Cherry Semiconductor CS5151GD16, CS5151GN16, CS5151GDR16 Datasheet

The CS5151 is a 4-bit nonsyn­chronous N-Channel buck con­troller. It is designed to provide unprecedented transient response for today’s demanding high-densi­ty, high-speed logic. The regulator operates using a proprietary control method, which allows a 100ns response time to load transients. The CS5151 is designed to operate over a 4.25-16V range (VCC) using 12V to power the IC and 5V as the main supply for conversion.
The CS5151 is specifically designed to power Pentium®processors with
MMX™ Technology and other high performance core logic. It includes the following features: on board, 4-bit DAC, short circuit protection,
1.0% output tolerance, VCCmonitor, and programmable soft start capa­bility. The CS5151 is upwards com­patible with the 5-bit CS5156, allow­ing the mother board designer the capability of using either the CS5151 or the CS5156 with no change in layout. The CS5151 is available in 16 pin surface mount and DIP packages.
Features
N-Channel Design
Excess of 1MHz Operation
100ns Transient Response
4-Bit DAC
Upward Compatible with
5-Bit CS5155/5156 and Adjustable CS5120/5121
30ns Gate Rise/Fall Times
1% DAC Accuracy
5V & 12V Operation
Remote Sense
Programmable Soft Start
Lossless Short Circuit
Protection
V
CC
Monitor
Adaptive Voltage
Positioning
V
2
Control Topology
Current Sharing
Overvoltage Protection
Package Options
CPU 4-Bit Nonsynchronous Buck Controller
CS5151
Description
Application Diagram
V
ID0
V
ID1
V
ID2
V
ID3
SS
NC
C
OFF
V
FFB
V
FB
COMP
LGnd
V
CC1
NC
PGnd V
GATE
V
CC2
16 Lead SO Narrow & PDIP
1
Switching Power Supply for core logic - Pentium® processor with MMX™ Technology
0.33µF
V
ID0
V
ID1
V
ID2
V
ID3
V
ID0
V
ID1
V
ID2
V
ID3
V
CC1
SS
C
OFF
LGnd
V
FB
V
FFB
COMP
IRL3103
0.1µF
12V 5V
2µH
2.1V to 3.5V @ 13A
V
CC2
V
GATE
PGnd
1200µF/16V x 3 AlEl
3.3k
0.1µF
1200µF/16V x 5 AlEl
100pF
330pF
CS5151
MBR735
3
1,2
V2is a trademark of Switch Power, Inc.
Pentium is a registered trademark and MMX is a trademark of Intel Corporation.
CS5151
Cherry Semiconductor Corporation
2000 South County Trail, East Greenwich, RI 02818
Tel: (401)885-3600 Fax: (401)885-5786
Email: info@cherry-semi.com
Web Site: www.cherry-semi.com
A Company
®
Rev. 1/5/99
1
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Electrical Characteristics:
0°C < TA< +70°C; 0°C < TJ< +85°C; 8V < V
CC1
< 14V; 5V < V
CC2
< 14V; DAC Code: V
ID2
= V
ID1
=
V
ID0
= 1; V
ID3
= 0; CV
GATE
= 1nF; C
OFF
= 330pF; CSS= 0.1µF, unless otherwise specified.
2
Pin Name Max Operating Voltage Max Current
V
CC1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25mA DC/1.5A peak
V
CC2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA DC/1.5A peak
SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-100µA
COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200µA
V
FB
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.2µA
C
OFF
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.2µA
V
FFB
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.2µA
V
ID0
- V
ID3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-50µA
V
GATE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16V/-0.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA DC/1.5A peak
LGnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25mA
PGnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA DC/1.5A peak
Operating Junction Temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .°0 to 150°C
Lead Temperature Soldering
Wave Solder (through hole styles only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 sec. max, 260°C peak
Reflow (SMD styles only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 sec. max above 183°C, 230°C peak
Storage Temperature Range, T
S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65° to 150°C
ESD Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV
CS5151
Absolute Maximum Ratings
Error Amplifier
VFBBias Current VFB= 0V 0.3 1.0 µA Open Loop Gain 1.25V < V
COMP
< 4V; Note 1 50 60 dB Unity Gain Bandwidth Note 1 500 3000 kH COMP SINK Current V
COMP
= 1.5V; VFB= 3V; VSS> 2V 0.4 2.5 8.0 mA
COMP SOURCE Current V
COMP
= 1.2V; VFB= 2.7V; VSS= 5V 30 50 70 µA
COMP CLAMP Current V
COMP
= 0V; VFB= 2.7V 0.4 1.0 1.6 mA COMP High Voltage VFB= 2.7V; VSS= 5V 4.0 4.3 5.0 V COMP Low Voltage VFB=3V 160 600 mV PSRR 8V < V
CC1
< 14V @ 1kHz; Note 1 60 85 dB
V
CC1
Monitor
Start Threshold Output switching 3.75 3.90 4.05 V Stop Threshold Output not switching 3.70 3.85 4.00 V Hysteresis Start-Stop 50 mV
DAC
Input Threshold V
ID0
, V
ID1
, V
ID2
, V
ID3
1.00 1.25 2.40 V
Input Pull Up Resistance V
ID0
, V
ID1
, V
ID2
, V
ID3
25 50 100 k Pull Up Voltage 4.85 5.00 5.15 V Accuracy Measure VFB= V
COMP
, 25°C TJ≤ 85°C 1.0 %
V
ID3VID2
V
ID1
V
ID0
1 1 1 1 1.2315 1.2440 1.2564 V 1 1 1 0 2.1186 2.1400 2.1614 V 1 1 0 1 2.2176 2.2400 2.2624 V 1 1 0 0 2.3166 2.3400 2.3634 V 1 0 1 1 2.4156 2.4400 2.4644 V 1 0 1 0 2.5146 2.5400 2.5654 V 1 0 0 1 2.6136 2.6400 2.6664 V 1 0 0 0 2.7126 2.7400 2.7674 V 0 1 1 1 2.8116 2.8400 2.8684 V 0 1 1 0 2.9106 2.9400 2.9694 V 0 1 0 1 3.0096 3.0400 3.0704 V
CS5151
3
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Electrical Characteristics:
0°C < TA< +70°C; 0°C < TJ< +85°C; 8V < V
CC1
< 14V; 5V < V
CC2
< 14V; DAC Code: V
ID2
= V
ID1
=
V
ID0
= 1; V
ID3
= 0; CV
GATE
= 1nF; C
OFF
= 330pF; CSS= 0.1µF, unless otherwise specified.
DAC: continued
V
ID3
V
ID2
V
ID1
V
ID0
0 1 0 0 3.1086 3.1400 3.1714 V 0 0 1 1 3.2076 3.2400 3.2724 V 0 0 1 0 3.3066 3.3400 3.3734 V 0 0 0 1 3.4056 3.4400 3.4744 V 0 0 0 0 3.5046 3.5400 3.5754 V
V
GATE
Out SOURCE Sat at 100mA Measure V
CC2
– V
GATE
1.2 2.0 V
Out SINK Sat at 100mA Measure V
GATE
– VPGnd; 1.0 1.5 V
Out Rise Time 1V < V
GATE
< 9V; V
CC1
= V
CC2
= 12V 30 50 ns
Out Fall Time 9V > V
GATE
> 1V; V
CC1
= V
CC2
= 12V 30 50 ns Shoot-Through Current Note 1 50 mA V
GATE
Resistance Resistor to LGnd 20 50 100 k
V
GATE
Schottky LGnd to V
GATE
@ 10mA 600 800 mV
Soft Start (SS)
Charge Time 1.6 3.3 5.0 ms Pulse Period 25 100 200 ms Duty Cycle (Charge Time/Pulse Period) × 100 1.0 3.3 6.0 % COMP Clamp Voltage VFB= 0V; VSS= 0 0.50 0.95 1.10 V V
FFB
SS Fault Disable V
GATE
= Low 0.9 1.0 1.1 V
High Threshold 2.5 3.0 V
PWM Comparator
Transient Response V
FFB
= 0 to 5V to V
GATE
= 9V to 1V; 100 125 ns
V
CC1
= V
CC2
= 12V
V
FFB
Bias Current V
FFB
= 0V 0.3 µA
Supply Current
I
CC1
No Switching 8.5 13.5 mA
I
CC2
No Switching 1.6 3.0 mA
Operating I
CC1
VFB= COMP = V
FFB
813mA
Operating I
CC2
VFB= COMP = V
FFB
25 mA
C
OFF
Normal Charge Time V
FFB
= 1.5V; VSS= 5V 1.0 1.6 2.2 µs
Extension Charge Time VSS= V
FFB
= 0 5.0 8.0 11.0 µs
Discharge Current C
OFF
to 5V; V
FB
>1V 5.0 mA
Time Out Timer
Time Out Time VFB= V
COMP
; V
FFB
= 2V; 10 30 50 µs
Record V
GATE
Pulse High Duration
Fault Mode Duty Cycle V
FFB
= 0V 35 50 65 %
Note 1: Guaranteed by design, not 100% tested in production.
4
CS5151
Package Pin Description
PACKAGE PIN # PIN SYMBOL FUNCTION
16L SO Narrow & PDIP
1,2,3,4 V
ID0
– V
ID3
Voltage ID DAC input pins. These pins are internally pulled up to 5V providing logic ones if left open. The DAC range is 2.14V to 3.54V with 100mV increments. V
ID0
- V
ID3
select the desired DAC output voltage.
Leaving all 4 DAC input pins open results in a DAC output voltage of
1.244V, allowing for adjustable output voltage, using a traditional resis­tor divider.
5 SS Soft Start Pin. A capacitor from this pin to LGnd in conjunction with
internal 60µA current source provides soft start function for the con­troller. This pin disables fault detect function during Soft Start. When a fault is detected, the soft start capacitor is slowly discharged by internal 2µA current source setting the time out before trying to restart the IC. Charge/discharge current ratio of 30 sets the duty cycle for the IC when the regulator output is shorted.
6, 12 NC No connection.
7C
OFF
A capacitor from this pin to ground sets the time duration for the on board one shot, which is used for the constant off time architecture.
8V
FFB
Fast feedback connection to the PWM comparator. This pin is connected to the regulator output. The inner feedback loop terminates on time.
9V
CC2
Boosted power for the gate driver.
10 V
GATE
MOSFET driver pin capable of 1.5A peak switching current.
11 PGnd High current ground for the IC. The MOSFET driver is referenced to this
pin. Input capacitor ground and the anode of the Schottky diode should be tied to this pin.
13 V
CC1
Input power for the IC.
14 LGnd Signal ground for the IC. All control circuits are referenced to this pin.
15 COMP Error amplifier compensation pin. A capacitor to ground should be pro-
vided externally to compensate the amplifier.
16 V
FB
Error amplifier DC feedback input. This is the master voltage feedback which sets the output voltage. This pin can be connected directly to the output or a remote sense trace.
5
CS5151
Block Diagram
V
Applications Information
V
2
Control Method
The V
2
method of control uses a ramp signal that is gen­erated by the ESR of the output capacitors. This ramp is proportional to the AC current through the main inductor and is offset by the value of the DC output voltage. This control scheme inherently compensates for variation in either line or load conditions, since the ramp signal is gen­erated from the output voltage itself. This control scheme differs from traditional techniques such as voltage mode, which generates an artificial ramp, and current mode, which generates a ramp from inductor current.
Figure 1: V
2
Control Diagram
The V
2
control method is illustrated in Figure 1. The out­put voltage is used to generate both the error signal and the ramp signal. Since the ramp signal is simply the output voltage, it is affected by any change in the output regard­less of the origin of that change. The ramp signal also con­tains the DC portion of the output voltage, which allows the control circuit to drive the main switch to 0% or 100% duty cycle as required.
A change in line voltage changes the current ramp in the inductor, affecting the ramp signal, which causes the V
2
control scheme to compensate the duty cycle. Since the change in inductor current modifies the ramp signal, as in current mode control, the V
2
control scheme has the
same advantages in line transient response. A change in load current will have an affect on the output
voltage, altering the ramp signal. A load step immediately changes the state of the comparator output, which controls the main switch. Load transient response is determined only by the comparator response time and the transition speed of the main switch. The reaction time to an output load step has no relation to the crossover frequency of the error signal loop, as in traditional control methods.
The error signal loop can have a low crossover frequency, since transient response is handled by the ramp signal loop. The main purpose of this ‘slow’ feedback loop is to provide DC accuracy. Noise immunity is significantly improved, since the error amplifier bandwidth can be rolled off at a low frequency. Enhanced noise immunity improves remote sens-
Theory of Operation
CC1
SS
V
ID0
V
ID1
V
ID2
V
ID3
V
COMP
V
FFB
LGnd
V
V
Monitor
CC1
Comparator
-
60µA
2µA
-
+
-
+
V
FFB
Comparator
5V
2.5V
Low
+
3.90V
3.85V
4 BIT
DAC
FB
Slow Feedback
Fast Feedback
+
-
Error Amplifier
PWM Comparator
1V
0.7V
-
+
+
-
Maximum
On-Time
Timeout
Normal
Off-Time
Timeout
Extended
Off-Time
Timeout
SS Low Comparator
SS High Comparator
R
S
FAULT
Latch
Off-Time
Timeout
FAULT
Q
FAULT
Q
R
Q
S
Q
PWM Latch
GATE = ON
GATE = OFF
C
OFF
One Shot
R
S
Q
CC2
V
GATE
PGnd
C
OFF
PWM COMP
COMP
PWM Comparator
+
C
Ramp Signal
Error
Signal
Error
Amplifier
V
V
GATE
FFB
E
Output Voltage Feedback
V
FB
+
Reference
Voltage
Time Out
Timer
(30µs)
Edge Triggered
Loading...
+ 9 hidden pages