..............................................................................17
2.2.2. Command Register Quick Reference ..................................................19
2.2.3. Command Register Descriptions ..........................................................20
2.2.4. Serial Port Interface ..............................................................................24
2.2.5. Reading/Writing On-Chip Registers ......................................................25
2.3. Configuration Register .....................................................................................25
2.3.1. Power Consumption .............................................................................25
2.3.2. System Reset Sequence ......................................................................25
2.3.3. Input Short ............................................................................................26
2.3.4. Guard Signal .........................................................................................26
2.3.5. Voltage Reference Select .....................................................................26
2.3.6. Output Latch Pins .................................................................................26
2.3.7. Offset and G ain Select ..........................................................................27
CS5531/32/33/34
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
SPI is a registered trademark of International Business Machines Corporation. Microwire is atrademark of National Semiconductor Corporation.
IMPORTANT NOTICE "Preliminary" product information describes products that are inproduction, but for which full characterization data is not yetavailable. "Advance" product infor-
mation describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the infor­mation contained inthis document is accurateand reliable. However, theinformation is subject to changewithoutnotice and isprovided "AS IS" without warranty of any kind (express or implied). Customers areadvised to obtain the latest versionof relevant information to verify, before placing orders, that information being reliedon is current and complete. All products are sold subject to the termsand conditions of sale supplied at thetime of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or forinfringement of patents or other rights of thirdparties. Thisdocumentis the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights of the informationcontained herein and gives consent for copies to be made of the information only for usewithin your organization with respect to Cirrus integrated circuits or other parts of Cirrus. This consent does not extendtoother copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
An export permit needs to be obtained fromthe competent authorities of the Japanese Government if any of the products or technologies described in thisma­terial and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. Anexport license and/or quota needs to be obtained fromthecompetentauthorities of the Chinese Governmentifanyof the products or technologies describedin this material is subject to the PRC Foreign Trade Law and is to be exported or taken out of the PRC.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTALDAMAGE ("CRITICAL APPLICATIONS"). CIRRUSPRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANT­ED TO BESUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMSOR OTHER CRITICALAPPLICATIONS. INCLUSIONOF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trade­marks or service marks of their respective owners.
2 DS289PP5
CS5531/32/33/34
2.3.8. Filter Rate Select ..................................................................................27
2.3.9. Configuration Register Descriptions .....................................................28
2.4. Setting up the CSRs for a Measurement .........................................................29
2.4.1. Channel-Setup Register Descriptions .................................................30
2.5. Calibration .......................................................................................................32
2.5.1. Calibration Registers ............................................................................ 32
2.5.2. Gain Register ......................................................................................32
2.5.3. Offset Register ....................................................................................32
2.5.4. Performing Calibrations ........................................................................33
2.5.5. Self Calibration .....................................................................................33
2.5.6. System Calibration ...............................................................................34
2.5.7. Calibration T ips ....................................................................................34
2.5.8. Limitations in Cal ibration Range ...........................................................35
2.6. Performing Conversions .................................................................................. 35
2.6.1. Single Conversion Mode ......................................................................35
2.6.2. Continuous Conversion Mode ..............................................................36
2.6.3. Examples of Using CSRs to Perform Conversions and Calibrations ...37
2.7. Using Multiple ADCs Synchronously ............................................................... 38
2.8. Conversion Output Coding ..............................................................................38
2.8.1. Conversion Data O utput Descriptions ..................................................39
2.9. Digital Filter .....................................................................................................40
2.10. ClockGenerator .............................................................................................. 41
2.11. Power Supply Arrangements ...........................................................................41
2.12. Getting Started ................................................................................................45
2.13. PCBLayout .....................................................................................................45
3. PIN DESCRIPTIONS ............................................................................................... 46
Clock Generator ..............................................................................................46
Control Pins and Serial Data I/O .....................................................................46
Measurement and Reference Inputs ...............................................................47
Power Supply Connections .. ...........................................................................47
4. SPECIFICATION DEFINITIONS ...............................................................................48
5. ORDERING GUIDE ..................................................................................................48
6. PACKAGE DRAWINGS ...........................................................................................49
DS289PP5 3

LIST OF FIGURES

Figure 1 . SDI Write T iming (Not to Scale)...............................................................................13
Figure 2 . SDO R ead Timing (Not to Scale).............................................................................13
Figure 3 . Multiplexer Configuration .........................................................................................14
Figure 4. Input models for AIN+ and A I N- pins .......................................................................15
Figure 5 . Measured Voltage Noise Density.............................................................................15
Figure 6. CS5531/32/ 33/3 4 Register Diagram ........................................................................16
Figure 7 . Command and Data Word Timing............................................................................24
Figure 8 . Guard Signal Shielding Scheme ..............................................................................26
Figure 9 . Input Reference Model when VRS = 1.....................................................................27
Figure 1 0. Input Reference Model when VRS = 0...................................................................27
Figure 1 1. Self Calibration of Offset........................................................................................34
Figure 1 2. Self Calibration of Gain ..........................................................................................34
Figure 1 3. System Calibration of Offset ..................................................................................34
Figure 1 4. System Calibration of Gain ....................................................................................34
Figure 1 5. Synchronizing Multiple ADCs.................................................................................38
Figure 1 6. Digital Filter Response (Word Rate = 60 Sps).......................................................40
Figure 1 7. 120 Sps Filter Magnitude Plot to 120 Hz................................................................40
Figure 1 8. 120 Sps Filter Phase Plot to 120 Hz......................................................................40
Figure 1 9. Z-Transforms of Digital Filters................................................................................40
Figure 2 0. On-chip Oscillator Model........................................................................................41
Figure 2 1. CS5532 Configured with a Single +5 V S upply......................................................42
Figure 22. CS5532 Configured with ±2.5 V Ana log Supplies..................................................43
Figure 23. CS5532 Configured with ±3 V Analog Supplies.....................................................43
Figure 2 4. CS5532 Configured for Thermoc ouple Meas urement ...........................................44
Figure 2 5. Bridge with Series Resistors..................................................................................44
CS5531/32/33/34

LIST OF TABLES

Table 1. Conversion Timing for Single Mode..........................................................................36
Table 2 . Conversion Timi ng for Continuous M ode..................................................................37
Table 3. Command Byte Pointer.............................................................................................37
Table 4 . Output Coding for 16-bit CS5531 and CS5533.........................................................39
Table 5 . Output Coding for 24-bit CS5532 and CS5534.........................................................39
4 DS289PP5
CS5531/32/33/34

1. CHARACTERISTICS AND SPECIFICATIONS

ANALOG CHARACTERISTICS (VA+, VD+ = 5 V ±5%; VREF+ = 5 V; VA-, VREF-, DGND = 0 V;
MCLK = 4. 9152 MHz; OWR (Output W ord Rate) = 60 Sps; Bipolar Mode; Gain = 32) (SeeNotes 1 and 2.)
CS5531-AS/CS5533-AS
Parameter
Accuracy
Linearity E rror - ±0.0015 ±0.003 %FS No Missing Codes 16 - - Bits Bipolar Offset - ±2LSB
Unipolar Offset - ±2 ±4LSB Offset Drift (Notes 3 a nd 4) - 640/G + 5 - nV/°C
Bipolar Full Scale Error - ±8 ±31 ppm Unipolar Full Scale Error - ±16 ±62 ppm Full S ca le Drift (Note 4 ) - 2 - ppm/°C
CS5532-AS/CS5534-AS CS5532-BS/C S5 534-BS
Parameter
Accuracy
Linearity E rror - ±0.0015 ±0.003 - ±0.0007 ±0.0015 %FS No Missing Codes 24 - - 24 - - Bits Bipolar Offset - ±16 ±32 - ±16 ±32 LSB
Unipolar Offset - ±32 ±64 - ±32 ±64 LSB Offset Drift (Notes 3 and 4) - 640/ G + 5 - - 640/G + 5 - nV/°C
Bipolar Full Scale Error - ±8 ±31 - ±8 ±31 ppm Unipolar Full Scale Error - ±16 ±62 - ±16 ±62 ppm Full S ca le Drift (Note 4 ) - TBD - - 2 - ppm/°C
UnitMin Typ Max
16 16
UnitMin Typ Max Min Typ Max
24 24
Notes: 1. Applies after system calibration at any temperature within -40 °C ~ +85 °C.
2. Specifications guaranteed by design,characterization, and/or t est.LSB is 16 bits fo r the CS5531/33 and LSB is 24 bits for the CS5532/34.
3. This specification applies to the device only and does not include any effects by external parasitic thermocouples. The PGIA con tributes 5 nV of offset drift, an d the modulator contributes 640/G nV of offset drift, where G is t he am plifier gain setting.
4. Drift over spec ified tem perature range after calibration at power-up at 25 °C.
DS289PP5 5
CS5531/32/33/34
ANALOG CHARACTERISTICS (Continued) (See Notes 1 an d 2. )
Parameter Min Typ Max Unit
Analog Input
Common Mode + Signal on AIN+ or AIN-Bipolar/Unipolar Mode
Gain = 1 Gain = 2, 4, 8, 16, 32, 64 (Note 5)
CVF Current o n AIN+ or AIN- Gain = 1 (Note 6)
Gain = 2, 4, 8, 16, 32, 64
Input Current Noise Gain = 1
Gain = 2, 4, 8, 16, 32, 64 Input Leakage for Mux when Off (at 25 °C) - 10 - pA Off-Channel M ux Isolation - 120 - dB Open Circuit Det ec t Current 100 300 - nA Common Mode Rejection dc, Gai n = 1
dc, Gai n = 64
50, 60 Hz Input Capacitance - 60 - pF Guard DriveOutput - 20 - µA
Voltage Reference Input
Range (VREF+) - (VREF-) 1 2.5 (VA+)-(VA -) V CVF C urrent (Note 6) - 500 - nA Common Mode Rejection dc
50, 60 Hz Input Capacitance 11 - 2 2 pF
System Calibration Specifications
Full Scale Calibration Range Bipolar/Unipolar Mode 3 - 110 %FS Offset Calibration Range Bipolar Mode -100 - 100 %FS Offset Calibration Range Unipolar Mode -90 - 90 %FS
VA-
VA- + 0.7--
-
-
-
-
-
-
-
-
-
500 500
200
130 120
120 120
1
90
VA+
VA+ - 1.7
-
-
-
-
-
-
-
-
-
V V
nA pA
pA/√Hz pA/√Hz
dB dB dB
dB dB
Notes: 5. The vol tage on the analog inputs is amplified by the PGIA, and becom es V
the differential outputs of the amplifier. In addition to the input comm on mode + signal requirements for the an alog input pins, the differential outputs of the amplifier must remain between (VA- + 0.1 V) and (VA+ - 0.1 V) to avoid saturation of the output stage.
6. See the section of the dat a sheet whic h discusses input mod els.
6 DS289PP5
± Gain*(AIN+ - AIN-)/2 at
CM
ANALOG CHARACTERISTICS (Continued) (See Notes 1 an d 2. )
CS5531/32/33/34-AS CS5532/34-BS
Parameter
Power Supplies
DC Power Supply Currents (Normal Mode) I
Power Consumption Normal Mode (Notes 7 and 8)
Standby Sleep
Power Supply Rejection (Note 9)
dc Positive Supplies dc Negative Supply
7. All outputs unloaded. All input CMOS levels.
8. Power is specified when the instrumen tation ampl ifier (Gain 2) is on. Analog supplycurrent is reduced by ap prox imately 1/2 when the instrumentation amplifier is off ( Gain = 1).
9. Tested with 100 mV change on VA+ or VA-.
A+,IA-
I
D+
Min Typ
-
-
-
-
-
-
-
0.5 35
500
115 115
Max
6
45
3
8 1
-
-
-
-
CS5531/32/33/34
13
70
4
Max
15
1
80
-
-
-
-
Unit
mA mA
mW mW
µW
dB dB
Min Typ
-
0.5
-
-
-
-
500
-
115
-
115
DS289PP5 7
CS5531/32/33/34
TYPICAL RMS NOISE (nV), CS5531/32/33/34-AS (See notes 10, 11 and 12 )
Output Word
Rate (Sps)
7.5 1.94 171719264279155 15 3.88 24 25 27 36 59 111 218 30 7.75 34 35 39 51 84 157 308 60 15.5 48 49 54 72 118 222 436
120 31 68 70 77 102 167 314 616 240 62 115 160 276 527 1040 2070 4150 480 122 163 230 392 748 1480 2950 5890
960 230 229 321 554 1060 2090 4170 8340 1,920 390 344 523 946 1840 3650 7290 14600 3,840 780 1390 2710 5390 10800 21500 43000 86100
Notes: 10. Wideband noise aliased into the baseband. Referred to the input. Typical values shown for 25 °C.
11. For Peak-to-Peak Noise multiply by 6.6 for all ranges and output rates.
12. Word rates and -3dB points w ith FRS = 0. When FRS = 1, word rates and -3dB points scale by 5/6.
-3 dB Filter
Frequency (Hz)
x64 x32 x16 x8 x4 x2 x1
Instrumentation Am pl ifier Gain
TYPICAL NOISE FREE RESOLUTION(BITS), CS5532/34-AS (See Notes 13 and 14)
Output Word
Rate (Sps)
7.5 1.94 19202122222222 15 3.88 19 20 21 21 21 22 22 30 7.75 18 19 20 21 21 21 21 60 15.5 18192020202121
120 31 17 18 19 20 20 20 20 240 62 16 17 17 17 17 17 17 480 122 16 17 17 17 17 17 17
960 230 15 16 16 16 16 16 16 1,920 390 15 15 15 15 15 15 15 3,840 780 13 13 13 13 13 13 13
-3 dB Filter
Frequency (Hz)
x64 x32 x16 x8 x4 x2 x1
Instrumentation Am pl ifier Gain
13. Noise Free Resolution listed is for Bipolar operation, and is calculated as LOG((Input S pan)/(6.6xRMS Noise))/LOG(2) rounded to the nearest bit. For Unipolar operation, the input span is 1/2 as large,so one bit is lost. The input span is calculated in the analog input span section of the data s heet. The Noise Free Resolution table is computed with a value of 1.0 in the gain register. Values other than 1.0 will scale the noise , and change the Noise Free Resolution accordingly.
14. “Noise Free Resolution” is not the same as “Effective Resolution”. Effective Resolution is based on the RMS noise value, while Noise Free Resolution is based on a peak -to-pe ak noise value sp ec ified as 6.6 times the RMS noise value. Effective Resolution is calculated as LOG((Input Span)/(RMS Noise))/LOG(2).
Specifications are s ubject to change without notice.
8 DS289PP5
CS5531/32/33/34
TYPICAL RMS NOISE (nV), CS5532/34-BS (See notes 15, 16, 17 and 18)
Output Word
Rate (Sps)
7.5 1.94 8.59 1015265099 15 3.88 12 13 15 21 37 70 139 30 7.75 17 18 21 30 52 99 196 60 15.5 24 25 29 42 73 140 277
120 31 34 36 42 59 103 198 392 240 62 80 136 260 514 1020 2050 4090 480 122 113 194 369 730 1450 2900 5810
960 230 159 274 523 1030 2060 4110 8230 1,920 390 260 470 912 1810 3620 7230 14500 3,840 780 1360 2690 5380 10800 21500 43000 86000
Notes: 15. The -B devices provide the best noise specifications.
16. Wideband noise aliased into the baseband. Referred to the input. Typical values shown for 25 °C.
17. For Peak-to-Peak Noise multiply by 6.6 for all ranges and output rates.
18. Word rates and -3dB points w ith FRS = 0. When FRS = 1, word rates and -3dB points scale by 5/6.
-3 dB Filter
Frequency (Hz)
x64 x32 x16 x8 x4 x2 x1
Instrumentation Am pl ifier Gain
TYPICAL NOISE FREE RESOLUTION(BITS), CS5532/34-BS (See Notes 19 and 20)
Output Word
Rate (Sps)
7.5 1.94 20212223232323 15 3.88 20 21 22 22 22 22 22 30 7.75 19 20 21 22 22 22 22 60 15.5 19202121212121
120 31 18 19 20 21 21 21 21 240 62 17 17 18 18 18 18 18 480 122 17 17 17 17 17 17 17
960 230 16 16 17 17 17 17 17 1,920 390 16 16 16 16 16 16 16 3,840 780 13 13 13 13 13 13 13
-3 dB Filter
Frequency (Hz)
x64 x32 x16 x8 x4 x2 x1
Instrumentation Am pl ifier Gain
19. Noise Free Resolution listed is for Bipolar operation, and is calculated as LOG((Input S pan)/(6.6xRMS Noise))/LOG(2) rounded to the nearest bit. For Unipolar operation, the input span is 1/2 as large,so one bit is lost. The input span is calculated in the analog input span section of the data s heet. The Noise Free Resolution table is computed witha value of 1.0 in the gain register. Values otherthan 1.0 will s c ale the no ise, and change the Noise Free Resolution accordingly.
20. “Noise Free Resolution” is not the same as “Effective Resolution”. Effective Resolution is based on the RMS noise value, while Noise Free Resolution is based on a peak -to-pe ak noise value sp ec ified as 6.6 times the RMS noise value. Effective Resolution is calculated as LOG((Input Span)/(RMS Noise))/LOG(2).
Specifications are s ubject to change without notice.
DS289PP5 9
CS5531/32/33/34
5 V DIGITAL CHARACTERISTICS (VA+, VD+ = 5 V ±5%; VA-, DGND = 0 V;
See Notes 2 and 21.)
Parameter Symbol Min Typ Max Unit
High-Level Input Voltage All Pins Excep t SCLK
SCLK
Low-Level I nput Voltage All Pins Except SCLK
SCLK
High-Level Output Voltage A0 and A1, I
SDO, I
Low-Level Output Voltage A0 and A1, I
SDO, I
=-1.0mA
out
=-5.0mA
out
=1.0mA
out
=5.0mA
out
V
Input Leakage Current I SDO 3-State Leakage Current I Digital Output Pin Capacitance C
V
IH
V
IL
OH
V
OL
in
OZ
out
0.6 VD+
(VD+) - 0.45--
0.0
-0.8
0.0
(VA+) - 1.0
--V
(VD+) - 1.0
--(VA-)+0.4
- ±1 ±10 µA
--±1A
-9-pF
VD+ VD+
0.6
0.4
V
V
V
3 V DIGITAL CHARACTERISTICS (T
= 25 °C; VA+ = 5V ±5%; V D+ = 3.0V±10%; VA-, DGND =
A
0V; S ee Notes 2 and 21.)
Parameter Symbol Min Typ Max Unit
High-Level Input Voltage All Pins Excep t SCLK
SCLK
Low-Level I nput Voltage All Pins Except SCLK
SCLK
High-Level Output Voltage A0 and A1, I
SDO, I
Low-Level Output Voltage A0 and A1, I
SDO, I
=-1.0mA
out
=-5.0mA
out
=1.0mA
out
=5.0mA
out
Input Leakage Current I SDO 3-State Leakage Current I Digital Output Pin Capacitance C
21. All measurements performed under static conditions.
V
IH
V
IL
V
OH
0.6 VD+
(VD+) - 0.45
0.0
0.0
(VA+) - 1.0
-VD+
V
VD+
-0.8
V
0.6
--V
(VD+) - 1.0
V
OL
--(VA-)+0.4
V
0.4
in
OZ
out
1A
--±1A
-9-pF
10 DS289PP5
DYNAMIC CHARACTERISTICS
Parameter Symbol Ratio Unit
Modulator Sampling Rate f Filter Set tling Time to 1/2 LSB (Full Scale Step Input)
Single Conv ers ion mode (Notes 22, 23, and 24) Continuous Conversion mode, OWR < 3200 Sps Continuous Conversion mode, OWR 3200 Sps
CS5531/32/33/34
s
t
s
t
s
t
s
MCLK/16 Sps
1/OWR
5/OWR
sinc5
SC
+3/OWR
5/OWR
s s s
22. The ADCs use a Sinc5filter for the 3200 Sps and 3840 Sps output word rate (OWR) and a Sinc5filter followed by a Sinc (FRS = 0) word rate as soc iated with the Sinc
3
filter for the other OWRs. OWR
5
filter.
refers to the 3200 Sps (FRS = 1) or 3840 Sps
sinc5
23. The single convers ion mode only outputs fully settled conv ersions . See Table 1 for more details about single conv ersion mode timing. OW R
is used here to designate the different conversion time
SC
associated wi th single conversions.
24. The continuous conversion mode output s every conversion. This means that the filter’s set tling time with a full scale step input in th e continuous conversion mode is dictated by the OWR.
ABSOLUTE MAXIMUM RATINGS (DG ND = 0 V; See Note 25.)
Parameter Symbol Min Typ Max Unit
DC P ower Supp lies (Notes 26 and 27)
Positive Di gital
Positive Analog
Negative Analog
Input Current, Any Pin Except Supplies (Notes 28 an d 29) I Output Current I Power Dissipation (Note 30) PDN - - 500 mW
Analog I nput Voltage VREF pins
AIN Pins
Digital Input Voltage V Ambient Operating Temperature T Storage Temperature T
VD+
VA+
VA-
IN
OUT
V
INR
V
INA IND
A
stg
-0.3
-0.3
+0.3
-
-
-
+6.0 +6.0
-3.75
V V V
--±10mA
--±25mA
(VA-) -0.3 (VA-) -0.3
--(VA+)+ 0.3 (VA+)+ 0.3VV
-0.3 - (VD+) + 0.3 V
-40 - 85 °C
-65 - 150 °C
Notes: 25. All voltages with respect to ground.
26. VA+ and VA- must satisfy {(VA+) - (VA-)} +6.6 V.
27. VD+ and VA- must s at isf y {(VD+) - (VA-)} +7.5 V.
28. Applies to all pins including continuous overvoltage conditions at the analog input (AIN) pins.
29. Transient current of up to 100 mA will not ca us e SCR latch-up. Maximum input current for a power supply pin is ±50 mA.
30. Total power dissipation, including all input currents and out put currents .
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
DS289PP5 11
CS5531/32/33/34
SWITCHING CHARACTERISTI CS (VA+ = 2.5 V or 5 V ±5%; VA- = -2.5V±5% or 0 V ; VD+ = 3.0 V
rise
fall
ost
t
1
t
2
3 4 5 6
7 8 9
=50pF;
L
1 4.9152 5 MHz
-
-
-
-
-
-
-
-
50
-
-
50
-20-ms
250 250
-
-
50 - - ns
50 - - ns 100 - - ns 100 - - ns
- - 150 ns
- - 150 ns
- - 150 ns
1.0
100
-
1.0
100
-
-
-
µs µs ns
µs µs ns
ns ns
±10% or 5 V ±5%;DGND = 0 V; Levels: Logic 0 = 0 V, Logic 1 = VD+; C See Figures 1 and 2.)
Parameter Symbol Min Typ Max Unit
Master Clock Frequency (Note 31)
MCLK
External Clo ck or Crystal Oscillator Master Clock Duty Cy c le 40 - 60 % Rise Times (Note32)
t
Any Digi tal Input Except SCLK
SCLK
Any Digital Output
Fall Times (Note32)
t
Any Digi tal Input Except SCLK
SCLK
Any Digital Output
Start-up
Oscillator Start-up Time XTAL = 4.9152 MHz (Note 33) t
Serial Port Timing
Serial Clock Frequenc y SCLK 0 - 2 MHz Serial Clock Pulse Width High
Pulse Width Low
SDI Write Timing
CS
Enable to Valid Latch Clock t Data Set-up Time prior to SCLK rising t Data Hold Time After SCLK Rising t SCLK Falling Prior to CS
Disable t
SDO Read Timing
CS
to Data Valid t SCLK Falling to New Data Bit t
Rising to SDO Hi-Z t
CS
Notes: 31. Device param ete rs are specified with a 4.9152 MHz clock.
32. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF.
33. Oscillator start-up time varies with crystal parameters. This s pec if icat ion does not apply when using an external cloc k source.
12 DS289PP5
CS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SDI
SCLK
t3
MSB
MSB-1
t2
Figure 1. SDI Wr ite Timing (Not to Sc ale)
CS5531/32/33/34
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LSB
t6t4 t5 t1
0
0
0
CS
SDO
SCLK
t7
MSB MSB-1
t8
t1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t2
0
0
0
0
0
0
0
0
0
0
0
LSB
t9
Figure 2. SDO Read Timing (Not to Scale)
DS289PP5 13
CS5531/32/33/34

2. GENERAL DESCRIPTION

The CS5531/32/33/34 are highly integrated ∆ΣAn­alog-to-Digital Converters (ADCs) which use charge-balance techniques to achieve 16-bit (CS5531/33) and 24-bit (CS5532/34) performance. The ADCs are optimized for measuring low-level unipolar or bipolar signals in weigh scale, process control, scientific, and medical applications.
To accommodate these applications, the ADCs come as either two-channel (CS5531/32) or four­channel (CS5533/34) devices and include a very low noise chopper-stabilized programmable gain instrumentation amplifier (PGIA, 6 nV/Hz Hz) with selectable gains of 1×, 2×, 4×, 8×, 16×, 32×, and 64×. These ADCs also include a fourth or­der ∆Σ modulator followed by a digital filter provides twenty selectable output word rates of 6.25,
7.5, 12.5, 15, 25, 30, 50, 60, 100, 120, 200, 240, 400, 480, 800, 960, 1600, 1920, 3200, and 3840 Samples per second (MCLK = 4.9152 MHz).
To ease communication between the ADCs and a micro-controller, the converters include a simple three-wire serial interface which is SPI and Mi-
@0.1
which
crowire compatible with a Schmitt Trigger input on the s erial clock (SCLK).

2.1. Analog Input

Figure 3 illustrates a block diagram of the CS5531/32/33/34. The front end consistsof a multi­plexer, a unity gain coarse/fine charge input buffer, and a programmable gain chopper-stabilized instru­mentation amplifier. The unity gain buffer is activat­ed any time conversions are performed with a gain of one and the instrumentation amplifier is activated any time conversions are performed with gain set­tings greater than one.
The unity gain buffer is designed to accommodate rail to rail input signals. The common-mode plus signal range for the unity gain buffer amplifier is VA- to VA+. Typical CVF (sampling) current for the unity gain buffer amplifier is about 500 nA (MCLK = 4.9152 MHz, see Figure 4).
The instrumentation amplifier is chopper-stabi­lized and operates with a chop clock frequency of MCLK/128. The CVF (sampling) current into the instrumentation amplifier is typically 500 pA over
VREF+
VREF-
AIN2+
AIN2-
AIN1+
AIN1-
AIN4+
AIN4-
AIN1+
AIN1-
14 DS289PP5
CS5531/32
CS5533/34
* * *
IN+
M U
IN-
X
IN+
IN-
IN+
M U X
IN-
GAINis the gain setting of the PGIA (i.e. 2, 4, 8, 16, 32, 64)
X1
1000
XGAIN
X1
Figure 3. M ultiplexer Configuration
22 nF
1000
C1 PIN C2 PIN
X1
Differential
th
4 Order
∆Σ
Modulator
X1
Sinc
Digital
Filter
5
Programmable
3
Sinc
Digital Filter
Serial
Port
CS5531/32/33/34
-40°C to +85°C (MCLK=4.9152 MHz). The com­mon-mode plus signal range of the instrumentation amplifier is (VA-) + 0.7 V to (VA+) - 1.7 V.
Figure 4 illustrates the input models for the ampli­fiers. The dynamic input current for each of the pins can be determined from the models shown.
Gain=2,4,8,16,32,64
AIN
V≤1mV
os
i=fV C
n
os
AIN
V≤20 mV
os
i=fV C
osn
Figure 4. Input models for AIN+ and AIN- pins
MCLK
f=
128
Gain= 1
MCLK
f=
16
=12.5 pF
C
φ
Fine
1
φ
Coarse
1
C=80pF
After reset, the unity gain buffer is engaged. With a
2.5V reference this would make the full scale input range default to 2.5 V. By activating the instrumen­tation amplifier (i.e. a gain setting other than 1) and using a gain setting of 32, the full scale input range can quickly be set to 2.5/32 or about 78 mV. Note that these input ranges assume the calibration regis­ters are set to their default values (i.e. Gain = 1.0 and Offset = 0.0).

2.1.2. Multiplexed Settling Limitations

The settling performance of the CS5531/32/33/34 in multiplexed applications is affected by the sin­gle-pole low-pass filter which follows the instru­mentation amplifier (see Figure3). To achieve data sheet settling and linearity specifications, it is rec­ommended that a 22 nF C0G capacitorbe used. Ca­pacitors as low as 10 nF or X7R type capacitorscan also be used with some minor increase in distortion for AC signals.

2.1.3. Voltage Noise Density Performance

Figure5 illustrates the measuredvoltage noise den­sity versus frequency from 0.01 Hz to 10 Hz of a CS5532-BS. The device was powered with ±2.5 V supplies, using 120 Sps OWR, t he 64x gain range, bipolarmode, and withthe inputshort bit enabled.
Note: T he C=2.5pF and C = 16pFcapacitors are for
input c urrent modeling only. For physical input capacitance s ee Input Capa citan ce specification under Analog Characteristics.

2.1.1. Analog Input Span

The full scale input signal that the converter can dig­itize is a function of the gain setting and the refer­ence voltage connected between the VREF+ and
100
Hz
10
nV/
1
0.01 0.1 1 10
Freque ncy (Hz)
Gain = 64
VREF- pins. The full scale input span of the convert­er is ((VREF+) - (VREF-))/(GxA), where G is the
Figure 5. Measured Voltage Noise Density
gain of the amplifier and A is 2 for VRS = 0, or A is 1 for VRS = 1. VRS is the Voltage Reference Select bit, and must be set according to the differential volt­age applied to the VREF+ and VREF- pins on the part. See section 2.3.5 for more details.
DS289PP5 15

2.1.4. No Offset DAC

An offset DAC was not included in the CS553X family because the high dynamic range of the con­verter eliminates the need for one. The offset regis-
CS5531/32/33/34
ter can be manipulated by the user to mimic the function of a DAC if desired.

2.2. Overview of ADC Register Structure and Operating Modes

The CS5531/32/33/34 ADCs have an on-chip con­troller, which includes a number of user-accessible registers. The registers are used to hold offset and gain calibration results, configure the chip's operat­ing modes, hold conversion instructions, and to store conversion data words. Figure 6 depicts a block diagram of the on-chip controller’s internal registers.
Each of the converters has 32-bit registers to func­tion as offset and gain calibration registers for each channel. The converters with two channels have two offset and two gain calibration registers, the converters with four channels have four offset and four gain calibration registers. These registers hold calibration results. The contents of these registers can be read or written by the user. This allows cal-
ibration data to be off-loaded into an external EE­PROM. The user can also manipulate the contents of these registers to modify the offset or the gain slope of the converter.
The converters include a 32-bit configuration reg­ister which is used for setting options such as the power down modes, resetting the converter, short­ing the analog inputs, and enabling diagnostic test bits like the guard signal.
A group of registers, called Channel Setup Regis­ters, are used to hold pre-loaded conversion in­structions. Each channel setup register is 32 bits long, and holds two 16-bit conversion instructions referred to as Setups. Upon power up, these regis­ters can be initialized by the system microcontrol­ler with conversion instructions. The user can then instruct the converter to perform single or multiple conversions or calibrations with the converter in the mode defined by one of these Setups.
Offset Registers(4 x 32) Gain Registers (4 x 32)
Offset 1 (1 x 32 )
Offset 2 ( 1 x 32 )
Offset 3 ( 1 x 32 )
Offset 4 ( 1 x 32 )
Configur ation Reg iste r (1 x 32)
Pow er Sav e Se lect Re set System InputShort Guard Signal Voltag e Referen c e Se lect Output Latch Output Latch S e lect Offset/Gain Select Filter Rate Select
Gain1(1x32)
Gain2(1x32)
Gain3(1x32)
Gain4(1x32)
Figure 6. CS5531/32/33/34Register Diagram
Channel Set up
Registers (4 x 32)
Setup 1 (1 x 1 6)
Setup 3 (1 x 1 6)
Setup 5 (1 x 1 6)
Setup 7 (1 x 1 6)
Channel Select Gain Word Rate Unipolar/B ipolar Output Latch DelayTime Open Circuit Detect Offset/Gain Pointer
Setup 2 (1 x 16)
Setup 4 (1 x 16)
Setup 6 (1 x 16)
Setup 8 (1 x 16)
Write Only
Command
Register(1 × 8)
Conv ersion Data
Register (1 x 32)
Data (1 x 32 )
Read Only
Serial
Interface
CS SDI SDO SCLK
16 DS289PP5
Loading...
+ 36 hidden pages