CHERRY Semiconductor CS51312 Service Manual

Features
Synchronous Switching
Regulator Controller for CPU V
CORE
Dual N-Channel MOSFET
Synchronous Buck Design
2
TM
Control Topology
200ns Transient Loop Response
5 bit DAC with 1.2% Tolerance
Hiccup Mode Overcurrent
Protection
40ns Gate Rise and Fall Times
(3.3nF load)
65ns Adaptive FET Non-overlap
Time
Adaptive Voltage Positioning
Power-Good Output Monitors
Regulator Output
5V/12V or 12V-only Operation
CC
Monitor Provides Under
Voltage Lockout
OVP Output Monitors Regulator
Output
Multifunction COMP Pin
Provides ENABLE, Soft Start, and Hiccup Timing in Addition to Control Loop Compensation
Package Options
CS51312
Synchronous CPU Buck Controller
for 12V Only Applications
CS51312
Description
Application Diagram
GATE(H)V
OUT
VID0 VID1 VID2 VID3 VID4
V
FB
V
CC2
PWRGD OVP GATE(L) Gnd
COMP C
OFF
V
CC1
16 Lead SO Narrow
1
Pentium is a registered trademark of Intel Corporation.
A Company
®
V2is a trademark of Switch Power, Inc.
Rev. 3/11/99
Cherry Semiconductor Corporation
2000 South County Trail, East Greenwich, RI 02818
Tel: (401)885-3600 Fax: (401)885-5786
Email: info@cherry-semi.com
Web Site: www.cherry-semi.com
12V to 16A high performance converter.
The CS51312 is a synchronous dual NFET Buck Regulator Controller. It is designed to power the core logic of the latest high performance CPUs and ASICs from a single 12V input. It uses the V
2
TM
control method to achieve the fastest possible transient response and best overall regulation. It incor­porates many additional features required to ensure the proper opera­tion and protection of the CPU and Power system. The CS51312 provides the industry’s most highly integrated solution, minimizing external compo­nent count, total solution size, and cost.
The CS51312 is specifically designed to power Intel’s Pentium
®
II processor and includes the following features: 5-bit DAC with 1.2% tolerance, Power-Good output, overcurrent hic­cup mode protection, overvoltage protection, V
CC
monitor, Soft Start, adaptive voltage positioning, adap­tive FET non-overlap time, and remote sense. The CS51312 will oper­ate over a 9V to 20V (V
CC2
) range using either single or dual input volt­age and is available in 16 lead narrow body surface mount package.
R2
200
C9
0.01µF
C10 1µF
C19
1000pF
12V
C1
1.0µF
D1
SS16GICT-ND
R1
22
D2
ZM4746ACT-ND
V
ID4
V
ID3
V
ID2
V
ID1
C
OFF
COMP V
ID0
V
CC2VCC1
V
FB
GATE(H)
GATE(L)
Gnd
OVP
PWRGDV
OUT
CS51312
12V
C2 C3 C4
220µF
16SV220
C6
0.010µF
FY10AAJ-03A
FY10AAJ-03A
Q1
Q2
Q3
FY10AAJ-03A
FY10AAJ-03A
Q4
D3
SS12GICT-ND
OVP
PWRGD
R3
10k
L1
1.2µH
R4
0.004
C14 C15
470µF
C11 C12 C13
470µF
1.25V to 3.5V
T510X477K006AS4394
98
6
10 12
11 13 14
15 16
1
2 3 4 5
7
1
DAC
ENABLE
+++
+++
++
1
查询CS51312供应商
1
2
Package Pin Description
PACKAGE PIN # PIN SYMBOL FUNCTION
Absolute Maximum Ratings
Pin Symbol Pin Name
V
MAX
V
MIN
I
SOURCE
I
SINK
CS51312
Operating Junction Temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Lead Temperature Soldering
Reflow (SMD styles only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 sec. max above 183°C, 230°C peak
Storage Temperature Range, TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65° to 150°C
ESD Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV
V
CC1
IC Bias and Low Side Driver 16V -0.3V N/A 1.5A Peak Power Input 200mA
V
CC2
IC High Side Driver Power Input 20V -0.3V N/A 1.5A Peak
200mA COMP Compensation Pin 6V -0.3V 1mA 5mA V
FB
, V
OUT
, V
ID0-4
Voltage Feedback Input, Output 6V -0.3V 1mA 1mA Voltage Sense Pin, Voltage ID DAC Inputs
C
OFF
Off-Time Pin 6V -0.3V 1mA 50mA GATE(H) High-Side FET Driver 20V -0.3V DC 1.5APeak 1.5A Peak GATE(L) Low-Side FET Driver 16V 200mA DC 200mA DC PWRGD Power-Good Output 6V -0.3V 1mA 30mA OVP Overvoltage Protection 15V -0.3V 30mA 1mA Gnd Ground 0V 0V 1.5A Peak N/A
200mA DC
1,2,3,4,5 V
IDO
– V
ID4
Voltage ID DAC inputs. These pins are internally pulled up to
5.65V if left open. V
ID4
selects the DAC range. When V
ID4
is
high (logic one), the Error Amp reference range is 2.125V to
3.525V with 100mV increments. When V
ID4
is low (logic zero), the Error amp reference voltage is 1.325V to 2.075V with 50mV increments.
6V
FB
Error amp inverting input, PWM comparator non-inverting input, current limit comparator non-inverting input, PWRGD and OVP comparator input.
7V
OUT
Current limit comparator inverting input.
8V
CC1
Input power supply pin for the internal circuitry and low side gate driver. Decouple with filter capacitor to Gnd.
9V
CC2
Input power supply pin for the high side gate driver. Decouple with filter capacitor to Gnd.
10 GATE(H) High side switch FET driver pin . 11 Gnd Ground pin and IC substrate connection. 12 GATE(L) Low side synchronous FET driver pin. 13 OVP Overvoltage protection pin. Drives high when overvoltage
condition is detected on V
FB
.
14 PWRGD Power-Good Output. Open collector output drives low when
V
FB
is out of regulation.
15 C
OFF
Off-Time Capacitor Pin. A capacitor from this pin to Gnd sets the off time for the regulator
16 COMP Error amp output. PWM comparator inverting input.
A capacitor on this pin provides error amp compensation, and determines the Soft Start and hiccup timing. Pulling COMP below 1.1V (typ) turns off both GATE drivers and shuts down the regulator.
Electrical Characteristics: 0˚C < TA< 70˚C; 0˚C < TJ< 125˚C; 9V < V
CC1
< 14V; 9V V
CC2
20V;
2.0V DAC Code(V
ID4
= V
ID3=VID2
= V
ID1
= 0, V
ID0
= 1), C
GATE(H)
= C
GATE(L)
= 3.3nF, C
OFF
= 390pF; Unless otherwise stated.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
3
CS51312
Voltage Identification DAC
Measure VFB= V
COMP
, VCC= 12V (Note 1)
75°C ≤ TJ≤ 125°C 25°C ≤ TJ≤ 75°C
V
ID4VID3VID2VID1VID0
MIN TYP MAX ± TOL MIN TYP MAX ± TOL UNIT
Error Amplifier
V
FB
Bias Current 0.2V ≤VFB≤ 3.5V -7.0 0.1 7.0 µA
COMP Source Current V
COMP
= 1.2V to 3.6V; VFB= 1.9 V 15 30 60 µA
COMP Sink Current V
COMP
=1.2V; VFB= 2.1V; 30 60 120 µA
Open Loop Gain C
COMP
= 0.1µF 80 dB
Unity Gain Bandwidth C
COMP
= 0.1µF 50 kHz
PSRR @ 1kHz C
COMP
= 0.1µF 70 dB
Transconductance 32 mmho Output Impedance 0.5 M
10000 3.483 3.525 3.567 1.2% 3.455 3.525 3.596 2.0% V 10001 3.384 3.425 3.466 1.2% 3.357 3.425 3.494 2.0% V 10010 3.285 3.325 3.365 1.2% 3.259 3.325 3.392 2.0% V 10011 3.186 3.225 3.264 1.2% 3.161 3.225 3.290 2.0% V 10100 3.087 3.125 3.163 1.2% 3.063 3.125 3.188 2.0% V 10101 2.989 3.025 3.061 1.2% 2.965 3.025 3.086 2.0% V 10110 2.890 2.925 2.960 1.2% 2.875 2.925 2.975 1.7% V 10111 2.791 2.825 2.859 1.2% 2.777 2.825 2.873 1.7% V 11000 2.692 2.725 2.758 1.2% 2.679 2.725 2.771 1.7% V 11001 2.594 2.625 2.657 1.2% 2.580 2.625 2.670 1.7% V 11010 2.495 2.525 2.555 1.2% 2.482 2.525 2.568 1.7% V 11011 2.396 2.425 2.454 1.2% 2.389 2.425 2.461 1.5% V 11100 2.297 2.325 2.353 1.2% 2.290 2.325 2.360 1.5% V 11101 2.198 2.225 2.252 1.2% 2.192 2.225 2.258 1.5% V 11110 2.099 2.125 2.151 1.2% 2.093 2.125 2.157 1.5% V 00000 2.050 2.075 2.100 1.2% 2.044 2.075 2.106 1.5% V 00001 2.001 2.025 2.049 1.2% 1.995 2.025 2.055 1.5% V 00010 1.953 1.975 1.997 1.1% 1.945 1.975 2.005 1.5% V 00011 1.904 1.925 1.946 1.1% 1.896 1.925 1.954 1.5% V 00100 1.854 1.875 1.896 1.1% 1.847 1.875 1.903 1.5% V 00101 1.805 1.825 1.845 1.1% 1.798 1.825 1.852 1.5% V 00110 1.755 1.775 1.795 1.1% 1.748 1.775 1.802 1.5% V 00111 1.706 1.725 1.744 1.1% 1.699 1.725 1.751 1.5% V 01000 1.656 1.675 1.694 1.1% 1.650 1.675 1.700 1.5% V 01001 1.607 1.625 1.643 1.1% 1.601 1.625 1.649 1.5% V 01010 1.558 1.575 1.593 1.1% 1.551 1.575 1.599 1.5% V 01011 1.508 1.525 1.542 1.1% 1.502 1.525 1.548 1.5% V 01100 1.459 1.475 1.491 1.1% 1.453 1.475 1.497 1.5% V 01101 1.409 1.425 1.441 1.1% 1.404 1.425 1.446 1.5% V 01110 1.360 1.375 1.390 1.1% 1.354 1.375 1.396 1.5% V 01111 1.310 1.325 1.340 1.1% 1.305 1.325 1.345 1.5% V 11111 1.225 1.250 1.275 2.0% 1.225 1.250 1.275 2.0% V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
4
CS51312
Electrical Characteristics: 0˚C < TA< 70˚C; 0˚C < TJ< 125˚C; 9V < V
CC1
< 14V; 9V V
CC2
20V;
2.0V DAC Code(V
ID4
= V
ID3=VID2
= V
ID1
= 0, V
ID0
= 1), C
GATE(H)
= C
GATE(L)
= 3.3nF, C
OFF
= 390pF; Unless otherwise stated.
Line Regulation 9V ≤ V
CC1
14V 0.01 %/V
Input Threshold V
ID4
, V
ID3
, V
ID2
, V
ID1
, V
ID0
1.00 1.25 2.40 V
Input Pull-up Resistance V
ID4
, V
ID3
, V
ID2
, V
ID1
, V
ID0
25 50 100 k
Pull-up Voltage 5.48 5.65 5.82 V
GATE(H) and GATE(L)
High Voltage at 100mA Measure V
CC1/2
–GATE(L)/(H) 1.2 2.1 V
Low Voltage at 100mA Measure GATE(L)/(H) 1.0 1.5 V Rise Time 1.6V < GATE(H)/(L) < (V
CC1/2
– 2.5V) 40 80 ns
Fall Time (V
CC1/2
– 2.5V) > GATE(L)/(H) > 1.6V 40 80 ns
GATE(H) to GATE(L) Delay GATE(H)<2V, GATE(L)>2V, V
CC1/2
= 12V 30 65 110 ns
GATE(L) to GATE(H) Delay GATE(L)<2V, GATE(H)>2V,V
CC1/2
= 12V 30 65 110 ns
GATE pull-down Resistance to Gnd (Note 2) 20 50 115 k
Overcurrent Protection
OVC Comparator Offset Voltage 0V ≤ V
OUT
3.5V 77 86 101 mV
Discharge Threshold Voltage 0.2 0.25 0.3 V V
OUT
Bias Current 0.2V ≤ V
OUT
3.5V -7.0 0.1 7.0 µA
OVC Latch Discharge Current V
COMP
= 1V 100 800 2500 µA
PWM Comparator
PWM Comparator Offset Voltage 0V ≤ V
FB
3.5V 0.99 1.10 1.23 V
Transient Response V
FB
= 0 to 3.5V 200 300 ns
C
OFF
Off-Time 1.0 1.6 2.3 µs Charge Current V
COFF
= 1.5V 550 µA
Discharge Current V
COFF
= 1.5V 25 mA
Power-Good Output
PWRGD Sink Current V
FB
= 1.7V, V
PWRGD
= 1V 0.5 4 15 mA
PWRGD Upper Threshold % of nominal DAC code 5 8.5 12 % PWRGD Lower Threshold % of nominal DAC code -12 -8.5 -5 % PWRGD Output Low Voltage V
FB
= 1.7V, I
PWRGD
= 500µA 0.2 0.3 V
Overvoltage Protection (OVP) Output
OVP Source Current OVP = 1V 1 10 25 mA OVP Threshold % of nominal DAC code 5 8.5 12 % OVP Pull-up Voltage I
OVP
= 1mA, V
CC1
- V
OVP
1.1 1.5 V
CS51312
5
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Electrical Characteristics: 0˚C < TA< 70˚C; 0˚C < TJ< 125˚C; 9V < V
CC1
< 14V; 9V V
CC2
20V;
2.0V DAC Code(V
ID4
= V
ID3=VID2
= V
ID1
= 0, V
ID0
= 1), C
GATE(H)
= C
GATE(L)
= 3.3nF, C
OFF
= 390pF; Unless otherwise stated.
Block Diagram
General Electrical Specifications
V
CC1
Monitor Start Threshold 7.9 8.4 8.9 V
V
CC1
Monitor Stop Threshold 7.6 8.1 8.6 V
Hysteresis Start - Stop 0.15 0.30 0.60 V V
CC1
Supply Current No Load on GATE(H), GATE(L) 9.5 16 mA
V
CC2
Supply Current No Load on GATE(H), GATE(L) 2.5 4.5 mA
Note 1: The IC power dissipation in a typical application with VCC= 12V, switching frequency fSW= 250kHz, 50nc MOSFETs and R
θJA
= 115°C/W yields an operating junction temperature rise of approximately 52°C, and a junction tem-
perature of 77°C with an ambient temperature of 25°C.
Note 2: Guaranteed by design, not 100% tested in production.
+
-
+
-
+
-
V
FB
COMP
C
OFF
OFF
TIME
PWM COMP
DISCHARGE
COMP
+
-
V
OUT
V
ID0
V
ID1
V
ID2
V
ID3
V
ID4
DAC
+
-
+
-
+
-
1.1V
EA
CURRENT LIMIT
+
-
86mV
0.25V FAULT
LATCH
R
S
Q
V
CC1
OVP PWRGD Gnd
GATE(L)
GATE(H)
V
CC1
UVLO
NONOVERLAP
LOGIC
+
-
V
CC2
CS51312
6
Application Information
V
2
TM
Control Method
The V
2
TM
method of control uses a ramp signal that is gen­erated by the ESR of the output capacitors. This ramp is proportional to the AC current through the main inductor and is offset by the value of the DC output voltage. This control scheme inherently compensates for variation in either line or load conditions, since the ramp signal is gen­erated from the output voltage itself. This control scheme differs from traditional techniques such as voltage mode, which generates an artificial ramp, and current mode, which generates a ramp from inductor current.
The V
2
TM
control method is illustrated in Figure 6. The out­put voltage is used to generate both the error signal and the ramp signal. Since the ramp signal is simply the output voltage, it is affected by any change in the output regard­less of the origin of that change. The ramp signal also con-
tains the DC portion of the output voltage, which allows the control circuit to drive the main switch to 0% or 100% duty cycle as required.
Figure 6: V
2
TM
Control Diagram
Theory Of Operation
Typical Performance Characteristics
150 125 100
75 50 25
0
0 2000 4000 6000 8000 10000 12000 14000 16000
Falltime (ns)
Load Capacitance (pF)
VCC = 12V T
A
= 25°C
Figure 4: Percent Output Error vs. DAC Output
Voltage Setting, V
ID4
= 0.
Figure 1: Gate(H) and Gate(L) Falltime vs. Load Capacitance.
Figure 2: Gate(H) and Gate(L) Risetime vs. Load Capacitance.
Figure 3: DAC Output Voltage vs. Temperature,
DAC Code = 00001.
0.10
0.05 0
0.05
0.10
0.15
0.20
1.325 1.375 1.425 1.475 1.525 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075
DAC Output Voltage Setting (V)
Output Error (%)
VCC = 12V T
A
= 25°C
V
ID4
= 0
Figure 5: Percent Output Error vs. DAC Output
Voltage Setting, V
ID4
= 1.
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
0.05
0.10
0.15
0.20
0.25
Output Error (%)
2.125 2.225 2.325 2.425 2.525 2.625 2.725 2.825 2.925 3.025 3.125 3.225 3.335 3.425 3.525
DAC Output Voltage Setting (V)
VCC = 12V T
A
= 25°C
V
ID4
= 1
150 125 100
75 50 25
0
0 2000 4000 6000 8000 10000 12000 14000 16000
Risetime (ns)
Load Capacitance (pF)
VCC = 12V T
A
= 25°C
0.10
0.05 0
0.05
0.10
0.15
0 20 40 60 80 100 120
Junction Temperature (°C)
DAC Output Voltage
Deviation (%)
VCC = 12V
COMP
PWM Comparator
+
Ramp Signal
Error
Signal
C
Error
Amplifier
GATE(H) GATE(L)
E
Output Voltage Feedback
V
FB
+
Reference
Voltage
Loading...
+ 12 hidden pages