Cirrus Logic CDB4349 User Manual

Evaluation Board for CS4349
CDB4349
Features
Stand-Alone or PC GUI Board ControlCS8416 Receives S/PDIF-Compatible Digital
Audio
Grounding Arrangements.
Requires Only a Digital Signal Source and
Power Supplies for a Complete Digital-to­Analog Converter System
Description
The CDB4349 evaluation board is an excellent platform for quickly evaluating the CS4349 24-bit, 24-pin, stereo D/A converter. Evaluation requires an analog signal an­alyzer, a digital signal source, a PC for controlling the CS4349 (only required for Control Port Mode), and a power supply. Analog line-level outputs are provided via RCA phono jacks.
The CS8416 digital audio rec eiver IC provide s the sy s­tem timing necessary to operate the digital-to-analog converter and will accept S/PDIF-compatible audio da­ta. The evaluation board may also be configured to accept external timing and data signals for operation in a user application during system development.
ORDERING INFORMATION
CDB4349 Evaluation Board
Inputs for PCM
Clocks and Data
CS8416
Digital Audio
Interface
http://www.cirrus.com
Hardware or
Software Board
Control
CS4349
Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
Analog Outputs
and Filtering
JUN '08
DS782DB1

TABLE OF CONTENTS

1. CDB4349 SYSTEM OVERVIEW ............................................................................................................ 4
2. CS4349 DIGITAL-TO-ANALOG CONVERTER ..................................................................................... 4
3. CS8416 DIGITAL AUDIO RECEIVER .................................................................................................... 4
4. INPUT FOR CLOCKS AND DATA ......................................................................................................... 4
5. INPUT FOR CONTROL DATA ............................................................................................................... 4
6. POWER SUPPLY CIRCUITRY ............................................................................................................... 5
7. GROUNDING AND POWER SUPPLY DECOUPLING .......................................................................... 5
8. ANALOG OUTPUT FILTERING ................. ... .... ... ... ... .... ... ....................................... ... ... ... ... .... ... ........... 5
9. BOARD CONNECTIONS AND SETTINGS ............................................................................................ 6
10. PERFORMANCE PLOTS ..................................................................................................................... 7
11. SCHEMATICS .................................................................................................................................... 13
12. LAYOUT ............................................................................................................................................. 20
13. REVISION HISTORY .......................................................................................................................... 23

LIST OF FIGURES

Figure 1. FFT 0 dBFS, FS = 48 kHz ...................... ... ... ... .... ... ... ... .... ... ... ....................................... ... ........... 7
Figure 2. FFT -60 dBFS, FS = 48 kHz ................... ... .......................................... ... ... .... ... ... ... ..................... 7
Figure 3. FFT No Input, FS = 48 kHz ........ ... ... ... .... ... ... ... .... .......................................... ... ........................... 7
Figure 4. FFT No Input Out of Band, FS = 48 kHz ....... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .................................. 7
Figure 5. Frequency Response 0 dBFS, FS = 48 kHz ................................................................................ 7
Figure 6. THD+N vs Frequency 0 dBFS, FS = 48 kHz ............................................................................... 7
Figure 7. THD+N vs Level 1 kHz, FS = 48 kHz ........................................................................................... 8
Figure 8. Fade-to-Noise Linearity 1 kHz, FS = 48 kHz ...............................................................................8
Figure 9. Impulse Response, FS = 48 kHz ................................................................................................. 8
Figure 10. FFT Crosstalk Ch. A to Ch. B 1 kHz, FS = 48 kHz ......................................................... ........... 8
Figure 11. FFT Crosstalk Ch. B to Ch. A 1 kHz, FS = 48 kHz ......................................................... ........... 8
Figure 12. FFT 0 dBFS, FS = 96 kHz ......................................................................................................... 8
Figure 13. FFT -60 dBFS, FS = 96 kHz ...................................................................................................... 9
Figure 14. FFT No Input, FS = 96 kHz ........................................................................................................ 9
Figure 15. FFT No Input Out of Band, FS = 96 kHz .................................................................................... 9
Figure 16. Frequency Response 0 dBFS, FS = 96 kHz .............................................................................. 9
Figure 17. THD+N vs Frequency 0 dBFS, FS = 96 kHz . .... ... ... ... .......................................... ... .... ... ... ... .... . 9
Figure 18. THD+N vs Level 1 kHz, FS = 96 kHz ............. .... ... .......................................... ... ... ... .... ... ... ... ..... 9
Figure 19. Fade-to-Noise Linearity 1 kHz, FS = 96 kHz ........................................................................... 10
Figure 20. Impulse Response, FS = 96 kHz ............................................................................................. 10
Figure 21. FFT Crosstalk Ch. A to Ch. B 1 kHz, FS = 96 kHz ......................................................... ......... 10
Figure 22. FFT Crosstalk Ch. B to Ch. A 1 kHz, FS = 96 kHz ......................................................... ......... 10
Figure 23. FFT 0 dBFS, FS = 192 kHz ..................................................................................................... 10
Figure 24. FFT -60 dBFS, FS = 192 kHz .................................................................................................. 10
Figure 25. FFT No Input, FS = 192 kHz ............................................................................................
Figure 26. FFT No Input Out of Band, FS = 192 kHz ................................................................................ 11
Figure 27. Frequency Response 0 dBFS, FS = 192 kHz .......................................................................... 11
Figure 28. THD+N vs Frequency 0 dBFS, FS = 192 kHz ... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 11
Figure 29. THD+N vs Level 1 kHz, FS = 192 kHz ........ ... .... ... ... ... .... ... ... ... ... .... ... ... ... ................................ 11
Figure 30. Fade-to-Noise Linearity 1 kHz, FS = 192 kHz ......................................................................... 11
Figure 31. Impulse Response, FS = 192 kHz ........................................................................................... 12
Figure 32. FFT Crosstalk Ch. A to Ch. B 1 kHz, FS = 192 kHz ................................................................ 12
Figure 33. FFT Crosstalk Ch. B to Ch. A 1 kHz, FS = 192 kHz ................................................................ 12
Figure 34. System Block Diagram and Signal Flow .................................................................................. 13
Figure 35. CS4349 ....... ...................................... .... ... ... ... .... ... ... ... .... ... ...................................................... 14
Figure 36. Analog Outputs ........................................................................................................................ 15
Figure 37. PCM Input Header and Hardware Control ......................................................... ... ... .... ... .........16
CDB4349
........ 11
2 DS782DB1
Figure 38. CS8416 S/PDIF Input .............................................................................................................. 17
Figure 39. Control Port .............................................................................................................................. 18
Figure 40. Power ....................................................................................................................................... 19
Figure 41. Silkscreen Top ......................................................................................................................... 20
Figure 42. Top Side ................................................................................................................................... 21
Figure 43. Bottom Side ............................................................................................................................. 22

LIST OF TABLES

Table 1. System Connections ...................................... ... .... ... ... ... .... ... ... ... .................................................. 6
Table 2. CDB4349 Jumper Settings ............................................................................................................ 6
Table 3. CDB4349 Switch Settings ............................................................................................................. 6
CDB4349
DS782DB1 3
CDB4349

1. CDB4349 SYSTEM OVERVIEW

The CDB4349 evaluation board is an excellent platform for quickly evaluating the CS4349. The CS8416 digital audio interface receiver provides an easy interface to digi tal audio signal sources including the majority of dig ital audio test equipment. The evaluation board also allows the user to supply external PCM clocks and data through head ers for system development.
The CDB4349 schematic has been partitioned into 6 pages, shown in Figures 35 through 40. Each schematic page is represented in the system diagram shown in Figure 34. Notice that the system diagram also includes the inter­connections between the partitioned schematics.

2. CS4349 DIGITAL-TO-ANALOG CONVERTER

A description of the CS4349 is included in the CS4349 datasheet, available at http://www.cirrus.com/en/prod-
ucts/pro/detail/P1116.html.

3. CS8416 DIGITAL AUDIO RECEIVER

The system receives and decodes the standard S/PDIF data format using a CS8416 digital audio receiver (Figure 38). The outputs of the CS8416 include a serial bit clock, serial data, and a left-right clock. The CS8416 data format is selected through switch S1. The operation of the CS8416 and a d iscussion of th e digital au dio interface is included in the CS8416 datasheet, available at http://www.cirrus.com/en/products/pro/detail/P1005.html.
The CDB4349 has been designed so that the input can be either optical or coaxial (see Figure 39). However, both inputs cannot be driven simultaneously.
After the CS8416 serial format is changed either through S1 in Stand-Alone Mode, or though the CDB4349 GUI in PC Mode, a reset is required. The CS8416 can b e manually reset using ‘HARDWARE RESET ’ (S2) in Stan d-Alone Mode, or through software when operating the CDB4349 in PC Mode.

4. INPUT FOR CLOCKS AND DATA

The evaluation board has been designed to allow external PCM data input through header J10. The schematic for the clock/data input is shown in Figure 37. In Stand-Alone Mode, switch position 6 of S4 selects the source as either CS8416 (open) or header J10 (closed). In PC Mode, the PCM source is selected through software.

5. INPUT FOR CONTROL DATA

The evaluation board can be run in either a Stand-Alone Mode or with a PC. Stand-Alone Mode does not require the use of a PC, and the mode pins are configured using switch positions 1 through 5 of S4 and switch positions 1 and 2 of S1. PC Mode uses software to set up the CS4349 through I²C or USB port. When the serial port (RS232) or USB is attached and the CDB4349 software is running, PC Mode is automatically selected.
Header J38 offers the option for external input of RST and SPI/I²C clocks and data. The board is set up from the factory to use the on-board microcontroller in conjunction with software available at http://www.cirrus.com/en/prod-
ucts/software/msaudio.html. To use an external control source, rem ove the shunts on J3 8 and place a ribbon ca ble
so the signal lines are on the center row and the grounds are on the right side. R89 and R90 should be populated with 2 k resistors when using an external I²C source which does not already provide pull-ups.
®
or SPI™ interface using the PC’s serial port
4 DS782DB1
CDB4349

6. POWER SUPPLY CIRCUITRY

Power is supplied to the evaluation board by three binding posts (GND, +12V, and -12V), as shown in Figure 40. The ‘+12V’ and ‘-12V’ terminals supply the active output filters. The +3.3 V and +5.0 V circuitry is powered by reg­ulators fed by the ‘+12V’ terminal. Headers J3, J4, and J7 allow the user to either select +3.3 V or +5.0 V supplies for the various CS4349 voltage supply pins. Alternatively, the user can remove the shunts on J3, J4, and J7, and provide an external power supply.
WARNING:Refer to the CS4349 datasheet for maximum allowable voltage levels. Operation outside of this range
can cause permanent damage to the device.

7. GROUNDING AND POWER SUPPLY DECOUPLING

As with any high-performance converter, the CS4349 requires careful attention to power supply and grounding ar­rangements in order to optimize performance. Figure 35 details the connections to the CS4349 while Figures 41,
42, and 43 show the component placement and top and bottom layout. The decoupling capacitors are located as
close to the CS4349 as possible. Extensive use of ground plane fill in the evaluation board yields large reductions in radiated noise.

8. ANALOG OUTPUT FILTERING

The passive output filter on the CDB4349 has been designed according to the CS4349 datasheet.
DS782DB1 5

9. BOARD CONNECTIONS AND SETTINGS

Board connections and settings are shown in Table 1, Table 2, and Table 3.
CONNECTOR INPUT/OUTPUT SIGNAL PRESENT
GND Input Ground connection from power supply +12V Input +12 V positive supply for the on-board filtering
-12V Input -12 V negative supply for the on-board filtering
S/PDIF IN - J1 Input Digital audio interface input via coax S/PDIF IN - OPT1 Input Digital audio interface input via optical PCM INPUT - J10 Input Input for master, serial, left/right clocks and serial data
POUTA, POUTB Output RCA line level analog outputs from passive output stage

Table 1. System Connections

JUMPER PURPOSE POSITION FUNCTION SELECTED
J3, J4, J7
J38 Selects source of control data J27 C2 micro programming - Reserved for factory use only
Selects Supply Voltage for
CS4349
+5V
*+3.3V
*PC CONTROL
shunts removed
Supplies +5.0 V to associated CS4349 supply
*Supplies +3.3 V to associated CS4349 supply *Control from PC and on-board microcontroller
External control input using center and right columns
CDB4349

Table 2. CDB4349 Jumper Settings

*Default Factory Settings.
SWITCH
(Note 1) PURPOSE POSITION FUNCTION SELECTED
S2 Resets CS8416 and CS4349 The CS8416 must be reset if switch S1 is changed S1
S4
CS8416 Format Select
SFSEL[1:0]
CS4349 Format Select
DIF[2:0]
CS4349 De-emphasis Select 4
®
CS4349 Popguard
Selects PCM source for
CS4349
Enable 5

Table 3. CDB4349 Switch Settings

1, 2
1, 2, 3
6
Default: SFSEL[1:0] = 00 (Closed). See CS8416 datasheet
for details.
Default: DIF[2:0] = 000 (Closed). See CS4349 datasheet
for details.
open = De-emphasis enabled
*closed = De-emphasis disabled.
open = Popguard enabled
*closed = Popguard disabled.
*open = CS8416
closed = PCM Header J10
*Default Factory Settings.
Note:
1. Switch settings take effect in Stand-Alone Mode only.
6 DS782DB1
CDB4349

10.PERFORMANCE PLOTS

Test conditions (unless otherwise specified): TA= 25° C; Measurement bandwidth is 20 Hz to 20 kHz (unweighted); VA = 5 V; VLC = VLS = 3.3 V; Input signal is a 0 dBFS 1 kHz sine wave; Input data resolution is 24 bits, Left-Justi­fied; Channel A output = blue traces; Channel B output = green traces.
+0
-10
-20
-30
-40
-50
-60
d
-70
B r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 1. FFT 0 dBFS, FS = 48 kHz Figure 2. FFT -60 dBFS, FS = 48 kHz

+0
-10
-20
-30
-40
-50
-60
d
-70
B r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
-50
-60 d B
-70 r
-80 A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
-50
-60 d B
-70
r
-80 A
-90
-100
-110
-120
-130
-140
-150 20k 120k40k 60k 80k 100k
Hz

Figure 3. FFT No Input, FS = 48 kHz Figure 4. FFT No Input Out of Band, FS = 48 kHz

+5
+4
+3
+2
+1
d
B
+0
r
A
-1
-2
-3
-4
-5 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 5. Frequency Response 0 dBFS, FS = 48 kHz Figure 6. THD+N vs Frequency 0 dBFS, FS = 48 kHz

DS782DB1 7
CDB4349
+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110
-120 +0-100 -80 -60 -40 -20 dBFS
+40 +35 +30 +25 +20 +15 +10
d
+5
B
+0
r
-5
A
-10
-15
-20
-25
-30
-35
-40
-140 +0-120 -100 -80 -60 -40 -20 dBFS

Figure 7. THD+N vs Level 1 k Hz, FS = 48 kHz Figure 8. Fade-to-Noise Linearity 1 kHz, FS = 48 kHz

2
1.75
1.5
1.25 1
750m 500m 250m
0
V
-250m
-500m
-750m
-1
-1.25
-1.5
-1.75
-2 0 3m500u1m1.5m2m2.5m
sec
+0
-10
-20
-30
-40
-50
-60 d B
-70
r
-80 A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 9. Impulse Response, FS = 48 kHz Figure 10. FFT Crosstalk Ch. A to Ch. B 1 kHz,

FS = 48 kHz
+0
-10
-20
-30
-40
-50
-60
d
B
-70
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 11. FFT Crosstalk Ch. B to Ch. A 1 kHz,
+0
-10
-20
-30
-40
-50
-60
d
B
-70
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 12. FFT 0 dBFS, FS = 96 kHz

FS = 48 kHz
8 DS782DB1
CDB4349
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 13. FFT -60 dBFS, FS = 96 kHz Figure 14. FFT No Input, FS = 96 kHz

+0
-10
-20
-30
-40
-50
-60 d B
-70
r
-80 A
-90
-100
-110
-120
-130
-140
-150 20k 120k40k 60k 80k 100k
Hz
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
+5
+4
+3
+2
+1 d B
+0
r A
-1
-2
-3
-4
-5 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Hz

Figure 15. FFT No Input Out of Band, FS = 96 kHz Figure 16. Frequency Response 0 dBFS, FS = 96 kHz

+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110
-120 +0-100 -80 -60 -40 -20 dBFS

Figure 17. THD+N vs Frequency 0 dBFS, FS = 96 kHz Figure 18. THD+N vs Level 1 kHz, FS = 96 kHz

DS782DB1 9
CDB4349
+40 +35 +30 +25 +20 +15 +10
d
+5
B
+0
r
-5
A
-10
-15
-20
-25
-30
-35
-40
-140 +0-120 -100 -80 -60 -40 -20 dBFS
2
1.75
1.5
1.25 1
750m 500m 250m
0
V
-250m
-500m
-750m
-1
-1.25
-1.5
-1.75
-2 0 1.5m250u 500u 750u 1m 1.25m
sec

Figure 19. Fade-to-Noise Linearity 1 kHz, FS = 96 kHz Figure 20. Impulse Response, FS = 96 kHz

+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 21. FFT Crosstalk Ch. A to Ch. B 1 kHz,
FS = 96 kHz
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 22. FFT Crosstalk Ch. B to Ch. A 1 kHz,
FS = 96 kHz
+0
-10
-20
-30
-40
-50
-60
d
-70
B r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 23. FFT 0 dBFS, FS = 192 kHz Figure 24. FFT -60 dBFS, FS = 192 kHz

10 DS782DB1
CDB4349
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 25. FFT No Input, FS = 192 kHz Figure 26. FFT No Input Out of Band, FS = 192 kHz

+5
+4
+3
+2
+1 d B
+0
r
A
-1
-2
-3
-4
-5 20 20k50 100 200 500 1k 2k 5k 10k
Hz
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150
+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110 20 20k50 100 200 500 1k 2k 5k 10k
20k 120k40k 60k 80k 100k
Hz
Hz

Figure 27. Frequency Response 0 dBFS, FS = 192 kHz Figure 28. THD+N vs Frequency 0 dBFS, FS = 192 kHz

+0
-10
-20
-30
-40
d
-50
B
r
-60
A
-70
-80
-90
-100
-110
-120 +0-100 -80 -60 -40 -20 dBFS
+40 +35 +30 +25 +20 +15 +10
d
+5
B
+0
r
-5
A
-10
-15
-20
-25
-30
-35
-40
-140 +0-120 -100 -80 -60 -40 -20 dBFS

Figure 29. THD+N vs Level 1 kHz, FS = 192 kHz Figure 30. Fade-to-Noise Linearity 1 kHz, FS = 192 kHz

DS782DB1 11
CDB4349
2
1.75
1.5
1.25 1
750m 500m 250m
0
V
-250m
-500m
-750m
-1
-1.25
-1.5
-1.75
-2 0 600u200u 400u
sec
+0
-10
-20
-30
-40
-50
-60
d
-70
B r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz

Figure 31. Impulse Response, FS = 192 kHz Figure 32. FFT Crosstalk Ch. A to Ch. B 1 kHz,

FS = 192 kHz
+0
-10
-20
-30
-40
-50
-60
d
-70
B
r
-80
A
-90
-100
-110
-120
-130
-140
-150 20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 33. FFT Crosstalk Ch. B to Ch. A 1 kHz,
FS = 192 kHz
12 DS782DB1
DS782DB1 13

11.SCHEMATICS

PCM Header
Figure 3
PCM Clocks/Data
Se rial Con tro l Port
PCM source select
Figure 3
Power
I2C/SPI Header
Figure 4
Figure 3
CS8416
S/PDIF
Input
Figure 3
PCM Clocks/Data
CS8416 serial port
forma t
PCM mux
Figure 3
PCM source select
Ha rdware Con tro l
Switches
Figure 3

Figure 34. System Block Diagram and Signal Flow

Analog Outputs
PCM Clocks/D ata
POUTA
Figure 3
CS4349
DIF[2:0]
POUTB
Figure 3
Figure 3
CDB4349
14 DS782DB1

Figure 35. CS4349

CDB4349
DS782DB1 15

Figure 36. Analog Outputs

CDB4349
DS782DB1 16

Figure 37. PCM Input Header and Hardware Control

CDB4349
DS782DB1 17

Figure 38. CS8416 S/PDIF Input

CDB4349
DS782DB1 18

Figure 39. Control Port

CDB4349
DS782DB1 19

Figure 40. Power

CDB4349
DS782DB1 20

12.LAYOUT

CS4349

Figure 41. Silkscreen Top

CDB4349
CDB4349
DS782DB1 21

Figure 42. Top Side

CDB4349
DS782DB1 22

Figure 43. Bottom Side

CDB4349

13.REVISION HISTORY

Release Date Changes
DB1
June 2007
Initial Evaluation Board Datasheet Release
CDB4349
DS782DB1 23
CDB4349
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest to you, go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the informatio n i s sub je ct to change without notice and is provid ed "AS IS" witho ut warranty of any kind (ex press or imp lied). Cu stomers are adv ised to ob tain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgmen t, including those pe rtaining to warra nty, indemnific ation, and lim itation of lia bility. No responsibility is assumed by Cirrus for the use of this information, including use o f this in forma tion as the ba sis for ma nu facture or sa le of a ny item s, or for i nfringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only f or use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying fo r ge neral distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUS­TOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILI TY, INCL UDING AT­TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus , the Cir rus Lo gic log o desi gns , and Po pgua rd are t rad emark s of Cirru s Logi c, I nc. All o ther br and and p rod uct na mes in t his do cument may be trademarks or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor. SPI is a trademark of Motorola, Inc.
24 DS782DB1
Loading...