CET PMC-690 User Manual

Page 1
PMC-690
Hand-Held Power Quality Analyzer
User Manual
Version: V1.0A
Aug 27, 2018
Page 2
CET Electric Technology
2
This manual may not be reproduced in whole or in part by any means without the express written
permission from CET.
The information contained in this Manual is believed to be accurate at the time of publication;
however, CET assumes no responsibility for any errors which may appear here and reserves the
right to make changes without notice. Please consult CET or your local representative for latest
product specifications.
Standards Compliance
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and
permanent equipment damage if proper precautions are not taken during the installation,
operation or maintenance of the device.
CAUTION
This symbol indicates the potential of personal injury or equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
Page 3
CET Electric Technology
3
DANGER
Failure to observe the following instructions may result in severe injury or death
and/or equipment damage.
Installation, operation and maintenance of the meter should only be performed by
qualified, competent personnel that have the appropriate training and experience
with high voltage and current devices. The meter must be installed in accordance
with all local and national electrical codes.
Ensure that all incoming AC power and other power sources are turned OFF before
performing any work on the meter.
Before connecting the meter to the power source, check the label on top of the
meter to ensure that it is equipped with the appropriate power supply, and the
correct voltage and current input specifications for your application.
During normal operation of the meter, hazardous voltages are present on its
terminal strips and throughout the connected potential transformers (PT) and
current transformers (CT). PT and CT secondary circuits are capable of generating
lethal voltages and currents with their primary circuits energized. Follow
standard safety precautions while performing any installation or service work (i.e.
removing PT fuses, shorting CT secondaries, etc.).
Do not use the meter for primary protection functions where failure of the device
can cause fire, injury or death. The meter should only be used for shadow
protection if needed.
Under no circumstances should the meter be connected to a power source if it is
damaged.
To prevent potential fire or shock hazard, do not expose the meter to rain or
moisture.
Setup procedures must be performed only by qualified personnel familiar with the
instrument and its associated electrical equipment.
DO NOT open the instrument under any circumstances.
Page 4
CET Electric Technology
4
Limited warranty
CET Electric Technology (CET) offers the customer a minimum of 12-month functional
warranty on the meter for faulty parts or workmanship from the date of dispatch
from the distributor. This warranty is on a return to factory for repair basis.
CET does not accept liability for any damage caused by meter malfunctions. CET
accepts no responsibility for the suitability of the meter to the application for which
it was purchased.
Failure to install, set up or operate the meter according to the instructions herein will
void the warranty.
Only CET’s duly authorized representative may open your meter. The unit should
only be opened in a fully anti-static environment. Failure to do so may damage the
electronic components and will void the warranty.
Page 5
CET Electric Technology
5
Table of Contents
Table of Contents ...................................................................................................................................... 5
Glossary .................................................................................................................................................... 8
Chapter 1 Introduction ............................................................................................................................. 9
1.1 Overview .................................................................................................................................... 9
1.2 Features ...................................................................................................................................... 9
1.3 Getting more information ........................................................................................................ 13
Chapter 2 Installation ............................................................................................................................. 14
2.1 Appearance .............................................................................................................................. 14
2.2 Unit Dimensions ....................................................................................................................... 15
2.3 Wiring Connections .................................................................................................................. 15
2.3.1 Single-Phase Connection ....................................................................................... 15
2.3.2 3-Phase 3-Wire Delta Connection ......................................................................... 16
2.3.3 3-Phase 4-Wire 2.5E-2PT Connection ................................................................... 16
2.3.4 3-Phase 4-Wire Wye Connection .......................................................................... 16
2.4 Ethernet Port (100BaseT) ......................................................................................................... 17
2.5 Chassis Ground Wiring ............................................................................................................. 17
Chapter 3 Front Panel Interface ............................................................................................................. 18
3.1 Using the Front Panel Buttons .................................................................................................. 18
3.2 Menu Tree ................................................................................................................................ 19
3.3 Front Panel User Interface ........................................................................................................ 20
Chapter 4 Applications ........................................................................................................................... 27
4.1 Power, Energy and Demand ..................................................................................................... 27
4.1.1 Basic Measurements ..................................................................................................... 27
4.1.2 Energy Measurements .................................................................................................. 27
4.1.3 Demands ....................................................................................................................... 27
4.2 Setpoints .................................................................................................................................. 28
4.3 Power Quality Parameters ........................................................................................................ 30
4.3.1 Power Frequency .......................................................................................................... 30
4.3.2 Magnitude of the Supply Voltage ................................................................................. 30
4.3.3 Flicker ............................................................................................................................ 30
4.3.4 Supply Voltage Dips/Swells and Interruption ................................................................ 31
4.3.5 Voltage Interruptions .................................................................................................... 32
4.3.6 Voltage Transients ......................................................................................................... 33
4.3.7 Supply Voltage Unbalance ............................................................................................ 34
4.3.8 Harmonics and Interharmonics ..................................................................................... 34
4.3.9 Mains Signalling Voltage (MSV) .................................................................................... 36
4.3.10 Voltage Deviation ........................................................................................................ 36
4.3.11 Rapid Voltage Changes (RVC) ...................................................................................... 37
4.3.12 Inrush Current ............................................................................................................. 38
4.3.13 Flagging Concept ......................................................................................................... 39
4.3.14 EN50160 Compliance Report ...................................................................................... 40
4.3.15 ITIC/SEMI F47 Curve ................................................................................................... 41
Page 6
CET Electric Technology
6
4.3.16 RMS Change Detection ............................................................................................... 42
4.4 Data Logging ............................................................................................................................. 42
4.4.1 Device Log and SOE Log ................................................................................................ 42
4.4.2 Statistical Data Recorder (SDR) ..................................................................................... 42
4.4.3 Max./Min. Log ............................................................................................................... 43
4.4.4 Pst Log ........................................................................................................................... 43
4.4.5 Plt Log ........................................................................................................................... 44
4.4.6 Waveform Recorder (WFR) ........................................................................................... 44
4.4.7 Disturbance Waveform Recorder (DWR) ...................................................................... 44
4.4.8 RMS Log ........................................................................................................................ 45
4.4.9 Trend and SDR Trend ..................................................................................................... 46
4.4.10 PQDIF and COMTRADE Storage .................................................................................. 46
4.4.11 PQ Counters ................................................................................................................ 47
4.5 Site Management and Monitoring ........................................................................................... 47
4.6 Time Synchronization ............................................................................................................... 48
4.6.1 SNTP .............................................................................................................................. 49
4.6.2 Modbus ......................................................................................................................... 49
4.7 Communication ........................................................................................................................ 49
4.7.1 Ethernet Port................................................................................................................. 49
4.7.2 USB Port ........................................................................................................................ 49
4.8 Data Storage ............................................................................................................................. 49
Chapter 5 Modbus Register Map ............................................................................................................ 51
5.1 Basic Measurements ................................................................................................................ 51
5.2 Energy Measurements ............................................................................................................. 53
5.3 PQ Measurements .................................................................................................................... 53
5.4 Harmonics & Interharmonic Measurements ............................................................................ 54
5.4.1 Harmonic Distortion Measurements ............................................................................ 54
5.4.2 Harmonic Voltage & Current RMS ................................................................................ 55
5.4.3 Individual Total Harmonic ............................................................................................. 56
5.4.4 Harmonic Power ........................................................................................................... 57
5.4.5 Harmonic Angles ........................................................................................................... 57
5.4.6 Harmonic Energy ........................................................................................................... 58
5.4.7 Net/Total Harmonic Energy ........................................................................................... 58
5.4.8 Interharmonics Distortion (IHD) Measurements .......................................................... 58
5.4.9 Interharmonic Voltage & Current RMS ......................................................................... 59
5.5 Demand .................................................................................................................................... 60
5.5.1 Present Demand ........................................................................................................... 60
5.5.2 Predicted Demand ........................................................................................................ 62
5.5.3 Present Max. ................................................................................................................. 62
5.5.4 Max. of Last Time .......................................................................................................... 63
5.6 Log Register .............................................................................................................................. 63
5.6.1 Device Log Buffer .......................................................................................................... 63
5.6.2 SOE Log Buffer............................................................................................................... 64
5.6.3 SDR Log ......................................................................................................................... 64
Page 7
CET Electric Technology
7
5.6.4 MM Log (Max./Min. Log) .............................................................................................. 65
5.6.5 Pst/Plt Log ..................................................................................................................... 66
5.6.6 EN50160 Log ................................................................................................................. 66
5.7 Real-time WFR Register ............................................................................................................ 71
5.8 Device Setup Parameters ......................................................................................................... 72
5.8.1 Communications Setup ................................................................................................. 72
5.8.2 Basic Setup Parameters ................................................................................................. 72
5.8.3 SMTP Setup ................................................................................................................... 73
5.8.4 PQ Setup ....................................................................................................................... 74
5.8.5 PQDIF Setup .................................................................................................................. 75
5.8.6 Demand Setup .............................................................................................................. 76
5.8.7 WFR Setup..................................................................................................................... 76
5.8.8 Standard Setpoints Setup.............................................................................................. 76
5.8.9 HS (High-speed) Setpoints Setup .................................................................................. 77
5.8.10 SDR Setup .................................................................................................................... 78
5.8.11 Max./Min. Recorder (MMR) Setup ............................................................................. 81
5.8.12 EN50160 Setup ........................................................................................................... 83
5.8.13 Trend Log Setup .......................................................................................................... 84
5.8.14 System Setup ............................................................................................................... 84
5.9 Time Registers .......................................................................................................................... 85
5.10 Information ............................................................................................................................ 86
5.10.1 Meter Information ...................................................................................................... 86
5.10.2 Device Tag Information ............................................................................................... 87
5.10.3 Circuit Tag Information................................................................................................ 87
Appendix A - Data ID .............................................................................................................................. 88
SDR Data ID .................................................................................................................................... 88
Demand Data ID ............................................................................................................................. 95
Appendix B - Event Classification ............................................................................................................ 97
Device Event Classification ............................................................................................................. 97
SOE Log Classification ..................................................................................................................... 98
Appendix C - Technical Specifications ................................................................................................... 100
Appendix D - Accuracy Specifications ................................................................................................... 101
Appendix E - Standards Compliance ..................................................................................................... 102
Contact us ............................................................................................................................................. 103
Page 8
CET Electric Technology
8
Glossary
DMD = Present Demand DWR = Disturbance Waveform Recorder FIFO = First In First Out Fund. = Fundamental GB = Giga Byte GPS = Global Positioning System HS = High-Speed Hn = nth order Harmonic, integer multiple (n) of the Fundamental Frequency (50Hz or 60Hz) IHn = nth order Interharmonic represents all components between the (n-1)th and nth harmonic orders in RMS HDn = nth order Harmonic Distortion IHDn = nth order Interharmonic Distortion Hn = nth order Harmonic in RMS IHn = nth order Interharmonic in RMS LCD = Liquid Crystal Display MB = Mega Byte Pred_DMD = Predicted Demand Plt = Long-term Flicker Pst = Short-term Flicker PQ = Power Quality RTC = Real Time Clock SDR = Statistical Data Recorder SOE = Sequence of Events (PQ events) SMTP = Simple Mail Transfer Protocol TH = Total Harmonic in RMS, excluding Fundamental THD = Total Harmonic Distortion TOHD = Total Odd Harmonic Distortion TEHD = Total Even Harmonic Distortion U0 / I0 = Zero Sequence Voltage / Current U1 / I1 = Positive Sequence Voltage / Current U2 / I2 = Negative Sequence Voltage /Current U0 / I0 Unb = Zero Sequence Voltage / Current Unbalance U2 / I2 Unb = Negative Sequence Voltage / Current Unbalance WF = Waveform WFR = Waveform Recorder Swell = Temporary increases in RMS value of AC voltage Transient =Unidirectional impulse of either polarity or a damped oscillatory wave with the first peak occurring in
either polarity
U
rms(1/2)
= Half-Cycle RMS Voltage
U
din
= Declared input voltage - Value obtained from the declared supply voltage by a transducer ratio
Usr = Sliding Reference Voltage I
half cycle rms
= Value of the RMS Current measured over each half period
I
Normal
= Normal Full-load Current
U
ll Normal
= Normal line-to-line Voltage Dip Threshold = Voltage magnitude specified for the purpose of detecting the start and end of a voltage dip Flagged data = For any measurement time interval in which interruptions, dips or swells occur, the measurement results
of all other parameters made during this time interval are flagged
Page 9
CET Electric Technology
9
Chapter 1 Introduction
This manual explains how to use the PMC-690 Advanced Power Quality Analyzer.
This chapter provides an overview of the PMC-690 Analyzer and summarizes many of its key features.
1.1 Overview
The PMC-690 Hand-Held Power Quality Analyzer is CET’s latest offer to assist engineers to diagnose the
PQ events at site as it provides advanced functionality by combining Class 0.1 accuracy and advanced
PQ features in a portable lightweight handheld form with a large, high-resolution, backlit, color TFT LCD
display. Compliance with the standards as IEC 62053-22 Class 0.5S, IEC 61000-4-30 Class A, IEC-61000-
4-15, IEC 61000-4-7 and IEC 61850. What’s more, it supports 4 channels each of voltage inputs and
current inputs, 512 samples/cycle waveform capture, and a large logging capacity of 16GB on-board
memory with data recording in COMTRADE and PQDIF file format which is downloadable via USB port
and compatible with PQ View software. With these features, the PMC-690 Power Quality Analyzer
becomes the most advanced and convenient diagnostic tool at site.
Typical Applications
PQ Check-up at HV, MV and LV Utility Substations Site investigation & diagnosis for PQ problems Industrial and Commercial Electrical Testing and Recording Fault investigation and identification No Load and Full Load Test Mains and Critical feeder Dips, Swells, Transients, Flicker & Disturbance Monitoring Harmonics Monitoring
The above are just a few of many applications. Contact CET Technical Support if you require further
assistance with your applications.
1.2 Features
Basic Features
5.7’’ Backlit Color LCD Display @ 640x480 Light weight (1.16kg) - for easy transport Simple configuration for quick measurement setup Low power consumption with 8 hours battery PQ Insight
TM
for capturing Waveforms for 3-phase Voltage and Current in “Scope Mode”
Communications - 100BaseT with RJ45 connector Protocol - Modbus TCP, SNTP & IEC 61850 Industrial Grade Components Standard Tropicalization Extended Temperature Range Extended Warranty Weatherproof Carrying Case (Optional)
Page 10
CET Electric Technology
10
Power Quality Features
IEC 61000-4-30 Class A IEC 61000-4-7, IEC 61000-4-15 Transients, Dips, Swells, Interruptions, Rapid Voltage Changes (RVC) and In-rush Current monitoring Harmonic analysis up to 63
rd
Disturbance Waveform Recording (DWR) Downloadable waveform records in COMTRADE format via SD Card Trending and Statistical Reporting Up to 1024 SOE Logs PQ Insight
TM
for capturing Transient Waveforms for 3-phase Voltages and Currents in “Scope Mode”.
Front Panel Display
Real-time, Harmonic Power and Energy measurements SOE Log and Waveform displays Harmonic & Interharmonic histogram and Phasor diagrams Statistical Trending Device Log Device configuration Diagnostics
Metering
Basic Measurements (1-second update)
3-phase Voltage, Current, Power, PF and Phase Angles kWh, kvarh Import/Export/Net/Total and kVAh Total U4, I4, Frequency
High-speed Measurements (½ cycle update)
3-phase Voltages and Currents, U4, I4, Power, PF, Frequency
Demands
3-phase Voltage, Current, Power, PF, U4, I4, Frequency Predicted Demands Present Peak Demands, and Max. Demand of Last Time
Power Quality Metering
PQ Parameters as per IEC 61000-4-30
Power Frequency Magnitude of the Supply Voltage Flicker Supply Voltage Dips and Swells Voltage Interruptions Transient Voltages Supply Voltage Unbalance Voltage Harmonics and Interharmonics Rapid Voltage Changes Measurement of Underdeviation and Overdeviation parameters
Page 11
CET Electric Technology
11
Harmonic and Interharmonic measurements
K-Factor for Current, Crest Factor for Current and Voltage U and I THD, TOHD, TEHD U and I Individual Harmonics (%HD) from 2
nd
to 63
rd #
U and I Individual Interharmonics (%IHD) from 1 to 63
rd #
Harmonic kW, kvar, kVA and PF from 2
nd
to 63rd in RMS
Fundamental U, I, kW, kvar, kVA, PF and Phasor Fundamental kWh, kvarh Import/Export/Net/Total Total Harmonic kWh, kvarh Import/Export/Net/Total from 2
nd
to 63rd
#
%HD and %IHD can be configured as % of Fundamental, % of U/I nominal or % of RMS
Symmetrical Components and Unbalances
Zero, Positive and Negative Sequence Components U and I Unbalance based on Zero and Negative Sequence Components
Transient and Dip/Swell Recording
Transients capture as short as 40us at 512 samples @ 50Hz for sub-cycle disturbances such as
capacitor switching and resonance phenomena
Dips and Swells detection @ 10ms (½ cycle at 50Hz) Trigger for WF Recorder, Disturbance Waveform Recorder, RMS Recorder and SOE Log
Rapid Voltage Changes
Detection of a quick transition in RMS voltage between two steady state Voltage conditions
In-rush Current Monitoring
Monitoring of the ½ cycle RMS Current and capturing of the Current waveforms associated with
events such as motor starting and transformer being energized
Waveform Capture (WFC) and Waveform Recorder (WFR)
Real-time Waveform Capture via front panel display Waveform Recorder with 500 entries Simultaneous capture of 3-phase Voltage and Current inputs # of Cycles x Samples/Cycles with programmable # of pre-fault cycles
o 640x16, 320x32, 160x64 o 80x128, 40x256, 20x512
Extended recording for up to a maximum of 7 consecutive captures COMTRADE file format, downloadable via SD Card
Disturbance Waveform Recorder (DWR)
Disturbance recording of all Voltage and Current up to 500 entries
o Initial Fault: Up to 35 cycles @ 512 samples/cycle o Steady State: Up to 150 cycles @ 16 samples/cycle
Up to 18,000 cycles @ 1 sample/cycle
o Ending Stage: Up to 15cycles @ 512 samples/cycle
Data and Event Recorders
Log Memory
16GB Removable SD Card (SanDisk Extreme Class 10 @ 45MB/s)
Page 12
CET Electric Technology
12
Max/Min Recorder (MMR) Log
4 records (20 parameters/recorder) with timestamp Logging of Max./Min. values for real-time measurements such as V, I, kW, kvar, kVA, PF, Freq.,
Unbalance, K-factor, THD
Two log transfer modes:
o Manual: Max./Min. Since Last Reset/Before Last Reset o Automatic: Max./Min. of This Month/Last Month
Statistical Data Recorder (SDR) Log
5 Recorders (64 parameters/recorder) Recording of the Max., Min., Avg. and 95th percentile of statistical measurements including U, I,
Freq., Flicker, Harmonics & Unbalances
Recording interval from 1 to 60 minutes FIFO mode with configurable depth PQDIF file format, downloadable via the USB port
Device Log
1024 FIFO events time-stamped to ±1ms resolution On/Off events, Device events
SOE Log
1024 FIFO entries time-stamped to ±1ms resolution Transient, Dip/Swell, Interruption, Rapid Voltage Change, In-rush Current, Setpoint events
Setpoints
PQ Setpoints
Transients Dips/Swells Rapid Voltage Changes In-rush Current Harmonics Trigger SOE Log, RMS Recorder, WFR or DWR
Control Setpoints
24 Control Setpoints and 16 High-Speed Setpoints Extensive monitoring sources Configurable thresholds and time delays Trigger SOE Log, RMS Recorder, WFR or DWR
Communications
Ethernet Port
100BaseT TCP/IP Ethernet Ports with RJ45 connector Simultaneous connection for 10xModbus TCP and 12xIEC61580 clients Protocols
o Modbus TCP o IEC61850 o SMTP
Page 13
CET Electric Technology
13
Firmware upgrade via Ethernet port
SD Card
16GB Capacity Removable SD Card for easy data transfer to PC Solid State technology that is immune from mechanical breakdown
USB Port
For Data transfer to USB storage device User friendly interface for transferring data/waveform through USB port
Time Synchronization
Battery-backed real-time clock @ 6ppm(≤ 0.5s/day) Time Sync. via Modbus SNTP
1.3 Getting more information
Additional information is available from CET via the following sources:
Visit www.cet-global.com Contact your local representative Contact CET directly via email or telephone
Page 14
CET Electric Technology
14
Chapter 2 Installation
2.1 Appearance
Figure 2-1 Appearance
Caution
Installation of the PMC-690 should only be performed by qualified, competent personnel that have
the appropriate training and experience with high voltage and current devices. The meter must be
installed in accordance with all local and national electrical codes.
During the operation of the meter, hazardous voltages are present at the input terminals. Failure to
observe precautions can result in serious or even fatal injury and equipment damage.
Page 15
CET Electric Technology
15
2.2 Unit Dimensions
Figure 2-2 Unit Dimensions
2.3 Wiring Connections
Please read this section carefully before installation and choose the correct wiring method for your
power system. The following wiring modes are supported:
Single-Phase Connection 3-Phase 3-Wire Delta Connection 3-Phase 4-Wire 2.5E-2PT Connection 3-Phase 4-Wire Wye Connection
2.3.1 Single-Phase Connection
Please consult the serial number label to ensure that the Voltage and Current input is less than or equal
to the meter’s input specification.
Caution
Under no circumstances should the PT secondary be shorted.
Under no circumstances should the CT secondary be open when the CT primary is energized. CT
shorting blocks should be installed to allow for easy maintenance.
Page 16
CET Electric Technology
16
Figure 2-3 Single-Phase 2-Wire Connection
2.3.2 3-Phase 3-Wire Delta Connection
Please consult the serial number label to ensure that the Voltage and Current input is less than or equal
to the meter’s input specification.
Figure 2-4 3-Phase 3-Wire Delta Connection
2.3.3 3-Phase 4-Wire 2.5E-2PT Connection
Please consult the serial number label to ensure that the Voltage and Current input is less than or equal
to the meter’s input specification.
Figure 2-5 3-Phase 4-Wire 2.5E-2PT Connection
2.3.4 3-Phase 4-Wire Wye Connection
Please consult the serial number label to ensure that the Voltage and Current input is less than or equal
to the meter’s input specification.
Page 17
CET Electric Technology
17
Figure 2-6 3-Phase 4-Wire Wye Connection
2.4 Ethernet Port (100BaseT)
RJ45 Connector
Pin
Meaning
1
Transmit Data+
2
Transmit Data-
3
Receive Data+
4,5,7,8
NC
6
Receive Data-
Table 2-1 RJ45 Connector Pin Description for 100BaseT Applications
2.5 Chassis Ground Wiring
Connect the Earthing Terminal to earth ground.
Figure 2-7 Chassis Ground connection
Page 18
CET Electric Technology
18
Chapter 3 Front Panel Interface
The PMC-690 is equipped with a stunning, 640x480, TFT Color, LCD Display. The following figure
illustrates PMC-690's Main Display, which is the first screen shown upon device power on.
Figure 3-1 Main Display
3.1 Using the Front Panel Buttons
Figure 3-2 Front Panel User Interface
There are fifteen buttons on the front panel: , <Enter>, <Esc>, <Start/Stop>, <Save Screen>, ,
, , and six shortcut buttons.
Buttons
Description
Pressing moves up the cursor or increments a numeric value if a parameter is already selected.
Pressing moves down the cursor or decrements a numeric value if a parameter is already selected.
Pressing moves the cursor to the left.
Pressing moves the cursor to the right.
Pressing starts the device. When the device is running, long press this button to force a shutdown.
<Enter>
Pressing this button enters to next menu or enters to a value.
<Esc>
Pressing this button returns to the previous level or cancels the value.
<Start/Stop>
Pressing this button enters to monitoring page and starts or stops monitoring.
<Save Screen>
Pressing this button captures present page and saves it to the SD card.
Table 3-1 Description of Button in Front Panel
Page 19
CET Electric Technology
19
3.2 Menu Tree
The following figure illustrates menu tree of the Front Panel:
Figure 3-3 Menu Tree
Page 20
CET Electric Technology
20
3.3 Front Panel User Interface
The following table provides an overview of this display hierarchy.
Category
Topics
Pages
Metering
Real Time
PQ Insight
Power Quality
Page 21
CET Electric Technology
21
Energy
Demand
Harmonics
Spectrum/Table
Power
Page 22
CET Electric Technology
22
IH Spectrum
/
IH Table
Trend
Trend/SDR Trend
Record
SOE Log
Device Log
/
Event Summary
EN50160
Page 23
CET Electric Technology
23
Max./Min.
Setup
Basic
Device
Storage
Page 24
CET Electric Technology
24
Advanced
Page 25
CET Electric Technology
25
Site
-
New Site
/
Switch Site
Delete Site
/
Rename Site
Import Template
/
Export Template
Page 26
CET Electric Technology
26
Monitoring History
Table 3-2 Description of each Hierarchy
Page 27
CET Electric Technology
27
Chapter 4 Applications
4.1 Power, Energy and Demand
4.1.1 Basic Measurements
The PMC-690 provides the following basic measurements with 1 second update rate:
3-phase Voltages and Currents 3-phase Powers and PFs Bi-directional Energy measurements U4, I4 and Frequency Voltage and Current phase angles Ia/Ib/Ic K-Factor and Crest Factor, Ua/Ub/Uc Crest Factor
4.1.2 Energy Measurements
The PMC-690 provides Energy measurements include fundamental energy as well as harmonic energy.
The energy has a maximum value of 99,999,999,999.999 and will roll over to zero when it is reached.
The energy can be reset manually or preset to user-defined values through the front panel or via
communications. The PMC-690 provides the following energy measurements:
kWh
kvarh
kVAh
Imp.
Imp.
kVAh Total
Exp.
Exp.
Net
Net
Total
Total
Net Fundamental
Net Fundamental
Total Fundamental
Total Fundamental
Imp./Exp. TH
Imp./Exp. TH
Net TH
Net TH
Total TH
Total TH
Imp./Exp. H02 to H63
Imp./Exp. H02 to H63
Table 4-1 Energy Measurements
4.1.3 Demands
Demand is defined as the average power consumption over a fixed interval (usually 15 minutes),
including present demand and predicted demand. The predicted demand is typically used for pre-alarm
and helps users reducing power consumption. PMC-690 also provides recording of Max. Demand of
Present and last month.
The PMC-690 has the following setup parameters which can set via communication or through the Front
Panel:
Setup Parameter
Definition
Options
Demand Sync. Mode
SLD - Internally synchronized to the meter clock
0=SLD (default)
Demand Period
1 to 60 minutes. For example, if the # of Sliding Windows is set as 1 and the Demand Period is 15, the demand cycle will be 1×15=15min.
1 to 60 minutes Default=15
# of Sliding Windows
Number of Sliding Windows.
1 to 15 Default=1
Self-Read Time
The Self-Read Time allows the user to specify the time and day of the month for the Peak Demand Self-Read operation. The Self-Read Time supports three options: A zero value means that the Self-Read will take place at 00:00 of the first day
of each month.
A non-zero value means that the Self-Read will take place at a specific time
and day based on the formula: Self-Read Time = Day * 100 + Hour where 0 ≤
Default=0xFFFF
Page 28
CET Electric Technology
28
Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self­Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value will disable the Self-Read operation and replace it with manual
operation. A manual reset will cause the Max. Demand of This Time to be transferred to the Max. Demand of Last Time and then reset.
Predicted Response
The Predicated Response shows the speed of the predicted demand output. A value between 70 and 99 is recommended for a reasonably fast response. Specify a higher value for higher sensitivity.
70 to 99 Default=70
Table 4-2 Setup Parameters for Demand
The PMC-690 provides the following Present Demand and Predicted Demand parameters:
Present
Demand
Ua/Ub/Uc
ULN avg
Uab/Ubc/Uca
ULL avg
Ia/Ib/Ic
I avg
I4
U4
kVA Total
kWa/kWb/kWc
Imp./Exp.
kW Total Imp./Exp.
kvara/kvarb/kvarc
Imp./Exp.
kvar Total Imp./Exp.
kVAa/kVAb/kVAc
P.F.a/P.F.b/P.F.c
Total P.F.
Frequency
Ua/Ub/Uc
Deviation
Uab/Ubc/Uca
Deviation
Ua/Ub/Uc Over
Deviation
Uab/Ubc/Uca Over
Deviation
Ua/Ub/Uc Under
Deviation
Uab/Ubc/Uca
Under Deviation
Freq Deviation
U2/U0 Unbalance
I2/I0 Unbalance
Ia/Ib/Ic K Factor
I4 K Factor
Ia/Ib/Ic THD
Ua/Uab THD
Ub/Ubc THD
Uc/Uca THD
U4 THD
I4 THD
Ua/Uab TOHD
Ub/Ubc TOHD
Uc/Uca TOHD
U4 TOHD
Ia/Ib/Ic TOHD
I4 TOHD
Ua/Uab TEHD
Ub/Ubc TEHD
Uc/Uca TEHD
U4 TEHD
Ia/Ib/Ic TEHD
I4 TEHD Ia Fund.
Ib Fund.
Ic Fund.
I4 Fund.
Predicted
Demand
Ua/Ub/Uc
ULN avg
Uab/Ubc/Uca
ULL avg
U4
Ia/Ib/Ic
I avg
I4
kWa/kWb/kWc
Imp./Exp.
kW Total Imp./Exp.
kvara/kvarb/kvarc
Imp./Exp.
kvar Total Imp./Exp.
kVAa/kVAb/kVAc
Total kVA
P.F.a/P.F.b/P.F.c
Total P.F.
Frequency
Max.
Demand
Ia/Ib/Ic
kW Total Imp./Exp.
kvar Total Imp./Exp.
Total kVA
Table 4-3 Demand Parameters
4.2 Setpoints
The PMC-690 comes standard with 40 user programmable setpoints which provide extensive control by
allowing a user to initiate an action in response to a specific condition. There are 24 Standard Setpoints
and 16 High-Speed Setpoints. Typical setpoint applications include alarming, fault detection and power
quality monitoring.
Figure 4-1 Over Setpoint
Page 29
CET Electric Technology
29
Figure 4-2 Under Setpoint
The Setpoints can be programmed over communications and have the following setup parameters:
Setup Parameter
Definition
Options
Setpoint Type
Specify the monitoring condition -- Over Setpoint, Under Setpoint.
0=Over Setpoint* 1=Under Setpoint
Setpoint Parameter
Specify the parameter to be monitored.
See Table 4-5
Setpoint Active Limit
Specify the value that the setpoint parameter must exceed for Over Setpoint or go below for Under Setpoint for the setpoint to become active.
0*
Setpoint Inactive Limit
Specify the value that the setpoint parameter must go below for Over Setpoint or exceed for Under Setpoint for the setpoint to becomes inactive.
0*
Setpoint Active Delay
Specify the minimum duration that the setpoint condition must be met before the setpoint becomes active. An event will be generated and stored in the SOE Log. The range of the Setpoint Active Delay is between 0 and 9999 seconds for Standard Setpoints and between 0 and 9999 cycles for High Setpoints.
0* to 9999s
Setpoint Inactive Delay
Specify the minimum duration that the setpoint return condition must be met before the setpoint becomes inactive. An event will be generated and stored in the SOE Log. The range of the Setpoint Inactive Delay is between 0 and 9999 seconds for Standard Setpoints and between 0 and 9999 cycles for High Setpoints.
0* to 9999
Setpoint Trigger
Specify what action a setpoint can take when it becomes active. Please refer to Table 4-6 below for a list of Setpoint Triggers.
0*
*Default
Table 4-4 Description for Setpoint Parameters
Key
Parameter
Key
Parameter
Key
Parameter
1
ULN*
25
U TEHD
49
kW Exp. Total Demand
2
ULL*
26
I THD
50
kvar Exp. Total Demand
3
U4*
27
I TOHD
51
kVA Total Demand
4
Ia/Ib/Ic*
28
I TEHD
52
P.F. Total Demand
5
I4*
29
U TIHD
53
kW Imp. Total Pred. DMD
6
Reserved*
30
U TOIHD
54
kvar Exp. Total Pred. DMD
7
kW Total*
31
U TEIHD
55
kW Exp. Total Pred. DMD
8
kvar Total*
32
I TIHD
56
kvar Exp. Total Pred. DMD
9
kVA Total*
33
I TOIHD
57
kVA Pred. Total DMD
10
P.F. Total*
34
I TEIHD
58
P.F. Pred. Total DMD
11
U0 Unbalance
35
U TH RMS
59
Pst
12
U2 Unbalance
36
U TOH RMS
60
Plt
13
I0 Unbalance
37
U TEH RMS
61
Voltage Fluct.
14
I2 Unbalance
38
I TH RMS
0x0002xxxx
U HD02
15
U Fundamental
39
I TOH RMS
U HD03~HD62
16
I Fundamental
40
I TEH RMS
0x003fxxxx
U HD63
17
U Deviation
41
U TIH RMS
0x0081xxxx
U IHD01
18
U Over Deviation
42
U TOIH RMS
U IHD02~IHD62
19
U Under Deviation
43
U TEIH RMS
0x00bfxxxx
U IHD063
20
Frequency
44
I TIH RMS
0x02xxxxxx
I HD02
Page 30
CET Electric Technology
30
21
Frequency Deviation
45
I TOIH RMS
I HD03~HD62
22
Phase Reversal
46
I TEIH RMS
0x3fxxxxxx
I HD63
23
U THD
47
kW Imp. Total DMD
0x81xxxxxx
I IHD01
24
U TOHD
48
kvar Imp. Total DMD
I IHD02~IHD62
0xbfxxxxxx
I IHD063
* High-Speed Setpoint Parameters
Table 4-5 Setpoint Parameters
Bit
Action
Bit0~Bit26
Reserved
Bit27
DWR
Bit28
WFR
Bit29
RMS Recorder
Bit30~Bit31
Reserved
Table 4-6 Setpoint Triggers
4.3 Power Quality Parameters
4.3.1 Power Frequency
The PMC-690 is capable of measuring Frequency accurate to ±0.005Hz or 0.01%. The measurement
range is ±15% of f
nominal
, which is 40Hz to 60Hz for 50Hz system and 48 Hz to 72Hz for 60Hz system.
The measurement method of Frequency is in accordance with Section 5.1 of IEC 61000-4-30 Standard
for Class A performance. The PMC-690 also computes Freq. Deviation as per below:
Freq. Deviation = ((f - f
nominal
)/f
nominal
) x 100% where f
nominal
is the Nominal Frequency
4.3.2 Magnitude of the Supply Voltage
The measurement method of the Magnitude of the Supply Voltage parameters is in accordance with
Section 5.2 of IEC 61000-4-30 Standard for Class A performance. The measurement method is not
intended for the detection and measurement of disturbances such as Dips, Swells, Voltage
Interruptions and Transients. The RMS value includes voltage related measurements such as Harmonics,
Interharmonics, Mains Signaling, etc.
4.3.3 Flicker
The PMC-690 provides the Flicker measurements in accordance with the IEC 61000-4-15 (2010)
Standard for Class A performance using the recommended models for 120V and 230V, supporting both
50Hz and 60Hz for each model. Voltage Dips, Swells and Interruptions shall cause Pst and Plt output
values as well as "output 4 and 5 values" (see IEC 61000-4-15) to be flagged. Please refer to Section
4.3.13 Flagging Concept for a detailed description.
Figure 4-3 Flicker Display
Page 31
CET Electric Technology
31
4.3.4 Supply Voltage Dips/Swells and Interruption
The PMC-690 supports the detection of the Supply Voltage Dips/Swells and Interruption using a
method that is in accordance with Section 5.4 of IEC 61000-4-30 Standard for Class A performance.
The PMC-690 provides Dip/Swell and Interruption detection for voltage quality monitoring on a per
phase basis and records an event in the SOE Log, which includes the event timestamp, event type, event
characteristics and ITIC/SEMI F47 curve. Moreover, Dip/Swell detection for each phase voltage would
trigger WFR, DWR and RMS Recorder.
4.3.4.1 Voltage Dip Evaluation
A Voltage Dip is characterized by a pair of data, the Residual Voltage (U
res
) or Depth and Duration:
Parameter
Definition
Residual Voltage
The lowest U
rms (1/2)
value measured on any channel during the Dip
Depth
The difference between the Reference Voltage (either U
din
or Usr) and the Residual Voltage. It's
generally expressed in percentage of the Reference Voltage.
Duration
The time difference between the beginning and the end of the Voltage Dip.
Table 4-7 Dip Evaluation Parameter
4.3.4.2 Voltage Swell Evaluation
A Voltage Swell is characterized by a pair of data, the Maximum Swell Voltage Magnitude and Duration:
Parameter
Definition
Max. Voltage Swell Magnitude
The largest U
rms (1/2)
value measured on any channel during the Swell.
Duration
The time difference between the beginning and the end of the Voltage Swell.
Table 4-8 Swell Evaluation Parameter
4.3.4.3 Sliding Reference Voltage (Usr)
If a sliding reference is chosen for the detection of Voltage Dip or Swell, this shall be calculated using a
first order filter with a 1-min time constant. This filter is given by
U
sr(n)
= 0.9967 x U
sr(n-1)
+ 0.0033 x U
(10/12)rms
where
U
sr(n)
is the present value of the Sliding Reference Voltage
U
sr(n-1)
is the previous value of the Sliding Reference Voltage
U
(10/12)rms
is the most recent 10/12-cycle r.m.s. value
4.3.4.4 Dip/Swell Setpoint
As per IEC 41000-4-30:
Voltage Swell Detection
On polyphase systems a Swell begins when the Urms(1/2) voltage of one or more channels rises above the Swell Threshold and ends when the Urms(1/2) voltage on all measured channels is equal to or below the Swell Threshold minus the Hysteresis voltage.
Voltage Dip Detection
On polyphase systems a Dip begins when the Urms(1/2) voltage of one or more channels is below the Dip Threshold and ends when the Urms(1/2) voltage on all measured channels is equal to or above the Dip Threshold plus the Hysteresis voltage.
The Dip/Swell Threshold and the Hysteresis Voltage are both set by the user according to the actual
situation. The Dip/Swell Setpoint provides the following setup parameters which can be programmed
via the Front Panel or over communications:
Parameter
Definition
Options/Value
Dip/Swell Reference Voltage
Udin / Usr
0*= U
din,
1= Usr
Dip/Swell Enable
Dip/Swell Enable.
0*=Disabled, 1=Enabled
Swell Limit
Specify the limit of Swell.
101 to 200(%) of reference voltage. Default=110%
Page 32
CET Electric Technology
32
Dip Limit
Specify the limit of Dip.
1 to 99(%) of reference voltage. Default=90%
Dip Hysteresis
Specify the return value of Dips.
1 to 1000 (x0.001 Udin). Default=5
Swell Hysteresis
Specify the return value of Swells.
1 to 1000 (x0.001 Udin). Default=5
Dip/Swell Trigger
Specify what action a setpoint can take when Dip / Swell become active
WFR* / DWR / RMS Recorder
*default
Table 4-9 Description for Dip/Swell Parameter
The Dip Limit, Swell Limit, Voltage Interruption Threshold and Dip/Swell Return values should be
configured to meet the following criteria:
a) The Voltage Interruption Threshold (please see Section 4.3.5) shall be set below Dip Limit. b) The Swell Limit and Dip Limit should associate with Voltage Rapid Changes in the minimum
difference between the two steady-states. The absolute value of the difference between the
Dip/Swell Limits and 100% must always be greater than the Voltage Rapid Changes in the minimum
pressure difference between the two steady-states (actual percentage).
c) The Dip/Swell Return value should associate with Swell limit and Dip Limit, Dip/Swell return value
(actual value) must be less than the Dip/Swell limit (Dip, Swell of the absolute difference of the
minimum value and 100%).
d) Regardless of whether Dip/Swell is enabled, the conditions for a), b) and c) must always be met.
4.3.4.5 WFR of Dips/Swells Events
Figure 4-4 WFR of a Dip Event
4.3.5 Voltage Interruptions
The PMC-690 supports the detection of Voltage Interruptions using a method that is in accordance with
Section 5.5 of IEC 61000-4-30 Standard for Class A performance.
4.3.5.1 Voltage Interruption Evaluation
On polyphase systems, a Voltage Interruption begins when the U
rms (1/2)
voltages of all channels fall below
the Interruption Threshold and ends when the U
rms (1/2)
voltage on any one channel is equal to, or
greater than, the Interruption Threshold plus the Hysteresis.
The Interruption Threshold and Hysteresis are both set by the user according to the use. The
Interruption Threshold shall not be set below the uncertainty of Residual Voltage measurement plus
the value of Hysteresis. Typically, Hysteresis is equal to 2% of U
din
. The Interruption Threshold can, for
example, be set to 5% of U
din
.
Page 33
CET Electric Technology
33
Note:
For polyphase systems, an interruption occurs when the voltage falls below the Interruption threshold on all phases (otherwise,
it is considered to be a dip).
The Duration of a voltage interruption is the time difference between the beginning and the end of the
Voltage Interruption.
4.3.5.2 Voltage Interruption Setpoint
The Voltage Interruption Setpoint provides the following setup parameters which can be programmed
via the Front Panel or over communications:
Parameter
Definition
Options/Value
Interruption Limit
Specify the limit of Interruption.
50 to 0(%) of reference voltage, default=10%
Interruption Hysteresis
Specify the return value of Interruption.
1 to 1000 (x0.001 Udin), default=5
Interruption Trigger
Specify what action a setpoint can take when Interruption become active
WFR / DWR / RMS Recorder, default=WFR
Table 4-10 Description for Interruption Setpoint Parameter
4.3.6 Voltage Transients
The PMC-690 provides the capability for detecting voltage transient disturbances using the sliding-
window method according to IEC 61000-4-30 with a maximum resolution of 40µs (@50Hz) for the
standard. The PMC-690 provides transient detection for voltage quality monitoring and records an event
in the SOE Log, which includes the event timestamp event type, and event characteristics. In addition,
transient would trigger WFR, DWR and RMS Recorder.
4.3.6.1 Transient Setpoint
The Transient Setpoint provides the following setup parameters which can be programmed via the Front
Panel or over communications:
Setup Parameter
Definition
Options
Transient Enable
Transient enable or disable.
Disabled / Enabled*
Transient Limit
Specify the limit of Transient.
5% to 500% Udin, 35*
Transient Trigger
Specify what action a setpoint can take when Transient become active.
WFR / DWR / RMS Recorder, default=WFR
Table 4-11 Setup parameters for Transient Setpoint
4.3.6.2 WFR of Transient Events
Figure 4-5 WFR of a Transient Event
Page 34
CET Electric Technology
34
4.3.7 Supply Voltage Unbalance
The PMC-690 provides both the Zero Sequence and Negative Sequence Voltage and Current Unbalance
measurements using Symmetrical Components and in accordance with Section 5.7 of IEC 61000-4-30
Standard for Class A performance.
2
V2 Unbalance x100%
V V1
,
2
I2 Unbalance x100%
I I1
(Negative Sequence Unbalance)
0
V0 Unbalance x100%
V
V1
,
I0
I0 Unbalance x100%
I1
(Zero Sequence Unbalance)
where
V0, V1, V2 are the Zero, Positive and Negative Sequence Components for Voltage, respectively.
and
I0, I1, I2 are the Zero, Positive and Negative Sequence Components for Current, respectively.
4.3.8 Harmonics and Interharmonics
The PMC-690 provides the Harmonics and Interharmonics measurements in accordance with Sections
5.8 and 5.9 of IEC 61000-4-30 Standard for Class A performance using a 10/12 cycle gapless centered
harmonic sub-group measurement, denoted Cng for Harmonics and C
n-200-ms
for Interhamonics, as per
IEC 61000-4-7:2002.
There are three methods to calculate the Harmonic Distortion (HD):
a) Fundamental Method:
Voltage Kth Harmonic/Interharmonic Distortion=
X100%
U
U
1
k
where U1 is the Fundamental Voltage
Current Kth Harmonic/Interharmonic Distortion=
%100
I
I
1
k
X
where I1 is the Fundamental Current
b) RMS Method:
Voltage Kth Harmonic /Interharmonic Distortion=
X100%
U
U
2
K
1K
k
where the denominator is the RMS
Current Kth Harmonic/Interharmonic Distortion=
X100%
I
I
2
K
1K
k
where the denominator is the RMS
c) Nominal Method:
Voltage Kth Harmonic/Interharmonic Distortion=
X100%
nom
k
U
U
where U
nom
is the Nominal Voltage
Current Kth Harmonic/Interharmonic Distortion=
X100%
nom
k
I
I
where I
nom
is the Nominal Current
The PMC-690 also provides, in addition to Voltage Harmonics, measurements for Current Harmonics, K-
Factor, Crest Factor, Power Harmonics and Energy Harmonics.
K-Factor and Crest Factor
K-Factor is defined as the weighted sum of the harmonic load currents according to their effects on
Page 35
CET Electric Technology
35
transformer heating, as derived from ANSI/IEEE C57.110. A K-Factor of 1.0 indicates a linear load (no
harmonics). The higher the K-Factor, the greater the harmonic heating effects.
)(
)(
K
2
hh
1h
2
hh
1h
max
max
h
h
I
hI
Factor
Ih = hth Harmonic Current in RMS
h
max
= Highest harmonic order
Crest Factor is defined as the Peak to Average Ratio (PAR), and its calculation is listed below:
x
x
rms
peak
C
|X|
peak
= Peak amplitude of the waveform
X
rms
= RMS value
4.3.8.1 Voltage and Current Harmonics and Interharmonics
The following table illustrates the Voltage and Current Harmonics and Interharmonics measurements
available on the PMC-690:
Ua
Ub
Uc
U4
Ia
Ib
Ic
I4
THD, TOHD, TEHD (%)
▪ ▪ ▪ ▪ ▪ ▪ ▪
HD01 to HD63 (%)
▪ ▪ ▪ ▪ ▪ ▪ ▪
TH, H01 to H63 (RMS)
▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ TOH/TEH/DC RMS
▪ ▪ ▪ ▪ ▪ ▪ ▪
Current K-Factor
--
--
--
-- ▪ ▪ ▪ ▪
Crest Factor
▪ ▪ ▪ ▪ ▪ ▪ ▪
IHD01 to IHD63 (%)
▪ ▪ ▪ ▪ ▪ ▪ ▪
IH01 to IH63 (RMS)
▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ TIHD, TOIHD, TEIHD (%)
▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Phase Angle H01 to H63
▪ ▪ ▪ ▪ ▪ ▪ ▪
Table 4-12 Voltage and Current Harmonics and Interharmonics Measurements
4.3.8.2 Power Harmonics
The following table illustrates the Power Harmonic measurements available on the PMC-690:
Ua
Ub
Uc
U4
Ia
Ib
Ic
I4
kW/kvar/kVA TH
-- ▪ ▪ ▪ --
PF TH
--
--
--
--
--
--
--
--
kW/kvar/kVA Fundamental
-- ▪ ▪ ▪ --
PF Fundamental
-- ▪ ▪ ▪ --
kW/kvar/kVA H02 to H63
-- ▪ ▪ ▪ --
PF H02 to H63
-- ▪ ▪ ▪ --
Table 4-13 Power Harmonics Measurements
4.3.8.3 Harmonic Setup Parameters
The Harmonic provides the following setup parameters which can be programmed via the Front Panel
or over communications:
Setup Parameter
Definition
Options/Default*
Harmonics Calculation
Specifies the Harmonics calculation methods, please refer to above introduction.
0*=% of Fundamental, 1=% of RMS 2=% of Nominal
Statistical Harmonic Calculation
Specifies the mode of calculating harmonic.
0*=Subgroup, 1=Group
Order of Harmonic Calculation
Specifies the order of harmonic statistic.
2 to 63*
Table 4-14 Setup parameters for Harmonic
Page 36
CET Electric Technology
36
4.3.8.4 Screen Captures of Harmonics Measurements
Figure 4-6 Harmonic Measurements Display on Front Panel
4.3.9 Mains Signalling Voltage (MSV)
As per 5.10 of IEC 61000-4-30:
Mains Signaling Voltage is RMS voltage of mains signal.
Mains signaling voltage measurement shall be based on
Either the corresponding 10/12-cycle r.m.s. value interharmonic bin Or the r.m.s. of the four nearest 10/12-cycle r.m.s. value interharmonic bins
The beginning of a signaling emission shall be detected when the measured value of the concerned interharmonic exceeds a threshold. The measured values are recorded during a period of time specified by the user, in order to give the level and the sequence of the signal voltage.
The user must select a detection threshold above 0.1% U
din
as well as the length of the recording period up to 120s.
The PMC-690 provides 3 groups of waveform recorder for MSV in accordance with Section 5.10 of IEC
61000-4-30 Standard for Class A performance. Each MSV WR will be recorded in SOE Log and EN50160
report.
The MSV provides the following setup parameters which can be programmed through the Front Panel
or communication:
Setup Parameter
Value
MSV #x Enable
0 = Enable, 1 = Disable, default=0
MSV #x Frequency
50 Hz: 600 to 30000 (x0.1Hz), 60 Hz: 700 to 30000 (x0.1Hz), default=10000
MSV #x Limit
3 to 1000 (x0.001Udin), default=50 (x0.001Udin)
Table 4-15 Mains Signal Voltage Setup Parameters
4.3.10 Voltage Deviation
As per Section 5.12 of IEC 61000-4-30:
The 10/12-cycle r.m.s value Urms can be used to assess the underdeviation and overdeviation parameters in per cent of Udin. The underdeviation Uunder and overdeviation Uover parameters are determined by the following equations. w:
Voltage Overdeviation (%)
U
over
= 0 if U
rms
< U
din
U
over
= ((U
rms
- U
din
) / U
din
) x 100% if U
rms
U
din
Voltage Underdeviation (%)
U
under
= 0 if U
rms
> U
din
U
under
= ((U
din
- U
rms
) / U
din
) x 100% if U
rms
U
din
The PMC-690 is capable of measuring Voltage accurate to 0.1% and monitoring Voltage deviation on
line. In addition, the Voltage deviation can be set as setpoint. The following screen captures illustrates
Page 37
CET Electric Technology
37
the display of the Deviation parameters in the Front Panel.
Figure 4-7 Voltage Deviation Display on Front Panel
4.3.11 Rapid Voltage Changes (RVC)
As per IEC 61000-4-30:
A rapid voltage change is a quick transition in RMS voltage between two steady-state conditions.
To measure rapid voltage change, threshold must be defined for each of the following: the minimum rate of change, the minimum duration of the steady-state conditions, the minimum difference in voltage between the two steady-state conditions, and the steadiness of the steady-state conditions.
The voltage during a rapid voltage change must not exceed the voltage dip and/or the voltage swell threshold, as it would otherwise be considered as a voltage dip or swell.
The characteristic parameter of the rapid voltage change is the difference between the steady-state value reached after the change and the initial steady-state value.
The PMC-690 provides the ability to capture RVC in accordance with the IEC 61000-4-30 Standard and
records in SOE Log and High-speed Recording with event timestamp, event type, and event
characteristics.
Figure 4-8 Rapid Voltage Changes
The RVC Setpoint provides the following setup parameters which can be programmed through the Front
Panel or over communications:
Setup Parameter
Definition
Options/Default*
RVC Enable
Specifies if RVC Setpoint is enabled.
Disabled* / Enabled
Detection Mode
Specifies detection mode of the RVC.
0*= Based on Steady-state V 1= Based on Maximum V Change
Voltage Tolerance
Maximum allowable fluctuation between the maximum and minimum voltage values during the steady state condition. For
1 to 1000 (x0.001Udin), 2*
Page 38
CET Electric Technology
38
example, the voltage tolerance is 0.5% that is the allowable fluctuation max voltage is 0.005Vll
nominal.
Steady-State Duration
Duration to reach the steady-state condition.
1 to 50 (x0.1s), 10*
Min. of V Change Step
Minimum voltage step change between two steady-state conditions
1 to 1000 (x0.001Udin), 50* Min. of V Change Rate
Minimum rate of change between two steady-state conditions.
1 to 100 (x0.01Udin/s), 5*
RVC Trigger
Specify what action a setpoint can take when RVC become active.
WFR* / DWR / RMS Recorder
Table 4-16 Setup Parameters for RVC Setpoint
To reach the steady-state condition, the voltage fluctuation (voltage difference in RMS between Max.
and Min.) must be less than Voltage Tolerance for a period longer than Steady-State Duration.
For the RVC Setpoint to trigger, the following conditions must be met:
a) The voltage step or the Maximum voltage change between two steady-state conditions is greater
than Min. of V Change Step.
o For the Based on Steady-state V mode, the Voltage Step is determined by the following
equation:
o For the Based on Maximum V Change mode, the Maximum Voltage Change calculated based
on the following equation:
where
Usteady represents the Steady Voltage of This Steady State;
UlastSteady represents the Steady Voltage of Last Steady State;
Urate represents the Nominal Voltage;
UmaxChange is the Max. Voltage Value during the whole Rapid Voltage Change duration
UminChange is the Min. Voltage Value during the RVC duration
b) The rate of change between two steady-state conditions is greater than Min. of V Change Rate. c) The voltage during a rapid voltage change must not exceed the voltage dip and/or the voltage
swell threshold, as it would otherwise be considered as a voltage dip or swell.
4.3.12 Inrush Current
As per IEC 61000-4-30:
The inrush current begins when the I
half cycle rms
current rises above the Inrush Threshold, and ends when the I
half cycle rms
current is
equal to or below the Inrush Threshold minus a user-selected Inrush Hysteresis value.
The inrush current can be further characterized by
the time duration between the beginning and the end of the inrush current the maximum value of inrush current measured I
half cycle rms
value
the square root of the mean of the squared I
half cycle rms
values measured during the inrush duration
Inrush current refers to the maximum instantaneous current drawn by an electrical device, often several
times above their normal full-load current (I
Normal
), such as turning on of an AC electric motor or the
energization of a transformer or a capacitor bank. The higher than normal inrush current typically only
lasts for a few cycles before returning to their steady state condition.
Page 39
CET Electric Technology
39
Figure 4-9 Inrush Current
The PMC-690 provides the capability for detecting and the capturing of the inrush current transient
disturbance that is in accordance with the IEC 61000-4-30 Standard for Class A performance.
The PMC-690 provides following programmable parameters for Inrush Current Setpoint which can be
set via the Front Panel or through communication.
Setup Parameters
Definition
Options/Default*
Inrush Current Enable
Specifies if inrush current setpoint is enabled.
0*=Disabled, 1=Enabled
Inrush Current Threshold
Defines the range that current must exceed for the Inrush Current becomes active.
100% to 500% (Default=120% I
Normal
)
Inrush Current Hysteresis
Defines the limit, which is equal to Inrush Threshold - Inrush Hysteresis, for the I
half cycle rms
current below which the inrush
transient end.
1-1000(x0.1% I
Normal
)
(Default = 10)
Inrush Current Trigger
Specify what action a setpoint can take when Inrush Current become active
WFR* / DWR / RMS Recorder
Table 4-17 Setup Parameters for Inrush Current Setpoint
4.3.13 Flagging Concept
As per Section 4.7 of IEC 61000-4-30:
During a dip, swell, or interruption, the measurement algorithm for other parameters (for example, frequency measurement) might produce an unreliable value. The flagging concept therefore avoids counting a single event more than once in different parameters (for example, counting a single dip as both a dip and a frequency variation) and indicates that an aggregated value might be unreliable.
Flagging is only triggered by dips, swells and interruptions. The detection of dips and swells is dependent on the threshold selected by the user, and this selection will influence which data are "flagged".
The flagging concept is applicable for Class A measurement performance during measurement of power frequency, voltage magnitude, flicker, supply voltage unbalance, voltage harmonics, voltage interharmonics, mains signalling and measurement of underdeviation and overdeviation parameters.
If during a given time interval any value is flagged, the aggregate value indicating that value shall also be flagged. The flagged value shall be stored and also included in the aggregation process, for example, if during a given time interval any value is flagged the aggregated value that includes this value shall also be flagged and stored.
The PMC-690 is a certified IEC 61000-4-30 Class A device so it supports the Flagging Concept.
Flagging Setup The Flagging Setup register (40825) defines if Flagging is enabled for a particular type
of Statistical Log as illustrated in the following table, with a bit value of 1 meaning that
Flagging is enabled for the corresponding Log type.
Bit 15~Bit 4
Bit 3
Bit 2
Bit1
Bit 0
Reserved
EN50160
Min. Log
Max. Log
SDR Log
Table 4-18 Flagging Setup Register (40825)
Page 40
CET Electric Technology
40
Flagging Status This register indicates if a particular type of data has been flagged with a bit value of
1 meaning flagged and 0 meaning not flagged. The following table illustrates the
details of the Flagging Status register for real-time data.
Bit
Description
Bit
Description
B0
Basic Measurement
Dip
B8
Pst.
Dip
B1
Swell
B9
Swell
B2
Interruption
B10
Interruption
B3
Over Current Limit
B11
Reserved
B4
Freq.
Dip
B12
Plt.
Dip
B5
Swell
B13
Swell
B6
Interruption
B14
Interruption
B7
Reserved
B15
Reserved
Table 4-19 Flagging Status Register (0080)
Statistical Log For any Statistical Log (such as SDR Log, Max. Log, Min. Log and/or EN50160 Log), its
log entry will be discarded and will not be included in the statistical evaluation if any
data within the log entry has been Flagged while the bit representing the particular
Log type in the Flagging Setup register is enabled (set to 1).
Real-time Data Real-time data via Modbus communications will only refresh after the Flagging Status
register has been read if Bit 15 of the Flagging Setup register is enabled (set to 1) and
if Flagging is active. Conversely, real-time data via Modbus communications will
automatically refresh if Bit 15 of the Flagging Setup register is disabled (set to 0) so
there is no need to read the Flagging Status register before reading the real-time data.
Real-time data includes Frequency, Voltage, Current, Unbalance, Harmonics and
Interharmonics measurements.
4.3.14 EN50160 Compliance Report
The EN50160 Standard defines the Voltage Characteristics of Electricity Supplied by Public Distribution
Systems. It provides the limits within which any customer can expect voltage characteristics to remain.
For a complete definition of the non-conformity level for each of the following EN50160 parameters,
please refer to the EN50160 Standard document.
The PMC-690 can measure, summarize data and statistics relevant data in accordance with the EN50160
standard. In addition, the device is capable of creating a report per week for the following PQ
parameters and the report can be stored for one year.
Power Frequency, including Maximum and Minimum Supply Voltage Variations, including Maximum and Minimum Flicker, including Max./Min. and CP95 Voltage Unbalance, including Max./Min. and CP95 Harmonic Voltage, including Max./Min., Avg. and CP95 Mains Signal Voltage, including Max./Min. and CP95 Rapid Voltage Changes Swells and Dips, statistic parameters classified according to characteristic voltage and duration Interruptions, statistics parameters classified according to duration Transients
The programming of EN50160 Log only supports communications, please refer to Section 5.8.12 to set
parameters for each item. EN50160 Report can be accessed through the Front Panel or via
Page 41
CET Electric Technology
41
communications. The following screen capture illustrate the PMC-690’s EN50160 Compliance Report
available on its Front Panel.
Figure 4-10 EN50160 Report Display via Front Panel
4.3.15 ITIC/SEMI F47 Curve
The ITIC Curve describes an AC input voltage which typically can be tolerated (no interruption in function)
by most Information Technology Equipment (ITE), while SEMI F47 is specification for Semiconductor
Processing Equipment Voltage Dip Immunity, which specifies the required voltage Dip tolerance for
semiconductor fabrication equipment.
PMC-690’s Front Panel can display ITIC or SEMI F47 curve for PQ Events. Navigate to SOE Log page in
the Front Panel, move cursor to curve in the Front Panel to display ITIC or SEMI F47 curve.
Figure 4-11 SMEI F47 and ITIC Curves
Page 42
CET Electric Technology
42
4.3.16 RMS Change Detection
The PMC-690 is capable of detecting Voltage and Current RMS Change which can help monitoring
parameter changes and quick response to improve maintenance. RMS Changes are stored as events in
the SOE Log.
The RMS Change Detection can be programmed via the Front Panel or through communications and
have the following setup parameters:
Setup Parameter
Definition
Options/Default*
Voltage Enable
Specify if Voltage RMS Change detection is enabled.
Disabled */ Enabled
Voltage Threshold
Specify the range that Voltage must exceed for the Voltage RMS Change would be detected.
0~999,999,999 (x0.01V)
Default=1000
Current Enable
Specify if Current RMS Change detection is enabled.
Disabled */ Enabled
Current Threshold
De Specify fines the range that current must exceed for the Current RMS Change would be detected.
0~999,999,999 (x0.01A)
Default=100
RMS Change Trigger
Specify what action can take when the RMS Change is detected.
WFR
Table 4-20 RMS Change Setup Parameters
Bit
Action
Bit0~Bit26
Reserved
Bit27
DWR
Bit28
WFR
Bit29
RMS Recorder
Bit30~Bit31
Reserved
Table 4-21 RMS Change Triggers
4.4 Data Logging
4.4.1 Device Log and SOE Log
The PMC-690’s Device Log and SOE Log can store up to 1024 events in its non-volatile memory. The
Device Log consists of such events as power-on, power-off, sites management and setup changes for
the device, as well as system operations, while SOE Log consists of setpoints, WFR and RMS Recorder
Dip/Swell, Transient, Inrush Current, Rapid Voltage Changes and Mains Signaling Voltages for
monitoring sites. For detailed event and log description, please refer to Appendix B. Each event record
includes the event classification, its relevant parameter values and a timestamp in 1ms resolution.
All events can be retrieved via communications. If there are more than 1024 events, the newest event
will replace the oldest event on a FIFO basis.
4.4.2 Statistical Data Recorder (SDR)
The PMC-690 provides a comprehensive SDR for IEC 61000-4-30 parameters that is un-matched by
other PQ devices. The SDR records the Min., Max., Avg. (also known as Demand) and CP95 for each
parameter. There are 5 SDRs of 64 parameters each that can be individually programmed to record
different parameters at different time intervals, which may vary from 1 to 60 minutes. The PMC-690 can
retain the SDR Logs for 450 days when the recording interval is set to 15 minutes. The recorded data is
stored in non-volatile memory and will not suffer any loss in the event of a power failure. If storage is
full, the newest log will replace the oldest on a first-in-first-out basis.
The programming of the SDR is only supported over communications. Each SDR provides the following
setup parameters:
Setup Parameters
Value/Option
Default
Recording Interval
1 to 60 minutes, (0 = inactive)
3
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
1
Page 43
CET Electric Technology
43
Number of Parameters
0 to 64 (user defined)
64
Parameters 1 to 64
See Section 5.8.10
Table 4-22 Setup Parameters for SDR
The SDR Log is only operational when the values of Recording Interval and Number of Parameters are
all non-zero.
4.4.3 Max./Min. Log
The PMC-690 provides 4 Max./Min. Logs and capable of recording 20 parameters each since Last Reset
(This Month) or before Last Reset (Last Month). Each record includes relevant parameter values and
timestamp. The recorded data is stored in non-volatile memory and will not suffer any loss in the event
of a power failure. All Max./Min. Log can be accessed over communication.
The PMC-690’s Max./Min. Log can record the following parameters:
Max./Min. Parameters
Ua
Ub
Uc
Uab
Ubc
Uca
Ia
Ib
Ic
kW Total
kvar Total
kVA Total
P.F. Total
Ua Pst
Ub Pst
Uc Pst
Ua Plt
Ub Plt
Uc Plt
Ua Over
Deviation
Ub Over
Deviation
Uc Over
Deviation
Uab Over/Under
Deviation
Ubc Over/Under
Deviation
Uca Over/Under
Deviation
Freq. Deviation
U0 Unbal.
U2 Unbal.
I0 Unbal.
I2 Unbal.
U4 RMS
I4 RMS
U1
U0
I1
I0
Ua THD
Ub THD
Uc THD
Ia THD
Ib THD
Ic THD
kW Total TH
kvar Total TH
kVA Total TH
P.F. Total TH
kW Total H01
kvar Total H01
kVA Total H01
P.F. Total H01
Frequency
Ia/Ib/Ic/I4
K-Factor
U2
I2
Table 4-23 Max./Min. Measurements
The programming of the Max./Min. Log is only supported over communications. Each Max./Min. Log
provides the following setup parameters:
Parameters
Value
Self-Read time
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
(Default)
A non-zero value means that the Self-Read will take place at a specific time and day based
on the formula: Self-Read Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value will disable the Self-Read operation and replace it with manual operation. A
manual reset will cause the Max./Min. Log of This Month to be transferred to the Max/Min. Log of Last Month and then reset. The terms This Month and Last Month will become Since
Last Reset and Before Last Reset.
Number of Parameters
0 to 20
Parameter 1 to 20
All real-time data can be configured to parameters, please see Section 5.8.11
Table 4-24 Setup Parameters for Max./Min. Log
4.4.4 Pst Log
The PMC-690’s Pst Log can store up to 52560 events per 10 minutes about voltage Pst in its non-volatile
memory. Each event record includes the event classification, its relevant parameter values and a
timestamp in 1ms resolution.
All events can be retrieved via communications for display. If there are more than 52560 events, the
newest event will replace the oldest event on a first-in-first-out basis. The Pst Log can be reset from the
front panel or via communications.
Page 44
CET Electric Technology
44
4.4.5 Plt Log
The PMC-690’s Plt Log can store up to 4380 events per 2 hours about voltage Plt in its non-volatile
memory. Each event record includes the event classification, its relevant parameter values and a
timestamp in 1ms resolution.
All events can be retrieved via communications for display. If there are more than 4380 events, the
newest event will replace the oldest event on a first-in-first-out basis. The Plt Log can be reset from the
front panel or via communications.
4.4.6 Waveform Recorder (WFR)
The PMC-690 provides one group of WFR with a total of 500 entries. WFR Log can simultaneously
capture 3-phase voltage and current signals. WFR on the PMC-690 can be triggered by Dip/Swell,
Transient, Inrush Current, Rapid Voltage Changes, Setpoints or manually through communications. The
manual trigger command has the highest priority. When WFR is already in progress, other WFR
commands will be ignored until the present recording has completed. The WFR has a capacity of 500
entries organized in a FIFO basis, with the newest waveform log replacing the oldest one. The WFR log
is stored in the device’s non-volatile memory with COMTRADE or PQDIF file format and will not suffer
any loss in the event of power failure. The log can be accessed via communication.
The programming of the WFR is supported over the Front Panel or communications. The WFR provides
the following setup parameters:
Setup Parameters
Value/Option/Default*
Consecutive Recording Depth
1* to 7
# of Samples
0*=16 Samples/640 Cycles 1=32 Samples/320 Cycles
2=64 Samples/160 Cycles 3=128 Samples/80 Cycles
5=256 Samples/40 Cycles 6=512 Samples/20 Cycles
Pre-fault Cycle of WFR
2 to 384 Cycles (16 Samples/640 Cycles) 2 to 96 Cycles (64 Samples/160 Cycles) 2 to 24 Cycles (256 Samples/40 Cycles)
2 to 192 Cycles (32 Samples/320 Cycles) 2 to 48 Cycles (128 Samples/80 Cycles) 2 to 12 Cycles (512 Samples/20 Cycles)
Pre-fault Cycles of DWR
5 to 10 Cycles (@ 512 Samples/Cycle)
Table 4-25 Setup Parameters for WFR
All waveform recorder logs can be retrieved via communications by our DiagSys analyzing software.
4.4.7 Disturbance Waveform Recorder (DWR)
The PMC-690 provides disturbance waveform recording including Ua/Ub/Uc/U4 and Ia/Ib/Ic/I4. The
disturbance waveform recording can be triggered by dip, swell, transient, rapid voltage changes,
setpoint event and communications. The Disturbance Waveform data is stored in the device’s non-
volatile memory with COMTRADE file format and will not suffer any loss in the event of power failure.
The PMC-690 can store DWR logs up to 500 entries. Each disturbance waveform recording consists of
the following stages.
A B C D E F
Initial Stage Ending StageSteady Stage
Figure 4-12 Disturbance Location
Stage
Description
Recording Length
Recording Frequency
A
Pre-Fault cycles for the Initial Stage
5 to 10 cycles
512 Samples/Cycle
B
Waveform Recording of the Initial Stage
25 to 30 cycles
Initial Stage (A+B) up to 35 cycles
512 Samples/Cycle
Page 45
CET Electric Technology
45
C
Waveform Recording during the Steady Stage
0 to 150 cycles
16 Samples/Cycle
D
RMS Recording during the Steady Stage
0 to 18,000 cycles
1 Sample/Cycle
E
Pre-Fault cycles of the Ending Stage
2 cycles
512 Samples/Cycle
F
Waveform Recording of the Ending Stage
13 cycles
512 Samples/Cycle
Table 4-26 Time frames of waveform
Notes:
1) For stages C and D:
If C < 150 cycles, the D would be 0.
If C = 150 cycles, the D stage data will be recorded.
If D = 18,000 cycles, the recording of D stage data end even if disturbance does not finish. After 10 minutes, the E and F stage data will be recorded.
2) The following figure shows an example of Disturbance Waveform Recording.
Figure 4-13 Disturbance Waveform Recorder
4.4.8 RMS Log
The PMC-690’s RMS Log can store up to 500 events for each monitoring site in its non-volatile memory.
The RMS Log records RMS @1/2 cycle for parameters including 3-phase Voltage and 3-phase Current.
RMS Log on the PMC-690 can be triggered by Dip/Swell, Transient, Inrush Current, Rapid Voltage
Changes, Setpoints or manually through communications. The RMS Log has a capacity of 500 entries
organized in a FIFO basis, with the newest RMS log replacing the oldest one. The RMS log is stored in
the device’s non-volatile memory with COMTRADE file format and will not suffer any loss in the event
of power failure. The log can be accessed via communication.
The programming of the RMS Log is supported over the Front Panel or through the communication
(Register 41313) and provides the Pre-fault Samples setup:
Figure 4-14 Setup Parameters for RMS Log
Page 46
CET Electric Technology
46
4.4.9 Trend and SDR Trend
The PMC-690 provides Trend plot for realtime 3-phase V & I parameters (see Figure 4-15), and SDR
Trend plot for Max./Min., Avg. and CP95 with up to 11 SDR parameters including frequency, voltage,
current, power and PF. It’s important to note that the source of SDR Trend data are coming from SDR
Log. The selection of the SDR Trend plot is supported on Front Panel for only one parameter at a time.
SDR Trend Parameters
Channels (ON/OFF)
Freq., Ua, Ub, Uc, Ia, Ib, Ic, P Total, Q Total, S Total, PF Total
Cursor (ON/OFF)
Displaying the recorded Max., Min., Avg. and CP95 value
Table 4-27 On-screen Selections for SDR Trend Plot
Figure 4-15 SDR Trend display via Front Panel
4.4.10 PQDIF and COMTRADE Storage
The PMC-690 is capable of storing standard data with PQDIF format, DWR data, RMS data and WFR data
with COMTRADE format in its 16GB removable SD card. All record can be stored for about half a year
and will not suffer any loss in the event of a power failure. The PMC-690 can store following standard
data with PQDIF format.
Parameter
Description
Sampling intervals
Freq.
Freq.
150 cycles
Voltage RMS
Ua, Ub, Uc, U4
150 cycles
Uab, Ubc, Uca
150 cycles
Current RMS
Ia, Ib, Ic, I4
150 cycles
Voltage Deviation
Ua/Ub/Uc Deviation
150 cycles
Unbalance
U1/U2/U0 Unbalance
150 cycles
I1/I2/I0 Unbalance
150 cycles
Harmonic Voltage
Ua/Ub/Uc/U4_THD, Ua/Ub/Uc/U4_TOHD, Ua/Ub/Uc/U4_TEHD,
150 cycles
Ua/Ub/Uc/U4_HD_01 ... Ua/Ub/Uc/U4_HD_63
Harmonic Current
Ia/Ib/Ic/I4_THD, Ia/Ib/Ic/I4_TOHD, Ia/Ib/Ic/I4_TEHD
150 cycles
Ia/Ib/Ic/I4_H01_RMS ... Ia/Ib/Ic/I4_H63_RMS
Flicker
Pst
10 mins
Plt
2 hours
Fundamental Power
kWa/kWb/kWc, kvara/kvarb/kvarc, kVAa/kVAb/kVAc, kW Total, kvar Total,
kVA Total
150 cycles
Total Power
kWa/kWb/kWc, kvara/kvarb/kvarc, kVAa/kVAb/kVAc, kW Total, kvar Total,
kVA Total
150 cycles
Total Harmonic Power
kWa/kWb/kWc TH, kvara/kvarb/kvarc TH
kVAa/kVAb/kVAc TH, kW/kvar/kVA TH
150 cycles
Power Factor
PFa/PFb/PFc, PF Total
-
Table 4-28 PQDIF Parameters
The PQDIF and COMTRADE file can be retrieved via reading SD card, under the pqdif/ and
Page 47
CET Electric Technology
47
comtradeInfo/ folder of corresponding site.
Figure 4-16 Data files in SD card
4.4.11 PQ Counters
The PMC-690 Provides counting ability for PQ Events. When a new event generated, the register will
add 1 and system will alarm. The maximum of counter register is 232 (4,294,967,296), the register will
roll over to 0 when it reaches the maximum. The counter can be reset by Front Panel or via
communications. The PMC-690 provides following PQ event counter.
No
Event
No
Event
No
Event
0
Dip
4
Rapid Voltage Changes
10
DWR
1
Swell
5
Inrush Current
11
WFR
2
Interruption
6
Reserved
12
RMSR
3
Transient
7,8,9
Signal Voltage#1, #2, #3
Table 4-29 PQ Event Counter
4.5 Site Management and Monitoring
The PMC-690 provides function of managing up to 8 sites that is capable of recording and saving a
maximum of 50 monitoring records each in the device non-volatile memory. Users just need to load the
sites information and parameters that are configured before testing and therefore greatly improve the
efficiency.
Each site has independent parameters and data logs that are saved for the corresponding site. Once the
record number of a site exceeds 50, the monitoring function would be disabled, users can restart the
function by deleting parts of historical data or switch to other sites. In addition, users can switch among
different sites, export and import parameters to another site as well as other operations such as rename
a site or delete a site from the Front Panel.
Page 48
CET Electric Technology
48
Figure 4-17 Switch Sites via Front Panel
After selecting and configuring a monitoring site, you may start the monitoring function by pressing the
“Start/Stop” button on the front panel. A setup page will pop-up (Figure 4-18) for setting the Start and
Stop Mode (Table 4-30). The monitoring data can be saved only after the “Start” key is pressed and the
log would be saved in the independent directory that named by starting timestamp.
Parameters
Value
Start Mode
Scheduled means that the monitoring will take place at a specific time. Manual means that the monitoring will start after 10s when “Start/Stop” button is pressed.
End Mode
Scheduled means that the monitoring will be ended at a specific time. Manual means that the monitoring will stop when “Start/Stop” button is pressed. Timer means that the monitoring will run for a specific period and then stop.
End Duration
This parameter is only valid when the End Mode is set to Timer.
Table 4-30 Site Parameters Setup
Figure 4-18 Setup Start/End Mode for Sites via Front Panel
4.6 Time Synchronization
The PMC-690 provides timestamps for all recorded data so it's extremely important for the clock to be
properly configured to achieve precise events time stamping for energy and power quality analysis.
There are two methods to set and synchronize the PMC-690’s clock, please refer to the following
description.
Page 49
CET Electric Technology
49
4.6.1 SNTP
SNTP (Simple Network Time Protocol) can be used to synchronize the clock through the connected
Ethernet port providing that the network has been properly configured for the PMC-690 to connect to
the SNTP Server, wherever it resides.
The SNTP supports two time synchronization modes: Unicast and Broadcast.
Unicast: the PMC-690 would connect to the SNTP Server automatically as per specified SNTP Sync.
Interval to synchronize time. The programming of the SNTP setup parameters are supported via the
Front Panel or communications and provides the following setup parameters:
Setup Parameters
Option
Default
Clock Source
0=RTC, 1=SNTP. Set Clock Source=1
SNTP Sync. Interval
1 to 1440 minutes
60
IP Address of SNTP Server
Set the IP address of the SNTP Server
192.168.101.2
Table 4-31 SNTP Setup Parameters
Broadcast: the PMC-690 would receive packets of broadcast time synchronization from the intranet
and compare clock if the time difference between intranet and the device is less than 5 minutes.
4.6.2 Modbus
Modbus can be used to synchronize the PMC-690’s clock through the communication. Set the Clock
Source as RTC via the Front Panel or communication, then set the register values of 60000 to 60005 or
9000 to 9005, please refer to Section 5.9 Time Registers for a detailed description.
4.7 Communication
4.7.1 Ethernet Port
The PMC-690 comes standard with one 100BaseT TCP/IP Ethernet port with RJ45 connector for
connecting PC for firmware upgrade, configuration and data analysis. The IP Address, Subnet mask and
Gateway under device setup are required to be configured so as to match the settings in the
corresponding application software on PC for establishing a connection.
4.7.2 USB Port
The PMC-690 comes standard with an USB port for data transfer to the USB storage device. After
inserting a reliable USB drive into the USB port, the system would detect the drive and users can transfer
data, waveform logs as well as event logs via the user friendly interface in the Front Panel.
4.8 Data Storage
The PMC-690 is equipped with a removable 16GB SD card for non-volatile data storage for SDR data,
events, WFR log and facilitating easy data transfer to PC. Most importantly, SD Card storage is much
more reliable than HDD because it has no moving parts and is immune from mechanical breakdown.
The 16GB SD card is sufficient for a site to perform continuous monitoring for about half-year.
The table below illustrates the directories and stored data:
Data
Directory
Screen captures
/hmi
Device Logs
/data/device/device/deviceLog
User Folders
/data/customFile
Site parameter templates
/data/site/site n/Cfg/para.ini
Present monitoring system parameters
/data/site/site n/20230414_071155/Cfg/param.ini
Present Peak Demands
/data/site/site n/20230414_071155/Demand/this
Page 50
CET Electric Technology
50
Max. Demand of Last Time
/data/site/site n/20230414_071155/Demand/last
Energy
/data/site/site n/20230414_071155/Energy
Max.
/data/site/site n/20230414_071155/Max
Min.
/data/site/site n/20230414_071155/Min
Pst Log
/data/site/site n/20230414_071155/pst/
Plt Log
/data/site/site n/20230414_071155/plt/
EN50160
/data/site/site n/20230414_071155/EN50160
PQDIF
/data/site/site n/20230414_071155/PQDIF/
PQDIF Internal DR
/data/site/site n/20230414_071155/pqdifStatRecord/...
Site Events
/data/site/site n/20230414_071155/monitorEvent/
PQ Counter
/data/site/site n/20230414_071155/pqCnt
SDR #1~5
/data/site/site n/20230414_071155/stat/group_00
/data/site/site n/20230414_071155/stat/group_04
WFR Log
/data/site/site n/20230414_071155/faultRecord/
DWR Log
/data/site/site n/20230414_071155/disturbRecord
RMS Log
/data/site/site n/20230414_071155/rmsRecord
Table 4-32 Data Stored Directory
Page 51
CET Electric Technology
51
Chapter 5 Modbus Register Map
This chapter provides a complete description of the Modbus register map (Protocol Version 3.0) for the
PMC-690 Advanced Utility Power Quality Analyzer to facilitate the development of 3rd party Modbus
RTU communications driver for accessing information on the PMC-690.
The PMC-690 supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
The following table provides a description of the different data formats used for the Modbus registers.
The PMC-690 uses the Big Endian byte ordering system.
Format
Description
UINT16/INT16
Unsigned/Signed 16-bit Integer
UINT32/INT32
Unsigned/Signed 32-bit Integer
Float
IEEE 754 32-bit
Single Precision Floating Point Number
For a complete Modbus Protocol Specification, please visit http://www.modbus.org.
5.1 Basic Measurements
Register
Property
Description
Format
Unit
0000
RO
Uan1
Float
V
0002
RO
Ubn1
Float
V
0004
RO
Ucn1
Float
V
0006
RO
ULN Avg.1
Float
V
0008
RO
Uab
Float V 0010
RO
Ubc
Float
V
0012
RO
Uca
Float
V
0014
RO
ULL Avg.
Float
V
0016
RO
Ia
Float
A
0018
RO
Ib
Float A 0020
RO
Ic
Float A 0022
RO
I Avg.
Float A 0024
RO
kWa1
Float
W
0026
RO
kWb1
Float
W
0028
RO
kWc1
Float
W
0030
RO
kW Total
Float
W
0032
RO
kvara1
Float
var
0034
RO
kvarb1
Float
var
0036
RO
kvarc1
Float
var
0038
RO
kvar Total
Float
var
0040
RO
kVAa1
Float
VA
0042
RO
kVAb1
Float
VA
0044
RO
kVAc1
Float
VA
0046
RO
kVA Total
Float
VA
0048
RO
P.F.a1
Float
--
0050
RO
P.F.b1
Float
--
0052
RO
P.F.c1
Float
--
0054
RO
P.F. Total
Float
--
0056
RO
FREQ
Float
Hz
0058
RO
U4
Float
V
0060
RO
I4
Float
A
0062
RO
Reserved
0064
RO
Real-time Data Timestamp - Second
UINT32
s
0066
RO
Real-time Data - Millisecond
UINT32
ms
0068
RO
Freq. Timestamp - UNIX Time (Second)
UINT32 s 0070
RO
Freq Timestamp - Millisecond
UINT32
ms
0072
RO
Pst Timestamp - UNIX Time
UINT32
s
0074
RO
Pst Timestamp - Millisecond
UINT32
ms
0076
RO
Plt Timestamp - UNIX Time
UINT32
s
Page 52
CET Electric Technology
52
0078
RO
Plt Timestamp - Millisecond
UINT32
ms
0080
RO
Flagging Status of Real-time Data2
Bitmap 0081~0092
Reserved
0093
RO
Standard Setpoint Status3
Bitmap
0095~0109
RO
Reserved
Bitmap
0111
RO
HS Setpoint Status3
Bitmap
0113
Reserved
0115
RO
Dips Counter
UINT32
0117
RO
Swells Counter
UINT32
0119
RO
Interruption Counter
UINT32
0121
RO
Transient Counter
UINT32
0123
RO
RVC Counter
UINT32 0125
RO
Inrush Current Counter
UINT32 0127
RO
RMS Change Counter
UINT32 0129
RO
MSV (Mains Signalling Voltage) #1 Counter
UINT32
0131
RO
MSV #2 Counter
UINT32
0133
RO
MSV #3 Counter
UINT32
0135
RO
Total PQ Event
UINT32
0137
RO
Device Log Pointer
UINT32 0139
RO
SOE Log Pointer
UINT32
0141
RO
WFR Log Pointer
UINT32
0143
RO
RMS Log Pointer
UINT32
0145
RO
Disturbance Recorder Pointer
UINT32
0147~0157
Reserved
0159
RO
SDR #1 Pointer
UINT32 0161
RO
SDR #2 Pointer
UINT32 0163
RO
SDR #3 Pointer
UINT32
0165
RO
SDR #4 Pointer
UINT32
0167
RO
SDR #5 Pointer
UINT32
0169~0237
Reserved
0239
RO
Pst Log Pointer
UINT32 0241
RO
Plt Log Pointer
UINT32
0243
Reserved
0245
RO
Reserved
0247
RO
EN50160 Pointer
UINT32
0249
RO
Qualification Rate Pointer (Reserved for English Version)
UINT32 0251
RO
Reserved
UINT32
Table 5-1 Basic Measurements
Notes:
1) When the Wiring Mode is Delta, the per phase line-to-neutral voltages, kWs, kvars, kVAs and P.F.s have no meaning, and
their registers are reserved.
2) Please refer to Section 4.3.13 Flagging Concept for a detailed description of the Flagging Status register.
Bit
Description
Bit
Description
B0
Basic Measurement
Dip
B8
Pst.
Dip
B1
Swell
B9
Swell
B2
Interruption
B10
Interruption
B3
Over Current Limit*
B11
Reserved
B4
Freq.
Dip
B12
Plt.
Dip
B5
Swell
B13
Swell
B6
Interruption
B14
Interruption
B7
Reserved
B15
Reserved
* 2x I
Normal
Table 5-2 Flagging Status
3) The Standard Setpoint Status register represent the states of Standard Setpoints #1 to #24 while the HS Setpoint Status
register represents the states of HS Setpoints #1 to #16, with a bit value of 1 meaning active and 0 meaning inactive.
Bit
B0
B1
B2 … B23
B24~B31
Standard Setpoint
Setpoint #1
Setpoint #2
Setpoint #3
Setpoint #24
Reserved
Table 5-3 Standard Setpoint Status #1 (0093)
Bit
B0
B1
B2 … B15
B16~B31
HS Setpoint
HS Setpoint #1
HS Setpoint #2
HS Setpoint #3
HS Setpoint #16
Reserved
Table 5-4 High-speed Setpoint Status (0111)
4) The range of the Device / SOE Log Pointer is between 0 and 0xFFFFFFFF. The Device / SOE Log Pointer is incremented by
Page 53
CET Electric Technology
53
one for every Device / SOE Log generated and will roll over to 0 if its current value is 0xFFFFFFFF. Since the Device /SOE Log Pointer is a 32-bit value and the Device / SOE Log capacity is relatively small with only 1024 entries in the PMC-690, an
assumption has been made that the Device / SOE Log pointer will never roll over. If a Clear Device / SOE Log is performed from the front panel or via communications, the Device / SOE Log Pointer will be reset to zero. Therefore, any 3rd party software should assume that a Clear Device / SOE Log action has been performed if it sees the Device / SOE Log Pointer rolling over to zero or to a value that is smaller than its own pointer. In this case, the new Device / SOE Log Pointer also indicates the number of logs in the Device / SOE Log if it is less than 1024. Otherwise, there will always be 1024 entries in the Device / SOE Log.
5) The PMC-690 has 5 Statistical Data Recorder Logs (SDR Log #1 to 5). Each SDR Log has a pointer that indicates its present
logging position. The range of the SDR Log Pointer is between 0 and 0xFFFFFFFF. The SDR Log Pointer is incremented by one for every SDR Log generated and will roll over to 0 if its current value is 0xFFFFFFFF. A value of zero indicates that the device does not contain any SDR Log. If a Clear All SDR Log is performed via communications, all SDR Log Pointers will be reset to zero.
To determine the latest SDR Log #X location (X=1 to 5):
SDR Log #X latest location = Modulo [DR Pointer #X / DR #X Depth]
6) WFR Log has a pointer that indicates its present logging position. The range of the WFR Log Pointer is between 0 and
0xFFFFFFFF. The WFR Log Pointer is incremented by one for every WFR Log generated and will roll over to 0 if its current value is 0xFFFFFFFF. A value of zero indicates that the device does not contain any WFR Log. The depth of WFR Log is 500 entries. Since the WFR Log Pointers are 32-bit values, an assumption has been made that these pointers will never roll over. If a Clear WFR log is performed via communications, the WFR Log Pointers will be reset to zero.
To determine the latest WFR Log location:
WFR Log latest location = Modulo [WFR Log Pointer / WFR Log Depth]
5.2 Energy Measurements
Register
Property
Description
Format
Unit
0500
RW
kWh Imp.
INT64
wh
0504
RW
kWh Exp.
INT64
wh
0508
RW
kvarh Imp.
INT64
varh
0512
RW
kvarh Exp.
INT64
varh
0516
RW
kVAh Total
INT64
VAh
0520
RO
kWh Net
INT64
wh
0524
RO
kWh Total
INT64
wh
0528
RO
kvarh Net
INT64
varh
0532
RO
kvarh Total
INT64
varh
0536
RO
Reserved
INT64
Table 5-5 Energy Measurements
5.3 PQ Measurements
Register
Property
Description
Format
Unit
0700
RO
Ua Deviation1
Float
0702
RO
Ub Deviation1
Float
0704
RO
Uc Deviation1
Float 0706
RO
Uab Deviation
Float
0708
RO
Ubc Deviation
Float
0710
RO
Uca Deviation
Float
0712
RO
Over Ua Deviation1
Float
0714
RO
Over Ub Deviation1
Float 0716
RO
Over Uc Deviation1
Float 0718
RO
Over Uab Deviation
Float 0720
RO
Over Ubc Deviation
Float
0722
RO
Over Uca Deviation
Float
0724
RO
Under Ua Deviation1
Float
0726
RO
Under Ub Deviation1
Float
0728
RO
Under Uc Deviation1
Float 0730
RO
Under Uab Deviation
Float
0732
RO
Under Ubc Deviation
Float
0734
RO
Under Uca Deviation
Float
0736
RO
Freq. Deviation
Float
Hz
0738
RO
Ua (WYE) / Uab (Delta) Fluctuation
Float 0740
RO
Ub (WYE) / Ubc (Delta) Fluctuation
Float 0742
RO
Uc (WYE) / Uca (Delta) Fluctuation
Float 0744
RO
Ua (WYE) / Uab (Delta) Fluctuation Freq.
Float
0746
RO
Ub (WYE) / Ubc (Delta) Fluctuation Freq.
Float
0748
RO
Uc (WYE) / Uca (Delta) Fluctuation Freq.
Float
Page 54
CET Electric Technology
54
0750
RO
U0 Unbal.
Float 0752
RO
U2 Unbal.
Float 0754
RO
I0 Unbal.
Float
0756
RO
I2 Unbal.
Float
0758
RO
U0
Float
V
0760
RO
U1
Float
V
0762
RO
U2
Float V 0764
RO
I0
Float
A
0766
RO
I1
Float
A
0768
RO
I2
Float
A
0770
RO
Ua (WYE) / Uab (Delta) Pst
Float
0772
RO
Ub (WYE) / Ubc (Delta) Pst
Float 0774
RO
Uc (WYE) / Uca (Delta) Pst
Float 0776
RO
Ua (WYE) / Uab (Delta) Plt
Float 0778
RO
Ub (WYE) / Ubc (Delta) Plt
Float
0780
RO
Uc (WYE) / Uca (Delta) Plt
Float
0782
RO
Reserved
Float
0784
RO
Ia TDD (Total Harmonic Demand Deviation)
Float
0786
RO
Ib TDD
Float 0788
RO
Ic TDD
Float
0790
RO
I4 TDD
Float
0792
RO
Reserved
Float
0794
RO
Ia TDD Odd
Float
0796
RO
Ib TDD Odd
Float
0798
RO
Ic TDD Odd
Float 0800
RO
I4 TDD Odd
Float 0802
RO
Reserved
Float
0804
RO
Ia TDD Even
Float
0806
RO
Ib TDD Even
Float
0808
RO
Ic TDD Even
Float
0810
RO
I4 TDD Even
Float 0812
RO
Reserved
Float
0814
RO
Ia K-Factor
Float
0816
RO
Ib K-Factor
Float
0818
RO
Ic K-Factor
Float
0820
RO
I4 K-Factor
Float 0822
RO
Reserved
Float 0824
RO
Ia Crest Factor
Float 0826
RO
Ib Crest Factor
Float
0828
RO
Ic Crest Factor
Float
0830
RO
I4 Crest Factor
Float
0832
RO
Reserved
Float
0834
RO
Ua Crest Factor
Float 0836
RO
Ub Crest Factor
Float
0838
RO
Uc Crest Factor
Float
0840
RO
U4 Crest Factor
Float
0842~0858
RO
Reserved
Float
Table 5-6 PQ Measurements
Notes:
1) When the Wiring Mode is Delta, the per phase line-to-neutral voltage deviations have no meaning, and their registers are
reserved
2) Please refer to Section 4.3.10 Voltage Deviation for a detailed description.
3) Please refer to Section 4.3.1 Power Frequency for a detailed description.
4) Please refer to Section 4.3.7 Supply Voltage Unbalance for a detailed description.
5.4 Harmonics & Interharmonic Measurements
5.4.1 Harmonic Distortion Measurements
Register
Property
Description
Format
Unit
1000
RO
Ua (WYE) / Uab (Delta) THD
Float
% / x100
1002
RO
Ub (WYE) / Ubc (Delta) THD
Float
% / x100
1004
RO
Uc (WYE) / Uca (Delta) THD
Float
% / x100
1006
RO
U4 THD
Float
% / x100
1008
RO
Ia THD
Float
% / x100
1010
RO
Ib THD
Float
% / x100
Page 55
CET Electric Technology
55
1012
RO
Ic THD
Float
% / x100
1014
RO
I4 THD
Float
% / x100
1016
RO
Reserved
Float
% / x100
1018
RO
Ua (WYE) / Uab (Delta) TOHD
Float
% / x100
1020
RO
Ub (WYE) / Ubc (Delta) TOHD
Float
% / x100
1022
RO
Uc (WYE) / Uca (Delta) TOHD
Float
% / x100
1024
RO
U4 TOHD
Float
% / x100
1026
RO
Ia TOHD
Float
% / x100
1028
RO
Ib TOHD
Float
% / x100
1030
RO
Ic TOHD
Float
% / x100
1032
RO
I4 TOHD
Float
% / x100
1034
RO
Reserved
Float
% / x100
1036
RO
Ua (WYE) / Uab (Delta) TEHD
Float
% / x100
1038
RO
Ub (WYE) / Ubc (Delta) TEHD
Float
% / x100
1040
RO
Uc (WYE) / Uca (Delta) TEHD
Float
% / x100
1042
RO
U4 TEHD
Float
% / x100
1044
RO
Ia TEHD
Float
% / x100
1046
RO
Ib TEHD
Float
% / x100
1048
RO
Ic TEHD
Float
% / x100
1050
RO
I4 TEHD
Float
% / x100
1052
RO
Reserved
Float
% / x100
1054
RO
Ua (WYE) / Uab (Delta) DC Distortion
Float
% / x100
1056
RO
Ub (WYE) / Ubc (Delta) DC Distortion
Float
% / x100
1058
RO
Uc (WYE) / Uca (Delta) DC Distortion
Float
% / x100
1060
RO
U4 DC Distortion
Float
% / x100
1062
RO
Ia DC Distortion
Float
% / x100
1064
RO
Ib DC Distortion
Float
% / x100
1066
RO
Ic DC Distortion
Float
% / x100
1068
RO
I4 DC Distortion
Float
% / x100
1070
RO
Reserved
Float
% / x100
1072
RO
Ua (WYE) / Uab (Delta) HD01
Float
% / x100
1074
RO
Ub (WYE) / Ubc (Delta) HD01
Float
% / x100
1076
RO
Uc (WYE) / Uca (Delta) HD01
Float
% / x100
1078
RO
U4 HD01
Float
% / x100
1080
RO
Ia HD01
Float
% / x100
1082
RO
Ib HD01
Float
% / x100
1084
RO
Ic HD01
Float
% / x100
1086
RO
I4 HD01
Float
% / x100
1088
RO
Reserved
Float
% / x100
% / x100
2188
RO
Ua (WYE) / Uab (Delta) HD63
Float
% / x100
2190
RO
Ub (WYE) / Ubc (Delta) HD63
Float
% / x100
2192
RO
Uc (WYE) / Uca (Delta) HD63
Float
% / x100
2194
RO
U4 HD63
Float
% / x100
2196
RO
Ia HD63
Float
% / x100
2198
RO
Ib HD63
Float
% / x100
2200
RO
Ic HD63
Float
% / x100
2202
RO
I4 HD63
Float
% / x100
2204
RO
Reserved
Float
% / x100
Table 5-7 Harmonics Measurements
5.4.2 Harmonic Voltage & Current RMS
Register
Property
Description
Format
Unit
2300
RO
Ua (WYE) / Uab (Delta) TH* RMS
Float
V
2302
RO
Ub (WYE) / Ubc (Delta) TH* RMS
Float
V
2304
RO
Uc (WYE) / Uca (Delta) TH* RMS
Float V 2306
RO
U4 TH* RMS
Float V 2308
RO
Ia TH* RMS
Float
A
2310
RO
Ib TH* RMS
Float
A
2312
RO
Ic TH* RMS
Float
A
2314
RO
I4 TH* RMS
Float
A
2316
RO
Reserved
Float A 2318
RO
Ua (WYE) / Uab (Delta) TOH01 RMS
Float
V
2320
RO
Ub (WYE) / Ubc (Delta) TOH01 RMS
Float
V
2322
RO
Uc (WYE) / Uca (Delta) TOH01 RMS
Float
V
2324
RO
U4 TOH01 RMS
Float
V
Page 56
CET Electric Technology
56
2326
RO
Ia TOH01 RMS
Float A 2328
RO
Ib TOH01 RMS
Float A 2330
RO
Ic TOH01 RMS
Float
A
2332
RO
I4 TOH01 RMS
Float
A
2334
RO
Reserved
Float
A
2336
RO
Ua (WYE) / Uab (Delta) TEH01 RMS
Float
V
2338
RO
Ub (WYE) / Ubc (Delta) TEH01 RMS
Float V 2340
RO
Uc (WYE) / Uca (Delta) TEH01 RMS
Float
V
2342
RO
U4 TEH01 RMS
Float
V
2344
RO
Ia TEH01 RMS
Float
A
2346
RO
Ib TEH01 RMS
Float
A
2348
RO
Ic TEH01 RMS
Float A 2350
RO
I4 TEH01 RMS
Float A 2352
RO
Reserved
Float A 2354
RO
Ua (WYE) / Uab (Delta) DC RMS
Float
V
2356
RO
Ub (WYE) / Ubc (Delta) DC RMS
Float
V
2358
RO
Uc (WYE) / Uca (Delta) DC RMS
Float
V
2360
RO
U4 DC RMS
Float
V
2362
RO
Ia DC RMS
Float A 2364
RO
Ib DC RMS
Float
A
2366
RO
Ic DC RMS
Float
A
2368
RO
I4 DC RMS
Float
A
2370
RO
Reserved
Float
A
2372
RO
Ua (WYE) / Uab (Delta) H01 RMS
Float
V
2374
RO
Ub (WYE) / Ubc (Delta) H01 RMS
Float V 2376
RO
Uc (WYE) / Uca (Delta) H01 RMS
Float V 2378
RO
U4 H01 RMS
Float
V
2380
RO
Ia H01 RMS
Float
A
2382
RO
Ib H01 RMS
Float
A
2384
RO
Ic H01 RMS
Float
A
2386
RO
I4 H01 RMS
Float A 2388
RO
Reserved
Float
A
RO … …
3488
RO
Ua (WYE) / Uab (Delta) H63 RMS
Float
V
3490
RO
Ub (WYE) / Ubc (Delta) H63 RMS
Float
V
3492
RO
Uc (WYE) / Uca (Delta) H63 RMS
Float V 3494
RO
U4 H63 RMS
Float V 3496
RO
Ia H63 RMS
Float A 3498
RO
Ib H63 RMS
Float
A
3500
RO
Ic H63 RMS
Float
A
3502
RO
I4 H63 RMS
Float
A
3504
RO
Reserved
Float
A
*TH=Total Harmonics
Table 5-8 Harmonics Voltage & Current RMS
5.4.3 Individual Total Harmonic
Register
Property
Description
Format
Unit
27000
RO
kW1 TH01
Float W 27002
RO
kvar1 TH01
Float
var
27004
RO
kVA1 TH01
Float
VA
27006
RO
P.F. TH01
Float
27008
RO
kW1 TH02
Float
W
27010
RO
kvar1 TH02
Float
var
27012
RO
kVA1 TH02
Float
VA
27014
RO
P.F. TH02
Float
27496
RO
kW1 TH63
Float
W
27498
RO
kvar1 TH63
Float
var
27500
RO
kVA1 TH63
Float
VA
27502
RO
P.F. TH63
Float
Table 5-9 Individual Total Harmonic
Notes:
1) When the Wiring Mode is Delta, the per-phase kW/kvar/kVA H01
to H63 have no meaning, and their registers are reserved.
Page 57
CET Electric Technology
57
5.4.4 Harmonic Power
Register
Property
Description
Format
Unit
28000
RO
kWa1 TH*
Float
W
28002
RO
kWb1 TH
Float
W
28004
RO
kWc1 TH
Float
W
28006
RO
kW Total TH
Float W 28008
RO
kvara1 TH
Float 28010
RO
kvarb1 TH
Float 28012
RO
kvarc1 TH
Float
28014
RO
kvar Total TH
Float
28016
RO
kVAa1 TH
Float
28018
RO
kVAb1 TH
Float
28020
RO
kVAc1 TH
Float 28022
RO
kVA Total TH
Float
28024~28028
Reserved
Float
28030
RO
P.F. TH
Float
28032~28038
Reserved
Float
28040
RO
kWa H01
Float
W
28042
RO
kWb H01
Float
W
28044
RO
kWc H01
Float
W
28046
RO
kvara H01
Float
var
28048
RO
kvarb H01
Float
var
28050
RO
kvarc H01
Float
var
28052
RO
kVAa H01
Float
VA
28054
RO
kVAb H01
Float
VA
28056
RO
kVAc H01
Float
VA
28058
RO
P.F.a H01
Float
28060
RO
P.F.b H01
Float
28062
RO
P.F.c H01
Float
RO … Float 29528
RO
kWa H63
Float W 29530
RO
kWb H63
Float W 29532
kWc H63
Float
W
29534
RO
kvara H63
Float
var
29536
RO
kvarb H63
Float
var
29538
RO
kvarc H63
Float
var
29540
RO
kVAa H63
Float
VA
29542
RO
kVAb H63
Float
VA
29544
RO
kVAc H63
Float
VA
29546
RO
P.F.a H63
Float
29548
RO
P.F.b H63
Float
29550
RO
P.F.c H63
Float
*TH=Total Harmonics
Table 5-10 Harmonic Power
Notes:
1) When the Wiring Mode is Delta, the per-phase kW/kvar/kVA have no meaning, and their registers are reserved.
5.4.5 Harmonic Angles
Register
Property
Description
Format
Unit
30000~30016
RO
Reserved
Float
30018
RO
Ua(WYE) / Uab(Delta) Angle H01
Float
30020
RO
Ub(WYE) / Ubc(Delta) Angle H01
Float
30022
RO
Uc(WYE) / Uca(Delta) Angle H01
Float
30024
RO
U4 Angle H01
Float 30026
RO
Ia Angle H01
Float
30028
RO
Ib Angle H01
Float
30030
RO
Ic Angle H01
Float
30032
RO
I4 Angle H01
Float
30034
RO
Reserved
Float …
RO
….
Float 31134
RO
Ua(WYE) / Uab(Delta) Angle H63
Float 31136
RO
Ub(WYE) / Ubc(Delta) Angle H63
Float
31138
RO
Uc(WYE) / Uca(Delta) Angle H63
Float
31140
RO
U4 Angle H63
Float
Page 58
CET Electric Technology
58
31142
RO
Ia Angle H63
Float 31144
RO
Ib Angle H63
Float 31146
RO
Ic Angle H63
Float
31148
RO
I4 Angle H63
Float
31150
RO
Reserved
Float
Table 5-11 Harmonic Angle
5.4.6 Harmonic Energy
Register
Property
Description
Format
Unit
31500
RW
kWh Imp. TH
1
Int64
wh
31504
RW
kWh Exp. TH1
Int64
wh
31508
RW
kavrh Imp. TH1
Int64
varh
31512
RW
kvarh Exp. TH1
Int64
varh
31516
RO
kWh Net TH
Int64
wh
31520
RO
kWh Total TH
Int64
wh
31524
RO
kvarh Net TH
Int64
varh
31528
RO
kvarh Total TH
Int64
varh
Reserved
31600
RW
kWh Imp. H011
Int64
wh
31604
RW
kWh Exp. H011
Int64
wh
31608
RW
kvarh Imp. H011
Int64
varh
31612
RW
kvarh Exp. H011
Int64
varh
31616
RW
kWh Imp. H021
Int64
wh
31620
RW
kWh Exp. H021
Int64
wh
31624
RW
kvarh Imp. H021
Int64
varh
31628
RW
kvarh Exp. H021
Int64
varh
RW … Int64
32592
RW
kWh Imp. H631
Int64
wh
32596
RW
kWh Exp. H631
Int64
wh
32600
RW
kvarh Imp. H631
Int64
varh
32604
RW
kvarh Exp. H631
Int64
varh
Table 5-12 Harmonic Energy
Notes:
1) The registers have a maximum value of 99,999,999,999,999 and will roll over to zero automatically when it is reached.
5.4.7 Net/Total Harmonic Energy
Register
Property
Description
Format
Unit
33000
RW
Fundamental kWh Net
Int64
wh
33004
RW
Fundamental kWh Total
Int64
wh
33008
RW
Fundamental kvarh Net
Int64
varh
33012
RW
Fundamental kvarh Total
Int64
varh
Table 5-13 Net/Total Harmonic Energy
5.4.8 Interharmonics Distortion (IHD) Measurements
Register
Property
Description
Format
Unit
33100
RO
Ua (WYE) / Uab (Delta) TIHD1
Float
%, x100
33102
RO
Ub(WYE) / Ubc(Delta) TIHD1
Float
%, x100
33104
RO
Uc (WYE) / Uca (Delta) TIHD1
Float
%, x100
33106
RO
U4 TIHD
Float
%, x100
33108
RO
Ia TIHD
Float
%, x100
33110
RO
Ib TIHD
Float
%, x100
33112
RO
Ic TIHD
Float
%, x100
33114
RO
I4 TIHD
Float
%, x100
33116
RO
Reserved
Float
%, x100
33118
RO
Ua (WYE) / Uab (Delta) TOIHD1
Float
%, x100
33120
RO
Ub(WYE) / Ubc(Delta) TOIHD1
Float
%, x100
33122
RO
Uc (WYE) / Uca (Delta) TOIHD1
Float
%, x100
33124
RO
U4 TOIHD
Float
%, x100
33126
RO
Ia TOIHD
Float
%, x100
33128
RO
Ib TOIHD
Float
%, x100
33130
RO
Ic TOIHD
Float
%, x100
33132
RO
I4 TOIHD
Float
%, x100
33134
RO
Reserved
Float
%, x100
Page 59
CET Electric Technology
59
33136
RO
Ua (WYE) / Uab (Delta) TEIHD1
Float
%, x100
33138
RO
Ub(WYE) / Ubc(Delta) TEIHD1
Float
%, x100
33140
RO
Uc (WYE) / Uca (Delta) TEIHD1
Float
%, x100
33142
RO
U4 TEIHD
Float
%, x100
33144
RO
Ia TEIHD
Float
%, x100
33146
RO
Ib TEIHD
Float
%, x100
33148
RO
Ic TEIHD
Float
%, x100
33150
RO
I4 TEIHD
Float
%, x100
33152
RO
Reserved
Float
%, x100
33154
RO
Ua (WYE) / Uab (Delta)1 IHD01
Float
%, x100
33156
RO
Ub(WYE) / Ubc(Delta)1 IHD01
Float
%, x100
33158
RO
Uc (WYE) / Uca (Delta)1 IHD01
Float
%, x100
33160
RO
U4 IHD01
Float
%, x100
33162
RO
Ia IHD01
Float
%, x100
33164
RO
Ib IHD01
Float
%, x100
33166
RO
Ic IHD01
Float
%, x100
33168
RO
I4 IHD01
Float
%, x100
33170
RO
Reserved
Float
%, x100
….
… 34288
RO
Ua (WYE) / Uab (Delta)1 IHD63
Float
%, x100
34290
RO
Ub(WYE) / Ubc(Delta)1 IHD63
Float
%, x100
34292
RO
Uc (WYE) / Uca (Delta)1 IHD63
Float
%, x100
34294
RO
U4 IHD63
Float
%, x100
34296
RO
Ia IHD63
Float
%, x100
34298
RO
Ib IHD63
Float
%, x100
34300
RO
Ic IHD63
Float
%, x100
34302
RO
I4 IHD63
Float
%, x100
34304
RO
Reserved
Float
%, x100
Table 5-14 Interharmonics Measurements
Notes:
1) The voltage TIHD / TOIHD / TEIHD / 1
st
to 63
rd
Interharmonic are phase voltage measurements in WYE mode and they will
be automatically changed to line voltage measurements in Delta mode.
5.4.9 Interharmonic Voltage & Current RMS
Register
Property
Description
Format
Unit
34500
RO
Ua (WYE) / Uab (Delta) TIH RMS
Float
V
34502
RO
Ub (WYE) / Ubc (Delta) TIH RMS
Float V 34504
RO
Uc (WYE) / Uca (Delta) TIH RMS
Float
V
34506
RO
U4 TIH RMS
Float
V
34508
RO
Ia TIH RMS
Float
A
34510
RO
Ib TIH RMS
Float
A
34512
RO
Ic TIH RMS
Float A 34514
RO
I4 TIH RMS
Float A 34516
RO
Reserved
Float A 34518
RO
Ua (WYE) / Uab (Delta) TOIH RMS
Float
V
34520
RO
Ub (WYE) / Ubc (Delta) TOIH RMS
Float
V
34522
RO
Uc (WYE) / Uca (Delta) TOIH RMS
Float
V
34524
RO
U4 TOIH RMS
Float
V
34526
RO
Ia TOIH RMS
Float A 34528
RO
Ib TOIH RMS
Float
A
34530
RO
Ic TOIH RMS
Float
A
34532
RO
I4 TOIH RMS
Float
A
34534
RO
Reserved
Float
A
34536
RO
Ua (WYE) / Uab (Delta) TEIH RMS
Float V 34538
RO
Ub (WYE) / Ubc (Delta) TEIH RMS
Float
V
34540
RO
Uc (WYE) / Uca (Delta) TEIH RMS
Float V 34542
RO
U4 TEIH RMS
Float
V
34544
RO
Ia TEIH RMS
Float
A
34546
RO
Ib TEIH RMS
Float
A
34548
RO
Ic TEIH RMS
Float
A
34550
RO
I4 TEIH RMS
Float A 34552
RO
Reserved
Float
A
34554
RO
Ua (WYE) / Uab (Delta) IH00 RMS
Float
V
34556
RO
Ub (WYE) / Ubc (Delta) IH00 RMS
Float
V
34558
RO
Uc (WYE) / Uca (Delta) IH00 RMS
Float
V
34560
RO
U4 IH00 RMS
Float
V
Page 60
CET Electric Technology
60
34562
RO
Ia IH00 RMS
Float A 34564
RO
Ib IH00 RMS
Float A 34566
RO
Ic IH00 RMS
Float
A
34568
RO
I4 IH00 RMS
Float
A
34570
RO
Reserved
Float
A
34572
RO
Ua (WYE) / Uab (Delta) IH01 RMS
Float
V
34574
RO
Ub (WYE) / Ubc (Delta) IH01 RMS
Float V 34576
RO
Uc (WYE) / Uca (Delta) IH01 RMS
Float
V
34578
RO
U4 IH01 RMS
Float
V
34580
RO
Ia IH01 RMS
Float
A
34582
RO
Ib IH01 RMS
Float
A
34584
RO
Ic IH01 RMS
Float A 34586
RO
I4 IH01 RMS
Float A 34588
RO
Reserved
Float A ...
RO … Float
35688
RO
Ua (WYE) / Uab (Delta) IH63 RMS
Float
V
35690
RO
Ub (WYE) / Ubc (Delta) IH63 RMS
Float
V
35692
RO
Uc (WYE) / Uca (Delta) IH63 RMS
Float
V
35694
RO
U4 IH63 RMS
Float V 35696
RO
Ia IH63 RMS
Float
A
35698
RO
Ib IH63 RMS
Float
A
35700
RO
Ic IH63 RMS
Float
A
35702
RO
I4 IH63 RMS
Float
A
35704
RO
Reserved
Float
A
Table 5-15 Interharmonics Voltage & Current RMS
5.5 Demand
5.5.1 Present Demand
Register
Property
Description
Format
Unit
3600
RO
Ua1
Float V 3602
RO
Ub1
Float V 3604
RO
Uc1
Float V 3606
RO
ULN Avg
Float V 3608
RO
U4
Float V 3610
RO
Uab
Float
V
3612
RO
Ubc
Float
V
3614
RO
Uca
Float V 3616
RO
ULL Avg.
Float V 3618
RO
Ia
Float A 3620
RO
Ib
Float A 3622
RO
Ic
Float A 3624
RO
I Avg.
Float A 3626
RO
I4
Float A 3628
RO
Reserved
Float A 3630
RO
kWa Imp.1
Float W 3632
RO
kWb Imp.1
Float W 3634
RO
kWc Imp.1
Float W 3636
RO
kW Total Imp.
Float W 3638
RO
kWa Exp.1
Float W 3640
RO
kWb Exp.1
Float W 3642
RO
kWc Exp.1
Float W 3644
RO
kW Total Exp.
Float W 3646
RO
kvara Imp.1
Float
var
3648
RO
kvarb Imp.1
Float
var
3640
RO
kvarc Imp.1
Float
var
3652
RO
kvar Total Imp.
Float
var
3654
RO
kvara Exp.1
Float
var
3656
RO
kvarb Exp.1
Float
var
3658
RO
kvarc Exp.1
Float
var
3660
RO
kvar Total Exp.
Float
var
3662
RO
kVAa1
Float
VA
3664
RO
kVAb1
Float
VA
3666
RO
kVAc1
Float
VA
3668
RO
Total kVA
Float
VA
Page 61
CET Electric Technology
61
3670
RO
P.F.a1
Float
--
3672
RO
P.F.b1
Float
--
3674
RO
P.F.c1
Float
--
3676
RO
P.F. Total
Float
--
3678
RO
Freq
Float
Hz
3680
RO
Ua Deviation1
Float
100%
3682
RO
Ub Deviation1
Float
100%
3684
RO
Uc Deviation1
Float
100%
3686
RO
Uab Deviation
Float
100%
3688
RO
Ubc Deviation
Float
100%
3690
RO
Uca Deviation
Float
100%
3692
RO
Ua Over Deviation1
Float
100%
3694
RO
Ub Over Deviation1
Float
100%
3696
RO
Uc Over Deviation1
Float
100%
3698
RO
Uab Over Deviation
Float
100%
3700
RO
Ubc Over Deviation
Float
100%
3702
RO
Uca Over Deviation
Float
100%
3704
RO
Ua Under Deviation1
Float
100%
3706
RO
Ub Under Deviation1
Float
100%
3708
RO
Uc Under Deviation1
Float
100%
3710
RO
Uab Under Deviation
Float
100%
3712
RO
Ubc Under Deviation
Float
100%
3714
RO
Uca Under Deviation
Float
100%
3716
RO
Freq. Deviation
Float
100%
3718
RO
U0 Unbal.
Float
3720
RO
U2 Unbal.
Float
3722
RO
I0 Unbal.
Float
3724
RO
I2 Unbal.
Float
3726
RO
Ia K-Factor
Float
3728
RO
Ib K-Factor
Float
3730
RO
Ic K-Factor
Float
3732
RO
I4 K-Factor
Float
3734
RO
Reserved
Float
3736
RO
Ua (WYE) / Uab (Delta) THD
Float
3738
RO
Ub (WYE) / Ubc (Delta) THD
Float
3740
RO
Uc (WYE) / Uca (Delta) THD
Float
3742
RO
U4 THD
Float
3744
RO
Ia THD
Float
3746
RO
Ib THD
Float
3748
RO
Ic THD
Float
3750
RO
I4 THD
Float
3752
RO
Reserved
Float
3754
RO
Ua (WYE) / Uab (Delta) TOHD
Float
3756
RO
Ub (WYE) / Ubc (Delta) TOHD
Float
3758
RO
Uc (WYE) / Uca (Delta) TOHD
Float
3760
RO
U4 TOHD
Float
3762
RO
Ia TOHD
Float
3764
RO
Ib TOHD
Float
3766
RO
Ic TOHD
Float
3768
RO
I4 TOHD
Float
3770
RO
Reserved
Float
3772
RO
Ua (WYE) / Uab (Delta) TEHD
Float
3774
RO
Ub (WYE) / Ubc (Delta) TEHD
Float
3776
RO
Uc (WYE) / Uca (Delta) TEHD
Float
3778
RO
U4 TEHD
Float
3780
RO
Ia TEHD
Float
3782
RO
Ib TEHD
Float
3784
RO
Ic TEHD
Float
3786
RO
I4 TEHD
Float
3788
RO
Reserved
Float
3790
RO
Ia FUND.
Float
A
3792
RO
Ib FUND.
Float
A
3794
RO
Ic FUND.
Float
A
3796
RO
I4 FUND.
Float
A
3798~3806
RO
Reserved
Table 5-16 Present Demand
Page 62
CET Electric Technology
62
Notes:
1) When the Wiring Mode is Delta, the phase voltages demand, kWs demand, kvars demand and kVAs demand have no
meaning, and their registers are reserved.
5.5.2 Predicted Demand
Register Address
Property
Description
Format
Unit
3900
RO
Ua1
Float V 3902
RO
Ub1
Float V 3904
RO
Uc1
Float V 3906
RO
ULN Avg.
Float V 3908
RO
U4
Float V 3910
RO
Uab
Float V 3912
RO
Ubc
Float V 3914
RO
Uca
Float V 3916
RO
ULL Avg.
Float V 3918
RO
Ia
Float A 3920
RO
Ib
Float A 3922
RO
Ic
Float
A
3924
RO
I Avg.
Float
A
3926
RO
I4
Float A 3928
RO
Reserved
Float A 3930
RO
kWa Imp.1
Float W 3932
RO
kWb Imp.1
Float W 3934
RO
kWc Imp.1
Float W 3936
RO
kW Total Imp.
Float W 3938
RO
kWa Exp.1
Float W 3940
RO
kWb Exp.1
Float W 3942
RO
kWc Exp.1
Float W 3944
RO
kW Total Exp.
Float W 3946
RO
kvara Imp.1
Float
var
3948
RO
kvarb Imp.1
Float
var
3940
RO
kvarc Imp.1
Float
var
3952
RO
kvar Total Imp.
Float
var
3954
RO
kvara Exp.1
Float
var
3956
RO
kvarb Exp.1
Float
var
3958
RO
kvarc Exp.1
Float
var
3960
RO
kvar Total Exp.
Float
var
3962
RO
kVAa1
Float
VA
3964
RO
kVAb1
Float
VA
3966
RO
kVAc1
Float
VA
3968
RO
kVA Total
Float
VA
3970
RO
P.F.a1
Float
--
3972
RO
P.F.b1
Float
--
3974
RO
P.F.c1
Float
--
3976
RO
P.F. Total
Float
--
3978
RO
Freq
Float
Hz
Table 5-17 Predicted Demand
Notes:
1) When the Wiring Mode is Delta, the per phase V/kW/kvar/kVA/PF Predicted demand have no meaning, and their registers
are reserved.
5.5.3 Present Max.
Register
Property
Description
Format
Unit
5500
RO
kW Total Imp.
See Note 1)
W
5506
RO
kW Total Exp.
W
5512
RO
kvar Total Imp.
var
5518
RO
kvar Total Exp.
var
5524
RO
kVA Total
VA
5530
RO
Ia
A
5536
RO
Ib
A
5542
RO
Ic
A
5548
RO
Ia FUND.
5554
RO
Ib FUND.
Page 63
CET Electric Technology
63
5560
RO
Ic FUND.
5566
RO
I4 FUND.
5572
RO
Reserved
Table 5-18 Present Max. Demand
Notes:
1) The following table illustrates Demand Data Structure:
Offset
Description
+0
High
Year (-2000)
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Reserved
+4~+5
-
Record Value
Table 5-19 Demand Data Structure
5.5.4 Max. of Last Time
Register
Property
Description
Format
Unit
5700
RO
kW Total Imp.
See Note 1)
W
5706
RO
kW Total Exp.
W
5712
RO
kvar Total Imp.
var
5718
RO
kvar Total Exp.
var
5724
RO
kVA Total
VA
5730
RO
Ia
A
5736
RO
Ib
A
5742
RO
Ic
A
5748
RO
Ia FUND.
5754
RO
Ib FUND.
5760
RO
Ic FUND.
5766
RO
I4 FUND.
5772
RO
Reserved
Table 5-20 Max. Demand of Last Time
Notes:
1) The following table illustrates Demand Data Structure:
Offset
Description
+0
High
Year (-2000)
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Reserved
+4 ~ +5
-
Record Value
Table 5-21 Demand Data Structure
5.6 Log Register
5.6.1 Device Log Buffer
Register
Property
Description
Format
10000
RW
Device Log Pointer n*
UINT32
10002~10037
RO
Device Log Event @ Pointer n
See
Table 5-23 Device
Log Data
Structure
10038~10073
RO
Device Log Event @ Pointer n+1
10326~10361
RO
Device Log Event @ Pointer n+9
* Writing n to the Device Log Pointer register will update the Device Log Buffer with Device Log Events from pointer positions from n to n+9.
Table 5-22 Device Log Buffer
Notes:
1) The PMC-690’s Device Log can store up to 1024 events, if there are more than 1024 events, the newest event will replace
the oldest event on a FIFO basis.
Page 64
CET Electric Technology
64
Offset
Property
Description
Format
Option
+0
RO
High-order Byte: Event Classification
UINT16
-
RO
Low-order Byte: Sub-Classification
+1
RO
Record Time: Year
UINT16
0-99 (Year-2000)
RO
Record Time: Month
1 to 12
+2
RO
Record Time: Day
UINT16
1 to 31
RO
Record Time: Hour
0 to 23
+3
RO
Record Time: Minute
UINT16
0 to 59
RO
Record Time: Second
0 to 59
+4
RO
Record Time: Millisecond
UINT16
0 to 999
+5
RO
Reserved
+6 to +35
RO
Event Values
See Appendix B
-
Table 5-23 Device Log Data Structure
5.6.2 SOE Log Buffer
Register
Property
Description
Format
10500
RW
SOE Log Pointer n*
UINT32
10502~10537
RO
SOE Log Event @ Pointer n
See
Table 5-25 SOE
Log Data
Structure
10538~10573
RO
SOE Log Event @ Pointer n+1
10826~10861
RO
SOE Log Event @ Pointer n+9
* Writing n to the SOE Log Pointer register will update the SOE Log Buffer with SOE Log Events at pointer positions from n to n+9.
Table 5-24 SOE Log Buffer
Note:
1) The PMC-690’s SOE Log can store up to 1024 events and if there are more than 1024 events, the latest event will replace
the oldest event on a FIFO basis.
Offset
Property
Description
Format
Option
+0
RO
High-order Byte: Event Classification
UINT16
-
RO
Low-order Byte: Sub-Classification
+1
RO
Record Time: Year
UINT16
0-99 (Year-2000)
RO
Record Time: Month
1 to 12
+2
RO
Record Time: Day
UINT16
1 to 31
RO
Record Time: Hour
0 to 23
+3
RO
Record Time: Minute
UINT16
0 to 59
RO
Record Time: Second
0 to 59
+4
RO
Record Time: Millisecond
UINT16
0 to 999
+5
RO
Reserved
+6 to +35
RO
Event Values
See Appendix B
-
Table 5-25 SOE Log Data Structure
5.6.3 SDR Log
5.6.3.1 SDR Log Buffer
Register
Property
Description
Format
Option
11000~11518
RO
SDR Log #1 Buffer
See Section
5.6.3.2
SDR Log Buffer
Structure
-
11600~12118
RO
SDR Log #2 Buffer
-
12200~12718
RO
SDR Log #3 Buffer
-
12800~13318
RO
SDR Log #4 Buffer
-
13400~13918
RO
SDR Log #5 Buffer
-
Table 5-26 SDR Log Buffer
5.6.3.2 SDR Log Buffer Structure
Offset
Property
Description
Format
Option
+0
RW
SDR Log X Pointer n*
UINT32
--
+2~+4
RO
End Time of the Record
2
Bitmap
--
+5
RO
Flagging Status
UINT16
0 = No Flag 1 = Flagged & Eliminated 2 = Flagged & Not Eliminated
+6~+13
RO
Data Item #1
See Section 5.6.3.3
SDR Data Item
Structure
--
+14~+22
RO
Data Item #2
Page 65
CET Electric Technology
65
+510~+517
RO
Data Item #64
* Writing n to the SDR Log X Pointer register will update the SDR Log X Buffer with the SDR Log X Record at pointer position n.
Table 5-27 SDR Log Buffer Structure
Notes:
1) The data items can be configured as any real-time data. Please see Appendix A.
2) Record Time data structure
Offset
Property
Description
Format
Option
+0
RO
Year
UINT16
0-99 (Year-2000)
RO
Month
1 to 12
+1
RO
Day
UINT16
1 to 31
RO
Hour
0 to 23
+2
RO
Minute
UINT16
0 to 59
RO
Second
0 to 59
Table 5-28 Record Time Data Structure
5.6.3.3 SDR Data Item Structure
Offset
Property
Description
+0
RO
Maximum
+2
RO
Minimum
+4
RO
Avg.
+6
RO
CP95
Table 5-29 SDR Data Item Structure
Notes:
1) The specific data formats of Max., Min., AVG and CP95 are defined by the section 5.8.10 SDR Setup. For example, the
Parameter#1 number is set to 10001, the statistical records data item # 1’s data type is automatically updated to 6,
represents a 32-bit floating-point numbers.
5.6.4 MM Log (Max./Min. Log)
5.6.4.1 MM Log Buffer
Register
Property
Description
Format
22200-22306
RW
Max. Log #1 Buffer
See Section
5.6.4.2
MM Log Buffer
Structure
22350~22456
RW
Max. Log #2 Buffer
22500~22606
RW
Max. Log #3 Buffer
22650~22756
RW
Max. Log #4 Buffer
22800~22906
RW
Min. Log #1 Buffer
22950~23056
RW
Min. Log #2 Buffer
23100~23206
RW
Min. Log #3 Buffer
23250~23356
RW
Min. Log #4 Buffer
Table 5-30 MM Log Buffer
5.6.4.2 MM Log Buffer Structure
Offset Address
Property
Description
Format
Range/Options
+0
RW
MM Log X Pointer (n)
UINT32
0 = Since Last Reset/This Month 1 = Before Last Reset/Last Month
+2
RO
Record Time
Bitmap
+5
RO
Flagging Status
0 = No Flag 1 = Flagged & Eliminated 2 = Flagged & Not Eliminated
+6~+10 Data Item #1
See Section 5.6.4.3
MM Data Item Data
Structure
+11~+15
RO
Data Item #2
+101~+105
RO
Data Item #20
* Writing n to the MM Log X Pointer register will update the MM Log X Buffer with the MM Log X Record at pointer position n.
Table 5-31 Max./Min. Log Data Structure
5.6.4.3 MM Data Item Data Structure
Offset
Property
Description
+0
RO
Record Time
Hi
Year (-2000)
Page 66
CET Electric Technology
66
Low
Month
+1
RO
Hi
Day
Low
Hour
+2
RO
Hi
Minute
Low
Second
+3~+4
RO
Max. or Min. Value
Table5-32 MM Data Item Data Structure
Notes:
1) The formats of data Items are defined in Appendix A. For example, the Parameter#1 number is set to 10001, the statistical
records data item # 1’s data type (register address 35800) is automatically updated to 6, represents a 32-bit floating-point numbers.
5.6.5 Pst/Plt Log
5.6.5.1 Pst Log Buffer
Register
Property
Description
Format
23400
RW
Pst Log Pointer (n)*
UINT32
23402~23411
RO
Log n
See Section 5.6.5.3
Pst / Plt Log Data Structure
23412~23421
RO
Log n+1
23492~23501
RO
Log n+9
* Writing n to the Pst Log Pointer register will update the Pst Log Buffer with Pst Log Records at pointer positions from n to n+9.
Table 5-33 Pst Log Buffer
5.6.5.2 Plt Log Buffer
Register
Property
Description
Format
23600
RW
Plt Log Pointer
UINT32
23602~23611
RO
Log n
See Section 5.6.5.3
Pst / Plt Log Data Structure
23612~23621
RO
Log n+1
23692~23701
RO
Log n+9
* Writing n to the Plt Log Pointer register will update the Plt Log Buffer with Plt Log Records at pointer positions from n to n+9.
Table 5-34 Plt Log
5.6.5.3 Pst/Plt Log Data Structure
Offset
Property
Description
Format
Unit
+0~+2
RO
Record Time
Bitmap
--
+3
RO
Flagging Status
UINT16
+4~+5
RO
Ua Pst/Plt
Float
V
+6~+7
RO
Ub Pst/Plt
Float
V
+8~+9
RO
Uc Pst/Plt
Float
V
Table 5-35 Pst/Plt Log Data Structure
Notes:
1) The following table illustrates Flagging Status:
Offset
Description
Bit0
Dip
Bit1
Swell
Bit2
Interruption
Table 5-36 Flagging Status
5.6.6 EN50160 Log
Register
Property
Description
Format
Option/Note
24200
RW
EN50160 Log Pointer (n)
UINT32
24202
RO
Start Time
UINT32
24205
RO
End Time
UINT32
24208
RO
Flagging Status
UINT32
24210
RO
Freq. Conclusion
UINT32
0=Pass, 1=Failed
24212
RO
Freq N Valid
UINT32
Number of valid intervals
24214
RO
Freq N Invalid
UINT32
Number of invalid intervals
Page 67
CET Electric Technology
67
24216
RO
Freq Wide Conclusion
UINT32
0=Pass, 1=Failed
24218
RO
Freq N2
UINT32
Number of valid intervals in
which the freq deviates from
the nominal by more than
user defined wide limit
24220
RO
Freq (1 - N2/N)
Float
24222
RO
Freq Narrow Conclusion
UINT32
0=Pass, 1=Failed
24224
RO
Freq N1
UINT32
Number of valid intervals in
which the freq deviates from
the nominal by more than
user defined narrow limit
24226
RO
Freq (1 - N1/N)
Float
24228
RO
Freq Max.
UINT32
Hz, on OP - Observation
Period, a week by default
24230
RO
Freq Min.
UINT32
Hz
24232
RO
U Magnitude Conclusion
UINT32
0=Pass, 1=Failed
24234
RO
U Mag N Valid
UINT32
--
24236
RO
U Mag Invalid N
UINT32
--
24238
RO
U Mag Wide Conclusion
UINT32
Note 1
24240
RO
Ua Mag N2
UINT32
Number of valid intervals in
which the voltage on 3-phase
deviates from nominal by
more than user defined wide
limit
24242
RO
Ub Mag N2
UINT32
24244
RO
Uc Mag N2
UINT32
24246
RO
Ua Mag (1 - N2/N)
Float
--
24248
RO
Ub Mag (1 - N2/N)
Float
--
24250
RO
Uc Mag (1 - N2/N)
Float
--
24252
RO
U Mag Narrow Conclusion
UINT32
0=Pass, 1=Failed
24254
RO
Ua Mag N1
UINT32
Number of valid intervals in
which the voltage on 3-phase
deviates from nominal by
more than user defined
narrow limit
24256
RO
Ub Mag N1
UINT32
24258
RO
Uc Mag N1
UINT32
24260
RO
Ua Mag (1 - N1/N)
Float
--
24262
RO
Ub Mag (1 - N1/N)
Float
24264
RO
Uc Mag (1 - N1/N)
Float
--
24266
RO
Ua mean Max.
Float
Max. of average voltage
Ua/Ub/Uc over 1 week
24268
RO
Ub mean Max.
Float
24270
RO
Uc mean Max.
Float
24272
RO
Ua mean Min.
Float
Min. of average voltage
Ua/Ub/Uc over 1 week
24274
RO
Ub mean Min.
Float
24276
RO
Uc mean Min.
Float
24278
RO
Flicker Conclusion
UINT32
0=Pass, 1=Failed
24280
RO
Plt N Valid
UINT32
--
24282
RO
Plt N invalid
UINT32
--
24284
RO
Ua Plt N1
UINT32
Number of valid intervals in
which Plt on 3-phase is
greater than 1
24286
RO
Ub Plt N1
UINT32
24288
RO
Uc Plt N1
UINT32
24290
RO
Ua (1 - N1/N)
Float
24292
RO
Ub (1 - N1/N)
Float
24294
RO
Uc (1 - N1/N)
Float
24296
RO
Ua Plt Max.
Float
Maximum Plt value for 3-
phase over 1 week
24298
RO
Ub Plt Max.
Float
24300
RO
Uc Plt Max.
Float
24302
RO
Ua Plt Min.
Float
Minimum Plt value for 3-
phase over 1 week
24304
RO
Ub Plt Min.
Float
24306
RO
Uc Plt Min.
Float
24308
RO
Ua Plt CP95
Float
CP95 of Plt value for 3-phase
over 1 week
24300
RO
Ub Plt CP95
Float
24312
RO
Uc Plt CP95
Float
24314
RO
U Unbalance Conclusion
UINT32
0=Pass, 1=Failed
24316
RO
U Unbalance N valid
UINT32
24318
RO
U Unbalance N invalid
UINT32
24320
RO
U Unbalance N1
UINT32
Number of valid intervals in
which the voltage unbalance
exceeds user defined unbalance limit value
Page 68
CET Electric Technology
68
24322
RO
U Unbalance (1 - N1/N)
Float
24324
RO
U Unbalance Max.
Float
Maximum/Minimum/CP95
voltage unbalance value over
1 week
24326
RO
U Unbalance Min.
Float
24328
RO
U Unbalance CP95
Float
24320
RO
Harmonic Conclusion
UINT32
0=Pass, 1=Failed
24332
RO
Harmonic N Valid
UINT32
24334
RO
Harmonic N Invalid
UINT32
24336
RO
THD Conclusion
UINT32
0=Pass, 1=Failed
24338
RO
Ua THD N1
UINT32
Number of intervals in which
the THD on3-phase exceed
user defined limits
24340
RO
Ub THD N1
UINT32
24342
RO
Uc THD N1
UINT32
24344 … Ua THD (1 - N1/N)
Float
24346
RO
Ub THD (1 - N1/N)
Float
24348
RO
Uc THD (1 - N1/N)
Float
24350~24376
RO
Reserved
UINT32
24378
RO
H02 Conclusion
UINT32
0=Pass, 1=Failed
24380
RO
Ua H02 N1
UINT32
24382
RO
Ub H02 N1
UINT32
24384
RO
Uc H02 N1
UINT32
24386
RO
Ua H02 (1 - N1/N)
Float
24388
RO
Ub H02 (1 - N1/N)
Float
24400
RO
Uc H02 (1 - N1/N)
Float
RO
UINT32
24700
RO
H25 Conclusion
UINT32
24702
RO
Ua H25 N1
UINT32
24704
RO
Ub H25 N1
UINT32
24706
RO
Uc H25 N1
UINT32
24708
RO
Ua H25 (1 - N1/N)
Float
24710
RO
Ub H25 (1 - N1/N)
Float
24712
RO
Uc H25 (1 - N1/N)
Float
24714
RO
Ua THD Max.
Float
24716
RO
Ub THD Max.
Float
24718
RO
Uc THD Max.
Float
24720
RO
Ua THD Min.
Float
24722
RO
Ub THD Min.
Float
24724
RO
Uc THD Min.
Float
24726
RO
Ua THD CP95
Float
24728
RO
Ub THD CP95
Float
24730
RO
Uc THD CP95
Float
24732
RO
Ua THD Avg
Float
24734
RO
Ub THD Avg
Float
24736
RO
Uc THD Avg
Float
24738~24748
RO
Reserved
Float
24750
RO
Ua H02 Max.
Float
24752
RO
Ub H02 Max.
Float
24754
RO
Uc H02 Max.
Float
RO
······
Float
24888
RO
Ua H25 Max.
Float
24890
RO
Ub H25 Max.
Float
24892
RO
Uc H25 Max.
Float
24894~24904
RO
Reserved
Float
24906
RO
Ua H02 Min.
Float
24908
RO
Ub H02 Min.
Float
24910
RO
Uc H02 Min.
Float
RO
······
Float
25044
RO
Ua H25 Min.
Float
25046
RO
Ub H25 Min.
Float
25048
RO
Uc H25 Min.
Float
25050~25060
RO
Reserved
Float
25062
RO
Ua H02 CP95
Float
25064
RO
Ub H02 CP95
Float
25066
RO
Uc H02 CP95
Float
RO
······
Float
25200
RO
Ua H25 CP95
Float
Page 69
CET Electric Technology
69
25202
RO
Ub H25 CP95
Float
25204
RO
Uc H25 CP95
Float
25206~25216
RO
Reserved
Float
25218
RO
Ua H02 Avg
Float
25220
RO
Uc H02 Avg
Float
25222
RO
Uc H02 Avg
Float
RO
······
Float
25356
RO
Ua H25 Avg
Float
25358
RO
Uc H25 Avg
Float
25360
RO
Uc H25 Avg
UINT32
25362
RO
Interharmonics N Valid
UINT32
25364
RO
Interharmonics N Invalid
Float
25366
RO
Ua TIHD Max.
Float
25368
RO
Ub TIHD Max.
Float
25370
RO
Uc TIHD Max.
Float
25372
RO
Ua TIHD Min.
Float
25374
RO
Ub TIHD Min.
Float
25376
RO
Uc TIHD Min.
Float
25378
RO
Ua TIHD CP95
Float
25380
RO
Ub TIHD CP95
Float
25382
RO
Uc TIHD CP95
Float
25384
RO
Ua TIHD Avg
Float
25386
RO
Ub TIHD Avg
Float
25388
RO
Uc TIHD Avg
Float
25390~25394
RO
Reserved
Float
25396
RO
Ua IH01 Max.
Float
25398
RO
Ub IH01 Max.
Float
25400
RO
Uc IH01 Max.
Float
RO
······
Float
25540
RO
Ua IH25 Max.
Float
25542
RO
Ub IH25 Max.
Float
25544
RO
Uc IH25 Max.
Float
25546~25550
RO
Reserved
Float
25552
RO
Ua IH01 Min.
Float
25554
RO
Ub IH01 Min.
Float
25556
RO
Uc IH01 Min.
Float
RO
······
Float
25696
RO
Ua IH25 Min.
Float
25698
RO
Ub IH25 Min.
Float
25700
RO
Uc IH25 Min.
Float
25702~25706
RO
Reserved
Float
25708
RO
Ua IH01 CP95
Float
25710
RO
Ub IH01 CP95
Float
25712
RO
Uc IH01 CP95
Float
RO
······
Float
25852
RO
Ua IH25 CP95
Float
25854
RO
Ub IH25 CP95
Float
25856
RO
Uc IH25 CP95
Float
25858~25862
RO
Reserved
25864
RO
Ua IH01 Avg
Float
25866
RO
Ub IH01 Avg
Float
25868
RO
Uc IH01 Avg
Float
25870~25006
RO
······
Float
26008
RO
Ua IH25 Avg
Float
26010
RO
Ub IH25 Avg
Float
26012
RO
Uc IH25 Avg
Float
26014
RO
MSV Conclusion
UINT32
26016
RO
MSV N Valid
UINT32
26018
RO
MSV N Invalid
UINT32
26020
RO
MSV1 Conclusion
UINT32
26062
RO
Ua MSV N1
UINT32
26024
RO
Ub MSV N1
UINT32
26026
RO
Uc MSV N1
UINT32
26028
RO
Ua MSV1 (1 - N1/N)
Float
26030
RO
Ub MSV1 (1 - N1/N)
Float
26032
RO
Uc MSV1 (1 - N1/N)
Float
Page 70
CET Electric Technology
70
RO
···
26048
RO
MSV3 Conclusion
UINT32
26050
RO
Ua MSV3 N1
UINT32
26052
RO
Ub MSV3 N1
UINT32
26054
RO
Uc MSV3 N1
UINT32
26056
RO
Ua MSV3 (1 - N1/N)
Float
26058
RO
Ub MSV3 (1 - N1/N)
Float
26060
RO
Uc MSV3 (1 - N1/N)
Float
26062
RO
Ua MSV1 Max.
Float
26064
RO
Ub MSV1 Max.
Float
26066
RO
Uc MSV1 Max.
Float
26068
RO
Ua MSV2 Max.
Float
26070
RO
Ub MSV2 Max.
Float
26072
RO
Uc MSV2 Max.
Float
26074
RO
Ua MSV3 Max.
Float
26076
RO
Ub MSV3 Max.
Float
26078
RO
Uc MSV3 Max.
Float
26080
RO
Ua MSV1 Min.
Float
26082
RO
Ub MSV1 Min.
Float
26084
RO
Uc MSV1 Min.
Float
26086
RO
Ua MSV2 Min.
Float
26088
RO
Ub MSV2 Min.
Float
26090
RO
Uc MSV2 Min.
Float
26092
RO
Ua MSV3 Min.
Float
26094
RO
Ub MSV3 Min.
Float
26096
RO
Uc MSV3 Min.
Float
26098
RO
Ua MSV1 CP95
Float
26100
RO
Ub MSV1 CP95
Float
26102
RO
Uc MSV1 CP95
Float
26104
RO
Ua MSV2 CP95
Float
26106
RO
Ub MSV2 CP95
Float
26108
RO
Uc MSV2 CP95
Float
26110
RO
Ua MSV3 CP95
Float
26112
RO
Ub MSV3 CP95
Float
26114
RO
Uc MSV3 CP95
Float
26116
RO
Ua RVC N1
Reserved
RVC counter occurs on 3-
phase within a week
26118
RO
Ub RVC N1
Reserved
26120
RO
Uc RVC N1
Reserved
26122~26124 Reserved
26126
RO
Swell N11
UINT32
See Note 1)
26128
RO
Swell N21
UINT32
26130
RO
Swell N31
UINT32
26132
RO
Swell N41
UINT32
26134
RO
Swell N12
UINT32
26136
RO
Swell N22
UINT32
26138
RO
Swell N32
UINT32
26140
RO
Swell N42
UINT32
26142
RO
Swell N13
UINT32
26144
RO
Swell N23
UINT32
26146
RO
Swell N33
UINT32
26148
RO
Swell N43
UINT32
26150
RO
Swell N14
UINT32
26152
RO
Swell N24
UINT32
26154
RO
Swell N34
UINT32
26156
RO
Swell N44
UINT32
26158
RO
Swell N15
UINT32
26160
RO
Swell N25
UINT32
26162
RO
Swell N35
UINT32
26164
RO
Swell N45
UINT32
26166
RO
Dip N11
UINT32
26168
RO
Dip N21
UINT32
26170
RO
Dip N31
UINT32
26172
RO
Dip N41
UINT32
26174
RO
Dip N51
UINT32
26176
RO
Dip N61
UINT32
26178
RO
Dip N12
UINT32
Page 71
CET Electric Technology
71
26180
RO
Dip N22
UINT32
26182
RO
Dip N32
UINT32
26184
RO
Dip N42
UINT32
26186
RO
Dip N52
UINT32
26188
RO
Dip N62
UINT32
26190
RO
Dip N13
UINT32
26192
RO
Dip N23
UINT32
26194
RO
Dip N33
UINT32
26196
RO
Dip N43
UINT32
26198
RO
Dip N53
UINT32
26200
RO
Dip N63
UINT32
26202
RO
Dip N14
UINT32
26204
RO
Dip N24
UINT32
26206
RO
Dip N34
UINT32
26208
RO
Dip N44
UINT32
26210
RO
Dip N54
UINT32
26212
RO
Dip N64
UINT32
26214
RO
Dip N15
UINT32
26216
RO
Dip N25
UINT32
26218
RO
Dip N35
UINT32
26220
RO
Dip N45
UINT32
26222
RO
Dip N55
UINT32
26224
RO
Dip N65
UINT32
26226
RO
Interruptions N11
UINT32
26228
RO
Interruption N21
UINT32
26230
RO
Interruption N31
UINT32
26232
RO
Ua Transient N1
UINT32
Transient counter occurs on 3-
Phase over 1 week
26234
RO
Ub Transient N1
UINT32
26236
RO
Uc Transient N1
UINT32
* Writing n to the EN50160 Log Pointer register will update the EN50160 Log Buffer with a Log Record at the pointer position.
Table 5-37 EN50160 Log
Notes:
1) Nxx have following definitions:
Swell (t indicates Duration, while u indicates Residual Voltage)
Counter
10ms <= t <= 500ms
500ms < t <= 5000ms
5000ms < t <= 60000ms
t > 60000ms
110% < u < 120%
N11
N21
N31
N41
120% <= u < 140%
N12
N22
N32
N42
140% <= u < 160%
N13
N23
N33
N43
160% <= u < 200%
N14
N24
N34
N44
u >= 200%
N15
N25
N35
N45
Table 5-38 Swell Counter Definition
Dip (t indicates Duration, while u indicates Residual Voltage)
Counter
10ms < t <=
200ms
200ms < t <=
500ms
500ms < t <=
1000ms
1000ms < t <=
5000ms
5000ms < t <=
60000ms
t >
60000ms
u < 5%
N11
N21
N31
N41
N51
N61
5% <= u < 40%
N12
N22
N32
N42
N52
N62
40% <= u < 70%
N13
N23
N33
N43
N53
N63
70% <= u < 80%
N14
N24
N34
N44
N54
N64
80% <= u < 90%
N15
N25
N35
N45
N55
N65
Table 5-39 Dip Counter Definition
Interruption (t indicates Duration, while u indicates Residual Voltage)
Counter
t <= 1s
t <= 180000ms
t > 180000ms
N11
N21
N31
Table 5-40 Interruption Counter Definition
5.7 Real-time WFR Register
Register
Property
Description
Format
Note/Range
53000
RO
Start Time
Bitmap
53004
RO
Reserved
Unit16
53005
RO
Reserved
Unit16
53006
RO
Frequency
Float
53008
RO
Ia 1st Sample
Float
Page 72
CET Electric Technology
72
RO … Float
54030
RO
Ia 512nd Sample
Float
54032
RO
Ib 1st Sample
Float
RO … Float
55054
RO
Ib 512nd Sample
Float
55056
RO
Ic 1st Sample
Float
RO … Float
56078
RO
Ic 512nd Sample
Float
56080
RO
Ua 1st Sample
Float
RO … Float
57102
RO
Ua 512nd Sample
Float
57104
RO
Ub 1st Sample
Float
RO … Float
58126
RO
Ub 512nd Sample
Float
58128
RO
Uc 1st Sample
Float
RO … Float
59150
RO
Uc 512nd Sample
Float
Table 5-41 Real-time WFR Register
Notes:
1) Read real-time WFR by reading 53000, and when the register is read, it will refresh automatically to ensure WFR’s integrity.
5.8 Device Setup Parameters
5.8.1 Communications Setup
Register
Property
Description
Format
Note
40000~40015
RW
Reserved
UINT16 40016
RW
Ethernet 1
(P1)
IP Address4
UINT32
Default=192.168.0.100
40018
RW
Subnet Mask4
UINT32
Default=255.255.255.0
40020
RW
Default Gateway4
UINT32
Default=192.168.0.1
40022~40030
RW
Reserved
40032
RW
MODBUS TCP – IP Port #
UINT16
502* to 60000
40033~40063
RW
Reserved
--
--
40065
RW
IP Address of SNTP Server
UINT32
Default=192.168.101.2
40067
RW
SNTP Sync. Interval
UINT16
1 to 1440 min, Default=60
40068
RW
Reserved
UINT16
*Default
Table 5-42 Communication Setup Parameters
Notes:
1) If the IP Address is 192.168.0.100, write “0xC0A00064” to the register.
5.8.2 Basic Setup Parameters
Register
Property
Description
Format
Range / Options
41000
RW
Wiring Mode
UINT16
1=4W-WYE*, 2=3W-WYE
3=Delta, 4=Demo, 5=One-Phase
41001
RW
PT Primary (V)
UINT32
1 to 1,000,000, 100*
41003
RW
PT Secondary (V)
UINT32
1 to 1500, 100*
41005
RW
CT Primary (A)
UINT32
1 to 30000, 5*
41007
RW
CT Secondary (A)
UINT32
1 to 50, 5*
41009
RW
U4 Primary (V)
UINT32
1 to 1,000,000, 100*
41011
RW
U4 Secondary (V)
UINT32
1 to 1500, 100*
41013
RW
I4 Primary (A)
UINT32
1 to 30,000, 5*
41015
RW
I4 Secondary (A)
UINT32
1 to 50, 5*
41017~41019
RW
Reserved
UINT32
41021
RW
ULL Nominal (Vll
nominal
)
UINT32
1 to 1500, 100*
41023
RW
Nominal Current (I
nominal
)
UINT32
1 to 10000 , 5*
41025
RW
CT Polarity1
Bitmap
0=Normal*, 1=Reverse
41026
RW
Reserved
UINT16 41027
RW
Power Factor Convention2
UINT16
0=IEC*, 1=IEEE, 2=-IEEE
41028
RW
kVA Calculation3
UINT16
0=Vector*, 1=Scalar
41029
RW
Harmonics Calculation
UINT16
0=% of Fundamental*
1=% of RMS
2=% of Nominal
41030
RW
Statistical Harmonic Calculation
UINT16
0=Subgroup*, 1=Group
Page 73
CET Electric Technology
73
41031
RW
Order of Harmonic Calculation
UINT16
2 to 63*
41032~41033
RW
Reserved
41035
RW
CT Clamp Specification
UINT16
0*=5A (50A) @10mV/A
1=20A@10mV/A 2=200A@1mV/A
3=500A @1mV/A
4=500A(550A) @1mV/A
5=5kA @0.1mV/A
41036
RW
Frequency
UINT16
0=50Hz*, 1=60Hz
*Default
Table 5-43 Basic Setup Parameters
Notes:
1) The CT Polarity register defines the polarity for the Current Inputs as illustrated in the following table.
Bit 15~Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reserved
I4
Ic
Ib
Ia
Table 5-44 CT Polarity Register
2) P.F. Convention: -IEEE is the same as IEEE but with the opposite sign.
Figure 5-1 Power Factor Definitions
3) There are two ways to calculate kVA:
Mode V (Vector method):
2
total
2
totaltotal
KVARKWKVA
Mode S (Scalar method):
c
KVAKVAKVAKVA
batotal
5.8.3 SMTP Setup
Register
Property
Description
Format
Range/Options
40900
RW
SMTP Event Classification1
Bitmap
Note 1)
40902
RW
SMTP IP Port
UINT16
1 to 65535 (Default=25)
40903
RW
IP Address of SMTP Server2
UINT32
Default=0.0.0.0
40905
RW
Source Email Address3
CHAR
Note 2)
40925
RW
Source Username4
CHAR
40945
RW
Login Password5
CHAR
Note 3)
40955
RW
Destination Email Address6
CHAR
Note 4)
Table 5-45 SMTP Setup Parameters
Notes:
1) SMTP Event Classification register determines if a newly generated Device/SOE LOG is sent out by email. The following table
illustrates the Bitmap definition of this register. When a particular bit is set to 1, its corresponding events will be sent out by
email.
Bit
Classification
Event Type
Bit
Classification
Event Type
Bit 0
1=System Events See Appendix B
Device
Bit 16
0x81=Dip/Swell Disturbance
SOE Log
Bit 1
2=Standard Setpoints Events
Bit 17
0x82=Transient Disturbance
Page 74
CET Electric Technology
74
Bit 2
3=High-speed Setpoints Events
Bit 18
0x83 = Inrush Current
Bit 3
Reserved
Bit 19
0x84 = RVC
Bit 4
5 =WFR
Bit 20
0x85 = MSV
Bit 5
6 = DWR
Bit 21
0x86 = RMS Change
Bit 6~Bit 8
Reserved
Bit 9
RMS Recorder
Table 5-46 SMTP Event Classification Register (40900)
2) If the IP Address is 192.168.0.100, write “0xC0A00064” to the register.
3) This string parameter may be up to 20 characters long and specifies the source email address that appears in the “ From
field of the email. For example, if the email address is PMC-690@ceiec-electric.com, set the parameter as”70 6D 63 2D 36
38 30 69 40 63 65 69 65 63 2D 65 6C 65 63 74 72 69 63 2E 63 6F 6D 00 00” where the two zero characters “00 00” at the
end of the string are the string terminator.
4) This string parameter may be up to 10 characters long and specifies the "Source Username" that appears in the email. For
example, if the username is “abc”, set the parameter as “61 62 63 00 00” where the two zero characters “00 00” at the end of the string are the string terminator.
5) This string parameter may be up to 10 characters long and specifies the Logon Password to login the “Source Email” account.
For example, if the password is “PMC-690”, set the parameter as “50 4D 43 2D 36 38 30 69 00 00” where the two zero characters “00 00” at the end of the string are the string terminator.
6) This string parameter may be up to 20 characters long and specifies the destination email address that appears in the “To
field of the email. For example, if the email address is PMC-690-a@ceiec-electric.com, so set the registers as”70 6D 63 2D
36 38 30 69 2D 61 40 63 65 69 65 63 2D 65 6C 65 63 74 72 69 63 2E 63 6F 6D 00 00” where the two zero characters “00 00”
at the end of the string are the string terminator.
5.8.4 PQ Setup
Register
Property
Description
Format
Note
41100
RW
Dip/Swell Enable1
UINT16
0=Disabled, 1=Enabled*
41101
RW
Dip/Swell Voltage Reference
UINT16
0=Udin (Nominal)*
1=Usr (Slide Reference Voltage)
41102
RW
Swell Limit
UINT16
101 to 200 (x0.01Udin), 110*
41103
RW
Dip Limit2
UINT16
1 to 99 (x0.01Udin), 90*
41104
RW
Interruption Limit2
UINT16
0 to 50 (x0.01Udin), 10*
41105
RW
Swell Hysteresis
UINT16
1 to 1000 (x0.001Udin), 5*
41106
RW
Dip Hysteresis
UINT16
41107
RW
Interruption Hysteresis
UINT16
41108
RW
Dip/Swell Trigger
UINT32
WFR*
41110~41111
RW
Reserved
UINT16
41112
RW
Transient Enable
UINT16
0=Disabled, 1=Enabled*
41113
RW
Transient Limit
UINT16
5 to 500 (%), 35*
41114
RW
Transient Trigger
3
UINT32
WFR*
41116~41119
RW
Reserved
UINT16
41120
RW
Inrush Current Enable
UINT16
0=Disabled*, 1=Enabled
41121
RW
Inrush Current Limit
UINT16
100 to 500 (%), 120*
41122
RW
Inrush Current Hysteresis
UINT16
1 to 1000 (0.1% to 100%), 10*
41123
RW
Inrush Current Trigger
UINT32
WFR*
41125~41127
RW
Reserved
UINT16
41128
RW
Rapid Voltage Changes (RVC) Enable
UINT16
0=Disabled*, 1=Enabled
41129
RW
Detection mode (Set Voltage Reference)
UINT16
0= Based on Steady-state V*
1= Based on Maximum V Change
41130
RW
Voltage Tolerance
UINT32
0 to 1000 (x0.001Udin), 2*
41132
RW
Steady-State Duration
UINT32
1 to 50 (x0.1s), 10*
41134
RW
Min. of V Change Step
UINT32
1 to 1000 (x0.001Udin), 50*
41136
RW
Min. of V Change Rate
UINT32
0 to 100 (x0.01Udin), 5*
41138
RW
RVC Trigger3
UINT32
WFR*
41140~41141
RW
Reserved
UINT16
41142
RW
RMS Change Enable
UINT16
Bit0: Voltage, Bit1=Current
0=Disabled*, 1=Enabled
41143~41144
RW
Reserved
UINT16 41145
RW
RMS Change Trigger3
UINT16
WFR*
41147
RW
Reserved
UINT16
41148
RW
Voltage RMS Change Threshold
UINT32
0~999,999,999 (x0.01V)
Default=1000
41150
RW
Current RMS Change Threshold
UINT32
0~999,999,999 (x0.01A)
Default=100
41152~41153
RW
Reserved
UINT16
Page 75
CET Electric Technology
75
41154
RW
MSV #1 Enable
UINT16
0=Disabled*, 1=Enabled
41155
RW
MSV #1 Frequency
UINT16
50 Hz:
600 to 30000 (x0.1Hz)
60 Hz:
700 to 30000 (x0.1Hz)
Default=10000
41156
RW
MSV #1 Limit
UINT16
3 to 1000 (x0.001Udin)
Default=50 (x0.001Udin)
41157
RW
Reserved
UINT16
41158~41159
RW
Reserved
41160
RW
MSV #2 Enable
UINT16
0*=Disabled, 1=Enabled
41161
RW
MSV #2 Frequency
UINT16
50 Hz:
600 to 30000 (x0.1Hz)
60 Hz:
700 to 30000 (x0.1Hz)
Default=20000
41162
RW
MSV #2 Limit
UINT16
3 to 1000 (x0.001Udin)
Default=50 (x0.001Udin)
41163
RW
Reserved
UINT16
41164~41165
RW
Reserved
41166
RW
MSV #3 Enable
UINT16
0*=Disabled, 1=Enabled
41167
RW
MSV #3 Frequency
UINT16
50 Hz:
600 to 30000 (x0.1Hz)
Default=30000
60 Hz:
700 to 30000 (x0.1Hz)
Default=30000
41168
RW
MSV #3 Limit
UINT16
3 to 1000 (x0.001Udin)
Default=50 (x0.001Udin)
41169
RW
Reserved
UINT16
41170~41171 Reserved
UINT16 41172
RW
Flicker Mode
UINT16
0=120V*, 1=230V
*Default
Table 5-47 SOE Log Setup
Notes:
1) When the Wiring Mode is WYE, Dip/Swell Voltage is line to phase voltage. When the Wiring Mode is Delta, it will be line to
line voltage.
2) The Dip Limit, Swell Limit, Voltage Interruption Threshold and Dip/Swell Return values should be configured to meet the
following criteria: a) The Voltage Interruption Threshold shall not be set below Dip Limit. b) The Swell Limit and Dip Limit should associate with Voltage Rapid Changes in the minimum difference between the
two steady-states. The absolute value of the minimum Dip/Swell limit (the differential between Dip/Swell and 100%) must be greater than the Voltage Rapid Changes in the minimum pressure difference between the two steady-states (actual percentage).
c) Dip/Swell return value should associate with Swell limit and Dip Limit, Dip/Swell return value (actual value) must be
less than the Dip/Swell limit (Dip, Swell of the absolute difference of the minimum value and 100%).
d) Regardless of Dip/Swell enable, a), b) and c) must be complied.
3) Table 5-48 provides a list of Dip/Swell, Voltage Transient and Rapid Voltage Changes Triggers.
Bit
Action
Bit0~Bit26
Reserved
Bit27
DWR
Bit28
WFR
Bit29
RMS Recorder
Bit30~Bit31
Reserved
Table 5-48 Dip/Swell and Rapid Voltage Change Triggers
5.8.5 PQDIF Setup
Register
Property
Description
Format
Range / Options
41200
RW
Freq. Statistics Interval
UINT16
1 to 60 Mins, 3*
41201
RW
Symmetrical Components and Unb. Statistics Interval
UINT16
1 to 60 Mins, 3*
41202
RW
U & I RMS and Deviation Statistics Interval
UINT16
1 to 60 Mins, 3*
41203
RW
Harmonic & Inter-Harmonic Statistics Interval
UINT16
1 to 60 Mins, 3*
Page 76
CET Electric Technology
76
41204
RW
PQDIF Save Interval
UINT16
0 to 1* Hour
0 Indicates PQDIF is disabled
*Default
Table 5-49 PQDIF Setup
5.8.6 Demand Setup
Register Address
Property
Description
Format
Range / Options
41250
RW
Demand Sync.
UINT16
0=SLD*
41251
RW
Demand Period
UINT16
1 to 60minutes, 15*
41252
RW
Number of Sliding Windows
UINT16
1* to 15
41253
RW
Self-read Time
1
UINT16
Default = 0xFFFF
41254
RW
Predicated Response
UINT16
70* to 99
*Default
Table 5-50 Demand Setup
Notes:
1) The Self-Read Time supports the following three options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value means the automatic self-read operation is disabled and the log will be transferred manually.
5.8.7 WFR Setup
Register
Property
Description
Format
Range/Option
41300
RW
Pre-fault Cycles1
UINT16
2 to 384 (16 Samples/640 Cycles), 2 to 192 (32 Samples/320 Cycles),
2 to 96 (64 Samples/160 Cycles), 2 to 48 (128 Samples/80 Cycles), 2 to 24 (256 Samples/40 Cycles),
2 to 12 (512 Samples/20 Cycles), 4*
41301
RW
Consecutive Recording Depth
UINT16
1 to 7, 1*
41302
RW
# of Samples
2
UINT16
0=16 Samples/640 Cycles 1=32 Samples/320 Cycles 2=64 Samples/160 Cycles 3=128 Samples/80 Cycles
4=256 Samples/40 Cycles*
5=512 Samples/20 Cycles
41303~41305
RW
Reserved
UNIT16
41306
RW
Pre-fault Cycles of DWR
UINT16
5* to 10 Cycles
41307
RW
Scheduled WFR Enable
UNIT16
0*=Disabled, 1=Enabled
41308
RW
Start Time
UINT16
41311
RW
Record Interval
UNIT16
1 to 960 Hour, 24*
41312
RW
Depth
UINT16
1* to 10,000
41313
RW
Pre-fault Samples of RMS Record
UNIT16
100* to 500
*Default
Table 5-51 WFR Setup
5.8.8 Standard Setpoints Setup
Register
Property
Description
Format
Range/Options
41400
RW
Setpoint #1
Parameter 1
UINT32
0*
41402
RW
Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
41403
RW
Active Limit
Float
0*
41405
RW
Inactive Limit
Float
0*
41407
RW
Active Delay
UINT16
0* to 9999 s
41408
RW
Inactive Delay
UINT16
0* to 9999 s
41409
RW
Trigger2
UINT32
0=Disabled*
41411
RW
Reserved
41699
RW
Setpoint #24
Parameter1
UINT32
0*
Page 77
CET Electric Technology
77
41701
RW
Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
41702
RW
Active Limit
Float
0*
41704
RW
Inactive Limit
Float
0*
41706
RW
Active Delay
UINT16
0* to 9999 s
41707
RW
Inactive Delay
UINT16
0* to 9999 s
41708
RW
Trigger2
UINT32
0=Disabled*
41710
RW
Reserved
*Default
Table 5-52 Setpoint Setup Parameters
Notes:
1) The PMC-690 provides the following setpoint parameters:
Key
Parameter
Key
Parameter
Key
Parameter
1
ULN*
25
U TEHD
49
kW Exp. Total Demand
2
ULL*
26
I THD
50
kvar Exp. Total Demand
3
U4*
27
I TOHD
51
kVA Total Demand
4
Ia/Ib/Ic*
28
I TEHD
52
P.F. Total Demand
5
I4*
29
U TIHD
53
kW Imp. Total Pred. DMD
6
Reserved*
30
U TOIHD
54
kvar Exp. Total Pred. DMD
7
kW Total*
31
U TEIHD
55
kW Exp. Total Pred. DMD
8
kvar Total*
32
I TIHD
56
kvar Exp. Total Pred. DMD
9
kVA Total*
33
I TOIHD
57
kVA Pred. Total DMD
10
P.F. Total*
34
I TEIHD
58
P.F. Pred. Total DMD
11
U0 Unbalance
35
U TH RMS
59
Pst
12
U2 Unbalance
36
U TOH RMS
60
Plt
13
I0 Unbalance
37
U TEH RMS
61
Voltage Fluct.
14
I2 Unbalance
38
I TH RMS
0x0002xxxx
U HD02
15
U Fundamental
39
I TOH RMS
U HD03~HD62
16
I Fundamental
40
I TEH RMS
0x003fxxxx
U HD63
17
U Deviation
41
U TIH RMS
0x0081xxxx
U IHD01
18
U Over Deviation
42
U TOIH RMS
U IHD02~IHD62
19
U Under Deviation
43
U TEIH RMS
0x00bfxxxx
U IHD063
20
Frequency
44
I TIH RMS
0x02xxxxxx
I HD02
21
Frequency Deviation
45
I TOIH RMS
I HD03~HD62
22
Phase Reversal
46
I TEIH RMS
0x3fxxxxxx
I HD63
23
U THD
47
kW Imp. Total DMD
0x81xxxxxx
I IHD01
24
U TOHD
48
kvar Imp. Total DMD
I IHD02~IHD62
0xbfxxxxxx
I IHD063
* High-speed setpoint parameters
Table 5-53 Setpoint Parameters
2) The PMC-690 provides the following Setpoint Triggers:
Bit
Action
Bit0~Bit26
Reserved
Bit27
DWR
Bit28
WFR
Bit29
RMS Recorder
Bit30~Bit31
Reserved
Table 5-54 Setpoint Triggers
5.8.9 HS (High-speed) Setpoints Setup
Register
Property
Description
Format
Range/Options
45400
RW
HS Setpoint
#1
Parameter
UINT32
See Table 5-53 above
45402
RW
Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
45403
RW
Active Limit
Float
Default=0
45405
RW
Inactive Limit
Float
Default=0
45407
RW
Active Delay
UINT16
0* to 9999 cycle
45408
RW
Inactive Delay
UINT16
0* to 9999 cycle
45409
RW
Trigger
UINT32
See Table 5-54 (Default=0)
45411 Reserved
UINT32 …
Page 78
CET Electric Technology
78
45595
RW
HS Setpoint
#16
Parameter1
UINT32
See Table 5-53 above
45597
RW
Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
45598
RW
Active Limit
Float
Default=0
45600
RW
Inactive Limit
Float
Default=0
45602
RW
Active Delay
UINT16
0* to 9999 cycle
45603
RW
Inactive Delay
UINT16
0* to 9999 cycle
45604
RW
Trigger
UINT32
See Table 5-54 (Default=0)
45606 Reserved
UINT32
*Default
Table 5-55 Setpoint Setup Parameters
5.8.10 SDR Setup
5.8.10.1 SDR #1 Setup
Register
Property
Description
Format
Range/Options
Default
45900
RW
Recording Interval
UINT16
0 to 60 min
3
45901
RW
Recording Mode
UINT16
0=Stop-When-Full 1=First-In-First-Out
1
45902
RW
Number of Parameters
UINT16
0 to 64
64
45903
RW
Parameter #1
UINT16
Uab Fund. RMS
10130*
45904
RW
Parameter #2
UINT16
Ubc Fund. RMS
10131
45905
RW
Parameter #3
UINT16
Uca Fund. RMS
10132
45906
RW
Parameter #4
UINT16
Ua/Uab TIHD
12727
45907
RW
Parameter #5
UINT16
Ub/Ubc TIHD
12728
45908
RW
Parameter #6
UINT16
Uc/Uca TIHD
12729
45909
RW
Parameter #7
UINT16
U4 TIHD
12730
45910
RW
Parameter #8
UINT16
Ia TIHD
12739
45911
RW
Parameter #9
UINT16
Ib TIHD
12740
45912
RW
Parameter #10
UINT16
Ic TIHD
12741
45913
RW
Parameter #11
UINT16
I4 TIHD
12742
45914
RW
Parameter #12
UINT16
Ua/Uab TOIHD
12731
45915
RW
Parameter #13
UINT16
Ub/Ubc TOIHD
12732
45916
RW
Parameter #14
UINT16
Uc/Uca TOIHD
12733
45917
RW
Parameter #15
UINT16
U4 TOIHD
12734
45918
RW
Parameter #16
UINT16
Ia TOIHD
12744
45919
RW
Parameter #17
UINT16
Ib TOIHD
12745
45920
RW
Parameter #18
UINT16
Ic TOIHD
12746
45921
RW
Parameter #19
UINT16
I4 TOIHD
12747
45922
RW
Parameter #20
UINT16
Ua/Uab TEIHD
12735
45923
RW
Parameter #21
UINT16
Ub/Ubc TEIHD
12736
45924
RW
Parameter #22
UINT16
Uc/Uca TEIHD
12737
45925
RW
Parameter #23
UINT16
U4 TEIHD
12738
45926
RW
Parameter #24
UINT16
Ia TEIHD
12749
45927
RW
Parameter #25
UINT16
Ib TEIHD
12750
45928
RW
Parameter #26
UINT16
Ic TEIHD
12751
45929
RW
Parameter #27
UINT16
I4 TEIHD
12752
45930
RW
Parameter #28
UINT16
Ia THD DMD
51073
45931
RW
Parameter #29
UINT16
Ib THD DMD
51074
45932
RW
Parameter #30
UINT16
Ic THD DMD
51075
45933
RW
Parameter #31
UINT16
I4 THD DMD
51076
45934
RW
Parameter #32
UINT16
kW Imp. DMD
51019
45935
RW
Parameter #33
UINT16
kW Imp. Max. DMD
53001
45936
RW
Parameter #34
UINT16
Ua Pst
50001
45937
RW
Parameter #35
UINT16
Ub Pst
50002
45938
RW
Parameter #36
UINT16
Uc Pst
50003
45939
RW
Parameter #37
UINT16
Ua Plt
50004
45940
RW
Parameter #38
UINT16
Ub Plt
50005
45941
RW
Parameter #39
UINT16
Uc Plt
50006
45942~45966
RW
Parameter #40~ Parameter #64
UINT16
Reserved
0
*Default for 150 cycles
Table 5-56 SDR #1 Setup
Page 79
CET Electric Technology
79
5.8.10.2 SDR #2 Setup
Register
Property
Description
Format
Range/Options
Default
46000
RW
Recording Interval
UINT16
0 to 60 min
3
46001
RW
Recording Mode
UINT16
0=Stop-When-Full 1=First-In-First-Out
1
46002
RW
Number of Parameters
UINT16
0 to 64
64
46003
RW
Parameter #1
UINT16
Ua HD00
10500
46004
RW
Parameter #2
UINT16
Ub HD00
10501
46005
RW
Parameter #3
UINT16
Uc HD00
10502
46006
RW
Parameter #4
UINT16
U4 HD00
10503
46007
RW
Parameter #5
UINT16
Ua HD01
10504
46008
RW
Parameter #6
UINT16
Ub HD01
10505
46009
RW
Parameter #7
UINT16
Uc HD01
10506
46010
RW
Parameter #8
UINT16
U4 HD01
10507
46011
RW
Parameter #9
UINT16
Ua HD02
10508
46012
RW
Parameter #10
UINT16
Ub HD02
10509
46013
RW
Parameter #11
UINT16
Uc HD02
10510
46014
RW
Parameter #12
UINT16
U4 HD02
10511
46015
RW
Parameter #13
UINT16
Ua HD03
10512
46016
RW
Parameter #14
UINT16
Ub HD03
10513
46017
RW
Parameter #15
UINT16
Uc HD03
10514
46018
RW
Parameter #16
UINT16
U4 HD03
10515
46019
RW
Parameter #17
UINT16
Ua HD04
10516
46020
RW
Parameter #18
UINT16
Ub HD04
10517
46021
RW
Parameter #19
UINT16
Uc HD04
10518
46022
RW
Parameter #20
UINT16
U4 HD04
10519
46023
RW
Parameter #21
UINT16
Ua HD05
10520
46024
RW
Parameter #22
UINT16
Ub HD05
10521
46025
RW
Parameter #23
UINT16
Uc HD05
10522
46026
RW
Parameter #24
UINT16
U4 HD05
10523
46027
RW
Parameter #25
UINT16
Ua HD06
10524
46028
RW
Parameter #26
UINT16
Ub HD06
10525
46029
RW
Parameter #27
UINT16
Uc HD06
10526
46030
RW
Parameter #28
UINT16
U4 HD06
10527
46031
RW
Parameter #29
UINT16
Ua HD07
10528
46032
RW
Parameter #30
UINT16
Ub HD07
10529
46033
RW
Parameter #31
UINT16
Uc HD07
10530
46034
RW
Parameter #32
UINT16
U4 HD07
10531
46035
RW
Parameter #33
UINT16
Ua HD08
10532
46036
RW
Parameter #34
UINT16
Ub HD08
10533
46037
RW
Parameter #35
UINT16
Uc HD08
10534
46038
RW
Parameter #36
UINT16
U4 HD08
10535
46039
RW
Parameter #37
UINT16
Ua HD09
10536
46040
RW
Parameter #38
UINT16
Ub HD09
10537
46041
RW
Parameter #39
UINT16
Uc HD09
10538
46042
RW
Parameter #40
UINT16
U4 HD09
10539
46043
RW
Parameter #41
UINT16
Ua HD10
10540
46044
RW
Parameter #42
UINT16
Ub HD10
10541
46045
RW
Parameter #43
UINT16
Uc HD10
10542
46046
RW
Parameter #44
UINT16
U4 HD10
10543
46047
RW
Parameter #45
UINT16
Ua HD10
10544
46048
RW
Parameter #46
UINT16
Ub HD11
10545
46049
RW
Parameter #47
UINT16
Uc HD11
10546
46050
RW
Parameter #48
UINT16
U4 HD11
10547
46051
RW
Parameter #49
UINT16
Ua HD11
10548
46052
RW
Parameter #50
UINT16
Ub HD12
10549
46053
RW
Parameter #51
UINT16
Uc HD12
10550
46054
RW
Parameter #52
UINT16
U4 HD12
10551
46055
RW
Parameter #53
UINT16
Ua HD13
10552
46056
RW
Parameter #54
UINT16
Ub HD13
10553
46057
RW
Parameter #55
UINT16
Uc HD13
10554
46058
RW
Parameter #56
UINT16
U4 HD13
10555
46059
RW
Parameter #57
UINT16
Ua HD14
10556
46060
RW
Parameter #58
UINT16
Ub HD14
10557
46061
RW
Parameter #59
UINT16
Uc HD14
10558
Page 80
CET Electric Technology
80
46062
RW
Parameter #60
UINT16
U4 HD14
10559
46063
RW
Parameter #61
UINT16
Ua HD15
10560
46064
RW
Parameter #62
UINT16
Ub HD15
10561
46065
RW
Parameter #63
UINT16
Uc HD15
10562
46066
RW
Parameter #64
UINT16
U4 HD15
10563
Table 5-57 SDR #2 Setup
5.8.10.3 SDR #3 Setup
Register
Property
Description
Format
Range/Options
Default
46100
RW
Recording Interval
UINT16
0 to 60 min
3
46101
RW
Recording Mode
UINT16
0=Stop-When-Full 1=First-In-First-Out
1
46102
RW
Number of Parameters
UINT16
0 to 64
64
46103
RW
Parameter #1
UINT16
Ua HD16
10564
46104
RW
Parameter #2
UINT16
Ub HD16
10565
46105
RW
Parameter #3
UINT16
Uc HD16
10566
46106
RW
Parameter #4
UINT16
U4 HD16
10567
46107
RW
Parameter #5
UINT16
Ua HD17
10568
46108
RW
Parameter #6
UINT16
Ub HD17
10569
46109
RW
Parameter #7
UINT16
Uc HD17
10570
46110
RW
Parameter #8
UINT16
U4 HD17
10571
46111
RW
Parameter #9
UINT16
Ua HD18
10572
46112
RW
Parameter #10
UINT16
Ub HD18
10573
46113
RW
Parameter #11
UINT16
Uc HD18
10574
46114
RW
Parameter #12
UINT16
U4 HD18
10575
46115
RW
Parameter #13
UINT16
Ua HD19
10576
46116
RW
Parameter #14
UINT16
Ub HD19
10577
46117
RW
Parameter #15
UINT16
Uc HD19
10578
46118
RW
Parameter #16
UINT16
U4 HD19
10579
46119
RW
Parameter #17
UINT16
Ua HD20
10580
46120
RW
Parameter #18
UINT16
Ub HD20
10581
46121
RW
Parameter #19
UINT16
Uc HD20
10582
46122
RW
Parameter #20
UINT16
U4 HD20
10583
46123
RW
Parameter #21
UINT16
Ua HD21
10584
46124
RW
Parameter #22
UINT16
Ub HD21
10585
46125
RW
Parameter #23
UINT16
Uc HD21
10586
46126
RW
Parameter #24
UINT16
U4 HD21
10587
46127
RW
Parameter #25
UINT16
Ua HD22
10588
46128
RW
Parameter #26
UINT16
Ub HD22
10589
46129
RW
Parameter #27
UINT16
Uc HD22
10590
46130
RW
Parameter #28
UINT16
U4 HD22
10591
46131
RW
Parameter #29
UINT16
Ua HD23
10592
46132
RW
Parameter #30
UINT16
Ub HD23
10593
46133
RW
Parameter #31
UINT16
Uc HD23
10594
46134
RW
Parameter #32
UINT16
U4 HD23
10595
46135
RW
Parameter #33
UINT16
Ua HD24
10596
46136
RW
Parameter #34
UINT16
Ub HD24
10597
46137
RW
Parameter #35
UINT16
Uc HD24
10598
46138
RW
Parameter #36
UINT16
U4 HD24
10599
46139
RW
Parameter #37
UINT16
Ua HD25
10600
46140
RW
Parameter #38
UINT16
Ub HD25
10601
46141
RW
Parameter #39
UINT16
Uc HD25
10602
46142
RW
Parameter #40
UINT16
U4 HD25
10603
46143
RW
Parameter #41
UINT16
Ua HD26
10604
46144
RW
Parameter #42
UINT16
Ub HD26
10605
46145
RW
Parameter #43
UINT16
Uc HD26
10606
46146
RW
Parameter #44
UINT16
U4 HD26
10607
46147
RW
Parameter #45
UINT16
Ua HD27
10608
46148
RW
Parameter #46
UINT16
Ub HD27
10609
46149
RW
Parameter #47
UINT16
Uc HD27
10610
46150
RW
Parameter #48
UINT16
U4 HD27
10611
46151
RW
Parameter #49
UINT16
Ua HD28
10612
46152
RW
Parameter #50
UINT16
Ub HD28
10613
46153
RW
Parameter #51
UINT16
Uc HD28
10614
46154
RW
Parameter #52
UINT16
U4 HD28
10615
Page 81
CET Electric Technology
81
46155
RW
Parameter #53
UINT16
Ua HD29
10616
46156
RW
Parameter #54
UINT16
Ub HD29
10617
46157
RW
Parameter #55
UINT16
Uc HD29
10618
46158
RW
Parameter #56
UINT16
U4 HD29
10619
46159
RW
Parameter #57
UINT16
Ua HD30
10620
46160
RW
Parameter #58
UINT16
Ub HD30
10621
46161
RW
Parameter #59
UINT16
Uc HD30
10622
46162
RW
Parameter #60
UINT16
U4 HD30
10623
46163
RW
Parameter #61
UINT16
Ua HD31
10624
46164
RW
Parameter #62
UINT16
Ub HD31
10625
46165
RW
Parameter #63
UINT16
Uc HD31
10626
46166
RW
Parameter #64
UINT16
U4 HD31
10627
Table 5-58 SDR #3 Setup
5.8.11 Max./Min. Recorder (MMR) Setup
5.8.11.1 Max./Min. Recorder #1 Setup
Register
Property
Description
Format
Range/Options
Default
Max.
Min.
48900
49301
RW
Self-read Time
UINT16 0
48901
49302
RW
Number of Parameters
UINT16
0 to 20
20
48902
49303
RW
Parameter #1
UINT16
Freq.
10001
48903
49304
RW
Parameter #2
UINT16
Ua RMS
10002
48904
49305
RW
Parameter #3
UINT16
Ub RMS
10003
48905
49306
RW
Parameter #4
UINT16
Uc RMS
10004
48906
49307
RW
Parameter #5
UINT16
Uab RMS
10007
48907
49308
RW
Parameter #6
UINT16
Ubc RMS
10008
48908
49309
RW
Parameter #7
UINT16
Uca RMS
10009
48909
49310
RW
Parameter #8
UINT16
Ia RMS
10011
48910
49311
RW
Parameter #9
UINT16
Ib RMS
10012
48911
49312
RW
Parameter #10
UINT16
Ic RMS
10013
48912
49313
RW
Parameter #11
UINT16
kW Total
10020
48913
49314
RW
Parameter #12
UINT16
kvar Total
10024
48914
49315
RW
Parameter #13
UINT16
kVA Total
10028
48915
49316
RW
Parameter #14
UINT16
P.F. Total
10032
48916
49317
RW
Parameter #15
UINT16
Ua Pst
50001
48917
49318
RW
Parameter #16
UINT16
Ub Pst
50002
48918
49319
RW
Parameter #17
UINT16
Uc Pst
50003
48919
49320
RW
Parameter #18
UINT16
Ua Plt
50004
48920
49321
RW
Parameter #19
UINT16
Ub Plt
50005
48921
49301
RW
Parameter #20
UINT16
Uc Plt
50006
Table 5-59 Max./Min. Recorder #1 Setup
Notes:
1) The Self-Read Time supports the following two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
5.8.11.2 Max./Min. Recorder #2 Setup
Register
Property
Description
Format
Range/Options
Default
Max.
Min.
49000
49400
RW
Self-read Time
UINT16 0
49001
49401
RW
Number of Parameters
UINT16
0 to 20
20
49002
49402
RW
Parameter #1
UINT16
Ua Over Deviation
10039
49003
49403
RW
Parameter #2
UINT16
Ub Over Deviation
10040
49004
49404
RW
Parameter #3
UINT16
Uc Over Deviation
10041
49005
49405
RW
Parameter #4
UINT16
Uab Over Deviation
10042
49006
49406
RW
Parameter #5
UINT16
Ubc Over Deviation
10043
49007
49407
RW
Parameter #6
UINT16
Uca Over Deviation
10044
49008
49408
RW
Parameter #7
UINT16
Ua Under Deviation
10045
49009
49409
RW
Parameter #8
UINT16
Ub Under Deviation
10046
Page 82
CET Electric Technology
82
49010
49410
RW
Parameter #9
UINT16
Uc Under Deviation
10047
49011
49411
RW
Parameter #10
UINT16
Uab Under Deviation
10048
49012
49412
RW
Parameter #11
UINT16
Ubc Under Deviation
10049
49013
49413
RW
Parameter #12
UINT16
Uca Under Deviation
10050
49014
49414
RW
Parameter #13
UINT16
Freq. Deviation
10051
49015
49415
RW
Parameter #14
UINT16
U0 Unbal.
10055
49016
49416
RW
Parameter #15
UINT16
U2 Unbal.
10056
49017
49417
RW
Parameter #16
UINT16
I0 Unbal.
10057
49018
49418
RW
Parameter #17
UINT16
I2 Unbal.
10058
49019
49419
RW
Parameter #18
UINT16
U4 RMS
10005
49020
49420
RW
Parameter #19
UINT16
I4 RMS
10014
49021
49421
RW
Parameter #20
UINT16
Reserved
Table 5-60 Max. Recorder #2 Setup
Notes:
1) The Self-Read Time supports the following two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
5.8.11.3 Max./Min. Recorder #3 Setup
Register
Property
Description
Format
Range/Options
Default
Max.
Min.
49100
49500
RW
Self-read Time
UINT16 0
49101
49501
RW
Number of Parameters
UINT16
0 to 20
20
49102
49502
RW
Parameter #1
UINT16
U1
10061
49103
49503
RW
Parameter #2
UINT16
U2
10060
49104
49504
RW
Parameter #3
UINT16
U0
10059
49105
49505
RW
Parameter #4
UINT16
I1
10064
49106
49506
RW
Parameter #5
UINT16
I2
10063
49107
49507
RW
Parameter #6
UINT16
I0
10062
49108
49508
RW
Parameter #7
UINT16
Ua THD
10103
49109
49509
RW
Parameter #8
UINT16
Ub THD
10104
49110
49510
RW
Parameter #9
UINT16
Uc THD
10105
49111
49511
RW
Parameter #10
UINT16
Ia THD
10115
49112
49512
RW
Parameter #11
UINT16
Ib THD
10116
49113
49513
RW
Parameter #12
UINT16
Ic THD
10117
49114
49514
RW
Parameter #13
UINT16
kW TH
11715
49115
49515
RW
Parameter #14
UINT16
kvar TH
11716
49116
49516
RW
Parameter #15
UINT16
kVA TH
11717
49117
49517
RW
Parameter #16
UINT16
P.F. TH
11718
49118
49518
RW
Parameter #17
UINT16
kW TH01
11719
49119
49519
RW
Parameter #18
UINT16
kvar TH01
11720
49120
49520
RW
Parameter #19
UINT16
kVA TH01
11721
49121
49521
RW
Parameter #20
UINT16
P.F. TH01
11722
Table 5-61 Max./Min. Recorder #3 Setup
Notes:
1) The Self-Read Time supports the following two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
5.8.11.4 Max./Min. Recorder #4 Setup
Register Address
Property
Description
Format
Range/Options
Default
Max.
Min.
49200
49600
RW
Self-read Time
UINT16 0
49201
49601
RW
Number of Parameters
UINT16
0 to 20
20
49202~49221
49602~49621
RW
Parameter #1~20
UINT16
Reserved
0
Table 5-62 Max./Min. Recorder #4 Setup
Page 83
CET Electric Technology
83
Notes:
1) The Self-Read Time supports the following two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
5.8.12 EN50160 Setup
Register
Property
Description
Format
Range/Value
49790
RW
Voltage Level
UNIT16
0=LV*, 1=MV, 2=HV
49791
RW
Start Week
UNIT16
0=Sunday*
1~6=Monday to Saturday
49792~49799
RW
Reserved
49800
RW
Freq Wide Tolerance
Float
1.0
49802
RW
Freq positive deviation wide limit
Float
1.04
49804
RW
Freq negative deviation wide limit
Float
0.94
49806
RW
Freq narrow tolerance
Float
0.995
49808
RW
Freq positive deviation narrow limit
Float
1.01
49810
RW
Freq negative deviation narrow limit
Float
0.99
49812
RW
Voltage wide tolerance
Float
1.0
49814
RW
Voltage positive deviation wide limit
Float
LV: 1.1
MV/LV: 1.15
49816
RW
Voltage negative deviation wide limit
Float
0.85
49818
RW
Voltage narrow tolerance
Float
LV: 0.95
MV/HV: 0.99
49820
RW
Voltage positive deviation narrow limit
Float
1.1
49822
RW
Voltage negative deviation narrow limit
Float
0.9
49824
RW
Flicker tolerance
Float
0.95
49826
RW
Flicker limit
Float 1 49828
RW
Voltage Unbalance tolerance
Float
0.95
49830
RW
Voltage Unbalance limit
Float
0.02
49832
RW
Harmonic Voltage tolerance
Float
0.95
49834
RW
THD limit
Float
0.08
49836
RW
Reserved
Float 49838
RW
Reserved
Float
49840
RW
H02 Voltage limit
Float
LV/MV: 0.02
HV: 0.019
49842
RW
H03 Voltage limit
Float
LV/MV: 0.05
HV: 0.03
49844
RW
H04 Voltage limit
0.01
49846
RW
H05 Voltage limit
Float
LV/MV: 0.06
HV: 0.05
49848
RW
H06 Voltage limit
Float
0.005
49850
RW
H07 Voltage limit
Float
LV/MV: 0.05
HV: 0.04
49852
RW
H08 Voltage limit
Float
0.005
49854
RW
H09 Voltage limit
Float
LV/MV:0.015
HV: 0.013
49856
RW
H10 Voltage limit
Float
0.005
49858
RW
H11 Voltage limit
Float
LV/MV:0.035
HV: 0.03
49860
RW
H12 Voltage limit
Float
0.005
49862
RW
H13 Voltage limit
Float
LV/MV:0.03
HV: 0.025
49864
RW
H14 Voltage limit
Float
0.005
49866
RW
H15 Voltage limit
Float
0.005
49868
RW
H16 Voltage limit
Float
0.005
49870
RW
H17 Voltage limit
Float
0.02
49872
RW
H18 Voltage limit
Float
0.005
49874
RW
H19 Voltage limit
Float
0.015
49876
RW
H20 Voltage limit
Float
0.005
49878
RW
H21 Voltage limit
Float
0.005
49880
RW
H22 Voltage limit
Float
0.005
49882
RW
H23 Voltage limit
Float
0.015
Page 84
CET Electric Technology
84
49884
RW
H24 Voltage limit
Float
0.005
49886
RW
H25 Voltage limit
Float
0.015
49888
RW
Reserved
Float
0
Table 5-63 EN50160 Parameters Setup
5.8.13 Trend Log Setup
The Trend Log is displayed on the PMC-690's Front Panel Interface. Up to 12 parameters can be
displayed at the same time. The Trend Log parameters must be part of the SDR Log.
Register
Property
Description
Format
Range/Option
50050
RW
Number of Parameters
UINT16
0 to12, (Default=12)
50051
RW
Parameter #1: Freq.
UINT16
50052
RW
Parameter #2: Ua RMS
UINT16
50053
RW
Parameter #3: Ub RMS
UINT16
50054
RW
Parameter #4: Uc RMS
UINT16
50055
RW
Parameter #5: Ia RMS
UINT16
50056
RW
Parameter #6: Ib RMS
UINT16
50057
RW
Parameter #7: Ic RMS
UINT16
50058
RW
Parameter #8: kWh Total
UINT16
50059
RW
Parameter #9: kvarh Total
UINT16
50060
RW
Parameter #10: kVAh Total
UINT16
50061
RW
Parameter #11: P.F. TH01
UINT16
50062
RW
Parameter #12: reserved
UINT16
Table 5-64 Trend Log Setup
5.8.14 System Setup
Register
Property
Description
Format
Range / Options
Default
40800
RW
Clock Source1
UINT16
0=RTC, 1=SNTP
0
40801
RW
Time Zone2
UINT16
0 to 32
26
40802
RW
Reserved
UINT16
40803
RW
Language
UINT16
0=English
0
40804
RW
Date Format
UINT16
0=YYMMDD 1=MMDDYY
2=DDMMYY 3=YY-MM-DD 4=MM-DD-YY 5=DD-MM-YY
0
40805
RW
Reserved
40806
RW
Backlight Timeout
UINT16
0 to 60 min
5
40807
RW
LCD Contrast (%)
UINT16
50 to 100
90
40808
RW
Phase A Color
UINT16
0=Brown, 1=Red
2=Pink, 3=Orange
4=Yellow, 5=Yellow-green
6=Green, 7=Light-blue
8=Dark-blue
9=Purple, 10=Gray
11=Natural Gray
12=White, 13=Black
4
40809
RW
Phase B Color
UINT16
6
40810
RW
Phase C Color
UINT16
1
40811
RW
Phase N Color
UINT16
13
40812
RW
Earth Wire Color
UINT16
0=Green
2= Yellow-green
1
40813
RW
Set Password
UINT32
0~999999
0
40815~40817
RW
Reserved
UINT32
40819
RW
Time Zone of data timestamp
1
UINT16 0
40820
RW
Reserved
UINT16
0=ITIC, 1=SEMI F47
0
40821
RW
Set Interval
UINT16
0=50/60cycles
1=150/180cycles
2=10min, 3=2hour
0
40822
RW
Freq. Interval
UINT16
0=1s, 1=3s, 2=10s
0
40823
RW
Reserved
UINT16
40824
RW
Sampling Section of DWR .cfg
File
4
UINT16
0=0
1=Actual Sampling
0
40825
RW
Eliminate Flagged Data
UINT16
0=Disabled, 1=Enabled
0
Page 85
CET Electric Technology
85
BIT0: SDR Log
BIT1: Max. Log
BIT2: Min. Log
BIT3: EN50160
Others: Reserved
40826~40833
RW
FTP User name
char
40834~40841
RW
FTP Password
char
40842
RW
Login FTP with Anonymous
uint16
0= Enabled, 1= Disabled
0
40843
RW
FTP Visible
uint16
0= Enabled, 1= Disabled
0
40844
RW
TELNET Visible
uint16
0= Enabled, 1= Disabled
0
Table 5-65 System Setup Parameters
Notes:
1) The following table lists the Codes for different Time Zones.
Code
Time Zone
Code
Time Zone
Code
Time Zone
0
GMT-12:00
11
GMT-2:00
22
GMT+5:45
1
GMT-11:00
12
GMT-1:00
23
GMT+6:00
2
GMT-10:00
13
GMT-0:00
24
GMT+6:30
3
GMT-9:00
14
GMT+1:00
25
GMT+7:00
4
GMT-8:00
15
GMT+2:00
26
GMT+8:00
5
GMT-7:00
16
GMT+3:00
27
GMT+9:00
6
GMT-6:00
17
GMT+3:30
28
GMT+9:30
7
GMT-5:00
18
GMT+4:00
29
GMT+10:00
8
GMT-4:00
19
GMT+4:30
30
GMT+11:00
9
GMT-3:30
20
GMT+5:00
31
GMT+12:00
10
GMT-3:00
21
GMT+5:30
32
GMT+13:00
Table 5-66 Time Zones
2) The timestamp of historical data is programmable which is illustrates below:
0: local time
1: UTC time
BIT
Description
Note
BIT0
MODBUS
Timestamp of retrived Data log via Modbus: Real-time measurement, Device/PQLOG, SDR, Real-time measurements, Max./Min. log, Plt/Pst
BIT1
COMTRADE
Timestamp of COMTRADE file and the first/trigger point in .cfg file
BIT2
PQDIF
Timestamp of PQDIF file, file name and store directory.
Table 5-67 Timestamp of Historical Data
3) 0 means the DWR file doesn’t involve sampling section information.
5.9 Time Registers
There are two sets of Time registers supported by the PMC-690 - Year / Month / Day / Hour / Minute /
Second (Registers # 60000 to 60002 for 6-digit addressing and Registers # 9000 to 9002 for 5-digit
addressing) and UNIX Time (Registers # 60004 to 600005 for 6-digit addressing and Registers # 9004 to
9005 for 5-digit addressing). When sending time to the PMC-690 over Modbus communications, care
should be taken to only write one of the two Time register sets. All registers within a Time register set
must be written in a single transaction. If registers 60000 to 60004 (or 9000 to 9004 for 5-digit
addressing) are being written to at the same time, both Time register sets will be updated to reflect the
new time specified in the UNIX Time register set 60004 (9004) where the time specified in registers
60000 to 60003 (9000-9003 for 5-digit addressing) will be ignored. Writing to the Millisecond register
60003 (9003 for 5-digit addressing) is optional during a Time Set operation. When broadcasting time,
the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect date or time values will be
rejected by the meter.
Register
Property
Description
Format
Note
6-digit
5-digit
60000
9000
RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
Page 86
CET Electric Technology
86
60001
9001
RW
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002
9002
RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003
RW
Millisecond
UINT16
0 to 999
60004-60005
9004-9005
RW
UNIX Time
UINT32
(0 to 2145916799) This time shows the number of seconds since 00:00:00 January
1, 2000
Table 5-68 Time Registers
5.10 Information
5.10.1 Meter Information
Register
Property
Description
Format
Note
60200~60219
9800~9819
RO
Meter Model1
Char
See Note 1
60220
9820
RO
Firmware Version
UINT16
e.g. 10000 shows the version is V1.00.00
60221
9821
RO
Modbus Version
UINT16
e.g. 10 shows the version is V1.0
60222
9822
RO
IEC 61850 Version
UINT16
e.g. 0100 means the version is V01.00 e.g. 0000 means no 61850 support or 61850 version number error
60223
9823
RO
Hardware Version
UINT16
e.g. 10 shows the version is V1.0
60224
9824
RO
PPC Firmware Update Date:
Year-2000
UINT16
e.g. 130709 means July 9,2013
60225
9825
RO
PPC Firmware Update Date:
Month
UINT16
60226
9826
RO
PPC Firmware Update Date:
Day
UINT16
60227
9827
Serial Number:
AA(Year-2000) - BB(Month) -
CC(Lot Number) - DDDD(Meter
Number)
UINT32
60229~60233
9829
RO
Reserved
60235
9835
RO
Self-Diagnostics - ARM
UNIT32
Bit0: System Parameters Error Bit1: Secret Parameters Error Bit2: DSP Error Bit3: Memory Configuration Error
60237
9837 Self-Diagnostics - DSP
UNIT32
Bit0: AD Error
60239
9839
RO
Reserved
UNIT32 60241
9841
RO
Reserved
UNIT32 60243
9843
RO
MAC 1 Address-01
UNIT16
0x00A0
60244
9844
RO
MAC 1 Address-23
UNIT16
0x1EA0
60245
9845
RO
MAC 1 Address-45
UNIT16
0xAAA0
60246
9846
RO
Reserved
UNIT16
0x00A0
60247
9847
RO
Reserved
UNIT16
0x1EA1
60248
9848
RO
Reserved
UNIT16
0xAAA0
60249
9849
RO
Memory Capacity
UNIT16
Units: MB
60250
9850
RO
Remaining Memory
UNIT16
Units: MB
Table 5-69 Meter Information
Notes:
1) The Meter Model appears in registers 60200 to 60219 and contains the ASCII encoding of the string “PMC-690” as shown
in the following table.
Offset Address
Value(Hex)
ANSCII
60200
0x50
P
60201
0x4D
M
60202
0x43
C
60203
0x2D
-
60204
0x36
6
60205
0x39
9
60206
0x30
0
Page 87
CET Electric Technology
87
60207-60219
0x20
<Null>
Table 5-70 ASCII Encoding of “PMC-690”
5.10.2 Device Tag Information
Register Address
Property
Description
Format
Note
40600
RW
Supply Company Tag 11
Char
Devtag 0
40630
RW
Supply Company Tag 2
Char
Devtag 1
40660
RW
Substation Name
Char
Devtag 2
40690
RW
Voltage Level
Char
Devtag 3
Table 5-71 Device Tag Information
Notes:
1) However, the PMC-690's Front Panel Interface supports the display of up to 39 characters only.
5.10.3 Circuit Tag Information
Register
Property
Description
Format
Note
52000
RW
Circuit Name
Char
60 characters
52008
RW
Bus Name
Char
60 characters
52038
RW
Monitoring Name
Char
60 characters
52068
RW
Monitoring Voltage Level
Char
60 characters
52098
RW
Assets Management ID
Char
60 characters
52128
RW
Monitoring Network ID
Char
60 characters
52158
RW
Commissioning Date
Char
60 characters
52188
RW
Exclusive Use (Yes/No)
Char
60 characters
52218
RW
Minimum Short Circuit Capacity
Char
60 characters
52248
RW
Power Supply Capacity
Char
60 characters
52278
RW
Customer Usage Agreement
Char
60 characters
52308
RW
Comtrade Tag
Char
60 characters
Table 5-72 Circuit Tag Information
Page 88
CET Electric Technology
88
Appendix A - Data ID
SDR Data ID
Key ID
Parameters
50-cycle
150-cycle
10-min
2-hour
1
10001
20001
30001
FREQ
2
10002
20002
30002
Ua
3
10003
20003
30003
Ub
4
10004
20004
30004
Uc
5
10005
20005
30005
U4
6
10006
20006
30006
Uln Avg.
7
10007
20007
30007
Uab
8
10008
20008
30008
Ubc
9
10009
20009
30009
Uca
10
10010
20010
30010
Ull Avg.
11
10011
20011
30011
Ia
12
10012
20012
30012
Ib
13
10013
20013
30013
Ic
14
10014
20014
30014
I4
15
10015
20015
30015
Reserved
16
10016
20016
30016
I Avg.
17
10017
20017
30017
kWa
18
10018
20018
30018
kWb
19
10019
20019
30019
kWc
20
10020
20020
30020
kW Total
21
10021
20021
30021
kvara
22
10022
20022
30022
kvarb
23
10023
20023
30023
kvarc
24
10024
20024
30024
kvar Total
25
10025
20025
30025
kVAa
26
10026
20026
30026
kVAb
27
10027
20027
30027
kVAc
28
10028
20028
30028
kVA Total
29
10029
20029
30029
PFa
30
10030
20030
30030
PFb
31
10031
20031
30031
PFc
32
10032
20032
30032
PF Avg.
33
10033
20033
30033
Ua Dev.
34
10034
20034
30034
Ub Dev.
35
10035
20035
30035
Uc Dev.
36
10036
20036
30036
Uab Dev.
37
10037
20037
30037
Ubc Dev.
38
10038
20038
30038
Uca Dev.
39
10039
20039
30039
Ua Over Dev.
40
10040
20040
30040
Ub Over Dev.
41
10041
20041
30041
Uc Over Dev.
42
10042
20042
30042
Uab Over Dev.
43
10043
20043
30043
Ubc Over Dev.
44
10044
20044
30044
Uca Over Dev.
45
10045
20045
30045
Ua Under Dev.
46
10046
20046
30046
Ub Under Dev.
47
10047
20047
30047
Uc Under Dev.
48
10048
20048
30048
Uab Under Dev.
49
10049
20049
30049
Ubc Under Dev.
50
10050
20050
30050
Uca Under Dev.
51
10051
20051
30051
Freq. Dev.
52
10052
20052
30052
Ua Fluctuation
53
10053
20053
30053
Ub Fluctuation
54
10054
20054
30054
Uc Fluctuation
55
10055
20055
30055
U0 Unb.
56
10056
20056
30056
U2 Unb.
57
10057
20057
30057
I0 Unb.
58
10058
20058
30058
I2 Unb.
Page 89
CET Electric Technology
89
59
10059
20059
30059
U0
60
10060
20060
30060
U2
61
10061
20061
30061
U1
62
10062
20062
30062
I0
63
10063
20063
30063
I2
64
10064
20064
30064
I1
65
10065
20065
30065
Ia TDD
66
10066
20066
30066
Ib TDD
67
10067
20067
30067
Ic TDD
68
10068
20068
30068
I4 TDD
69
10069
20069
30069
Reserved
70
10070
20070
30070
Ia TDD Odd
71
10071
20071
30071
Ib TDD Odd
72
10072
20072
30072
Ic TDD Odd
73
10073
20073
30073
I4 TDD Odd
74
10074
20074
30074
Reserved
75
10075
20075
30075
Ia TDD Even
76
10076
20076
30076
Ib TDD Even
77
10077
20077
30077
Ic TDD Even
78
10078
20078
30078
I4 TDD Even
79
10079
20079
30079
Reserved
80
10080
20080
30080
Ia K-Factor
81
10081
20081
30081
Ib K-Factor
82
10082
20082
30082
Ic K-Factor
83
10083
20083
30083
I4 K-Factor
84
10084
20084
30084
Reserved
85
10085
20085
30085
Ia Crest Factor
86
10086
20086
30086
Ib Crest Factor
87
10087
20087
30087
Ic Crest Factor
88
10088
20088
30088
I4 Crest Factor
89
10089
20089
30089
Reserved
90
10090
20090
30090
Ua Crest Factor
91
10091
20091
30091
Ub Crest Factor
92
10092
20092
30092
Uc Crest Factor
93
10093
20093
30093
U4 Crest Factor
94
10094
20094
30094
Ua MSV #1
95
10095
20095
30095
Ub MSV #1
96
10096
20096
30096
Uc MSV #1
97
10097
20097
30097
Ua MSV #2
98
10098
20098
30098
Ub MSV #2
99
10099
20099
30099
Uc MSV #2
100
10100
20100
30100
Ua MSV #3
101
10101
20101
30101
Ub MSV #3
102
10102
20102
30102
Uc MSV #3
103
10103
20103
30103
Ua THD
104
10104
20104
30104
Ub THD
105
10105
20105
30105
Uc THD
106
10106
20106
30106
U4 THD
107
10107
20107
30107
Ua TOHD
108
10108
20108
30108
Ub TOHD
109
10109
20109
30109
Uc TOHD
110
10110
20110
30110
U4 TOHD
111
10111
20111
30111
Ua TEHD
112
10112
20112
30112
Ub TEHD
113
10113
20113
30113
Uc TEHD
114
10114
20114
30114
U4 TEHD
115
10115
20115
30115
Ia THD
116
10116
20116
30116
Ib THD
117
10117
20117
30117
Ic THD
118
10118
20118
30118
I4 THD
119
10119
20119
30119
Reserved
120
10120
20120
30120
Ia TOHD
121
10121
20121
30121
Ib TOHD
122
10122
20122
30122
Ic TOHD
123
10123
20123
30123
I4 TOHD
124
10124
20124
30124
Reserved
Page 90
CET Electric Technology
90
125
10125
20125
30125
Ia TEHD
126
10126
20126
30126
Ib TEHD
127
10127
20127
30127
Ic TEHD
128
10128
20128
30128
I4 TEHD
129
10129
20129
30129
Reserved
130
10130
20130
30130
Uab Fund.
131
10131
20131
30131
Ubc Fund.
132
10132
20132
30132
Uca Fund.
133
10133
20133
30133
Ua Fluct. CPM
134
10134
20134
30134
Ub Fluct. CPM
135
10135
20135
30135
Uc Fluct. CPM
Reserved
500
10500
20500
30500
Ua HD00
501
10501
20501
30501
Ub HD00
502
10502
20502
30502
Uc HD00
503
10503
20503
30503
U4 HD00
504
10504
20504
30504
Ua HD01
505
10505
20505
30505
Ub HD01
506
10506
20506
30506
Uc HD01
507
10507
20507
30507
U4 HD01
… …
748
10748
20748
30748
Ua HD62
749
10749
20749
30749
Ub HD62
750
10750
20750
30750
Uc HD62
751
10751
20751
30751
U4 HD62
752
10752
20752
30752
Ua HD63
753
10753
20753
30753
Ub HD63
754
10754
20754
30754
Uc HD63
755
10755
20755
30755
U4 HD63
756
10756
20756
30756
Ia HD00
757
10757
20757
30757
Ib HD00
758
10758
20758
30758
Ic HD00
759
10759
20759
30759
I4 HD00
760
10760
20760
30760
Reserved
761
10761
20761
30761
Ia HD01
762
10762
20762
30762
Ib HD01
763
10763
20763
30763
Ic HD01
764
10764
20764
30764
I4 HD01
765
10765
20765
30765
Reserved
1066
11066
21066
31066
Ia HD62
1067
11067
21067
31067
Ib HD62
1068
11068
21068
31068
Ic HD62
1069
11069
21069
31069
I4 HD62
1070
11070
21070
31070
Reserved
1071
11071
21071
31071
Ia HD63
1072
11072
21072
31072
Ib HD63
1073
11073
21073
31073
Ic HD63
1074
11074
21074
31074
I4 HD63
1075
11075
21075
31075
Reserved
1076
11076
21076
31076
Ua TH RMS
1077
11077
21077
31077
Ub TH RMS
1078
11078
21078
31078
Uc TH RMS
1079
11079
21079
31079
U4 TH RMS
1080
11080
21080
31080
Ua TOH RMS
1081
11081
21081
31081
Ub TOH RMS
1082
11082
21082
31082
Uc TOH RMS
1083
11083
21083
31083
U4 TOH RMS
1084
11084
21084
31084
Ua TEH RMS
1085
11085
21085
31085
Ub TEH RMS
1086
11086
21086
31086
Uc TEH RMS
1087
11087
21087
31087
U4 TEH RMS
1088
11088
21088
31088
Ia TH RMS
1089
11089
21089
31089
Ib TH RMS
1090
11090
21090
31090
Ic TH RMS
1091
11091
21091
31091
I4 TH RMS
Page 91
CET Electric Technology
91
1092
11092
21092
31092
Reserved
1093
11093
21093
31093
Ia TOH RMS
1094
11094
21094
31094
Ib TOH RMS
1095
11095
21095
31095
Ic TOH RMS
1096
11096
21096
31096
I4 TOH RMS
1097
11097
21097
31097
Reserved
1098
11098
21098
31098
Ia TEH RMS
1099
11099
21099
31099
Ib TEH RMS
1100
11100
21100
31100
Ic TEH RMS
1101
11101
21101
31101
I4 TEH RMS
1102
11102
21102
31102
Reserved
1103
11103
21103
31103
Ua DC Component
1104
11104
21104
31104
Ub DC Component
1105
11105
21105
31105
Uc DC Component
1106
11106
21106
31106
U4 DC Component
1111
11111
21111
31111
Ua H02 RMS
1112
11112
21112
31112
Ub H02 RMS
1113
11113
21113
31113
Uc H02 RMS
1114
11114
21114
31114
U4 H02 RMS
1115
11115
21115
31115
Ua H03 RMS
1116
11116
21116
31116
Ub H03 RMS
1117
11117
21117
31117
Uc H03 RMS
1118
11118
21118
31118
U4 H03 RMS
1351
11351
21351
31351
Ua H62 RMS
1352
11352
21352
31352
Ub H62 RMS
1353
11353
21353
31353
Uc H62 RMS
1354
11354
21354
31354
U4 H62 RMS
1355
11355
21355
31355
Ua H63 RMS
1356
11356
21356
31356
Ub H63 RMS
1357
11357
21357
31357
Uc H63 RMS
1358
11358
21358
31358
U4 H63 RMS
1359
11359
21359
31359
Ia DC Component
1360
11360
21360
31360
Ib DC Component
1361
11361
21361
31361
Ic DC Component
1362
11362
21362
31362
I4 DC Component
1363
11363
21363
31363
Reserved
1364
11364
21364
31364
Ia Fund.
1365
11365
21365
31365
Ib Fund.
1366
11366
21366
31366
Ic Fund.
1367
11367
21367
31367
I4 Fund.
1368
11368
21368
31368
Reserved
1369
11369
21369
31369
Ia H02 RMS
1370
11370
21370
31370
Ib H02 RMS
1371
11371
21371
31371
Ic H02 RMS
1372
11372
21372
31372
I4 H02 RMS
1373
11373
21373
31373
Reserved
1374
11374
21374
31374
Ia H03 RMS
1375
11375
21375
31375
Ib H03 RMS
1376
11376
21376
31376
Ic H03 RMS
1377
11377
21377
31377
I4 H03 RMS
1378
11378
21378
31378
Reserved
1669
11669
21669
31669
Ia H62 RMS
1670
11670
21670
31670
Ib H62 RMS
1671
11671
21671
31671
Ic H62 RMS
1672
11672
21672
31672
I4 H62 RMS
1673
11673
21673
31673
Reserved
1674
11674
21674
31674
Ia H63 RMS
1675
11675
21675
31675
Ib H63 RMS
1676
11676
21676
31676
Ic H63 RMS
1677
11677
21677
31677
I4 H63 RMS
1678
11678
21678
31678
Reserved
1679
11679
21679
31679
kWa TH
1680
11680
21680
31680
kWb TH
1681
11681
21681
31681
kWc TH
Page 92
CET Electric Technology
92
1682
11682
21682
31682
kvara TH
1683
11683
21683
31683
kvarb TH
1684
11684
21684
31684
kvarc TH
1685
11685
21685
31685
kVAa TH
1686
11686
21686
31686
kVAb TH
1687
11687
21687
31687
kVAc TH
1688
11688
21688
31688
PFa TH
1689
11689
21689
31689
PFb TH
1690
11690
21690
31690
PFc TH
1691
11691
21691
31691
kWa TH SUM
1692
11692
21692
31692
kWb TH SUM
1693
11693
21693
31693
kWc TH SUM
1694
11694
21694
31694
kvara TH SUM
1695
11695
21695
31695
kvarb TH SUM
1696
11696
21696
31696
kvarc TH SUM
1697
11697
21697
31697
kVAa TH SUM
1698
11698
21698
31698
kVAb TH SUM
1699
11699
21699
31699
kVAc TH SUM
1703
11703
21703
31703
kWa TH ABS
1704
11704
21704
31704
kWb TH ABS
1705
11705
21705
31705
kWc TH ABS
1706
11706
21706
31706
kvara TH ABS
1707
11707
21707
31707
kvarb TH ABS
1708
11708
21708
31708
kvarc TH ABS
1709
11709
21709
31709
kVAa TH ABS
1710
11710
21710
31710
kVAb TH ABS
1711
11711
21711
31711
kVAc TH ABS
1715
11715
21715
31715
kW Total TH
1716
11716
21716
31716
kvar Total TH
1717
11717
21717
31717
kVA Total TH
1718
11718
21718
31718
PF Avg. TH
1719
11719
21719
31719
kW Total Fund.
1720
11720
21720
31720
kvar Total Fund.
1721
11721
21721
31721
kVA Total Fund.
1722
11722
21722
31722
dPF
1723
11723
21723
31723
kW Total H02
1724
11724
21724
31724
kvar Total H02
1725
11725
21725
31725
kVA Total H02
1726
11726
21726
31726
PF H02
1727
11727
21727
31727
kW Total H03
1728
11728
21728
31728
kvar Total H03
1729
11729
21729
31729
kVA Total H03
1730
11730
21730
31730
PF H03
1963
11963
21963
31963
kW Total H62
1964
11964
21964
31964
kvar Total H62
1965
11965
21965
31965
kVA Total H62
1966
11966
21966
31966
PF H62
1967
11967
21967
31967
kW Total H63
1968
11968
21968
31968
kvar Total H63
1969
11969
21969
31969
kVA Total H63
1970
11970
21970
31970
PF H63
1971
11971
21971
31971
kWa Fund.
1972
11972
21972
31972
kWb Fund.
1973
11973
21973
31973
kWc Fund.
1974
11974
21974
31974
kvara Fund.
1975
11975
21975
31975
kvarb Fund.
1976
11976
21976
31976
kvarc Fund.
1977
11977
21977
31977
kVAa Fund.
1978
11978
21978
31978
kVAb Fund.
1979
11979
21979
31979
kVAc Fund.
1980
11980
21980
31980
dPFa
1981
11981
21981
31981
dPFb
1982
11982
21982
31982
dPFc
1983
11983
21983
31983
kWa H02
1984
11984
21984
31984
kWb H02
Page 93
CET Electric Technology
93
1985
11985
21985
31985
kWc H02
1986
11986
21986
31986
kvara H02
1987
11987
21987
31987
kvarb H02
1988
11988
21988
31988
kvarc H02
1989
11989
21989
31989
kVAa H02
1990
11990
21990
31990
kVAb H02
1991
11991
21991
31991
kVAc H02
1992
11992
21992
31992
PFa H02
1993
11993
21993
31993
PFb H02
1994
11994
21994
31994
PFc H02
2715
12715
22715
32715
kWa H63
2716
12716
22716
32716
kWb H63
2717
12717
22717
32717
kWc H63
2718
12718
22718
32718
kvara H63
2719
12719
22719
32719
kvarb H63
2720
12720
22720
32720
kvarc H63
2721
12721
22721
32721
kVAa H63
2722
12722
22722
32722
kVAb H63
2723
12723
22723
32723
kVAc H63
2724
12724
22724
32724
PFa H63
2725
12725
22725
32725
PFb H63
2726
12726
22726
32726
PFc H63
2727
12727
22727
32727
Ua TIHD
2728
12728
22728
32728
Ub TIHD
2729
12729
22729
32729
Uc TIHD
2730
12730
22730
32730
U4 TIHD
2731
12731
22731
32731
Ua TOIHD
2732
12732
22732
32732
Ub TOIHD
2733
12733
22733
32733
Uc TOIHD
2734
12734
22734
32734
U4 TOIHD
2735
12735
22735
32735
Ua TEIHD
2736
12736
22736
32736
Ub TEIHD
2737
12737
22737
32737
Uc TEIHD
2738
12738
22738
32738
U4 TEIHD
2739
12739
22739
32739
Ia TIHD
2740
12740
22740
32740
Ib TIHD
2741
12741
22741
32741
Ic TIHD
2742
12742
22742
32742
I4 TIHD
2743
12743
22743
32743
Reserved
2744
12744
22744
32744
Ia TOIHD
2745
12745
22745
32745
Ib TOIHD
2746
12746
22746
32746
Ic TOIHD
2747
12747
22747
32747
I4 TOIHD
2748
12748
22748
32748
Reserved
2749
12749
22749
32749
Ia TEIHD
2750
12750
22750
32750
Ib TEIHD
2751
12751
22751
32751
Ic TEIHD
2752
12752
22752
32752
I4 TEIHD
2753
12753
22753
32753
Reserved
2754
12754
22754
32754
Ua IHD00
2755
12755
22755
32755
Ub IHD00
2756
12756
22756
32756
Uc IHD00
2757
12757
22757
32757
U4 IHD00
2758
12758
22758
32758
Ua IHD01
2759
12759
22759
32759
Ub IHD01
2760
12760
22760
32760
Uc IHD01
2761
12761
22761
32761
U4 IHD01
… …
3006
13006
23006
33006
Ua IHD63
3007
13007
23007
33007
Ub IHD63
3008
13008
23008
33008
Uc IHD63
3009
13009
23009
33009
U4 IHD63
3010
13010
23010
33010
Ia IHD00
3011
13011
23011
33011
Ib IHD00
3012
13012
23012
33012
Ic IHD00
Page 94
CET Electric Technology
94
3013
13013
23013
33013
I4 IHD00
3014
13014
23014
33014
Reserved
3015
13015
23015
33015
Ia IHD01
3016
13016
23016
33016
Ib IHD01
3017
13017
23017
33017
Ic IHD01
3018
13018
23018
33018
I4 IHD01
3019
13019
23019
33019
Reserved
… …
3325
13325
23325
33325
Ia IHD63
3326
13326
23326
33326
Ib IHD63
3327
13327
23327
33327
Ic IHD63
3328
13328
23328
33328
I4 IHD63
3329
13329
23329
33329
Reserved
3330
13330
23330
33330
Ua TIH RMS
3331
13331
23331
33331
Ub TIH RMS
3332
13332
23332
33332
Uc TIH RMS
3333
13333
23333
33333
U4 TIH RMS
3334
13334
23334
33334
Ua TOIH RMS
3335
13335
23335
33335
Ub TOIH RMS
3336
13336
23336
33336
Uc TOIH RMS
3337
13337
23337
33337
U4 TOIH RMS
3338
13338
23338
33338
Ua TEIH RMS
3339
13339
23339
33339
Ub TEIH RMS
3340
13340
23340
33340
Uc TEIH RMS
3341
13341
23341
33341
U4 TEIH RMS
3342
13342
23342
33342
Ia TIH RMS
3343
13343
23343
33343
Ib TIH RMS
3344
13344
23344
33344
Ic TIH RMS
3345
13345
23345
33345
I4 TIH RMS
3346
13346
23346
33346
Reserved
3347
13347
23347
33347
Ia TOIH RMS
3348
13348
23348
33348
Ib TOIH RMS
3349
13349
23349
33349
Ic TOIH RMS
3350
13350
23350
33350
I4 TOIH RMS
3351
13351
23351
33351
Reserved
3352
13352
23352
33352
Ia TEIH RMS
3353
13353
23353
33353
Ib TEIH RMS
3354
13354
23354
33354
Ic TEIH RMS
3355
13355
23355
33355
I4 TEIH RMS
3356
13356
23356
33356
Reserved
3357
13357
23357
33357
Ua IH00 RMS
3358
13358
23358
33358
Ub IH00 RMS
3359
13359
23359
33359
Uc IH00 RMS
3360
13360
23360
33360
U4 IH00 RMS
3361
13361
23361
33361
Ua IH01 RMS
3362
13362
23362
33362
Ub IH01 RMS
3363
13363
23363
33363
Uc IH01 RMS
3364
13364
23364
33364
U4 IH01 RMS
… …
3609
13609
23609
33609
Ua IH63 RMS
3610
13610
23610
33610
Ub IH63 RMS
3611
13611
23611
33611
Uc IH63 RMS
3612
13612
23612
33612
U4 IH63 RMS
3613
13613
23613
33613
Ia IH00 RMS
3614
13614
23614
33614
Ib IH00 RMS
3615
13615
23615
33615
Ic IH00 RMS
3616
13616
23616
33616
I4 IH00 RMS
3617
13617
23617
33617
Reserved
3618
13618
23618
33618
Ia IH01 RMS
3619
13619
23619
33619
Ib IH01 RMS
3620
13620
23620
33620
Ic IH01 RMS
3621
13621
23621
33621
I4 IH01 RMS
3622
13622
23622
33622
Reserved
… …
3928
13928
23928
33928
Ia IH63 RMS
3929
13929
23929
33929
Ib IH63 RMS
Page 95
CET Electric Technology
95
3930
13930
23930
33930
Ic IH63 RMS
3931
13931
23931
33931
I4 IH63 RMS
3932
13932
23932
33932
Reserved
3933
13933
23933
33933
Ua Angle
3934
13934
23934
33934
Ub Angle
3935
13935
23935
33935
Uc Angle
3936
13936
23936
33936
U4 Angle
3937
13937
23937
33937
Ia Angle
3938
13938
23938
33938
Ib Angle
3939
13939
23939
33939
Ic Angle
3940
13940
23940
33940
I4 Angle
3941
13941
23941
33941
Reserved
3942
13942
23942
33942
Ua Fund. Angle
3943
13943
23943
33943
Ub Fund. Angle
3944
13944
23944
33944
Uc Fund. Angle
3945
13945
23945
33945
U4 Fund. Angle
3946
13946
23946
33946
Ua H02 Angle
3947
13947
23947
33947
Ub H02 Angle
3948
13948
23948
33948
Uc H02 Angle
3949
13949
23949
33949
U4 H02 Angle
… …
4190
14190
24190
34190
Ua H63 Angle
4191
14191
24191
34191
Ub H63 Angle
4192
14192
24192
34192
Uc H63 Angle
4193
14193
24193
34193
U4 H63 Angle
4194
14194
24194
34194
Ia Fund. Angle
4195
14195
24195
34195
Ib Fund. Angle
4196
14196
24196
34196
Ic Fund. Angle
4197
14197
24197
34197
I4 Fund. Angle
4198
14198
24198
34198
Reserved
4199
14199
24199
34199
Ia H02 Angle
4200
14200
24200
34200
Ib H02 Angle
4201
14201
24201
34201
Ic H02 Angle
4202
14202
24202
34202
I4 H02 Angle
4203
14203
24203
34203
Reserved
… …
4504
14504
24504
34504
Ia H63 Angle
4505
14505
24505
34505
Ib H63 Angle
4506
14506
24506
34506
Ic H63 Angle
4507
14507
24507
34507
I4 H63 Angle
4508
14508
24508
34508
Reserved
Key ID
Parameters
50001
Ua Pst
50002
Ub Pst
50003
Uc Pst
50004
Ua Plt
50005
Ub Plt
50006
Uc Plt
55000~55021
Reserved
Demand Data ID
Key ID
Parameters
Key ID
Parameters
Key ID
Parameters
Present Demand
51001
Ua
51036
PFa
51071
Uc THD
51002
Ub
51037
PFb
51072
U4 THD
51003
Uc
51038
PFc
51073
Ia THD
51004
Uln
51039
PF Avg.
51074
Ib THD
51005
U4
51040
Freq.
51075
Ic THD
51006
Uab
51041
Ua Dev.
51076
I4 THD
51007
Ubc
51042
Ub Dev.
51077
Reserved
Page 96
CET Electric Technology
96
51008
Uca
51043
Uc Dev.
51078
Ua TOHD
51009
Ull Avg.
51044
Uab Dev.
51079
Ub TOHD
51010
Ia
51045
Ubc Dev.
51080
Uc TOHD
51011
Ib
51046
Uca Dev.
51081
U4 TOHD
51012
Ic
51047
Ua Over Dev.
51082
Ia TOHD
51013
I Avg.
51048
Ub Over Dev.
51083
Ib TOHD
51014
I4
51049
Uc Over Dev.
51084
Ic TOHD
51015
Reserved
51050
Uab Over Dev.
51085
I4 TOHD
51016
kWa Imp.
51051
Ubc Over Dev.
51086
Reserved
51017
kWb Imp.
51052
Uca Over Dev.
51087
Ua TEHD
51018
kWc Imp.
51053
Ua Under Dev.
51088
Ub TEHD
51019
kW Total Imp.
51054
Ub Under Dev.
51089
Uc TEHD
51020
kWa Exp.
51055
Uc Under Dev.
51090
U4 TEHD
51021
kWb Exp.
51056
Uab Under Dev.
51091
Ia TEHD
51022
kWc Exp.
51057
Ubc Under Dev.
51092
Ib TEHD
51023
kW Total Exp.
51058
Uca Under Dev.
51093
Ic TEHD
51024
kvara Imp.
51059
Freq. Dev.
51094
I4 TEHD
51025
kvarb Imp.
51060
U0 Unb.
51095
Reserved
51026
kvarc Imp.
51061
U2 Unb.
51096
Ia Fund.
51027
kvar Total Imp.
51062
I0 Unb.
51097
Ib Fund.
51028
kvara Exp.
51063
I2 Unb.
51098
Ic Fund.
51029
kvarb Exp.
51064
Ia K-Factor
51099
I4 Fund.
51030
kvar c Exp.
51065
Ib K-Factor
51100
Reserved
51031
kvar Total Exp.
51066
Ic K-Factor
51101
Reserved
51032
kVAa
51067
I4 K-Factor
51102
Reserved
51033
kVAb
51068
Reserved
51103
Reserved
51034
kVAc
51069
Ua THD
51104
Reserved
51035
kVA Total
51070
Ub THD
51071
Predicted Demand
52001
Ua Pred.
52015
Reserved.
52029
kvarb Exp. Pred.
52002
Ub Pred.
52016
kWa Imp. Pred.
52030
kvarc Exp. Pred.
52003
Uc Pred.
52017
kWb Imp. Pred.
52031
kvar Total Exp. Pred.
52004
Uln Pred.
52018
kWc Imp. Pred.
52032
kVAa Pred.
52005
U4 Pred.
52019
kW Total Imp. Pred.
52033
kVAb Pred.
52006
Uab Pred.
52020
kWa Exp. Pred.
52034
kVAc Pred.
52007
Ubc Pred.
52021
kWb Exp. Pred.
52035
kVA Total Pred.
52008
Uca Pred.
52022
kWc Exp. Pred.
52036
PFa Pred.
52009
Ull Avg. Pred.
52023
kW Total Exp. Pred.
52037
PFb Pred.
52010
Ia Pred.
52024
kvara Imp. Pred.
52038
PFc Pred.
52011
Ib Pred.
52025
kvarb Imp. Pred.
52039
PF Avg. Pred.
52012
Ic Pred.
52026
kvarc Imp. Pred.
52040
Freq. Pred.
52013
I Avg. Pred.
52027
kvar Total Imp. Pred.
52014
I4 Pred.
52028
kvara Exp. Pred.
Max./Min. Demand
53001
kW Total Imp. Max.
53010
Ib Fund. Max.
54006
Ia Last Max.
53002
kW Total Exp. Max.
53011
Ic Fund. Max.
54007
Ib Last Max.
53003
kvar Total Imp. Max.
53012
I4 Fund. Max.
54008
Ic Last Max.
53004
kvar Total Exp. Max.
53013
Reserved
54009
Ia Fund. Last Max.
53005
kVA Total Max.
54001
kW Total Imp. Last Max.
54010
Ib Fund. Last Max.
53006
Ia Max.
54002
kW Total Exp. Last Max.
54011
Ic Fund. Last Max.
53007
Ib Max.
54003
kvar Total Imp. Last Max.
54012
I4 Fund. Last Max.
53008
Ic Max.
54004
kvar Total Exp. Last Max.
54013
Reserved
53009
Ia Fund. Max.
54005
kVA Total Last Max.
54006
Page 97
CET Electric Technology
97
Appendix B - Event Classification
Device Event Classification
Event
Classification
Sub-
Classification
Description
Value Scale/Option
1=System
0
Power On
None
1
Power Off
None
2
Change System Parameters
None
3
Change Secret Parameters
None
4
Set Clock
0= Set Clock via Front Panel
1= Set Clock via Communication
5
Reserved
6
Restore Factory Defaults
None
7
Format Device
8
Clear System Parameters
None
9
Clear Secret Parameters
None
10
Clear Device Log
None
11~33
Reserved
34
Hardware Alarm
Device self-test PPC Device self-test DSP
35
Hardware is working normally
None
36~38
Reserved
None
39
Format SD Card
None
40
Uninstallation SD Card
None
41
Start Monitoring
None
42
Stop Monitoring
None
43
Add a Site
44
Rename a Site
45
Switch Sites
46
Switch Record
47
Delete Record
2=Standard
Setpoint
0
Over Setpoint Active
UINT32: Setpoint Parameters
FP32: The Setpoint Active/ Inactive
limit (be consistent with real-time-
limit)
UINT32: Setpoint #X (0-23)
1
Over Setpoint Return
UINT32: Setpoint Parameters
FP32: The Setpoint Active/ Inactive
limit (be consistent with real-time-
limit) UINT32: Setpoint #X (0-23) FP32: Max. during Setpoint
UINT32: Duration
128
Under Setpoint Active
See Over Setpoint Active
129
Under Setpoint Return
See Over Setpoint Return
3=HS
Setpoint
0
Over Setpoint Active
UINT32: Setpoint Parameters
FP32: The Setpoint Active/ Inactive
limit (be consistent with real-time-
limit) UINT32: Setpoint #X (0-15)
1
Over Setpoint Return
UINT32: Setpoint Parameters
FP32: The Setpoint Active/ Inactive
limit (be consistent with real-time-
limit) UINT32: Setpoint #X (0-15) FP32: Max. during Setpoint
UINT32: Duration
128
Under Setpoint Active
See Over Setpoint Active
129
Under Setpoint Return
See Over Setpoint Return
5=WFR
0
WFR Triggered by RMS Change
UNIT32: 0~7=Sub RMS Change
Event Number
1
WFR Triggered by Dip/Swell
None
2
WFR Triggered by Transient
3
WFR Triggered by Standard Setpoint
UNIT32: Standard Setpoint Number
Page 98
CET Electric Technology
98
4
WFR Triggered by High-speed Setpoint
UNIT32: HS Setpoint Number
5
Reserved
6
WFR Triggered by Rapid Voltage Changes
None
7
WFR Triggered by Inrush Current
None
8
Triggered WFR Manually
None
9
Triggered WFR by Timer
6=DWR
0
DWR Triggered by RMS Change
UNIT32: 0~7=Sub RMS Change
Event Number
1
DWR Triggered by Dip/Swell
2 DWR Triggered by Transient
3
DWR Triggered by Standard Setpoint
UNIT32: Standard Setpoint Number
4
DWR Triggered by High-speed Setpoint
UNIT32: HS Setpoint Number
5
Reserved
6
DWR Triggered by Rapid Voltage Changes
None
7
DWR Triggered by Inrush Current
None 8 DWR Triggered Manually
None 9 DWR End
None
7=MSV
Recorder
0
MSV Recorder Triggered by Detected Signalling
Voltage
UNIT32:0~2=MSV#1~MSV#3
8=Reserved
Reserved
9=HS DR
Reserved
10=RMS
Record
0
RMS Record Triggered by RMS Change
UNIT32: 0~7=Sub RMS Change
Event Number
1
RMS Record Triggered by Dip/Swell
2
RMS Record Triggered by Transient
3
RMS Record Triggered by Standard Setpoint
UNIT32: Standard Setpoint Number
4
RMS Record Triggered by High-speed Setpoint
UNIT32: HS Setpoint Number
5
Reserved
6
RMS Record Triggered by Rapid Voltage Changes
None
7
Manual Triggered RMS Record
None
SOE Log Classification
SOE Log
Classification
Sub-
Classification
Description
Value Scale/Option
0X81:
Dip/Swell
0
Voltage Swell Active
UINT32
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
1
Voltage Swell Inactive
FP32: Residual Voltage Max. (%) UINT32: Duration (ms) FP32: Ua Residual FP32: Ub Residual FP32: Uc Residual FP32: Ua Benchmark FP32: Ub Benchmark FP32: Uc Benchmark
2
Voltage Dips Active
UINT32
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
3
Voltage Dips Swell Inactive
FP32: Residual Voltage Min. (%) UINT32: Duration (ms) FP32: Ua Residual FP32: Ub Residual FP32: Uc Residual FP32: Ua Benchmark FP32: Ub Benchmark FP32: Uc Benchmark
4
Voltage Interruption Active
UINT32
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
5
Voltage Interruption Inactive
FP32: Residual Voltage Min. (%) UINT32: Duration (ms) FP32: Ua Residual FP32: Ub Residual FP32: Uc Residual FP32: Ua Benchmark FP32: Ub Benchmark FP32: Uc Benchmark
Page 99
CET Electric Technology
99
6
Dips Location Detective
UINT32: Location 0=UpStream, 1=DownStream UINT32: Reliability 0=Low, 1=Middle, 2=High
0X82: Transient
0
Voltage Transient
FP32: Disturbance Max./Min. (%) UINT32: Duration (μs) FP32: Ua Disturbance (%) FP32: Ub Disturbance (%) FP32: Uc Disturbance (%)
0X83: Inrush
Current
0
Inrush Ia Active
None
1
Inrush Ib Active
2
Inrush Ic Active
3
Inrush Ia Inactive
UINT32: Duration (μs) FP32: Phase Current Disturbance (%) FP32: I
rms
during Disturbance UINT32: Start Time (s) UINT32: Start Time (ms)
4
Inrush Ib Inactive
5
Inrush Ic Inactive
0X84:RVC
0
Rapid Ua Change
FP32: Voltage Change Rate UINT32: Voltage Change Time (ms) FP32: Direction (0=Down, 1=Up) UINT32: Max. Voltage Change Rate
1
Rapid Ub Change
2
Rapid Uc Change
3
Rapid Uab Change
4
Rapid Ubc Change
5
Rapid Uca Change
0X85:MSV
0
MSV #1 Active
FP32: Frequency (Hz) uint32: Phase
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
1
MSV #1 Inactive
FP32: Frequency (Hz) FP32: Ua MSV Max. (%) FP32: Ub MSV Max. (%) FP32: Uc MSV Max. (%)
2
MSV #2 Active
FP32: Frequency (Hz) uint32: Phase
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
3
MSV #2 Inactive
FP32: Frequency (Hz) FP32: Ua MSV Max. (%) FP32: Ub MSV Max. (%) FP32: Uc MSV Max. (%)
4
MSV #3 Active
FP32: Frequency (Hz) uint32: Phase
Bit0=Phase A, Bit1= Phase B, Bit2= Phase C Bit3= AB, Bit4=BC, Bit 5=CA
5
MSV #3 Inactive
FP32: Frequency (Hz) FP32: Ua MSV Max. (%) FP32: Ub MSV Max. (%) FP32: Uc MSV Max. (%)
0X86: Relative
RMS
0
Ua RMS Change Active
FP32: Ua Diff.
1
Ub RMS Change Active
FP32: Ub Diff.
2
Uc RMS Change Active
FP32: Uc Diff.
3
U0 RMS Change Active
FP32: U0 Diff.
4
Ia RMS Change Active
FP32: Ia Diff.
5
Ib RMS Change Active
FP32: Ib Diff.
6
Ic RMS Change Active
FP32: Ic Diff.
7
I0 RMS Change Active
FP32: I0 Diff.
8
Uab RMS Change Active
FP32: Uab Diff.
9
Ubc RMS Change Active
FP32: Ubc Diff.
10
Uca RMS Change Active
FP32: Uca Diff.
Page 100
CET Electric Technology
100
Appendix C - Technical Specifications
Voltage Inputs (CH1, CH2, CH3, CH4)
Voltage Range Burden PT Ratio
Primary Secondary V4 Primary V4 Secondary
5V to 600V <0.1VA per phase
1-1,000,000V 1-690V 1-1,000,000V 1-400V
Frequency
40Hz-60Hz @ 50Hz 48Hz-72Hz @ 60Hz
CT Clamps Current Inputs (CH1, CH2, CH3, CH4)
Input Range CT Ratio
Primary Secondary I4 Primary I4 Secondary
550mV max.
1-30,000A 1-50A 1-30,000A 1-50A
Power Supply (L+, N-, G)
Power Adaptor Rated Output Burden Battery
Capacity Battery Life
Charge Time
100-240VAC± 10%, 47-63 Hz 12VDC/3A, Eff. > 75% <2.5W
7.2V, 4400mAh, Lithium 8 hours (Backlit on) 16 hours (Backlit off)
3.5 hours
LCD Display
Type Resolution Viewing Area
Color TFT LCD, Industrial Grade 640x480 115x86mm
Environmental Conditions
Operating Temp. Storage Temp. Humidity Atmospheric Pressure Pollution Degree Measurement Category
-10°C to 55°C
-20°C to 60°C 5% to 95% non-condensing 70kPa to 110kPa 2 CAT IV
Mechanical Characteristics
Unit Dimensions IP Rating
252x160x59 mm 51
Loading...