CET PMC-660 Series User Manual

Page 1
PMC-660 Series
Advanced Power Quality Meter
User Manual
Version: V1.1A
August 14, 2018
Page 2
CET Electric Technology
This manual may not be reproduced in whole or in part by any means without the express written permission from CET Electric Technology (CET).
The information contained in this Manual is believed to be accurate at the time of publication; however, CET assumes no responsibility for any errors which may appear here and reserves the right to make changes without notice. Please consult CET or your local representative for latest product specifications.
Standards Compliance
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and permanent equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
This symbol indicates the potential of personal injury or equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
2
CAUTION
Page 3
CET Electric Technology
Installation, operation and maintenance of the meter should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter must
Ensure that all incoming AC power and other power sources are turned OFF
Before connecting the meter to the power source, check the label on top of the meter to ensure that it is equipped with the appropriate power supply, and
During normal operation of the meter, hazardous voltages are present on its terminal strips and throughout the connected potential transformers (PT) and current transformers (CT). PT and CT secondary circuits are capable of generating lethal voltages and currents with their primary circuits energized. Follow standard safety precautions while performing any installation or service
Do not use the meter for primary protection functions where failure of the
device can cause fire, injury or death. The meter should only be used for
Under no circumstances should the meter be connected to a power source if it
To prevent potential fire or shock hazard, do not expose the meter to rain or
Setup procedures must be performed only by qualified personnel familiar with
DANGER
Failure to observe the following instructions may result in severe injury or death and/or equipment damage.
be installed in accordance with all local and national electrical codes.
before performing any work on the meter.
the correct voltage and current input specifications for your application.
work (i.e. removing PT fuses, shorting CT secondaries, …etc).
shadow protection if needed.
is damaged.
moisture.
the instrument and its associated electrical equipment.
DO NOT open the instrument under any circumstances.
3
Page 4
CET Electric Technology
Limited warranty
CET Electric Technology (CET) offers the customer a minimum of 12-month functional warranty on the meter for faulty parts or workmanship from the date of dispatch from the distributor. This warranty is on a return to factory for repair
CET does not accept liability for any damage caused by meter malfunctions. CET accepts no responsibility for the suitability of the meter to the application for
Failure to install, set up or operate the meter according to the instructions herein
Only CET’s duly authorized representative may open your meter. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the
basis.
which it was purchased.
will void the warranty.
electronic components and will void the warranty.
4
Page 5
CET Electric Technology
Table of Contents
Chapter 1 Introduction ............................................................................................................................. 8
1.1 Overview .................................................................................................................................... 8
1.2 Features ...................................................................................................................................... 8
1.3 PMC-660’s application in Power and Energy Management Systems ....................................... 11
1.4 Getting more information ........................................................................................................ 12
Chapter 2 Installation ............................................................................................................................. 13
2.1 Appearance .............................................................................................................................. 13
2.2 Unit Dimensions ....................................................................................................................... 14
2.3 Terminal Dimensions ................................................................................................................ 14
2.4 Mounting .................................................................................................................................. 14
2.5 Wiring Connections .................................................................................................................. 15
2.5.1 3-Phase 4-Wire Wye Direct Connection with 3CTs or 4CTs ........................................... 15
2.5.2 3-Phase 4-Wire Wye with 3PTs and 3CTs or 4CTs ......................................................... 16
2.5.3 3-Phase 3-Wire Grounded Wye .................................................................................... 16
2.5.4 3-Phase 3-Wire Direct Delta Connection with 3CTs or 2CTs ......................................... 17
2.5.5 3-Phase 3-Wire Open Delta with 2PTs and 3CTs or 2CTs .............................................. 17
2.6 Communications Wiring ........................................................................................................... 18
2.6.1 RS485 Port ..................................................................................................................... 18
2.6.2 Ethernet Port (10/100BaseT) ........................................................................................ 18
2.7 Digital Input Wiring .................................................................................................................. 19
2.8 GPS 1PPS Input wiring .............................................................................................................. 19
2.9 Digital Output Wiring ............................................................................................................... 19
2.10 Analog Input Wiring ............................................................................................................... 19
2.11 Analog Output Wiring ............................................................................................................ 20
2.12 Power supply Wiring .............................................................................................................. 20
2.13 Chassis Ground Wiring ........................................................................................................... 20
Chapter 3 Front Panel ............................................................................................................................. 21
3.1 Display ...................................................................................................................................... 21
3.1.1 LCD Testing .................................................................................................................... 21
3.1.2 LCD Display Areas .......................................................................................................... 21
3.1.3 Peak Demand/Max./Min. Display ................................................................................. 23
3.2 Using the Front Panel Buttons .................................................................................................. 24
3.3 Data Display .............................................................................................................................. 24
3.4 Setup Configuration via the Front Panel .................................................................................. 27
3.4.1 Making Setup Changes .................................................................................................. 27
3.4.2 Setup Menu .................................................................................................................. 28
3.4.3 Front Panel Setup Parameters ...................................................................................... 29
Chapter 4 Applications ........................................................................................................................... 33
4.1 Inputs and Outputs .................................................................................................................. 33
4.1.1 Digital Inputs ................................................................................................................. 33
4.1.2 Digital Outputs .............................................................................................................. 34
4.1.3 Energy Pulse Outputs .................................................................................................... 34
5
Page 6
CET Electric Technology
4.1.4 Analog Input .................................................................................................................. 34
4.1.5 Analog Output ............................................................................................................... 35
4.2 Power and Energy .................................................................................................................... 35
4.2.1 Basic Measurements ..................................................................................................... 35
4.2.2 Energy Measurements .................................................................................................. 36
4.2.3 Interval Energy Measurements (Firmware V2.00.00 or later) ...................................... 36
4.2.4 High-speed Measurements ........................................................................................... 36
4.2.5 Demand Measurements ............................................................................................... 36
4.2.6 Max./Min. per Demand Period ..................................................................................... 37
4.3 Power Quality ........................................................................................................................... 37
4.3.1 Phase Angles ................................................................................................................. 37
4.3.2 Power Quality Parameters ............................................................................................ 38
4.3.3 Unbalance ..................................................................................................................... 39
4.3.4 Symmetrical Components ............................................................................................. 39
4.3.5 Deviation ....................................................................................................................... 39
4.3.6 Supply Voltage Dips/Swells and Interruptions .............................................................. 39
4.3.7 Transients ...................................................................................................................... 40
4.4 Setpoints .................................................................................................................................. 40
4.5 Logical Module ......................................................................................................................... 42
4.6 Logging ..................................................................................................................................... 43
4.6.1 Max./Min. Log ............................................................................................................... 43
4.6.2 Peak Demand Log ......................................................................................................... 43
4.6.3 Interval Energy Recorder (IER) Log ................................................................................ 44
4.6.4 Waveform Recorder (WFR) Log ..................................................................................... 44
4.6.5 PQ Log ........................................................................................................................... 45
4.6.6 SOE Log ......................................................................................................................... 45
4.6.7 Data Recorder (DR) Log ................................................................................................. 45
4.7 Time of Use (TOU) .................................................................................................................... 46
4.8 Time Synchronization ............................................................................................................... 47
4.9 On-board Web Server ............................................................................................................... 48
4.10 Meter Email ............................................................................................................................ 49
4.11 Ethernet Gateway ................................................................................................................... 49
Chapter 5 Modbus Register Map ............................................................................................................ 51
5.1 Basic Measurements ................................................................................................................ 51
5.2 Energy Measurements ............................................................................................................. 53
5.2.1 Total Energy Measurements ......................................................................................... 53
5.2.2 TOU Energy Measurements .......................................................................................... 53
5.2.3 Interval Energy Measurements ..................................................................................... 55
5.3 Pulse Counter ........................................................................................................................... 55
5.4 Harmonic Measurements ......................................................................................................... 55
5.4.1 Fundamental (Displacement) Measurements .............................................................. 55
5.4.2 Harmonic Measurements ............................................................................................. 56
5.5 High-speed Measurements ...................................................................................................... 57
5.6 Demand Measurements ........................................................................................................... 57
6
Page 7
CET Electric Technology
5.6.1 Present Demand ........................................................................................................... 57
5.6.2 Predicted Demand ........................................................................................................ 58
5.6.3 Max./Min. per Demand Period ..................................................................................... 59
5.6.4 Peak Demand Log of This Month (Since Last Reset) ..................................................... 60
5.6.5 Peak Demand Log of Last Month (Before Last Reset) ................................................... 60
5.6.6 Demand Data Structure ................................................................................................ 60
5.7 Log Register .............................................................................................................................. 60
5.7.1 Max./Min. Log ............................................................................................................... 60
5.7.2 SOE Log ......................................................................................................................... 63
5.8 Log Data Format ....................................................................................................................... 64
5.8.1 Read General Reference Packet Structure (Function Code 0x14) ................................. 64
5.8.2 Energy Log Data Structure ............................................................................................ 64
5.8.3 PQ Log Data Structure ................................................................................................... 65
5.8.4 Data Recorder Log Data Structure ................................................................................ 66
5.8.5 Waveform Recorder Log Data Structure ....................................................................... 66
5.9 Device Setup ............................................................................................................................. 67
5.9.1 Basic Setup .................................................................................................................... 67
5.9.2 Setpoint Setup .............................................................................................................. 70
5.9.4 Data Recorder Setup ..................................................................................................... 73
5.9.5 Interval Energy Recorder Setup Registers ..................................................................... 74
5.9.6 Waveform Recorder (WFR) Setup ................................................................................. 75
5.9.7 TOU Setup ..................................................................................................................... 75
5.9.8 DO Control .................................................................................................................... 79
5.9.9 Clear/Reset Control ....................................................................................................... 80
5.10 Time ........................................................................................................................................ 81
5.11 Meter Information.................................................................................................................. 81
Appendix A - Data Recorder Parameter .................................................................................................. 83
Appendix B - Data Recorder Default Settings ......................................................................................... 86
Appendix C – SOE Event Classification .................................................................................................... 88
Appendix D - Technical Specifications .................................................................................................... 91
Appendix E - Standards Compliance ....................................................................................................... 93
Appendix F – Ordering Guide ................................................................................................................. 94
7
Page 8
CET Electric Technology

Chapter 1 Introduction

This manual explains how to use the PMC-660 Advanced Power Quality Meter. Throughout the manual
the term “meter” generally refers to all models.
This chapter provides an overview of the PMC-660 meter and summarizes many of its key features.

1.1 Overview

The PMC-660 is CETs latest offer for the advanced Power Quality Monitoring of Incomers and Critical
Feeders for Utilities, Data Centers, High-Tech manufacturing facilities and Heavy Industries. Housed in
an industry-standard DIN form factor measuring 96mmx96mmx125mm, the PMC-660’s compact size is
perfectly suited for today’s space restricting installations. The PMC-660 features quality construction
with metal enclosure, advanced Power Quality and Revenue-Accurate measurements, high-resolution
Waveform Recording capabilities, comprehensive Data Logging with 4MB memory, extensive I/O and
an easy-to-read LCD display, capable of displaying 5 measurements at once. With standard dual RS-485
ports and optional 100BaseT Ethernet port as well as Modbus RTU and TCP protocols support, the PMC-
660 becomes a vital component of an intelligent Power Quality Monitoring System.
You can setup the meter through its Front Panel or via our free PMC Setup software. The meter is also
supported by our PecStar® iEMS Integrated Energy Management System. Following is a list of typical
applications for the PMC-660:
Class 0.2S Revenue Metering Power Quality Monitoring of Main Incomer or Critical Feeder Utility, Industrial and Commercial Metering Substation, Building and Factory Automation Low, Medium and High Voltage applications Neutral (I4) or Residual/Leakage Current (via optional AI) Monitoring
Contact CET Technical Support should you require further assistance with your application.

1.2 Features

Ease of use
Large, backlit, easy to read LCD display with wide viewing angle Password protected setup via Front Panel or free PMC Setup software Easy installation with mounting slide bar, no tools required
Basic True RMS Measurements (1 second update)
3-Phase Voltage, Current and Power measurements Neutral Current (I4) and Frequency kWh/kvarh Import/Export/Net/Total, kVAh Total kvarh Q1 - Q4 Voltage and Current Phase Angles (equivalent to Vector Diagram) Interval Energy measurements for kWh Import/Export, kvarh Import/Export and kVAh with
programmable EN Period*
Device Operating Time (Running Hours)* Calculated Residual Current (Ir)* with the I4 measurement option
*Available in Firmware V2.00.00 or later
8
Page 9
CET Electric Technology
High-speed RMS Measurements
3-phase Voltage @ ½ cycle 3-phase Current and Neutral Current (I4) and I0 @ 1 cycle 3-phase Power and Power Factor @ 1 cycle
Power Quality
Waveform Recording at 256 samples per cycle Fundamental measurements for 3-Phase Voltage, Current, Power, PF Voltage and Current Unbalance Voltage and Frequency Deviation U and I Symmetrical Components* THD, TOHD, TEHD, K-Factor and Displacement PF Individual Harmonics up to 31
st
via Front Panel and 63rd via communications
Dip/Swell Detection and Transient Capture PQ Log with 1000 entries
*Available in Firmware V2.00.00 or later
Sliding Window and Predicted Demands
Demands and Predicted Demands for 3-Phase Voltage, Current, Power and PF as well as I4,
Frequency, U and I Unbalance and THD
Peak Demands with Timestamp for This Month and Last Month (or Since and Before Last Reset) Max./Min. values per demand interval Demand synchronization with DI
Setpoints
16 Standard Setpoints with extensive list of monitoring parameters including Voltage, Current,
Power, Demands and THD, … etc.
8 High-Speed Setpoints for High-Speed measurements and DI Configurable thresholds and time delays 6 Logical Modules supporting AND/OR/NAND/NOR operations WF Recording, Data Recorder, DO, and Email Alarm trigger
Log memory
4MB on-board memory Dynamic allocation for Data Recorder Logs, Waveform Recorder Logs and Interval Energy
Recorder Log
Multi-Tariff TOU Capability*
Two independent sets of TOU Schedules
o Up to 12 Seasons o 90 Holidays or Alternate Days o 20 Daily Profiles, each with 12 Periods with minimum 15-minute interval o 8 Tariffs, each providing kWh/kvarh Import/Export and kVAh
Switch between two TOU schedules according to programmable time with the switching event
stored in the SOE Log
Tariff switching based on DI status*
*Available in Firmware V2.00.00 or later
9
Page 10
CET Electric Technology
Waveform Recorder Log
2 independent groups of Waveform Recorders with a combined total of 32 entries Simultaneous capture of 3-Phase Voltage and Current signals Programmable formats and pre-fault cycles from 256x20 to 16x320 Support FIFO Recording Mode
Interval Energy Recorder Log
Interval recording of kWh/kvarh Import/Export and kVAh Total Support FIFO or Stop-When-Full Recording Mode
Data Recorder Log
12 Standard Data Recorder Logs and 4 High-Speed Data Recorder Logs Recording interval from 1s to 40 days for standard and 1 to 60 cycles for High-Speed DR Programmable sources include almost all real-time measurements, Harmonics, Unbalance and
Demand values
Configurable Depth and Recording Offset Support FIFO or Stop-When-Full Recording Mode
SOE Log
512 events time-stamped to ±1ms resolution Setup changes, Setpoint events and I/O operations
PQ Log
1000 entries time-stamped to ±1ms resolution Dip/Swell and Transient detection or other PQ events
Max./Min. Log
Logging of Max./Min. values for measurements such as Voltage, Current, Frequency, kW, kvar,
kVA, PF, Unbalance, K-factor, THD and Ir with Timestamp for This Month and Last Month (or Since
and Before Last Reset)
Digital Inputs
6 channels, volts free dry contact, 24VDC internally wetted 1000Hz sampling for status monitoring with programmable debounce Pulse counting with programmable weight for each channel for collecting WAGES (Water, Air, Gas,
Electricity, Steam) information
Demand Synchronization Tariff switching based on DI status*
*Available in Firmware V2.00.00 or later
Digital Outputs
Up to 3 channels Form A Mechanical Relays for alarming and control
Analog Input (Optional)
0/4-20mA DC input with programmable zero and full scales Can be used to measure external transducer signal such as Residual or Leakage Current
10
Page 11
CET Electric Technology
Analog Output (Optional)
0/4-20mA DC output with programmable zero and full scales Can be “keyed” to any measured quantity
Communications
RS-485 (Port 1 and Port 2)
o Optically isolated RS485 port o Baud rate from 1200 to 38,400bps o Modbus RTU protocol
Ethernet (optional and replaces RS-485 P2)
o 10/100BaseT Ethernet with RJ45 connection o Modbus RTU over TCP/IP, Modbus TCP, Ethernet Gateway, HTTP, SMTP, SNTP
Real-time clock
Equipped with a battery-backed Real-time Clock with 6ppm accuracy (<0.5s per day)
System Integration
Supported by CET’s PecStar® iEMS and iEEM Easy integration into other Automation, SCADA or BMS systems via Modbus RTU and Modbus TCP
protocols

1.3 PMC-660’s Application in Power and Energy Management Systems

The PMC-660 can be used to monitor Wye or Delta connected power system. Modbus communications
allow real-time data, events, DI status, Data Logs, Waveform and other information to be transmitted
to an Integrated Energy Management System such as PecStar® iEMS.
11
Page 12
CET Electric Technology

1.4 Getting more information

Additional information is available from CET via the following sources:
Visit www.cet-global.com Contact your local representative Contact CET directly via email at support@cet-global.com
12
Page 13
CET Electric Technology
Installation of the PMC-660 should only be performed by qualified, competent personnel that have
the appropriate training and experience with high voltage and current devices. The meter must be
During the operation of the meter, hazardous voltages are present at the input terminals. Failure to
observe precautions can result in serious or even fatal injury and equipment damage.

Chapter 2 Installation

Caution
installed in accordance with all local and national electrical codes.

2.1 Appearance

Figure 2-1 Appearance (RS485+6DIs+2DOs+AO)
13
Page 14
CET Electric Technology
No.
Terminal
Terminal Dimensions
Wire Size
Max. Torque
1
DI
2.6mm x 3.3mm
1.5mm2
5 kgf.cm/M3
(4.3 lb-in)
Power Supply
2
RS485
2.6mm x 3.2mm
AO
DO
3
I4 Input
Voltage Input
4
Current Input
8.1mm x 8.1mm
1.0mm2 - 2.5mm2
(14AWG - 22AWG)
18.0 kgf.cm/M4 (15.6 lb-in)

2.2 Unit Dimensions

Front View Side View

2.3 Terminal Dimensions

Figure 2-2 Dimensions

2.4 Mounting

The PMC-660 should be installed in a dry environment with no dust and kept away from heat, radiation
and electrical noise sources.
14
Figure 2-3 Terminal Dimensions
Table 2-1 Terminal Dimensions
Page 15
CET Electric Technology
Under no circumstances should the CT secondary be open when the CT primary is energized. CT
shorting blocks should be installed to allow for easy maintenance.
Installation steps:
Remove the mounting slide bars from the meter Fit the meter through a 92mmx92mm cutout as shown in Figure 2-4 Re-install the mounting slide bars and tighten the screws against the panel to secure the meter
Figure 2-4 Panel Cutout

2.5 Wiring Connections

PMC-660 can satisfy almost any three phase power systems. Please read this section carefully before
installation and choose the correct wiring method for your power system. The following Wiring Modes
are supported:
3-Phase 4-Wire Wye Direct Connection with 3CTs or 4CTs 3-Phase 4-Wire Wye with 3PTs and 3CTs or 4CTs 3-Phase 3-Wire Grounded Wye Direct Connection 3-Phase 3-Wire Grounded Wye with 3PTs and 3CTs 3-Phase 3-Wire Direct Connection with 3CTs or 2CTs 3-Phase 3-Wire Open Delta with 2PTs and 3CTs or 2CTs
Caution
Under no circumstances should the PT secondary be shorted.

2.5.1 3-Phase 4-Wire Wye Direct Connection with 3CTs or 4CTs

Please consult the serial number label to ensure that the rated system phase voltage is less than or
equal to the meter’s rated Phase voltage input specification. Set the Wiring Mode to Wye.
15
Page 16
CET Electric Technology
Figure 2-5 3P4W Wye Direct Connection with 3CTs or 4CTs (Optional I41 & I42)

2.5.2 3-Phase 4-Wire Wye with 3PTs and 3CTs or 4CTs

Please consult the serial number label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated Phase voltage input specification. Set the Wiring Mode to Wye.
Figure 2-6 3P4W Wye with 3PTs and 3CTs or 4CTs (Optional I41 & I42)

2.5.3 3-Phase 3-Wire Grounded Wye

Please consult the serial number label to ensure that the system phase voltage is less than or equal to
the meter’s rated Phase voltage input specification. Set the Wiring Mode to Wye.
16
Page 17
CET Electric Technology
Figure 2-7 3P3W Grounded Wye with 3CTs Figure 2-8 3P3W Grounded Wye with 3PTs & 3CTs

2.5.4 3-Phase 3-Wire Direct Delta Connection with 3CTs or 2CTs

Please consult the Serial Number Label to ensure that the rated Ull voltage is less than or equal to the
meter’s rated Line voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-9 3P3W Direct Connection with 3CTs Figure 2-10 3P3W Direct Connection with 2CTs

2.5.5 3-Phase 3-Wire Open Delta with 2PTs and 3CTs or 2CTs

Please consult the serial number label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated Phase voltage input specification. Set the Wiring Mode to Delta.
17
Page 18
CET Electric Technology
RJ45 Connector
Pin
Meaning
1
Transmit Data+
2
Transmit Data-
3
Receive Data+
4,5,7,8,
NC
6
Receive Data-
Figure 2-11 3P3W Open Delta with 2PTs & 3CTs Figure 2-12 3P3W Open Delta with 2PTs & 2CTs

2.6 Communications Wiring

2.6.1 RS485 Port

The PMC-660 provides up to two RS485 ports and supports the Modbus RTU protocol. Up to 32 devices
can be connected on a RS485 bus. The overall length of the RS485 cable connecting all devices should
not exceed 1200m.
If the master station does not have a RS485 communications port, a RS232/RS485, USB/RS485 or
Ethernet/RS485 converter with optically isolated outputs and surge protection should be used.
The following figure illustrates the RS485 communications connections on the PMC-660:
Figure 2-13 RS485 Communications Connections

2.6.2 Ethernet Port (10/100BaseT)

Table 2-2 RJ45 Connector Pin Description for 10/100BaseT Applications
18
Page 19
CET Electric Technology

2.7 Digital Input Wiring

The following figure illustrates the Digital Input connections on the PMC-660:
Figure 2-14 DI Connections

2.8 GPS 1PPS Input wiring

The Digital Input on the PMC-660 can be used for time synchronization with a GPS 1PPS output. The
following figure illustrates the wiring connections:
Figure 2-15 Time Sync. Connections

2.9 Digital Output Wiring

The following figure illustrates the Digital Output connections on the PMC-660:
Figure 2-16 DO Connections

2.10 Analog Input Wiring

The following figure illustrates the Analog Input connections on the PMC-660:
19
Figure 2-17 AI Connections
Page 20
CET Electric Technology

2.11 Analog Output Wiring

The following figure illustrates the Analog Output connections on the PMC-660:
Figure 2-18 AO Connections

2.12 Power supply Wiring

For AC supply, connect the live wire to the L/+ terminal and the neutral wire to the N/- terminal.
For DC supply, connect the positive wire to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-19 Power Supply Connections

2.13 Chassis Ground Wiring

Connect the G terminal to earth ground.
Figure 2-20 Chassis Ground connection
20
Page 21
CET Electric Technology

Chapter 3 Front Panel

The PMC-660 has a large, easy to read LCD display with backlight and four buttons for data display and
meter configuration. This chapter introduces the Front Panel operations.
Figure 3-1 Front Panel

3.1 Display

The Front Panel provides two display modes: Data Display and Setup Configuration. There are four
buttons on the Front Panel: <V/I>/ , <Power>/ , <Harmonics>/ and <Energy>/ . Use these
buttons to view metering data and configure setup parameters.

3.1.1 LCD Testing

Pressing both the <Power> and the <Harmonics> buttons simultaneously for 2 seconds enters the LCD
Testing mode. All LCD segments are illuminated for 5 seconds and then turned off for 1 second during
testing. This cycle will repeat 3 times to allow for the detection of faulty segments. The LCD will return
to normal data display afterwards.

3.1.2 LCD Display Areas

This section provides a description of the LCD display areas. The PMC-660 LCD display can generally be
divided into 5 areas:
21
Figure 3-2 PMC-660 Full Display
Page 22
CET Electric Technology
NO.
Label
Description
A
Voltage
Current
kW
kvar
kVA
Fundamental
K-Factor
Frequency
Phase A
Phase B
Phase C
Predicted Demand
Line to Neutral
Line to Line
Power Factor
Average
Total
Negative Symbol
Phase Angle
THD
TEHD
TOHD
to
2nd to 31st Harmonics
Unbalance
Demand
Maximum
Minimum This Month
Last Month
DeviceOperating Time
Reserved
A: Measurement symbols for parameters such as Voltage, Current, Fundamental, Power, THD,
TOHD, TEHD, 2
nd
to 31st Individual Harmonics, K-Factor, Unbalance, PF, Voltage/Current Phase
Angles and Demand, ...etc.
B: DI and DO Status Indicators
C: Measurement Units, Loading Factor and PF Quadrant status
D: Measurement values
E: Energy information such as kWh/kvarh Imp/Exp/Net/Total and kVAh Total
Figure 3-3 LCD Display
The following table shows the special LCD display symbols:
22
Page 23
CET Electric Technology
B
DI Open
DI Close
DO Open
DO Close
C&D
Units for Voltage, Current, %Harmonic Distortion and Frequency
Units for Real, Reactive and Apparent Power
%Loading
Inductive Load Capacitive Load
COM 1 Port Status COM 2 Port Status
Alarm Symbol PF Quadrant – Q1/Q2/Q3/Q4
Reserved
E
kWh Import
kWh Export
kWh Net
kWh Total
kvarh Import
kvarh Export
kvarh Net
kvarh Total
Reserved
Reserved

3.1.3 Peak Demand/Max./Min. Display

The following special arrangements have been made for the display of the Peak Demand and its
timestamp with the appropriate unit displayed in the Measurement Unit area.
a: Peak Demand/Max./Min. Indicator – Peak Demand/Max./Min. of This/Last Month:
b: Peak Demand/Max./Min. value
c: Date portion of the Peak Demand timestamp
d: Time portion of the Peak Demand timestamp
23
Table 3-1 LCD Display Symbols
Figure 3-4 Peak Demand Display
Page 24
CET Electric Technology
Area
Symbol Description
a
kW kvar kVA Phase A
Phase B
Phase C
Demand
Maximum
This Month
Last Month
b
Peak Demand/Max./Min. Value
c
Peak Demand/Max./Min. Timestamp (Date Portion) - YYYY.MM.DD
d
Peak Demand/Max./Min. Timestamp (Time Portion) – HH:MM:SS
Buttons
Data Display Mode
Setup Configuration Mode
<V/I>
Pressing <V/I>/ views the following parameters - U, I, Freq., Phase Angle, Fundamental U/I, Unbalance, Sequence Components, I Demand and Max. Demand, Max Values for U, I, Freq., Unbalance, etc.
Once a parameter is selected, pressing
this button moves the cursor to the left by one position if the parameter being changed is a numeric value. Otherwise, this button is ignored.
<Power>
Pressing <Power>/ views the following parameters - P, Q, S, PF, Fundamental Power measurements, P/Q/S Demand & Max. Demand as well as Max. Values for P, Q, S, PF, etc.
Before a parameter is selected for
modification, pressing this button advances to the next parameter in the menu.
If a parameter is already selected,
pressing this button increments a numeric value or advances to the next enumerated item in the selection list.
<Harmonics>
Pressing <Harmonics>/ views the following parameters - THD, TEHD, TOHD, Individual Harmonics and Max. Values for THD and K­Factor, etc.
Before a parameter is selected for
modification, pressing this button goes back to the last parameter in the menu.
If a parameter is already selected,
pressing this button decrements a numeric value or returns to the last enumerated item in the selection list.
<Energy>
Pressing <Energy>/ views the following parameters – kWh and kvarh Import / Export / Net / Total, kVAh and kWh Import/Export for the different Tariffs.
Pressing this button for more than three
seconds toggles between Data Display and Setup Configuration.
Once inside the Setup Configuration
mode, pressing this button selects a parameter for modification.
After changing the parameter, pressing
this button again saves the new setting into memory.
Table 3-2 Peak Demand/Max./Min. Display

3.2 Using the Front Panel Buttons

The button definitions under the Data Display and Setup Configuration mode are explained in the
following table. The default password is 0.

3.3 Data Display

Throughout this document, the phase-to-neutral notations of A/B/C and L1/L2/L3 as well as the phase-
to-phase notations of AB/BC/CA and L12/L23/L31 may be used interchangeably for specifying a certain
parameter to be a phase-to-neutral or phase-to-phase value, respectively.
The following table illustrates the display screens for the different PMC-660 models.
24
Table 3-3 Buttons Description
Page 25
CET Electric Technology
Press Button
Display
Screens
1st Row
2nd Row
3rd Row
4th Row
<V,I>
Display 1
Ull average
I average
kW Total
P.F. Total
Display 21
U1
U2
U3
Uln average
Display 3
U12
U23
U31
Ull average
Display 4
I1
I2
I3
I average
Display 52
I4 (Measured)
Display 6,#
I0 (Calculated
Neutral Current)
Display 7~
Ir (Calculated)
Display 81
dU1
dU2
dU3
dUln average
Display9
dI1
dI2
dI3
dI average
Display 10
Frequency
Display 11
U Unbalance
Display 12
I Unbalance
Display 13~
U1 SEQ
U2 SEQ
U0 SEQ
Display 14~
I1 SEQ
I2 SEQ
I0 SEQ
Display 153
AI
Display 16
U1 Angle
U2 Angle
U3 Angle
Display 17
I1 Angle
I2 Angle
I3 Angle
Display 18~
Operating Time
Display 19
I1 Demand
I2 Demand
I3 Demand
Display 20
I4 Demand
Display 21
I1 Peak Demand of This Month (Since Last Reset) with Timestamp
Display 22
I2 Peak Demand of This Month (Since Last Reset) with Timestamp
Display 23
I3 Peak Demand of This Month (Since Last Reset) with Timestamp
Display 24
I1 Peak Demand of Last Month (Before Last Reset) with Timestamp
Display 25
I2 Peak Demand of Last Month (Before Last Reset) with Timestamp
Display 26
I3 Peak Demand of Last Month (Before Last Reset) with Timestamp
Display 27~
U1 Max. of This Month (Since Last Reset) with Timestamp
Display 28~
U2 Max. of This Month (Since Last Reset) with Timestamp
Display 29~
U3 Max. of This Month (Since Last Reset) with Timestamp
Display 30~
Uln Avg. Max. of This Month (Since Last Reset) with Timestamp
Display 31~
I1 Max. of This Month (Since Last Reset) with Timestamp
Display 32~
I2 Max. of This Month (Since Last Reset) with Timestamp
Display 33~
I3 Max. of This Month (Since Last Reset) with Timestamp
Display 34~
I Avg. Max. of This Month (Since Last Reset) with Timestamp
Display 35~
I4 Max. of This Month (Since Last Reset) with Timestamp
Display 36~
Ir Max. of This Month (Since Last Reset) with Timestamp
Display 37~
U12 Max. of This Month (Since Last Reset) with Timestamp
Display 38~
U23 Max. of This Month (Since Last Reset) with Timestamp
Display 39~
U31 Max. of This Month (Since Last Reset) with Timestamp
Display 40~
Ull Avg. Max. of This Month (Since Last Reset) with Timestamp
Display 41~
Frequency Max. of This Month (Since Last Reset) with Timestamp
Display 42~
U Unbalance Max. of This Month (Since Last Reset) with Timestamp
Display 43~
I Unbalance Max. of This Month (Since Last Reset) with Timestamp
Display 44~
U1 Max. of Last Month (Before Last Reset) with Timestamp
Display 45~
U2 Max. of Last Month (Before Last Reset) with Timestamp
Display 46~
U3 Max. of Last Month (Before Last Reset)with Timestamp
Display 47~
Uln Avg. Max. of Last Month (Before Last Reset) with Timestamp
Display 48~
I1 Max. of Last Month (Before Last Reset) with Timestamp
Display 49~
I2 Max. of Last Month (Before Last Reset) with Timestamp
Display 50~
I3 Max. of Last Month (Before Last Reset) with Timestamp
Display 51~
I Avg. Max. of Last Month (Before Last Reset) with Timestamp
Display 52~
I4 Max. of Last Month (Before Last Reset) with Timestamp
Display 53~
Ir Max. of Last Month (Before Last Reset) with Timestamp
Display 54~
U12 Max. of Last Month (Before Last Reset) with Timestamp
Display 55~
U23 Max. of Last Month (Before Last Reset) with Timestamp
Display 56~
U31 Max. of Last Month (Before Last Reset) with Timestamp
Display 57~
Ull Avg. Max. of Last Month (Before Last Reset) with Timestamp
Display 58~
Frequency Max. of Last Month (Before Last Reset) with Timestamp
Display 59~
U Unbalance Max. of Last Month (Before Last Reset) with Timestamp
Display 60~
I Unbalance Max. of Last Month (Before Last Reset) with Timestamp
<Power>
Display 11
kWa
kWb
kWc
kW Total
Display 21
kvara
kvarb
kvarc
kvar Total
Display 31
kVAa
kVAb
kVAc
kVA Total
25
Page 26
CET Electric Technology
Display 41
P.F.a
P.F.b
P.F.c
P.F. Total
Display 51
dkWa
dkWb
dkWc
dkW Total
Display 61
dkvara
dkvarb
dkvarc
dkvar Total
Display 71
dkVAa
dkVAb
dkVAc
dkVA Total
Display 81
dP.F.a
dP.F.b
dP.F.c
dP.F. Total
Display 9
kW Total
kvar Total
kVA Total
P.F. Total
Display 10
dkW Total
dkvar Total
dkVA Total
dP.F. Total
Display 11
kW Total Dmd
kvar Total Dmd
kVA Total Dmd
P.F. Total Dmd
Display 12
kW Total
Predicted Dmd
kvar Total
Predicted Dmd
kVA Total
Predicted Dmd
P.F. Total
Predicted Dmd
Display 13
kW Peak Dmd of This Month (Since Last Reset) with Timestamp
Display 14
kvar Peak Dmd of This Month (Since Last Reset) with Timestamp
Display 15
kVA Peak Dmd of This Month (Since Last Reset) with Timestamp
Display 16
kW Peak Dmd of Last Month (Before Last Reset) with Timestamp
Display 17
kvar Peak Dmd of Last Month (Before Last Reset) with Timestamp
Display 18
kVA Peak Dmd of Last Month (Before Last Reset) with Timestamp
Display 19~
kW Total Max. of This Month (Since Last Reset) with Timestamp
Display 20~
kvar Total Max. of This Month (Since Last Reset) with Timestamp
Display 21~
kVA Total Max. of This Month (Since Last Reset) with Timestamp
Display 22~
P.F. Total Max. of This Month (Since Last Reset) with Timestamp
Display 23~
kW Total Max. of Last Month (Before Last Reset) with Timestamp
Display 24~
kvar Total Max. of Last Month (Before Last Reset) with Timestamp
Display 25~
kVA Total Max. of Last Month (Before Last Reset) with Timestamp
Display 26~
P.F. Total Max. of Last Month (Before Last Reset) with Timestamp
<Harmonics>
Display 1
U1 THD
U2 THD
U3 THD
Uln avg. THD
Display 2
I1 THD
I2 THD
I3 THD
I avg. THD
Display 3
I1 K-Factor
I2 K-Factor
I3 K-Factor
Display 4
U1 TEHD
U2 TEHD
U3 TEHD
Uln avg. TEHD
Display 5
I1 TEHD
I2 TEHD
I3 TEHD
I avg. TEHD
Display 6
U1 TOHD
U2 TOHD
U3 TOHD
Uln avg. TOHD
Display 7
I1 TOHD
I2 TOHD
I3 TOHD
I avg. TOHD
Display 8
U1 HD02
U2 HD02
U3 HD02
Uln avg. HD02
Display 9
I1 HD02
I2 HD02
I3 HD02
I avg. HD02
Display 66
U1 HD31
U2 HD31
U3 HD31
Uln avg. HD31
Display 67
I1 HD31
I2 HD31
I3 HD31
I avg. HD31
Display 68~
U1/U12 THD Max. of This Month (Since Last Reset) with Timestamp
Display 69~
U2/U23 THD Max. of This Month (Since Last Reset) with Timestamp
Display 70~
U3/U31 THD Max. of This Month (Since Last Reset) with Timestamp
Display 71~
I1 THD Max. of This Month (Since Last Reset) with Timestamp
Display 72~
I2 THD Max. of This Month (Since Last Reset) with Timestamp
Display 73~
I3 THD Max. of This Month (Since Last Reset) with Timestamp
Display 74~
I1 K-Factor Max. of This Month (Since Last Reset) with Timestamp
Display 75~
I2 K-Factor Max. of This Month (Since Last Reset) with Timestamp
Display 76~
I3 K-Factor Max. of This Month (Since Last Reset) with Timestamp
Display 77~
U1/U12 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 78~
U2/U23 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 79~
U3/U31 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 80~
I1 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 81~
I2 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 82~
I3 THD Max. of Last Month (Before Last Reset) with Timestamp
Display 83~
I1 K-Factor Max. of Last Month (Before Last Reset) with Timestamp
Display 84~
I2 K-Factor Max. of Last Month (Before Last Reset) with Timestamp
Display 85~
I3 K-Factor Max. of Last Month (Before Last Reset) with Timestamp
<Energy>
Display 1
kWh Import
Display 2
kWh Export
Display 34~
A (T1) kWh Import
Display 44~
B (T2) kWh Import
Display 54~
C (T3) kWh Import
Display 64~
D (T4) kWh Import
Display 74~
E (T5) kWh Import
Display 84~
F (T6) kWh Import
Display 94~
G (T7) kWh Import
Display 104~
H (T8) kWh Import
Display 114~
A (T1) kWh Export
Display 124~
B (T2) kWh Export
26
Page 27
CET Electric Technology
Display 134~
C (T3) kWh Export
Display 144~
D (T4) kWh Export
Display 154~
E (T5) kWh Export
Display 164~
F (T6) kWh Export
Display 174~
G (T7) kWh Export
Display 184~
H (T8) kWh Export
Display 19
kWh Net
Display 20
kWh Total
Display 21
kvarh Import
Display 22
kvarh Export
Display 23
kvarh Net
Display 24
kvarh Total
Display 25
kVAh
#
Available in Firmware V1.00.05 or later
~Available in Firmware V2.00.00 or later
Table 3-4 PMC-660 Data Display Screens
Notes:
1) When the Wiring Mode is Delta or 3P3W, the screens that display per phase Line-to-Neutral Voltages, kWs, kvars, kVAs and
PFs are not shown.
2) This display only appears if the meter is equipped with the I4 Current Input.
3) This display only appears if the meter is equipped with the Analog Input.
4) This display only appears if the corresponding Tariff is Enabled.

3.4 Setup Configuration via the Front Panel

3.4.1 Making Setup Changes

1) Entering the Passwords:
Press the <Energy>/ button for more than 3 seconds to access Setup Configuration mode. Press the <Power>/ button to advance to the Password page. A correct password must be entered before changes are allowed. Press the <Energy>/ button
to enter the password. The factory default password is zero.
Press <V/I>/ to shift the cursor to the left by one position and press <Power>/ or
<Harmonics>/ to increment or decrement the numeric value for the password.
2) Selecting a parameter to change:
Use the <Power>/ and <Harmonics>/ buttons to scroll to the desired parameter. Press the <Energy>/ button to select the parameter. Once selected, the parameter value will
blink.
3) Changing and saving a parameter:
Use the <Power>/ , <Harmonics>/ and <V/I>/ buttons to make modification to the selected
parameter.
For a Numeric parameter, press <V/I>/ , <Power>/ or <Harmonics>/ to shift the cursor and
increment or decrement the numeric value
For an Enumerated parameter, press <Power>/ or <Harmonics>/ to scroll forward or
backward in the selection list.
After modification, press the <Energy>/ button to save the new value into memory.
4) Exiting to the Setup Mode:
Pressing the <Energy>/ button for more than three seconds to return to the default display
27
screen.
Page 28
CET Electric Technology

3.4.2 Setup Menu

28
Figure 3-5 Setup Menu
Page 29
CET Electric Technology
Label
Parameters
Description
Options/Range
Default
menu
1st 2nd
PROGRAMMING
Programming
Setup Configuration mode
/
/
PASWORD
Password
Enter Password
0 to 9999
“0”
PAS SET Change Password?
YES/NO
NO
NEW PAS
New Password
Change Password
0000 to 9999
“0”
SYS SET
TYPE
Wiring Mode
Meter’s Wiring Connection
WYE/DELTA/DEMO/3P3W
WYE
PT
PT Ratio1
PT Ratio
1.0000 to 10000.9999
1.0000
CT
CT Ratio1
CT Ratio
1 to 30,000 (1A)
1 to 6,000 (5A)
1
I4
I4 Ratio
I4 Ratio
1 to 10,000
1
PF SET
P.F. Convention2
P.F. Convention
IEC/IEEE/-IEEE
IEC
KVA SET
kVA Calculation3
kVA Calculation Method
V/S
V
HD SET
Harmonics
Calculation4
Harmonics Distortion
Calculation Method
FUND/RMS
FUND
V NOM
Ull Nominal
Secondary
Ull Nominal
Secondary Voltage
(Ull
nominal
)
100 to 700 (V)
415
Hz NOM
Nominal
Frequency
(f
nominal
)
Nominal Frequency
50/60
50
I1 REV
Phase A CT
Reverse Phase A CT Polarity
YES/NO
NO
I2 REV
Phase B CT
Reverse Phase B CT Polarity
YES/NO
NO
I3 REV
Phase C CT
Reverse Phase C CT Polarity
YES/NO
NO
BLTO SET
Backlight
Time-Out5
Backlight Time-out
0 to 60 (mins)
3
Q SET
kvarh Calculation
kvarh Calculation Method
RMS/FUND
RMS
COM1 SET
ID1
Port 1 Modbus ID
Modbus Address
1-247
100
BAUD1
Port 1 Baud rate
Data rate in bits per second
1200/2400/4800/
9600/19200/38400bps
9600
CONFIG1
Port 1 Config.
Data Format
8N2/8O1/8E1/8N1/8O2/8E2
8E1
PRO
Protocol
Communication Protocol
MODBUS/EGATE
MODBUS
COM2 SET6 ID2
Port 2 Modbus ID
Modbus Address
1-247
101
BAUD2
Port 2 Baud rate
Data rate in bits per second
1200/2400/4800/
9600/19200/38400bps
9600
CONFIG2
Port 2 Config.
Data Format
8N2/8O1/8E1/8N1/8O2/8E2
8E1
ETH SET7
IPH
IP Address
IP Address
(high-order)
For example: IP Address is
192.168.0.100, IP
Address(high-order) is
192.168
192.168 IPL
IP Address
IP Address
(low-order)
For example: IP Address is
192.168.0.100, IP
Address(low-order) is 0.100
0.100
SMH
Subnet Mask
Subnet Mask
(high-order)
For example: Subnet Mask is 255.255.255.0, Subnet
Mask(high-order) is 255.255
255.255
SML
Subnet Mask
Subnet Mask
(low-order)
For example: Subnet Mask is 255.255.255.0, Subnet
Mask(low-order) is 255.0
255.0
GWH
Gateway Address
Gateway Address
(high-order)
For example: Gateway
Address is 192.168.0.1,
Gateway Address (high-
order) is 192.168
192.168
GWL
Gateway Address
Gateway Address
(low-order)
For example: Gateway Address is 192.168.0.1, Gateway Address (low-
order) is 0.1
0.1
DMD SET

3.4.3 Front Panel Setup Parameters

The Setup Configuration mode provides access to the following setup parameters:
29
Page 30
CET Electric Technology
MODE
Demand Sync.
Mode
Demand Sync. Mode
SLD/SYNC
SLD
PERIOD
Sliding Window
Interval
Sliding Window Interval
1 to 60 (minutes)
15
NUM
Number of Sliding
Windows
Number of Sliding Windows
1 to 15
1
SENS
Predicted Response
Predicted Demand
Sensitivity
70 to 99
70
PULS SET
EN PULSE
Energy Pulse
Enable Energy Pulsing
YES/NO
NO
EN CONST
Pulse Constant
Pulse Constant
8
1k/3.2k/5k/6.4k/12.8k
1k
ENGY SET
IMP kWh
kWh Import
Preset kWh Import Value
0 to 999,999,999
0
EXP kWh
kWh Export
Preset kWh Export value
0 to 999,999,999
0
IMP kvarh
kvarh Import
Preset kvarh Import Value
0 to 999,999,999
0
EXP kvarh
kvarh Export
Preset kvarh Export value
0 to 999,999,999
0
kVAh
kVAh
Preset kVAh Value
0 to 999,999,999
0
DO SET
DO1
DO1 Control
DO1 Control
NORMAL/ON/OFF
NORMAL
DO2
DO2 Control
DO2 Control
NORMAL/ON/OFF
NORMAL
DO3
DO3 Control
DO3 Control
NORMAL/ON/OFF
NORMAL
AI SET
TYPE
Analog Input Type
Select between 0-20mA or
4-20mA input
4-20 / 0-20
4-20
ZERO
Zero Scale
The value that corresponds
to the minimum Analog
Input of 0 mA or 4 mA
-999,999 to 999,999
400
FULL
Full Scale
The value that corresponds
to the maximum Analog
Input of 20 mA
-999,999 to 999,999
2000
AO SET
TYPE
Analog Output
Type
Select between 0-20mA or
4-20mA output
4-20 / 0-20
4-20
ZERO
Zero Scale
The parameter value that
corresponds to the
minimum Analog Output of
0 mA or 4 mA
-999,999 to 999,999
0
FULL
Full scale
The parameter value that
corresponds to the
maximum Analog Output of
20 mA
-999,999 to 999,999
999999
KEY9
Analog Output
Parameter
The parameter to which the
Analog Output is
proportional
See Note 9)
Uab
CLR SET
CLR ENGY
Clear Energy
Clear Total Energy and TOU
Energy measurements
YES/NO
NO
CLR MXMN
Clear Max./Min.
Clear Max./Min. Logs of
This Month (Since Last
Reset)
YES/NO
NO
CLR PDMD
Clear Demand
Clear Peak Demands of This
Month
YES/NO
NO
CLR DIC
Clear Pulse
Counter
Clear Pulse Counter
YES/NO
NO
CLR SOE
Clear SOE
Clear SOE Log
YES/NO
NO
CLR PQ
Clear PQ Log
Clear PQ Log
YES/NO
NO
CLR RT
Clear operating
time
Clear device operating time
YES/NO
NO
DAT
Date
Enter the Current Date
(20)YY-MM-DD
/
CLK
Time
Enter the Current Time
HH:MM:SS
/
INFO
Information
(Read Only)
Check meter information
YES/NO
NO
660
Version
Firmware Version
For example, 660 10000
means the meter is PMC-
660 and the firmware
version is V1.00.00.
/
PRO VER
Protocol Version
Protocol Version
e.g. 10 means V1.0
/
30
Page 31
CET Electric Technology
UPDAT
Update Date
Date of the latest firmware
update
e.g. 090821
/
Serial Number
Meter Serial Number
e.g. 0908471895
/
2
2
totaltotal
kvarkWkVA
tot al
Table 3-5 Setup Parameters
Notes:
1) For 5A configuration, PT Ratio × CT Ratio must be less than 1,000,000.
For 1A configuration, PT Ratio x CT Ratio must be less than 5,000,000.
2) P.F. Convention: -IEEE is the same as IEEE but with the opposite sign.
Figure 3-6 Power Factor Definitions
3) There are two ways to calculate kVA:
31
Mode V (Vector method):
Page 32
CET Electric Technology
c
kVAkVAkVAkVA
ba
tot al
X100%
U
U
1
k
1
k
I
I
X100%
U
U
2
K
1K
k
X100%
I
I
2
K
1K
k
Line Voltage Input
Current Input
X Value
Energy Pulse Constant (X Value)
100V
1A
4
0=1000 imp/kWh 1=3200 imp/kWh 2=5000 imp/kWh 3=6400 imp/kWh
4=12800 imp/kWh
5A
4
380V
1A
4
5A
1
690V
1A
2
5A
0
Key
Parameter
Scale
Unit
Key
Parameter
Scale
Unit
0
Uab
x1
V
8
kW Total
x1
kW
1
Ubc
V
9
kvar Total
kvar
2
Uca
V
10
kVA Total
kVA
3
Ull Average
V
11
PF Total
x1000 - 4
Ia
A
12
Frequency
x1
Hz 5 Ib
A
13
kW Total Present Demand
x1
kW
6
Ic
A
14
kvar Total Present Demand
kvar
7
I Average
A
15
kVA Total Present Demand
kVA
16
PF Total Present Demand
-
Mode S (Scalar method):
4) There are two ways to calculate the individual harmonic distortion:
% of Fundamental Method:
Voltage Kth Harmonic Distortion=
Current Kth Harmonic Distortion=
% of RMS Method:
Voltage Kth Harmonic Distortion=
Current Kth Harmonic Distortion=
5) The Backlight Time-out can be set from 0 to 60 minutes. If the value is 0, the backlight is always on. This setup parameter is
available in Firmware V1.00.04 or later.
6) This menu only appears if the meter is equipped with the 2
7) This menu only appears if the meter is equipped with the Ethernet port option. The PMC-660 supports two types of Modbus
protocols for its Ethernet port:
a. RTU: Modbus RTU over TCP/IP (IP Port No. = 27011) b. TCP: Modbus TCP (IP Port No. = 502)
8) Recommended Pulse Constant settings for the different Line Voltage & Current Inputs
X100%
, U1 is Fundamental Voltage
, I1 is Fundamental Current
nd
RS-485 port option.
9) Analog Output Parameters
32
Table 3-6 Pulse Constant
If PF Total is chosen as the AO parameter, the values for ZERO (zero scale) and FULL (full scale) should be set as 1000 times the actual value. The Units for Voltage, Current, kW, kvar, kVA and FREQ are V, A, kW, kvar, kVA and Hz, respectively.
Table 3-7 Analog Output Parameters
Page 33
CET Electric Technology
Setup Parameter
Definition
Options/*Default
DIx Function
Each DI can be configured as a Status Input, Pulse Counter or SYNC DI. Only DI1 to DI3 can be set as Tariff Switch.
0=Status Input*
1=Pulse Counter
2=SYNC DI, 3=1 PPS
4=Tariff Switch
DIx Debounce
Specifies the minimum duration the DI must remain in the Active or Inactive state before a state change is considered to be valid.
1 to 1000 (ms)
(Default=20ms)
DIx Pulse Weight
Specifies the incremental value for each received pulse. This is only used when a DI is configured as a Pulse Counter.
1* to 1,000,000

Chapter 4 Applications

4.1 Inputs and Outputs

4.1.1 Digital Inputs

The PMC-660 comes standard with six self-excited Digital Inputs that are internally wetted at 24 VDC
with a sampling frequency of 1000Hz and programmable debounce. The PMC-660 provides the
following programmable functions for its Digital Inputs:
1) Digital Input The Digital Inputs are typically used for status monitoring which
can help prevent equipment damage, improve maintenance, and
track security breaches. The real-time statuses of the Digital Inputs
are available on the Front Panel LCD Display as well as through
communications. Changes in Digital Input status are stored as
events in the SOE Log in 1 ms resolution.
2) Pulse Counting Pulse counting is supported with programmable pulse weight and
facilitates WAGES (Water, Air, Gas, Electricity and Steam)
information collection.
3) Demand Sync Pulse One of the Digital Inputs can be programmed to receive Demand
Sync Pulse. Please refer to Section 4.2.5 for a detailed description.
4) Time Synchronization The Digital Inputs can be used as external time synchronization
pulse. Please refer to Section 4.8 for a detailed description.
5) Tariff Switching Up to 3 Digital Inputs may be used to select to which of the 8 Tariffs
the energy consumption should be accumulated. The 3 Digital
Inputs (DI1 to DI3) represent 3 binary digits where Tariff 1=000,
Tariff 2=001, …, Tariff 8=111 where DI1 represents the least
significant digit and DI3 represents the most significant digit. The
DI1 Function setup register must first be programmed as a Tariff
Switch before configuring DI2 with the same function. In other
words, if DI1 is configured as a Digital Input or Energy Pulse
Counter and DI2 is configured as a Tariff Switch, the TOU will
continue to function based on the TOU Schedule. This feature is
available in Firmware V2.00.00 or later.
The following table describes the DI’s setup parameters:
33
Table 4-1 DI Setup Parameters
Page 34
CET Electric Technology

4.1.2 Digital Outputs

The PMC-660 comes standard with three Form A Electromechanical Digital Outputs. Digital Outputs are
normally used for setpoint alarming, load control, or remote control applications.
Digital Outputs on the PMC-660 can be used in the following applications:
1) Front Panel Control Manually operated from the Front Panel. Please refer to the DO SET
setup parameter in Section 3.4.3 for a detailed description.
2) Remote Control Remotely operated over communications via our free PMC Setup
software or the PecStar® iEMS Integrated Energy Management
System.
3) Control Setpoint Control setpoints can be programmed to trigger DO, Data Recorder,
Waveform Recorder or Alarm Email upon becoming active. Please
refer to Section 4.4 for a detailed description.
4) Logical Module Logical Module can be programmed to trigger DO, Data Recorder or
Waveform Recorder upon becoming active. Please refer to Section
4.5 for a detailed description.
5) Dip/Swell Setpoint Dip/Swell setpoint can be programmed to trigger DO, Data Recorder,
Waveform Recorder or Alarm Email upon becoming active. Please
refer to Section 4.3.5 for a detailed description.
6) Transient Setpoint: Transient setpoint can be programmed to trigger DO, Data Recorder,
Waveform Recorder or Alarm Email upon becoming active. Please
refer to Section 4.3.6 for a detailed description.
Since there are multiple ways to trigger the Digital Outputs on the PMC-660, a prioritized scheme has
been developed to avoid conflicts between different applications. In general, Front Panel Control has
the highest priority and can override other applications. Remote Control, Control Setpoint, Logical
Module, Dip/Swell Setpoint and Transient Setpoint share the same priority, meaning that they can all
be programmed to control the same Digital Output. This scheme is equivalent to having an implicit
Logical OR operation for the control of a Digital Output and may be useful in providing a generic alarm
output signal. However, the sharing of a Digital Output is not recommended if the user intends to
generate a control signal in response to a specific setpoint condition.

4.1.3 Energy Pulse Outputs

The PMC-660 comes standard with two Front Panel LED Pulse Outputs for kWh and kvarh pulsing.
Energy Pulse Outputs are typically used for accuracy testing. Energy pulsing can be enabled from the
Front Panel through the EN PULSE setup parameter. The pulse constant can be configured as
1000/3200/5000/6400/12800 pulses per kWh or kvarh through the EN CONST setup parameters. The
pulse width is fixed at 80ms.

4.1.4 Analog Input

The PMC-660 comes optionally with an Analog Input which can be programmed as 0mA to 20mA or
4mA to 20mA input. There are 3 setup parameters:
34
Type: Select between 0-20mA or 4-20mA input.
AI Zero: This value corresponds to the minimum Analog Input of 0 mA (for 0-20mA input) or 4
Page 35
CET Electric Technology
Parameter
Phase A
Phase B
Phase C
Total
Average
Uln
● ● ● - ●
Ull
● ● ● - ●
Current
● ● ● - ●
Neutral Current
- - -
I0 (Calculated)
I4 (Measured)
Residual Current*
- - -
Ir (Calculated)
-
kW
● ● ● ● -
kvar
● ● ● ● -
kVA
● ● ● ● -
Power Factor
● ● ● ● -
Frequency
● - - - -
U Fundamental
● ● ●
U Sequence*
U1 (Positive Sequence)
U2 (Negative Sequence)
U0 (Zero Sequence)
mA (for 4-20mA input) and has a range of -999,999 to +999,999.
AI Full: This value corresponds to the maximum Analog Input of 20 mA and has a range of -
999,999 to +999,999.
For example, to measure the oil temperature of a transformer, connect the outputs of the temperature
sensor to the AI terminals of the PMC-660. The temperature sensor outputs 4mA when the temperature
is -25°C and 20mA when the temperature is 100°C. As such, the Type parameter should be programmed
as 4-20mA. The AI FULL parameter should be programmed with the value 100, and the AI ZERO
parameter should be programmed with the value -25. Therefore, when the output of the sensor is 20mA,
the reading will be 100.00°C. When the output is 4mA, the reading will be -25.00°C. When the output
is 12mA, the reading will be (100°C - (-25°C )) x (12mA-4mA) / (20mA-4mA) + (-25°C ) = 37.50°C.

4.1.5 Analog Output

The PMC-660 comes optionally with one Analog Output which can be programmed as 0mA to 20mA or
4mA to 20mA output. There are 4 setup parameters:
Type: Select between 0-20mA or 4-20mA output.
AO Zero: Defines the zero scale value of the parameter when the Analog Output is 0 mA (for 0-
20mA output) or 4 mA (for 4-20mA output). The value ranges between -999,999 to
+999,999.
AO Full: Defines the full scale value of the parameter when the Analog Output is 20 mA. The
value ranges between -999,999 and +999,999.
Key: Defines the parameter to which the Analog Output is proportional. The Analog Output
Parameters are listed in Table 3-7.
For example, an AO of 4-20mA is required to be proportional to Phase A current. The maximum value
of phase A current is 2000A, and the minimum value is 500A. As such, the Type parameter should be
programmed as 4-20mA. The Key parameter should be programmed with Ia (Phase A Current). The AO
FULL parameter should be programmed with the value 2000. The AO ZERO parameter should be
programmed with the value 500. Therefore, when Phase A Current is 500A or below, the AO output is
4mA. When Phase A Current is 2000A, the AO output is 20mA. When Phase A Current is 1250A, the AO
is (1250A-500A) x (20mA-4mA) / (2000A-500A) + 4mA = 12.00(mA).

4.2 Power and Energy

4.2.1 Basic Measurements

The PMC-660 provides the following basic measurements with 1 second update rate which are available
through the Front Panel or communications
35
Page 36
CET Electric Technology
I Sequence*
I1 (Positive Sequence)
I2 (Negative Sequence)
I0 (Zero Sequence)
Active Energy
kWh Import/Export/Net/Total kWh Import/Export of TOU T1-8*
Reactive Energy
kvarh Import/Export/Net/Total kvarh Import/Export of TOU T1-8* kvarh of Q1/Q2/Q3/Q4
Apparent Energy
kVAh Total kVAh of TOU T1-8*
Setup Parameter
Definition
Options/*Default
Demand Sync. Mode
SLD - Internally synchronized to the meter clock SYNC DI - Externally synchronized to a DI that has been programmed as a Demand Sync Input by setting the DI Function setup parameter as “SYNC DI”.
0= SLD*
1=SYNC DI
Demand Period
1 to 60 minutes. For example, if the # of Sliding Windows is set as 1 and the Demand Period is 15, the demand cycle will be 1×15=15min.
1 to 60 min
Default=15
*Available in Firmware V2.00.00 or later
Table 4-2 Basic Measurements

4.2.2 Energy Measurements

The PMC-660 provides Energy parameters for active energy (kWh), reactive energy (kvarh) and
apparent energy (kVAh) with a resolution of 0.01 and a maximum value of ±1,000,000,000.00. When
the maximum value is reached, the energy registers will automatically roll over to zero. The energy can
be reset manually or preset to user-defined values through the Front Panel or via communications.
The PMC-660 provides the following energy measurements:
*Available in Firmware V2.00.00 or later
Table 4-3 Energy Measurement

4.2.3 Interval Energy Measurements (Firmware V2.00.00 or later)

The PMC-660 provides Interval Energy measurements of kWh Import/Export, kvar Import/Export and
kVAh since Firmware V2.00.00. The Interval Energy measurements represent the amount of energy
consumed during the last completed interval as defined by EN Period. The Interval Energy
Measurements can only be retrieved through communications and are not available on the Front Panel.
The Interval Energy Period (EN Period) setup parameter can be programmed through communications
and allows the user to specify the interval for which the real-time energy consumption should be
accumulated. Please note that changing the Interval Energy Period would clear the present Interval
Energy measurements.

4.2.4 High-speed Measurements

The PMC-660 provides the following high-speed measurements which are available through the Front
Panel or communications.
3-Phase Voltage with ½ cycle update rate 3-Phase Current, Neutral Current (I4) and I0 with 1 cycle update rate 3-Phase Power and Power Factor with 1 cycle update rate

4.2.5 Demand Measurements

Demand is defined as the average power consumption over a fixed interval (usually 15 minutes) based
on the sliding window method. Predicted Demand is typically used for pre-alarming and to help users reduce power consumption using a Setpoint to warn that the Demand limit may be exceeded. The PMC-
660 provides the following setup parameters:
36
Page 37
CET Electric Technology
# of Sliding Windows
Number of Sliding Windows.
1* to 15
Self-Read Time
The Self-Read Time allows the user to specify the time and day of the month for the Peak Demand Self-Read operation. The Self-Read Time supports three options:
A zero value means that the Self-Read will take place at
00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place
at a specific time and day based on the formula: Self-
Read Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the
Self-Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value will disable the Self-Read operation and
replace it with manual operation. A manual reset will cause the Peak Demand of This Month to be transferred to the Peak Demand of Last Month and then reset. The terms This Month and Last Month will become Since Last Reset and Before Last Reset.
Default=0xFFFF
Predicted Response
The Predicated Response shows the speed of the predicted demand output. A value between 70 and 99 is recommended for a reasonably fast response. Specify a higher value for higher sensitivity.
70* to 99
Present and Predicted Demand Parameters
Voltage
Uan / Ubn / Ucn / Uln average
Uab / Ubc / Uca / Ull average
Current
Ia / Ib / Ic / I average/I4
1
Energy
kWa / kWb / kWc /kW Total
kvara / kvarb / kvarc / kvar Total
kVAa / kVAb / kVAc / kVA Total
Power Factor
P.F.a / P.F.b / P.F.c /P.F. Total
Frequency
FREQ
Unbalance
U / I Unbalance
THD
Uan / Ubn / Ucn THD Uab / Ubc / Uca THD
Ia / Ib / Ic THD
Table 4-4 Demand Setup
The PMC-660 provides the following Demand parameters:
Notes:
1) I4 is valid if the meter is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence
Current) if the meter is equipped with the AI option.

4.2.6 Max./Min. per Demand Period

The PMC-660 provides the Max./Min. value per demand period of the following measurements:
3-Phase Voltage and Frequency 3-Phase Current and Neutral Current (I4) 3-Phase Power and Power Factor Voltage and Current Unbalance Voltage and Current THD
All Max./Min. data can be accessed through communication.

4.3 Power Quality

4.3.1 Phase Angles

Phase analysis is used to identify the angle relationship between 3-phase Voltages and Currents.
For WYE connected systems, the per phase difference of the Current and Voltage angles should
correspond to the per phase PF. For example, if the PF is 0.5 Lag and the Voltage phase angles are 0.0°,
37
Table 4-5 Demand Parameters
Page 38
CET Electric Technology
Fundamental Components
dUan
dUbn
dUcn
dUln average
dUab
dUbc
dUca
dUll average
dIa
dIb
dIc
dI average
dkWa
dkWb
dkWc
dkW Total
dkvara
dkvarb
dkvarc
dkvar Total
dkVAa
dkVAb
dkVAc
dkVA Total
dP.F.a
dP.F.b
dP.F.c
dP.F. Total
dI4
K
max
max
hh
h
hh
h
2
1
2
1
)(
)(
h
h
I
hI
Factor
Phase A/AB
Phase B/BC
Phase C/CA
Harmonics-Voltage
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
2nd Harmonics
2nd Harmonics
2nd Harmonics
63rd Harmonics
63rd Harmonics
63rd Harmonics
Harmonics-Current
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
K-Factor
K-Factor
K-Factor
2nd Harmonics
2nd Harmonics
2nd Harmonics
63rd Harmonics
63rd Harmonics
63rd Harmonics
I4 THD/TEHD/TOHD and 2
nd
to 63rd Harmonics
240.0° and 120.0°, the Current phase angles should have the values of -60.0°, 180.0° and 60.0°.

4.3.2 Power Quality Parameters

The PMC-660 provides the following PQ parameters:
4.3.2.1 Fundamental
The PMC-660 provides the following Fundamental Components (Displacement RMS values):
Table 4-6 Fundamental Components
4.3.2.2 Harmonics
The PMC-660 provides harmonic analysis for THD, TOHD, TEHD and individual harmonics up to the 63rd
order. Only 31 individual harmonics are available through the Front Panel, and all 63 individual
parameters are available via communications. The PMC-660 also provides Current K-Factor
measurements.
4.3.2.3 K-Factor
K-Factor is defined as the weighted sum of the Harmonic Load Current according to their effects on
transformer heating, as derived from ANSI/IEEE C57.110. A K-Factor of 1.0 indicates a linear load (no
harmonics). The higher the K-Factor, the greater the harmonic heating effect.
where
Ih = hth Harmonic Current in RMS
h
= Highest harmonic order
max
The following table illustrates the Voltage and Current Harmonics measurements on the PMC-660.
38
Table 4-7 Harmonics Measurements
Page 39
CET Electric Technology
100%
V1
V2
100%
I1
I2
Symmetrical Components
Positive Sequence
Negative Sequence
Zero Sequence
U
U1
U2
U0
I
I1
I2
I0
Parameter
Definition
Options/*Default
Dip/Swell Enable
Dip/Swell Detection Enable
0=Disabled, 1=Enabled*
Swell Limit
Specify the Swell limit
105 to 200 (x0.01Ull
nominal
), 110*
Dip Limit
Specify the Dip limit
10 to 95 (x0.01Ull
nominal
), 90*
Interruption Limit
Specify the Interruption limit
0 to 50 (x0.01Ull
nominal
), 10*
Dip/Swell/Interruption Trigger
Specify what action the setpoint will take when the Dip/Swell/Interruption detection becomes active
None / DO1 to DO3 / DR1 to DR16 / WR1* to WR2 / Alarm Email

4.3.3 Unbalance

The PMC-660 provides Voltage and Current Unbalance measurements. The calculation method of
Voltage and Current Unbalances are listed below:
Voltage Unbalance =
Current Unbalance =
where
V1, V2 are the Positive and Negative Sequence Components for Voltage, respectively, and I1, I2 are the Positive and Negative Sequence Components for Current, respectively.

4.3.4 Symmetrical Components

The PMC-660 provides the Voltage and Current Symmetrical Components measurements, which can be
accessed via the Front Panel or through communications.
Table 4-8 Symmetrical Parameters

4.3.5 Deviation

The PMC-660 can measure deviation for Uan/Uab, Ubn/Ubc, Ucn/Uca and Frequency.
For Voltage Deviation, the calculation methods are listed below:
When the Wring Mode is 3P3W or Delta:
Voltage Deviation = ((Ull – Ull
nominal
) / Ull
nominal
) x 100%
When the Wring Mode is WYE:
Voltage Deviation = ((Uln – (Ull
where Ull
For Freq. Deviation, the calculation method is listed below:
Freq. Deviation = ((f - f
where f
is the Secondary Nominal Voltage
nominal
nominal
is the Nominal Frequency
nominal
)/f
nominal
nominal
÷√3)) / (Ull
) x 100%
÷√3)) x 100%
nominal

4.3.6 Supply Voltage Dips/Swells and Interruptions

The PMC-660 supports the detection of Supply Voltage Dips/Swells and Interruptions based on 1-cycle
high-speed RMS Voltage values that are updated every ½ cycle and records any detected event in the
PQ Log with timestamp and event type. Further, the Dip/Swell and Interruption Detection can be
programmed to trigger WFR, DR, DO and Alarm Email. The programming of the Dip/Swell and
Interruption setpoint parameters is only supported over communications.
39
Table 4-9 Dip/Swell/Interruption Setup Parameters
Page 40
CET Electric Technology
Parameter
Definition
Options/*Default
Transient Enable
Transient Detection Enable
0=Disabled, 1=Enabled*
Transient Limit
Specify the Transient limit
5 to 500 (x0.01Ull
nominal
), 35*
Transient Trigger
Specify what action the setpoint will take when the Transient detection becomes active
None / DO1 to DO3 / DR1 to DR16 / WR1* to WR2 / Alarm Email
For the Dip/Swell and Interruption detection to work correctly, it’s critically important to set the
Ull
parameter correctly with the nominal line-to-line voltage on the secondary (meter) side.
nominal

4.3.7 Transients

The PMC-660 provides Transient Capture capability by detecting sub-cycle voltage disturbances and
records the detected event in the PQ Log with timestamp and event type. The programming of the
Transient setpoint is only supported over communications. The Transient setpoint provides the
following setup parameters:
Table 4-10 Transient Setpoint Setup Parameters
For the Transient detection to work correctly, it’s critically important to set the Ull
nominal
parameter
correctly with the nominal line-to-line voltage on the secondary (meter) side.

4.4 Setpoints

The PMC-660 comes standard with 24 user programmable setpoints which provide extensive control by
allowing a user to initiate an action in response to a specific condition. The Setpoint #1 to #16 are
standard Setpoints and the Setpoint #17 to #24 are High-Speed Setpoints. Typical setpoint applications
include alarming, fault detection and power quality monitoring.
Figure 4-1 Over Setpoint
40
Page 41
CET Electric Technology
Setup Parameter
Definition
Options/*Default
Setpoint Type
Disabled, Over or Under Setpoint.
0=Disabled*
1=Over Setpoint
2=Under Setpoint
Setpoint Parameter
Specify the parameter to be monitored.
See Table 4-12, 1*
Active Limit
Specify the value that the setpoint parameter must exceed for Over Setpoint to become active or for Under Setpoint to become inactive.
Default=999,999
Inactive Limit
Specify the value that the setpoint parameter must go below for Over Setpoint to become inactive or for Under Setpoint to become active.
Default=999,999
Active Delay
Specify the minimum duration that the setpoint condition must be met before the setpoint becomes active. An event will be generated and stored in the SOE Log. The range of the Active Delay is between 0 and 9999 seconds.
0 to 9999 s, 10*
Inactive Delay
Specify the minimum duration that the setpoint return condition must be met before the setpoint becomes inactive. An event will be generated and stored in the SOE Log. The range of the Inactive Delay is between 0 and 9999 seconds.
0 to 9999 s, 10*
Setpoint Trigger
Specify what action a setpoint would take when it becomes active. Please refer to Table 4-13 below for a list of Setpoint Triggers.
See table 4-13, 0*
Key
Parameter
Scale/Unit
1
Uln
x100, V
2
Ull
x100, V
3
I
x1000, A
4
I41 x1000, A
5
Freq Deviation
x100, Hz
6
kW Total
kW
7
kvar Total
kvar
8
P.F.
x1000
9
DI1
1) For Over Setpoint, the Active Limit is DI Close
(DI=1), and Inactive Limit is DI Open (DI=0);
2) For Under Setpoint, the Active Limit is DI Open
(DI=0), and Inactive Limit is DI Close (DI=1).
10
DI2
11
DI3
12
DI4
Figure 4-2 Under Setpoint
The alarm symbol at the right side of the LCD display is lit if there are any active Setpoints. The
setpoints can be programmed over communications and have the following setup parameters:
Table 4-11 Description for Setpoint Parameters
The PMC-660 provides the following Setpoint parameters, Standard Setpoint can monitor all parameters
while the HS Setpoint only can monitor parameters 1 to 14.
41
Page 42
CET Electric Technology
13
DI5
14
DI6
15
AI
/
16
kW Total Present Demand
kW
17
kvar Total Present Demand
kvar
18
P.F. Present Demand
x1000
19
Total kW Predicted Demand
kW
20
Total kvar Predicted Demand
kvar
21
P.F. Predicted Demand
x1000
22
U THD
x100, %
23
U TOHD
x100, %
24
U TEHD
x100, %
25
I THD
x100, %
26
I TOHD
x100, %
27
I TEHD
x100, %
28
U Unbalance
x10, %
29
I Unbalance
x10, %
30
U Deviation
x100, %
31
Phase Reversal
1) For Over Setpoint, the Active Limit is Negative
Phase Sequence, and Inactive Limit is Positive Phase Sequence.
2) For Under Setpoint, the Active Limit is
Positive Phase Sequence, and Inactive Limit is Negative Phase Sequence.
32
I Residual
x1000, A
33
U2 (Negative Sequence Voltage)
x100, V
34
U0 (Zero Sequence Voltage)
x100, V
Key
Action
Key
Action
0
None
12
DR #9
1
DO1
13
DR #10
2
DO2
14
DR #11
3
DO3
15
DR #12
4
DR #1
16
DR #13
5
DR #2
17
DR #14
6
DR #3
18
DR #15
7
DR #4
19
DR #16
8
DR #5
20
WFR #1
8
DR #6
21
WFR #2
10
DR #7
22
Alarm Email
11
DR #8
Setup Parameters
Definition
Options/*Default
Enable Logical Module
Logical Module Enable
0=Disabled*,
1=Enabled
Mode 1 to 3
Specify the type of logical evaluation to be performed
0=AND*, 1=OR,
2=NAND, 3=NOR
Source 1 to 4
Specify the source input.
See Table 4-15
Table 4-12 Setpoint Parameters
Notes
1) I4 is valid only if the device is equipped with the I4 Input option, and I0 (Zero Sequence Current) will automatically be used
to if the meter is equipped with the AI option (instead of I4).
Note: Only when DOx Mode is set to Remote Control/Setpoint would setting Setpoint Trigger to DOx be valid.
Table 4-13 Setpoint Triggers

4.5 Logical Module

The PMC-660 comes standard with 6 user programmable Logical Modules which perform an AND, NAND,
OR and NOR logical operation. The Logical Module provides extensive control by allowing a user to
initiate an action based on the combinational logic of up to four different Setpoint conditions.
The alarm symbol at the right side of the LCD display is lit if there are any active Logical Modules.
The Logical Modules can be programmed over communications and have the following setup
parameters:
42
Page 43
CET Electric Technology
Trigger 1 Trigger 2
Specify what action the Logical Module will take when it becomes active. Logical Equation = ((Source 1 [Mode 1] Source 2) [Mode 2] Source 3) [Mode 3] Source 4
See Table 4-16
Key
Source
Key
Source
0
None
13
Setpoint #13 (Standard)
1
Setpoint #1 (Standard)
14
Setpoint #14 (Standard)
2
Setpoint #2 (Standard)
15
Setpoint #15 (Standard)
3
Setpoint #3 (Standard)
16
Setpoint #16 (Standard)
4
Setpoint #4 (Standard)
17
Setpoint #17 (High Speed)
5
Setpoint #5 (Standard)
18
Setpoint #18 (High Speed)
6
Setpoint #6 (Standard)
19
Setpoint #19 (High Speed)
7
Setpoint #7 (Standard)
20
Setpoint #20 (High Speed)
8
Setpoint #8 (Standard)
21
Setpoint #21 (High Speed)
9
Setpoint #9 (Standard)
22
Setpoint #22 (High Speed)
10
Setpoint #10 (Standard)
23
Setpoint #23 (High Speed)
11
Setpoint #11 (Standard)
24
Setpoint #24 (High Speed)
12
Setpoint #12 (Standard)
Key
Action
Key
Action
0
None
4-19
DR1 to DR16
1-3
DO1 to DO3
20, 21
WR1, WR2
Max./Min. Parameters
Uan
Ubn
Ucn
Uln avg
Uab
Ubc
Uca
Ull avg
Ia
Ib
Ic
I avg.
kW Total
kvar Total
kVA Total
P.F. Total
Uan/Uab THD
Ubn/Ubc THD
Ucn/Uca THD
I4
Ia THD
Ib THD
Ic THD
FREQ
Ia K-Factor
Ib K-Factor
Ic K-Factor
Voltage Unbalance
Current Unbalance
I Residual
Table 4-14 Setpoint Parameters
Table 4-15 Logical Module Sources
The PMC-660 provides the following Logical Module Triggers:
Table 4-16 Logical Module Triggers

4.6 Logging

4.6.1 Max./Min. Log

The PMC-660 records the Max. Log and Min. Log of This Month (Since Last Reset) and Last Month
(Before Last Reset) with timestamp for Uln, Ull, I, kW/kvar/kVA/PF Total, Frequency, Voltage and
Current THD, K-Factor and Voltage and Current Unbalance. Each log includes the relevant parameter
value and its timestamp. The recorded data is stored in the device’s non-volatile memory and will not
suffer any loss in the event of power failure. All of the maximum and minimum data can be accessed
through communications.
Table 4-17 Max./Min. Log
The same Self-Read Time for the Peak Demand Log is used to specify the time and day of the month
for the Max./Min. Self-Read operation. Please refer to Section 4.2.5 for a complete description of the
Self-Read Time and its operation. The Max./Min. Log of This Month (Since Last Reset) can be reset
manually from the Front Panel or via communications.

4.6.2 Peak Demand Log

The PMC-660 stores the Peak Demand of This Month (Since Last Reset) and Last Month (Before Last
Reset) with timestamp for Ia, Ib, Ic, kW Total, kvar Total and kVA Total. All Peak Demand data can be
accessed through the Front Panel as well as communications. Please refer to Section 4.2.5 for a
43
Page 44
CET Electric Technology
Peak Demand Logs of This Month (Since Last Reset) and Last Month (Before Last Reset)
kW Total
Ia
kVA Total
Ib
kvar Total
Ic
Setup Parameter
Value/Option
Default
Recording Mode
0=Disabled, 1=Stop-When-Full, 2=First-In-First-Out
2
Recording Depth
0 to 65535 (entry)
5760
Recording Interval
0=5mins, 1=10mins, 2=15mins, 3=30mins, 4=60mins
2
Start Time
20YY/MM/DD, HH:MM:SS
Number of Parameters
0 to 5
5
Parameter 1 to 5
kWh Import/Export, kvarh Import/Export and kVAh
Setup Parameters
Value/Option
Default
WFR 1
WFR 2
Recording Depth
0 to 32
10
20
# of Samples
0=16, 1=32, 2=64, 3=128, 4=256
4
2
Number of Cycle
320/160/80/40/20
20
80
Pre-fault Cycles
0 to 10 Cycles
4
6
complete description of the Self-Read Time and its operation.
The Peak Demand of This Month can be reset manually through the Front Panel or via communications.
The PMC-660 provides the following Peak Demand parameters:
Table 4-18 Peak Demand Measurements

4.6.3 Interval Energy Recorder (IER) Log

The PMC-660 provides an Interval Energy Recorder capable of recording the interval energy
consumption for kWh/kvarh Import/Export and kVAh. If the users wish to record the accumulative
energy values instead of the interval energy consumption, the Data Recorder function should be used
in the PMC-660. The recorded data is stored in the device’s non-volatile memory and will not suffer any
loss in the event of power failure.
The programming of the IER is only supported over communications. The IER provides the following
setup parameters:
Table 4-19 IER Setup Parameters
The IER is only operational when the values of Recording Mode, Recording Depth, Start Time and
Number of Parameters are all non-zero. When the present time meets or exceeds the “Start Time”, the
IER will start to record.

4.6.4 Waveform Recorder (WFR) Log

The PMC-660 provides 2 independent groups of Waveform Recorders (WFR) with a combined total of
32 entries. Each WFR can simultaneously capture 3-phase Voltage and Current signals at a maximum
resolution of 256 samples per cycles. The WFR can be triggered by Setpoints, Dip/Swell and Transient
Detection or manually through communications. The manual trigger command has a higher priority.
When the WFR is already in progress, other WFR commands will be ignored until the current recording
has completed. The WFR Log has a capacity of 32 entries organized in a First-In-First-Out basis, with the
newest WFR log replacing the oldest one. The waveform data is stored in the device’s non-volatile
memory and will not suffer any loss in the event of power failure.
The programming of the WFR is only supported over communications. The WFR provides the following
setup parameters:
Table 4-20 WFR Setup Parameters
The total capacity of WFR 1 and WFR 2 is 32. The valid formats (# of samples/cycle x # of cycles) of WFR
44
Page 45
CET Electric Technology
Setup Parameters
Value/Option
Default
Trigger Mode
0=Disabled / 1=Triggered by Timer / 2=Triggered by Setpoint
See
Appendix B
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
Recording Depth
1 to 65535 (entry)
Recording Interval
0 to 3456000 seconds for Standard Data Recorder 0 to 60 cycles for High-Speed Data Recorder
Offset Time
0 to 43,200 seconds, 0 indicates no offset If the Trigger Mode is set to Triggered by Setpoint, the
Offset Time will be disregarded.
Number of Parameters
0 to 16
Parameter 1 to 16
0 to 329 for Standard Data Recorder 0 to 28 for High-Speed Data Recorder Please see refer to Appendix A for more information.
include 16x320, 32x160, 64x80, 128x40 and 256x20. When the WFR format is 256 samples/cycles, the
Pre-fault Cyclecan only be set between 0 and 5.
The WFR logs can be retrieved via communications by our PecStar® iEMS or our free PMC Setup
Software for display.
Figure 4-3 WFR Log displayed in PecStar®

4.6.5 PQ Log

The PMC-660’s PQ Log can store up to 1000 PQ events such as Dips/Swells and Transients. Each event
record includes the event classification, its relevant voltage values and a timestamp in 1ms resolution.
All events can be retrieved via communications for display. If there are more than 1000 events, the
newest event will replace the oldest event on a First-In-First-Out basis. The PQ Log can be reset from
the Front Panel or via communications.

4.6.6 SOE Log

The PMC-660’s SOE Log can store up to 512 events such as Power-on, Power-off, Setpoint actions, Relay
actions, Digital Input status changes and setup changes in its non-volatile memory. Each event record
includes the event classification, its relevant parameter values and a timestamp in 1ms resolution. All
events can be retrieved via communications for display. If there are more than 512 events, the newest
event will replace the oldest event on a First-In-First-Out basis. The SOE Log can be reset from the Front
Panel or via communications.

4.6.7 Data Recorder (DR) Log

The PMC-660 comes equipped with 4MB of memory and provides 4 High-Speed Data Recorders (HS DR)
as well as 12 Standard Data Recorders (DR) capable of recording 16 parameters each. The recorded data
is stored in the device’s non-volatile memory and will not suffer any loss in the event of power failure.
The programming of the Data Recorder is only supported over communications. Each Data Recorder
provides the following setup parameters:
45
Table 4-21 DR Setup Parameters
Page 46
CET Electric Technology
Tariff
DI Function
DI1 = Tariff Switch
DI2 & DI1 = Tariff Switch
DI3, DI2 & DI1 = Tariff Switch
T1
DI1 (0=T1)
DI2 + DI1 (00=T1)
DI3 + DI2 + DI1 (000=T1)
T2
DI1 (1=T2)
DI2 + DI1 (01=T2)
DI3 + DI2 + DI1 (001=T2)
T3
Not Available
DI2 + DI1 (10=T3)
DI3 + DI2 + DI1 (010=T3)
T4
Not Available
DI2 + DI1 (11=T4)
DI3 + DI2 + DI1 (011=T4)
T5
Not Available
Not Available
DI3 + DI2 + DI1 (100=T5)
T6
Not Available
Not Available
DI3 + DI2 + DI1 (101=T6)
T7
Not Available
Not Available
DI3 + DI2 + DI1 (110=T7)
T8
Not Available
Not Available
DI3 + DI2 + DI1 (111=T8)
The DR Log is only operational when the values of Triggered Mode, Recording Mode, Recording Depth,
Recording Interval, and Number of Parameters are all non-zero.
Data Recorder #X can be triggered by clearing the Data Recorder #X when it is full in Stop-When-Full
mode (See Section 5.8.9).
For Standard Data Recorder, the Recording Offset parameter can be used to delay the recording by a
fixed time from the Recording Interval. For example, if the Recording Interval parameter is set to 3600
(hourly) and the Recording Offset parameter is set to 300 (5 minutes), the recording will take place at
5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05…etc. The programmed value of the
Recording Offset parameter should be less than that of the Recording Interval parameter.
For High-speed Data Recorder, the Recording Offset should be set to zero.

4.7 Time of Use (TOU)

TOU is used for electricity pricing that varies depending on the time of day, day of week, and season.
The TOU system allows the user to configure an electricity price schedule inside the PMC-660 and
accumulate energy consumption into different TOU tariffs based on the time of consumption. TOU
programming is only supported through communications. This feature is available in Firmware V2.00.00
or later.
The TOU feature on PMC-660 supports two TOU schedules, which can be switched at a pre-defined time.
Each TOU schedule supports:
Up to 12 seasons 90 Holidays or Alternate Days 20 Daily Profiles, each with 12 Periods in 15-minute interval 8 Tariffs
Instead of using the TOU schedule to switch between Tariffs, the PMC-660 supports Tariff switching
based on the status of DI1 to DI3.
The 3 Digital Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff 1=000, Tariff 2=001, Tariff
3=010, …Tariff 7=110 and Tariff 8=111 where DI1 represents the least significant digit and DI3 represents
the most significant digit. As soon as DI1, DI2 and/or DI3 are configured as Tariff Switches, the current
TOU Tariff will be determined by the status of the DIs, and the TOU Schedule will be ignored. The DI1
Function setup register must first be programmed as a Tariff Switch before configuring DI2 and DI3 with
the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse Counter, and
DI2 is configured as a Tariff Switch, the TOU will continue to function based on the TOU Schedule. The
number of Tariffs supported depends on how many DIs are programmed as a Tariff Switch as indicated
in the following table.
46
Table 4-22 DIs and the Number of Tariffs Setup
Page 47
CET Electric Technology
Setup Parameters
Definition
Options
Daily Profile #
Specify a daily rate schedule which can be divided into a maximum of 12 periods in 15-min intervals. Up to 20 Daily Profiles can be programmed for each TOU schedule.
1 to 20, the first period starts at 00:00 and the last period ends at 24:00.
Season #
A year can be divided into a maximum of 12 seasons. Each season is specified with a Start Date and ends with the next season’s Start Date.
1 to 12, starts from January 1st
Alternate Days #
A day can be defined as an Alternate Day, such as May 1st. Each Alternate Day is assigned a Daily Profile.
1 to 90.
Day Types
Specify the day type of the week. Each day of a week can be assigned a day type such as Weekday1, Weekday2, Weekday3 and Alternate Days. The Alternate Day has the highest priority.
Weekday1, Weekday2, Weekday3 and Alternate Days
Switching Time
Specify when to switch from one TOU schedule to another. Writing 0xFFFFFFFF to this parameter disables switching between TOU schedules.
Format: YYYYMMDDHH Default=0xFFFFFFFF
Each TOU schedule has the following setup parameters and can only be programmed via
communications:
Table 4-23 TOU Setup Parameters
For each of the 8 Tariff Rates, the PMC-660 provides the following Energy measurements: kWh
Import/Export, kvarh Import/Export, kVAh.
T1-T8’s kWh Import/Export are available through the Front Panel and via communications, and T1-T8’s
kvarh Import/Export and kVAh are only available via communications.

4.8 Time Synchronization

The PMC-660 provides timestamps for all recorded data, so the clock needs to be configured properly
for event and power quality analysis.
The PMC-660 comes with a 6ppm, battery-backed real-time clock that has a maximum error of 0.5s per
day. If the supply power is lost or removed, the internal battery keeps the real-time clock running until
power is restored.
There are several methods to synchronize the PMC-660’s clock:
1) PMC Setup can be used to manually set the time of an individual meter through the “Set Time”
function on the Manual Operate page using the computer’s clock as the clock source.
2) PecStar® iEMS can be configured to provide regular time synchronization by broadcasting time-
sync packets over the connected medium, whether it be RS485 or Ethernet. The default time of
47
Figure 4-4 Set Time via PMC Setup
Page 48
CET Electric Technology
Setup Parameters
Option/*Default
SNTP Enable
Disabled*/Enabled
Time Zone
GMT-12:00 / GMT-11:00 / GMT-10:00 / GMT-9:00 / GMT-8:00 / GMT-7:00 / GMT-6:00 / GMT-5:00 / GMT-4:00 / GMT-3:30 / GMT-3:00 / GMT-2:00 / GMT-1:00 / GMT-0:00 / GMT+1:00 / GMT+2:00 / GMT+3:00 / GMT+3:30 / GMT+4:00 / GMT+4:30/ GMT+5:00 / GMT+5:30 / GMT+5:45 / GMT+6:00 / GMT+6:30 / GMT+7:00 / GMT+8:00*/ GMT+9:00 / GMT+9:30 / GMT+10:00 / GMT+11:00 / GMT+12:00 / GMT+13:00
Sync. Interval
10 to 1440 minutes, 60*
IP Address of Time Server
Set the IP address of your Time Server
Setup Parameters
Recommended Settings
DI Function
0=Digital Input, 1=Pulse Counter, 2=SYNC DI, 3=PPS, 4=Tariff Switch*
DI Debounce
0 and 1000 (ms), Default = 20 (ms)
DI Pulse Weight
1 and 1,000,000 (x0.001), Default = 1 (0.001)
synchronization interval is 60 minutes.
3) SNTP server can be used to synchronize the PMC-660's clock through its Ethernet port providing
that the network where the PMC-660 resides has access to the Internet. The programming of the
SNTP server is only supported over communications. The SNTP server provides the following
setup parameters:
Table 4-24 SNTP Setup Parameters
4) Further, a GPS that has a 1 PPS output can be used to synchronize the millisecond clock through
one of PMC-660's Digital Inputs. The programming of the DI is only supported over communications.
The PMC-660 provides the following setup parameters (please refer to Modbus registers 6025 to
6047 in Section 5.8.1 for a complete description of these DI Setup registers):
*Available in Firmware V2.00.00 or later, and only DI1 to DI3 can be set as Tariff Switch.
Table 4-25 DI Setup Parameters
Please also refer to Figure 2-15 for the time synchronization wiring diagram.

4.9 On-board Web Server

The PMC-660's Ethernet port comes with an on-board web server which provides quick and easy access
to the basic measurements and device information via a web browser like Microsoft's Internet Explorer.
The PMC-660 currently comes with only one web page as displayed in Figure 4-5. The PMC-660’s web
server supports simultaneous access from two different computers.
Viewing PMC-660's on-board Web Page:
1) Make sure the Ethernet settings of your computer and the PMC-660 are in the same subnet.
2) Enter the IP Address of the PMC-660 in the Address input box of the Internet Explorer and
then press <Enter>.
3) The PMC-660’s web page appears as follows.
48
Page 49
CET Electric Technology
Setup Parameters
Option
SMTP TCP Port
0 to 65535 (Default=25)
SMTP Server IP Address
IP Address of the SMTP Server
Source Email Address
Source email address that appears in the “From” field of the email. This string is up to 35 characters long.
Logon Password
Set the logon password to send an email using the Source Email account. This string is up to 19 characters long.
Destination Email Address
Destination email address that appears in the “To” field of the email. This string is up to 35 characters long.
Test Email
Send a “test email” to the destination email address.
Figure 4-5 PMC-660's Web Page

4.10 Meter Email

The PMC-660 supports the SMTP and ESMTP protocols and can be configured to send alarm messages
via email, which may be triggered by Setpoint, Dip/Swell and Transient Detection.
The email shows the following information in text format:
1) PMC-660’s serial number
2) Event description
3) Event time stamp
The programming of the Email is only supported over communications. The PMC-660 provides the
following setup parameters:
Table 4-26 Email Setup Parameters

4.11 Ethernet Gateway

The PMC-660's Ethernet port together with its RS485 port can be used as an Ethernet Gateway (EGATE)
to allow communications between a Modbus Master on the Ethernet network and a network of serial
devices connected to the PMC-660's RS485 port as shown in Figure 4-6 below.
49
Page 50
CET Electric Technology
Figure 4-6 Topological Graph
To use the PMC-660 as an Ethernet Gateway, the following parameters should be configured via the
Front Panel:
1) Set the IP address, Subnet Mask and Gateway Address
2) Set the Protocol of the RS485 Port as EGATE
3) Use 6000 (cannot be configured) as the IP Port No. to connect to PMC-660's Ethernet
Gateway with your software
4) Please refer to Section 3.4.3 for more information
For detailed information on how to use the Ethernet Gateway feature, please refer to PMC Setup's User
Manual.
50
Page 51
CET Electric Technology
Format
Description
UINT16/INT16
Unsigned/Signed 16-bit Integer
UINT32/INT32
Unsigned/Signed 32-bit Integer
Float
IEEE 754 32-bit
Single Precision Floating Point Number
Register
Property
Description
Format
Scale
Unit
0000
RO
Uan1
Float
x1
V
0002
RO
Ubn1
Float
0004
RO
Ucn1
Float
0006
RO
Uln average1
Float
0008
RO
Uab
Float
0010
RO
Ubc
Float
0012
RO
Uca
Float
0014
RO
Ull average
Float
0016
RO
Ia
Float
x1
A
0018
RO
Ib
Float
0020
RO
Ic
Float
0022
RO
I average
Float
0024
RO
kWa1
Float
x1
W
0026
RO
kWb1
Float
0028
RO
kWc1
Float
0030
RO
kW Total
Float
0032
RO
kvara1
Float
x1
var
0034
RO
kvarb1
Float
0036
RO
kvarc1
Float
0038
RO
kvar Total
Float
0040
RO
kVAa1
Float
x1
VA
0042
RO
kVAb1
Float
0044
RO
kVAc1
Float
0046
RO
kVA Total
Float
0048
RO
P.F.a1
Float
x1
-
0050
RO
P.F.b1
Float
0052
RO
P.F.c1
Float
0054
RO
P.F. Total
Float
0056
RO
FREQ
Float
x1
Hz
0058
RO
I4 Measured
Float
x1 A 0060
RO
I0 (Calculated Neutral Current)#
Float
x1 A 0062~0069 Reserved
0070
RO
U Unbalance
UINT16
×10
%
0071
RO
I Unbalance
UINT16
0072
RO
Uan (Wye)/Uab (Delta/3P3W) Deviation
INT16
x100
%
0073
RO
Ubn (Wye)/Ubc (Delta/3P3W) Deviation
INT16
0074
RO
Ucn (Wye)/Uca (Delta/3P3W) Deviation
INT16
0075
RO
FREQ Deviation
INT16
x100
Hz

Chapter 5 Modbus Register Map

This chapter provides a complete description of the Modbus register map (Protocol Version 1.6) for the
PMC-660 to facilitate the development of 3rd party communications driver for accessing information on
the PMC-660. For a complete Modbus Protocol Specification, please visit http://www.modbus.org. The
PMC-660 supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
4) Read General Reference (Function Code 0x14)
The following table provides a description of the different data formats used for the Modbus registers.
The PMC-660 uses the Big Endian byte ordering system.

5.1 Basic Measurements

51
Page 52
CET Electric Technology
0076
RO
Uan (Wye)/Uab (Delta/3P3W) Angle
UINT16
x100
°
0077
RO
Ubn (Wye)/Ubc (Delta/3P3W) Angle
UINT16
0078
RO
Ucn (Wye)/Uca (Delta/3P3W) Angle
UINT16
0079
RO
Ia Angle
UINT16
x100
°
0080
RO
Ib Angle
UINT16
0081
RO
Ic Angle
UINT16
0082
RO
AI
Float
0084
RO
AO
UINT16
x100
mA
0085
RO
DI Status2
UINT16
0086
RO
DO Status3
UINT16
0087
RO
Alarm Status4
UINT32
0089
RO
SOE Pointer5
UINT32
0091
RO
PQ Log Pointer5
UINT32
0093
RO
WFR Log #1 Pointer5
UINT32
0095
RO
WFR Log #2 Pointer5
UINT32
0097
RO
IER Log Pointer5
UINT32
0099
RO
DR #1 Pointer (HS)5
UINT32
0101
RO
DR #2 Pointer (HS)5
UINT32
0103
RO
DR #3 Pointer (HS)5
UINT32
0105
RO
DR #4 Pointer (HS)5
UINT32
0107
RO
DR #5 Pointer (Standard)5
UINT32
0129
RO
DR #16 Pointer (Standard)5
UINT32
0131
RO
Total Memory Size6
UINT32
x1
kB
0133
RO
Available Memory6
UINT32
x1
kB
0135
RO
Device Operating Time
7~
UINT32
x0.1
Hour
0137
RO
I Residual
8~
Float
x1
A
0139
RO
U1~ (Positive Sequence Voltage)
Float
x1
V
0141
RO
U2~ (Negative Sequence Voltage)
Float
0143
RO
U0~ (Zero Sequence Voltage)
Float
0145
RO
I1~ (Positive Sequence Current)
Float
x1
A
0147
RO
I2~ (Negative Sequence Current)
Float
0149
RO
I0~ (Zero Sequence Current)
Float
Bit
Alarm Event
Bit
Alarm Event
B0
Setpoint #1 (Standard)
B16
Setpoint #17 (High-Speed)
B1
Setpoint #2 (Standard)
B17
Setpoint #18 (High-Speed)
B2
Setpoint #3 (Standard)
B18
Setpoint #19 (High-Speed)
B3
Setpoint #4 (Standard)
B19
Setpoint #20 (High-Speed)
B4
Setpoint #5 (Standard)
B20
Setpoint #21 (High-Speed)
B5
Setpoint #6 (Standard)
B21
Setpoint #22 (High-Speed)
B6
Setpoint #7 (Standard)
B22
Setpoint #23 (High-Speed)
B7
Setpoint #8 (Standard)
B23
Setpoint #24 (High-Speed)
B8
Setpoint #9 (Standard)
B24
Logical Module #1
B9
Setpoint #10 (Standard)
B25
Logical Module #2
B10
Setpoint #11 (Standard)
B26
Logical Module #3
B11
Setpoint #12 (Standard)
B27
Logical Module #4
B12
Setpoint #13 (Standard)
B28
Logical Module #5
B13
Setpoint #14 (Standard)
B29
Logical Module #6
B14
Setpoint #15 (Standard)
B30
Reserved
B15
Setpoint #16 (Standard)
B31
Reserved
#
Available in Firmware version V1.00.05 or later
~
Available in Firmware V2.00.00 or later
Table 5-1 Basic Measurements
Notes:
1) When the Wiring Mode is Delta or 3P3W, the per phase line-to-neutral Voltages, kWs, kvars, kVAs and P.F.s have no
meaning, and their registers are reserved.
2) For the DI Status register, the bit values of B0 to B5 represent the states of DI1 to DI6, respectively, with “1” meaning Active
(Closed) and “0” meaning Inactive (Open).
3) For the DO Status register, the bit values of B0 to B2 represent the states of DO1 to DO3, respectively, with “1” meaning
Active (Closed) and “0” meaning Inactive (Open).
4) The Alarm Status register, the bit values indicates the various Alarm states with “1” meaning Active and “0” meaning
Inactive. The following table illustrates the details of the Alarm Status register.
52
Table 5-2 Alarm Status Register (0087)
Page 53
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
0200
RW
kWh Import
UINT32
x1
kWh
0202
RW
kWh Export
UINT32
0204
RO
kWh Net
INT32
0206
RO
kWh Total
UINT32
0208
RW
kvarh Import
UINT32
x1
kvarh
0210
RW
kvarh Export
UINT32
0212
RO
kvarh Net
INT32
0214
RO
kvarh Total
UINT32
0216
RW
kVAh
UINT32
x1
kVAh
0218
RW
kvarh Q1
UINT32
x1
kvarh
0220
RW
kvarh Q2
UINT32
0222
RW
kvarh Q3
UINT32
0224
RW
kvarh Q4
UINT32
0226
RO
kWh Import Fractional
Float
x1
W s
0228
RO
kWh Export Fractional
Float
0230
RO
kWh Net Fractional
Float
0232
RO
kWh Total Fractional
Float
0234
RO
kvarh Import Fractional
Float
x1
var s
0236
RO
kvarh Export Fractional
Float
0238
RO
kvarh Net Fractional
Float
0240
RO
kvarh Total Fractional
Float
0242
RO
kVAh Fractional
Float
x1
VA s
0244
RO
kvarh Q1 Fractional
Float
x1
var s
0246
RO
kvarh Q2 Fractional
Float
0248
RO
kvarh Q3 Fractional
Float
0250
RO
kvarh Q4 Fractional
Float
Register
Property
Description
Format
Scale
Unit
4000
RW
kWh Import of T1
UINT32
x1
kWh
4002
RW
kWh Export of T1
UINT32
4004
RW
kvarh Import of T1
UINT32
kvarh
4006
RW
kvarh Export of T1
UINT32
4008
RW
kVAh of T1
UINT32
kVAh
5) The range of the SOE/PQ /WFR/IER/DR Log Pointer is between 0 and 0xFFFFFFFFH. The pointer is incremented for every
new log generated and will roll over to 0 if its current value is 0xFFFFFFFFH. A value of zero indicates that the specific Log does not contain any record. If a Clear SOE Log/PQ Log/WFR Log/IER Log/DR Log is performed from the Front Panel or via communications, its corresponding Log Pointer will be reset to zero. Use the following equation to determine the latest log location:
Latest Log Location = Modulo [Log Pointer / Log Depth]
Where Log Depth = 512 for SOE Log, 1000 for PQ Log, WFR Recording Depth for WFR Log, IER Recording Depth for IER
Log and DR Recording Depth for DR Log.
6) The Total Memory Size of the PMC-660 is 4MB (4096kB). Used Memory = 3936kB - Available Memory.
7) The Device Operating Time means the accumulated Operating Time (or Running Hours) whenever any per-phase Current
has exceeded the Current On Threshold (Register 6200). The Device Operating Time data is stored in non-volatile memory and will not suffer any loss in the event of a power failure.
8) I Residual register is meaningful only if the meter is equipped with the I4 option.

5.2 Energy Measurements

5.2.1 Total Energy Measurements

The Energy registers have a maximum value of 1,000,000,000 and will roll over to zero automatically
when it is reached. The PMC-660 also provides energy measurements in fractional values if they are
required. Using the “Fractional” registers, having units such as Wsec, varsec and VAsec, the user can
obtain decimal resolution for achieving higher accuracy. For example, if the value of the kWh fractional
register is 3200000 W sec, the decimal value is 3200000/3600000=0.8889kWh. If the higher resolution
is not required, it is not necessary to read the fractional energy registers.

5.2.2 TOU Energy Measurements

53
Table 5-3 Energy Measurements
Page 54
CET Electric Technology
4010
RW
kWh Import of T2
UINT32
kWh
4012
RW
kWh Export of T2
UINT32
4014
RW
kvarh Import of T2
UINT32
kvarh
4016
RW
kvarh Export of T2
UINT32
4018
RW
kVAh of T2
UINT32
kVAh
4020
RW
kWh Import of T3
UINT32
kWh
4022
RW
kWh Export of T3
UINT32
4024
RW
kvarh Import of T3
UINT32
kvarh
4026
RW
kvarh Export of T3
UINT32
4028
RW
kVAh of T3
UINT32
kVAh
4030
RW
kWh Import of T4
UINT32
kWh
4032
RW
kWh Export of T4
UINT32
4034
RW
kvarh Import of T4
UINT32
kvarh
4036
RW
kvarh Export of T4
UINT32
4038
RW
kVAh of T4
UINT32
kVAh
4040
RW
kWh Import of T5
UINT32
kWh
4042
RW
kWh Export of T5
UINT32
4044
RW
kvarh Import of T5
UINT32
kvarh
4046
RW
kvarh Export of T5
UINT32
4048
RW
kVAh of T5
UINT32
kVAh
4050
RW
kWh Import of T6
UINT32
kWh
4052
RW
kWh Export of T6
UINT32
4054
RW
kvarh Import of T6
UINT32
kvarh
4056
RW
kvarh Export of T6
UINT32
4058
RW
kVAh of T6
UINT32
kVAh
4060
RW
kWh Import of T7
UINT32
kWh
4062
RW
kWh Export of T7
UINT32
4064
RW
kvarh Import of T7
UINT32
kvarh
4066
RW
kvarh Export of T7
UINT32
4068
RW
kVAh of T7
UINT32
kVAh
4070
RW
kWh Import of T8
UINT32
kWh
4072
RW
kWh Export of T8
UINT32
4074
RW
kvarh Import of T8
UINT32
kvarh
4076
RW
kvarh Export of T8
UINT32
4078
RW
kVAh of T8
UINT32
kVAh
4080~4099
RW
Reserved
4100
RO
kWh Import of T1
Float
x1
W.s
4102
RO
kWh Export of T1
Float
4104
RO
kvarh Import of T1
Float
var.s
4106
RO
kvarh Export of T1
Float
4108
RO
kVAh of T1
Float
VA.s
4110
RO
kWh Import of T2
Float
W.s
4112
RO
kWh Export of T2
Float
4114
RO
kvarh Import of T2
Float
var.s
4116
RO
kvarh Export of T2
Float
4118
RO
kVAh of T2
Float
VA.s
4120
RO
kWh Import of T3
Float
W.s
4122
RO
kWh Export of T3
Float
4124
RO
kvarh Import of T3
Float
var.s
4126
RO
kvarh Export of T3
Float
4128
RO
kVAh of T3
Float
VA.s
4130
RO
kWh Import of T4
Float
W.s
4132
RO
kWh Export of T4
Float
4134
RO
kvarh Import of T4
Float
var.s
4136
RO
kvarh Export of T4
Float
4138
RO
kVAh of T4
Float
VA.s
4140
RO
kWh Import of T5
Float
W.s
4142
RO
kWh Export of T5
Float
4144
RO
kvarh Import of T5
Float
var.s
4146
RO
kvarh Export of T5
Float
4148
RO
kVAh of T5
Float
VA.s
4150
RO
kWh Import of T6
Float
W.s
4152
RO
kWh Export of T6
Float
4154
RO
kvarh Import of T6
Float
var.s
4156
RO
kvarh Export of T6
Float
54
Page 55
CET Electric Technology
4158
RO
kVAh of T6
Float
VA.s
4160
RO
kWh Import of T7
Float
W.s
4162
RO
kWh Export of T7
Float
4164
RO
kvarh Import of T7
Float
var.s
4166
RO
kvarh Export of T7
Float
4168
RO
kVAh of T7
Float
VA.s
4170
RO
kWh Import of T8
Float
W.s
4172
RO
kWh Export of T8
Float
4174
RO
kvarh Import of T8
Float
var.s
4176
RO
kvarh Export of T8
Float
4178
RO
kVAh of T8
Float
VA.s
Register
Property
Description
Format
Scale
Unit
4500
RO
kWh Import
INT32
x0.01
kWh
4502
RO
kWh Export
INT32
4504
RO
kvarh Import
INT32
kvarh
4506
RO
kvarh Export
INT32
4508
RO
kVAh
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0350
RW
DI1 Pulse Counter
UINT32
x1000
-
0352
RW
DI2 Pulse Counter
UINT32
0354
RW
DI3 Pulse Counter
UINT32
0356
RW
DI4 Pulse Counter
UINT32
0358
RW
DI5 Pulse Counter
UINT32
0360
RW
DI6 Pulse Counter
UINT32
Register
Property
Description
Format
Scale
Unit
0400
RO
dUan1
Float
x1
V
0402
RO
dUbn1
Float
0404
RO
dUcn1
Float
0406
RO
dUln average1
Float
0408
RO
dUab2
Float
0410
RO
dUbc2
Float
0412
RO
dUca2
Float
0414
RO
dUll average2
Float
0416
RO
dIa
Float
A
0418
RO
dIb
Float
0420
RO
dIc
Float
0422
RO
dI average
Float
0424
RO
dI43
Float
0426
RO
dkWa1
Float
W
0428
RO
dkWb1
Float
0430
RO
dkWc1
Float
0432
RO
dkW Total
Float
0434
RO
dkvara1
Float
var
0436
RO
dkvarb1
Float
0438
RO
dkvarc1
Float
0440
RO
dkvar Total
Float
0442
RO
dkVAa1
Float
VA
0444
RO
dkVAb1
Float
Table 5-4 TOU Energy Measurements

5.2.3 Interval Energy Measurements

Table 5-5 Interval Energy Measurements

5.3 Pulse Counter

The Pulse Counter data returned is 1000 times the actual value. For example, if the register contains a value of 1234567, the actual counter value is 1234.567.
Table 5-6 Pulse Counter

5.4 Harmonic Measurements

5.4.1 Fundamental (Displacement) Measurements

55
Page 56
CET Electric Technology
0446
RO
dkVAc1
Float
0448
RO
dkVA Total
Float
0450
RO
dP.F.a1
Float
-
0452
RO
dP.F.b1
Float
0454
RO
dP.F.c1
Float
0456
RO
dP.F. Total
Float
Register
Property
Description
Format
Scale
Unit
0458
RO
Ia K-Factor
UINT16
×10
­0459
RO
Ib K-Factor
UINT16
0460
RO
Ic K-Factor
UINT16
0461
RO
Uan (WYE)/Uab (Delta/3P3W) THD
UINT16
x100
%
0462
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
UINT16
0463
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
UINT16
0464
RO
Ia THD
UINT16
0465
RO
Ib THD
UINT16
0466
RO
Ic THD
UINT16
0467
RO
I4 THD1
UINT16
0468
RO
Uan (WYE)/Uab (Delta/3P3W) TOHD
UINT16
0469
RO
Ubn (WYE)/Ubc (Delta/3P3W) TOHD
UINT16
0470
RO
Ucn (WYE)/Uca (Delta/3P3W) TOHD
UINT16
0471
RO
Ia TOHD
UINT16
0472
RO
Ib TOHD
UINT16
0473
RO
Ic TOHD
UINT16
0474
RO
I4 TOHD1
UINT16
0475
RO
Uan (WYE)/Uab (Delta/3P3W) TEHD
UINT16
0476
RO
Ubn (WYE)/Ubc (Delta/3P3W) TEHD
UINT16
0477
RO
Ucn (WYE)/Uca (Delta/3P3W) TEHD
UINT16
0478
RO
Ia TEHD
UINT16
0479
RO
Ib TEHD
UINT16
0480
RO
Ic TEHD
UINT16
0481
RO
I4 TEHD1
UINT16
0482
RO
Uan (WYE)/Uab (Delta/3P3W) 2nd Harmonic
UINT16
0483
RO
Ubn (WYE)/Ubc (Delta/3P3W) 2nd Harmonic
UINT16
0484
RO
Ucn (WYE)/Uca (Delta/3P3W) 2nd Harmonic
UINT16
0485
RO
Ia 2nd Harmonic
UINT16
0486
RO
Ib 2nd Harmonic
UINT16
0487
RO
Ic 2nd Harmonic
UINT16
0488
RO
I4 2nd Harmonic1
UINT16
0909
RO
Uan (WYE)/Uab (Delta/3P3W) 63rd Harmonic
UINT16
0910
RO
Ubn (WYE)/Ubc (Delta/3P3W) 63rd Harmonic
UINT16
0911
RO
Ucn (WYE)/Uca (Delta/3P3W) 63rd Harmonic
UINT16
0912
RO
Ia 63rd Harmonic
UINT16
0913
RO
Ib 63rd Harmonic
UINT16
0914
RO
Ic 63rd Harmonic
UINT16
0915
RO
I4 63rd Harmonic1
UINT16
Table 5-7 Fundamental Measurements
Notes:
1) When the Wiring Mode is Delta or 3P3W, the fundamental components of per phase line-to-neutral Voltages, kWs, kvars,
kVAs and P.F.s have no meaning, and their registers are reserved.
2) When the Wiring Mode is Wye, the fundamental components of line-to-line voltages have no meaning, and their registers
are reserved.
3) I4 is valid only if the device is equipped with I4 option. Otherwise, it is reserved.

5.4.2 Harmonic Measurements

The Harmonics data (Individual Harmonics, THD, TOHD and TEHD) returned is 100 times the actual value.
For example, if the register contains a value of 1031, the actual harmonic value is 10.31. The K Factor
data returned is 10 times the actual value.
Notes:
1) I4 THD/TOHD/TEHD and Individual Harmonic Registers are valid only if the device is equipped with the I4 option.
56
Table 5-8 Harmonics Measurements
Page 57
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
0930
RO
Uan1
Float
x1
V
0932
RO
Ubn1
Float
0934
RO
Ucn1
Float
0936
RO
Uln average1
Float
0938
RO
Uab
Float
0940
RO
Ubc
Float
0942
RO
Uca
Float
0944
RO
Ull average
Float
0946
RO
Ia
Float
A
0948
RO
Ib
Float
0950
RO
Ic
Float
0952
RO
I average
Float
0954
RO
I42
Float
0956
RO
kWa1
Float
W
0958
RO
kWb1
Float
0960
RO
kWc1
Float
0962
RO
kW Total
Float
0964
RO
kvara1
Float
var
0966
RO
kvarb1
Float
0968
RO
kvarc1
Float
0970
RO
kvar Total
Float
0972
RO
kVAa1
Float
VA
0974
RO
kVAb1
Float
0976
RO
kVAc1
Float
0978
RO
kVA Total
Float
0980
RO
P.F.a1
Float
-
0982
RO
P.F.b1
Float
0984
RO
P.F.c1
Float
0986
RO
P.F. Total
Float
0988
RO
I0*
Float
A
Register
Property
Description
Format
Scale
Unit
1000
RO
Uan
INT32
x100
V
1002
RO
Ubn
INT32
1004
RO
Ucn
INT32
1006
RO
Uln average
INT32
1008
RO
Uab
INT32
1010
RO
Ubc
INT32
1012
RO
Uca
INT32
1014
RO
Ull average
INT32
1016
RO
Ia
INT32
x1000
A
1018
RO
Ib
INT32
1020
RO
Ic
INT32
1022
RO
I average
INT32
1024
RO
I41
INT32
1026
RO
kWa
INT32
x1
W
1028
RO
kWb
INT32
1030
RO
kWc
INT32
1032
RO
kW Total
INT32
Otherwise, they are reserved.

5.5 High-speed Measurements

*Available in Firmware version V1.00.05 or later
Table 5-9 High-speed Measurements
Notes:
1) When the Wiring Mode is Delta or 3P3W, the per phase line-to-neutral Voltages, kWs, kvars, kVAs and P.F.s have no
meaning, and their registers are reserved.
2) I4 is valid only if the device is equipped with the I4 option. Otherwise, it is reserved.
3) The high-speed measurements update Voltage @ ½ cycle and 3-phase Current, Neutral Current (I4) and I0 @ 1 cycle.

5.6 Demand Measurements

5.6.1 Present Demand

57
Page 58
CET Electric Technology
1034
RO
kvara
INT32
x1
var
1036
RO
kvarb
INT32
1038
RO
kvarc
INT32
1040
RO
kvar Total
INT32
1042
RO
kVAa
INT32
x1
VA
1044
RO
kVAb
INT32
1046
RO
kVAc
INT32
1048
RO
kVA Total
INT32
1050
RO
P.F.a
INT32
x1000
-
1052
RO
P.F.b
INT32
1054
RO
P.F.c
INT32
1056
RO
P.F. Total
INT32
1058
RO
FREQ
INT32
x100
Hz
1060
RO
U Unbalance
INT32
x10
%
1062
RO
I Unbalance
INT32
1064
RO
Uan (WYE)/Uab (Delta/3P3W) THD
INT32
x100
%
1066
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
INT32
1068
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
INT32
1070
RO
Ia THD
INT32
1072
RO
Ib THD
INT32
1074
RO
Ic THD
INT32
Register
Property
Description
Format
Scale
Unit
1200
RO
Uan
INT32
x100
V
1202
RO
Ubn
INT32
1204
RO
Ucn
INT32
1206
RO
Uln average
INT32
1208
RO
Uab
INT32
1210
RO
Ubc
INT32
1212
RO
Uca
INT32
1214
RO
Ull average
INT32
1216
RO
Ia
INT32
x1000
A
1218
RO
Ib
INT32
1220
RO
Ic
INT32
1222
RO
I average
INT32
1224
RO
I41
INT32
1226
RO
kWa
INT32
x1
W
1228
RO
kWb
INT32
1230
RO
kWc
INT32
1232
RO
kW Total
INT32
1234
RO
kvara
INT32
x1
var
1236
RO
kvarb
INT32
1238
RO
kvarc
INT32
1240
RO
kvar Total
INT32
1242
RO
kVAa
INT32
x1
VA
1244
RO
kVAb
INT32
1246
RO
kVAc
INT32
1248
RO
kVA Total
INT32
1250
RO
P.F.a
INT32
x1000
-
1252
RO
P.F.b
INT32
1254
RO
P.F.c
INT32
1256
RO
P.F. Total
INT32
1258
RO
FREQ
INT32
x100
Hz
1260
RO
U Unbalance
INT32
x10
%
1262
RO
I Unbalance
INT32
1264
RO
Uan (WYE)/Uab (Delta/3P3W) THD
INT32
x100
%
1266
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
INT32
1268
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
INT32
1270
RO
Ia THD
INT32
Table 5-10 Present Demand
Notes:
1) I4 Present Demand is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero
Sequence Current) Present Demand if the meter is equipped with the AI option.

5.6.2 Predicted Demand

58
Page 59
CET Electric Technology
1272
RO
Ib THD
INT32
1274
RO
Ic THD
INT32
Register
Property
Description
Format
Scale
Unit
1400
RO
Uan Max.
INT32
x100
V
1402
RO
Ubn Max.
INT32
1404
RO
Ucn Max.
INT32
1406
RO
Uln average Max.
INT32
1408
RO
Uab Max.
INT32
1410
RO
Ubc Max.
INT32
1412
RO
Uca Max.
INT32
1414
RO
Ull average Max.
INT32
1416
RO
Ia Max.
INT32
x1000
A
1418
RO
Ib Max.
INT32
1420
RO
Ic Max.
INT32
1422
RO
I average Max.
INT32
1424
RO
I4 Max.1
INT32
1426
RO
kWa Max.
INT32
x1
W
1428
RO
kWb Max.
INT32
1430
RO
kWc Max.
INT32
1432
RO
kW Total Max.
INT32
1434
RO
kvara Max.
INT32
x1
var
1436
RO
kvarb Max.
INT32
1438
RO
kvarc Max.
INT32
1440
RO
kvar Total Max.
INT32
1442
RO
kVAa Max.
INT32
x1
VA
1444
RO
kVAb Max.
INT32
1446
RO
kVAc Max.
INT32
1448
RO
kVA Total Max.
INT32
1450
RO
P.F.a Max.
INT32
x1000
-
1452
RO
P.F.b Max.
INT32
1454
RO
P.F.c Max.
INT32
1456
RO
P.F. Total Max.
INT32
1458
RO
FREQ Max.
INT32
x100
Hz
1460
RO
U Unbalance Max.
INT32
x10
%
1462
RO
I Unbalance Max.
INT32
1464
RO
Uan (WYE)/Uab (Delta/3P3W) THD Max.
INT32
x100
%
1466
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD Max.
INT32
1468
RO
Ucn (WYE)/Uca (Delta/3P3W) THD Max.
INT32
1470
RO
Ia THD Max.
INT32
1472
RO
Ib THD Max.
INT32
1474
RO
Ic THD Max.
INT32
1476~1598 Reserved
1600
RO
Uan Min.
INT32
x100
V
1602
RO
Ubn Min.
INT32
1604
RO
Ucn Min.
INT32
1606
RO
Uln average Min.
INT32
1608
RO
Uab Min.
INT32
1610
RO
Ubc Min.
INT32
1612
RO
Uca Min.
INT32
1614
RO
Ull average Min.
INT32
1616
RO
Ia Min.
INT32
x1000
A
1618
RO
Ib Min.
INT32
1620
RO
Ic Min.
INT32
1622
RO
I average Min.
INT32
1624
RO
I4 Min.1
INT32
1626
RO
kWa Min.
INT32
x1
W
1628
RO
kWb Min.
INT32
1630
RO
kWc Min.
INT32
1632
RO
kW Total Min.
INT32
Table 5-11 Predicted Demand
Notes:
1) I4 Predicted Demand is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0
(Zero Sequence Current) Predicted Demand if the meter is equipped with the AI option.

5.6.3 Max./Min. per Demand Period

59
Page 60
CET Electric Technology
1634
RO
kvara Min.
INT32
x1
var
1636
RO
kvarb Min.
INT32
1638
RO
kvarc Min.
INT32
1640
RO
kvar Total Min.
INT32
1642
RO
kVAa Min.
INT32
x1
VA
1644
RO
kVAb Min.
INT32
1646
RO
kVAc Min.
INT32
1648
RO
kVA Total Min.
INT32
1650
RO
P.F.a Min.
INT32
x1000
-
1652
RO
P.F.b Min.
INT32
1654
RO
P.F.c Min.
INT32
1656
RO
P.F. Total Min.
INT32
1658
RO
FREQ Min.
INT32
x100
Hz
1660
RO
U Unbalance Min.
INT32
x10
%
1662
RO
I Unbalance Min.
INT32
1664
RO
Uan (WYE)/Uab (Delta/3P3W) THD Min.
INT32
x100
%
1666
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD Min.
INT32
1668
RO
Ucn (WYE)/Uca (Delta/3P3W) THD Min.
INT32
1670
RO
Ia THD Min.
INT32
1672
RO
Ib THD Min.
INT32
1674
RO
Ic THD Min.
INT32
Register
Property
Description
Format
Scale
Unit
1800~1805
RO
kW Total
See
Section 5.6.6
Demand Data
Structure
x1
W
1806~1811
RO
kvar Total
var
1812~1817
RO
kVA Total
VA
1818~1823
RO
Ia
x1000
A
1824~1829
RO
Ib
1830~1835
RO
Ic
Register
Property
Description
Format
Scale
Unit
1850~1855
RO
kW Total
See
Section 5.6.6
Demand Data
Structure
x1
W
1856~1861
RO
kvar Total
var
1862~1867
RO
kVA Total
VA
1868~1873
RO
Ia
x1000
A
1874~1879
RO
Ib
1880~1885
RO
Ic
Offset
Property
Description
Format
Note
+0
RO
Peak Demand
INT32
/
+2
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+3
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+4
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+5
RO
Millisecond
UINT16
0 to 999
Table 5-12 Max./Min. Value per Demand Period
Notes:
1) I4 Max./Min. Value per Demands Period is valid only if the device is equipped with the I4 option, and it will be automatically
changed to I0 (Zero Sequence Current) Demand if the meter is equipped with the AI option.

5.6.4 Peak Demand Log of This Month (Since Last Reset)

Table 5-13 Peak Demand Log of This Month (Since Last Reset)

5.6.5 Peak Demand Log of Last Month (Before Last Reset)

Table 5-14 Peak Demand Log of Last Month (Before Last Reset)

5.6.6 Demand Data Structure

5.7 Log Register

5.7.1 Max./Min. Log

60
Table 5-15 Demand Data Structure
Page 61
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
2000~2005
RO
Uan
See Section 5.7.1.5 Max./Min. Log Data Structure
x100
V
2006~2011
RO
Ubn
2012~2017
RO
Ucn
2018~2023
RO
Uln average
2024~2029
RO
Uab
2030~2035
RO
Ubc
2036~2041
RO
Uca
2042~2047
RO
Ull average
2048~2053
RO
Ia
x1000
A
2054~2059
RO
Ib
2060~2065
RO
Ic
2066~2071
RO
I average
2072~2077
RO
I41
2078~2083
RO
kW Total
x1
W
2084~2089
RO
kvar Total
var
2090~2095
RO
kVA Total
VA
2096~2101
RO
P.F. Total
x1000
-
2102~2107
RO
FREQ
x100
Hz
2108~2113
RO
Uan (WYE)/Uab (Delta/3P3W) THD
x100
%
2114~2119
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
2120~2125
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
2126~2131
RO
Ia THD
2132~2137
RO
Ib THD
2138~2143
RO
Ic THD
2144~2149
RO
Ia K-Factor
x10
-
2150~2155
RO
Ib K-Factor
2156~2161
RO
Ic K-Factor
2162~2167
RO
U Unbalance
x10
%
2168~2173
RO
I Unbalance
2174~2179
RO
I Residual
x1000
A
Register
Property
Description
Format
Scale
Unit
2300~2305
RO
Uan
See Section 5.7.1.5 Max./Min. Log Data Structure
x100
V
2306~2311
RO
Ubn
2312~2317
RO
Ucn
2318~2323
RO
Uln average
2324~2329
RO
Uab
2330~2335
RO
Ubc
2336~2341
RO
Uca
2342~2347
RO
Ull average
2348~2353
RO
Ia
x1000
A
2354~2359
RO
Ib
2360~2365
RO
Ic
2366~2371
RO
I average
2372~2377
RO
I41
2378~2383
RO
kW Total
x1
W
2384~2389
RO
kvar Total
var
2390~2395
RO
kVA Total
VA
2396~2401
RO
P.F. Total
x1000
-
2402~2407
RO
FREQ
x100
Hz
2408~2413
RO
Uan (WYE)/Uab (Delta/3P3W) THD
x100
%
2414~2419
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
2420~2425
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
2426~2431
RO
Ia THD
2432~2437
RO
Ib THD
2438~2443
RO
Ic THD
5.7.1.1 Max. Log of This Month (Since Last Reset)
Table 5-16 Max. Log of This Month (Since Last Reset)
Notes:
1) I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence
Current) if the meter is equipped with the AI option.
5.7.1.2 Min. Log of This Month (Since Last Reset)
61
Page 62
CET Electric Technology
2444~2449
RO
Ia K-Factor
x10
-
2450~2455
RO
Ib K-Factor
2456~2461
RO
Ic K-Factor
2462~2467
RO
U Unbalance
x10
%
2468~2473
RO
I Unbalance
2474~2479
RO
I Residual
x1000
A
Register
Property
Description
Format
Scale
Unit
2600~2605
RO
Uan
See
Section 5.7.1.5
Max./Min. Log Data Structure
x100
V
2606~2611
RO
Ubn
2612~2617
RO
Ucn
2618~2623
RO
Uln average
2624~2629
RO
Uab
2630~2635
RO
Ubc
2636~2641
RO
Uca
2642~2647
RO
Ull average
2648~2653
RO
Ia
x1000
A
2654~2659
RO
Ib
2660~2665
RO
Ic
2666~2671
RO
I average
2672~2677
RO
I41
2678~2683
RO
kW Total
x1
W
2684~2689
RO
kvar Total
var
2690~2695
RO
kVA Total
VA
2696~2701
RO
P.F. Total
x1000
-
2702~2707
RO
FREQ
x100
Hz
2708~2713
RO
Uan (WYE)/Uab (Delta/3P3W) THD
x100
%
2714~2719
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
2720~2725
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
2726~2731
RO
Ia THD
2732~2737
RO
Ib THD
2738~2743
RO
Ic THD
2744~2749
RO
Ia K-Factor
x10
-
2750~2755
RO
Ib K-Factor
2756~2761
RO
Ic K-Factor
2762~2767
RO
U Unbalance
x10
%
2768~2773
RO
I Unbalance
2774~2779
RO
I Residual
x1000
A
Register
Property
Description
Format
Scale
Unit
2900~2905
RO
Uan
See Section 5.7.1.5 Max./Min. Log Data Structure
x100
V
2906~2911
RO
Ubn
2912~2917
RO
Ucn
2918~2923
RO
Uln average
2924~2929
RO
Uab
2930~2935
RO
Ubc
2936~2941
RO
Uca
2942~2947
RO
Ull average
2948~2953
RO
Ia
x1000
A
2954~2959
RO
Ib
2960~2965
RO
Ic
2966~2971
RO
I average
2972~2977
RO
I41
Table 5-17 Min. Log of This Month (Since Last Reset)
Notes:
1) I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence
Current) if the meter is equipped with the AI option.
5.7.1.3 Max. Log of Last Month (Before Last Reset)
Notes:
1) I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence
Current) if the meter is equipped with the AI option.
5.7.1.4 Min Log of Last Month (Before Last Reset)
62
Table 5-18 Max. Log of Last Month (Before Last Reset)
Page 63
CET Electric Technology
2978~2983
RO
kW Total
x1
W
2984~2989
RO
kvar Total
var
2990~2995
RO
kVA Total
VA
2996~3001
RO
P.F. Total
x1000
-
3002~3007
RO
FREQ
x100
Hz
3008~3013
RO
Uan (WYE)/Uab (Delta/3P3W) THD
x100
%
3014~3019
RO
Ubn (WYE)/Ubc (Delta/3P3W) THD
3020~3025
RO
Ucn (WYE)/Uca (Delta/3P3W) THD
3026~3031
RO
Ia THD
3032~3037
RO
Ib THD
3038~3043
RO
Ic THD
3044~3049
RO
Ia K-Factor
x10
-
3050~3055
RO
Ib K-Factor
3056~3061
RO
Ic K-Factor
3062~3067
RO
U Unbalance
x10
%
3068~3073
RO
I Unbalance
3074~3079
RO
I Residual
x1000
A
Offset
Property
Description
Format
Note
+0
RO
Max./Min. Value
INT32
-
+2
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+3
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+4
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+5
RO
Millisecond
UINT16
0 to 999
Register
Property
Description
Format
10000~10007
RO
Event 1
See Section Note 1)
SOE Log Data
Structure
10008~10015
RO
Event 2
10016~10023
RO
Event 3
10024~10031
RO
Event 4
10032~10039
RO
Event 5
10040~10047
RO
Event 6
10048~10055
RO
Event 7
10056~10063
RO
Event 8
10064~10071
RO
Event 9
10072~10079
RO
Event 10
10080~10087
RO
Event 11
10088~10195
RO
Event 12
14088~14095
RO
Event 512
Offset
Properties
Description
Format
Note
+0
RO
Reserved
UINT16
-
+1
RO
High-order Byte: Event Classification
UINT16
See Appendix C
Low-order Byte: Sub-Classification
See Appendix C
Table 5-19 Min. Log of Last Month (Before Last Reset)
Notes:
1) I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence
Current) if the meter is equipped with the AI option.
5.7.1.5 Max./Min. Log Data Structure
Table 5-20 Max./Min. Log Data Structure

5.7.2 SOE Log

The SOE Pointer points to the location within the SOE Log where the next event will be stored. The
following formula is used to determine the register address of the most recent SOE event referenced by
the SOE Pointer value: Register Address = 10000 + Modulo((SOE Pointer-1) / 512)*8
Table 5-21 SOE Log
Notes:
1) SOE Log Data Structure
63
Page 64
CET Electric Technology
+2
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+3
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+4
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+5
RO
Millisecond
UNIT16
0 to 999
+6
RO
Event Value
INT32
-
Read Reference Request Packet
(Master Station to PMC-660)
Read Reference Response Packet
(PMC-660 to Master Station)
Slave Address
1 Byte
Salve Address
1 Byte
Function Code (0x14)
1 Byte
Function Code (0x14)
1 Byte
Byte Count
1 Byte
Byte Count
1 Byte (NxN0+2)
Sub-Req X, Reference Type (0x06)
1 Byte
Sub-Res X, Byte Count
1 Byte (NxN0+1)
Sub-Req X, File Number
2 Bytes
Sub-Res X, Reference Type (0x06)
1 Byte
Sub-Req X, Start Address
2 Bytes
Sub-Res X, Register Data
NxN0 Bytes
Sub-Req X, Register Count
2 Bytes
Sub-Res X+1…
Sub-Req X+1…
Error Check (CRC)
2 Bytes
Error Check (CRC)
2 Bytes
Offset
Property
Description
Format
Note
+0
RO
Parameter 1
INT32
-
+2
RO
Parameter 2
INT32
-
RO … INT32
-
+2N
RO
Parameter N (N=0 to 5)
INT32
-
+2N+1
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+2N+2
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+2N+3
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+2N+4
RO
Millisecond
UINT16
0 to 999
Table 5-22 SOE Log Data Structure

5.8 Log Data Format

5.8.1 Read General Reference Packet Structure (Function Code 0x14)

Modbus function code 0x14 is used to access to the Energy Log, PQ Log, Data Recorder Log and
Waveform Recorder Log. The table below list the file format.
Table 5-23 Read Reference/ Response Request Packet
1) Start Address = [Log #X Pointer / Log #X Depth].
2) In the Request Packet, the File Number parameter is used to reference which log to read: a) For Energy Log, File Number = 17 b) For PQ Log, File Number = 18 c) For Data Recorder Logs 1 to 16, File Number = 1 to 16 d) For Waveform Recorder Log, File Number = 19 to 50
3) In the Response Packet, N represents the number of logs returned, and N
is the length of a single
0
log:
e) For Energy Log, N f) For Data Recorder, N
= n*4+8 where n is the number of parameters for the Energy Log
0
= n*4+8 where n is the number of parameters for a particular Data
0
Recorder
g) For PQ Log, N h) For Waveform Recorder Log, N
= 16
0
= 2
0

5.8.2 Energy Log Data Structure

64
Table 5-24 Energy Log Data Structure
Page 65
CET Electric Technology
Offset
Property
Description
Format
0 to 7
RO
PQ Log 1
See Note 1)
PQ Log Data Structure
8 to 15
RO
PQ Log 2
16 to 23
RO
PQ Log 3
RO
7992 to 7999
RO
PQ Log 1000
Offset
Property
Description
Format
Note
+0
RO
PQ Log Location
UINT16
/
+1
RO High-order Byte: Classification
UINT16
See Note 2)
Low-order Byte: Sub-Classification2
+2
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+3
RO
High-order Byte: Hour
UINT16
1 to 31
Low-order Byte: Minute
0 to 23
+4
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+5
RO
Millisecond
UINT16
0 to 999
+6#
RO
Event Value 1
INT32
See Note 2)
+8#
RO
Event Value 2
INT32
+10 #
RO
Event Value 3
INT32
+12 #
RO
Event Value 4
INT32
+14#
RO
Event Value 5
INT32
PQ Log
Classification
Sub-
Classification
Description
Event Value, Unit, Scale, Option
7. Transient
1
Transient
Triggered
Event Value 1: Maximum of Transient (%), x100 Event Value 2: Duration (us) Event Value 3: Maximum Uan/Uab Transient (%), x100 Event Value 4: Maximum Ubn/Ubc Transient (%), x100 Event Value 5: Maximum Ucn/Uca Transient (%), x100
8. Dip/Swell
1
Swell Starts
Event Value 1: Trigger Phase
0 = Uan/Uab 1 = Ubn/Ubc 2 = Ucn/Uca
Event Value 3 to 5: Reserved
2
Swell Ends
When the Wiring Mode is WYE:
Event Value 1: Maximum %Residual Uln, x100 Event Value 2: Duration (us) Event Value 3: %Residual Uan
max
/Uln
nominal
, x100
Event Value 4: %Residual Ubn
max
/Uln
nominal
, x100
Event Value 5: %Residual Ucn
max
/Uln
nominal
, x100
Where Uln
nominal
= (Ull
nominal
÷√3)
When the Wiring Mode is 3P3W or Delta: Event Value 1: Maximum %Residual Ull, x100 Event Value 2: Duration (us) Event Value 3: %Residual Uab
max
/Ull
nominal
, x100
Event Value 4: %Residual Ubc
max
/Ull
nominal
, x100
Event Value 5: %Residual Uca
max
/Ull
nominal
, x100
3
Dip Starts
See PQ Log Classification 8 => Sub-Classification 1
4
Dip Ends
When the Wiring Mode is WYE:
Event Value 1: Minimum %Residual Uln, x100 Event Value 2: Duration (us) Event Value 3: %Residual Uan
min
/Uln
nominal
, x100
Event Value 4: %Residual Ubn
min
/Uln
nominal
, x100
Event Value 5: %Residual Ucn
min
/Uln
nominal
, x100
Note:
1) Please refer to Section 5.8.1 Read General Reference Packet Structure for how to retrieve the energy log.

5.8.3 PQ Log Data Structure

Table 5-25 PQ Log
Notes:
1) PQ Log Data Structure
#
Available in Firmware V1.00.04 or later
Table 5-26 PQ Log Data Structure
2) The table below lists the PQ Log Classifications:
65
Page 66
CET Electric Technology
Where Uln
nominal
= (Ull
nominal
÷√3)
When the Wiring Mode is 3P3W or Delta: Event Value 1: Maximum %Residual Ull, x100 Event Value 2: Duration (us) Event Value 3: %Residual Uab
min
/Ull
nominal
, x100
Event Value 4: %Residual Ubc
min
/Ull
nominal
, x100
Event Value 5: %Residual Uca
min
/Ull
nominal
, x100
5
Interruption
Starts
See PQ Log Classification 8 => Sub-Classification 1
6
Interruption
Ends
See PQ Log Classification 8 => Sub-Classification 4
Offset
Property
Description
Format
Note
+0
RO
Parameter 1
INT32 / +2
RO
Parameter 2
INT32 / …
RO
INT32 +2N
RO
Parameter N (N=1 to 16)
INT32
/
+2N+1
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+2N+2
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+2N+3
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+2N+4
RO
Millisecond
UINT16
0 to 999
Offset
Property
Description
Format
Note
+0
RO
Trigger Mode
UINT16
0=Disabled*
1=Manual
2=Setpoint
3=Dip/Swell
4=Transient
+1
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+2
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+3
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+4
RO
Millisecond
UINT16
0 to 999
+5 to N+4
RO
Uan/Uab sample value (1 to N#)
UINT16
x10, V
+N+5 to 2N+4
RO
Ubn/Ubc sample value (1 to N#)
UINT16
x10, V
+2N+5 to 3N+4
RO
Ucn/Uca sample value (1 to N#)
UINT16
x10, V
+3N+5 to 4N+4
RO
Ia sample value (1 to N#)
UINT16
x1000, A
+4N+5 to 5N+4
RO
Ib sample value (1 to N#)
UINT16
x1000, A
+5N+5 to 6N+4
RO
Ic sample value (1 to N#)
UINT16
x1000, A
Table 5-27 PQ Classifications

5.8.4 Data Recorder Log Data Structure

Table 5-28 DR-LOG Data Structure
Notes:
1) Please refer to Section 5.8.1 Read General Reference Packet Structure for how to retrieve the DR log.

5.8.5 Waveform Recorder Log Data Structure

The WF data contains the secondary side value. The Voltage data returned is 10 times of the actual
secondary Voltage and the Current data is 1000 times of the actual secondary Current. Therefore, the
primary side Voltage and Current values are calculated using the following formulas:
Primary Voltage Value = Voltage Data × PT Ratio ÷ 10
Primary Current Value = Current Data × CT Ratio ÷ 1000
#
N=# of Samples
Notes:
1) Please refer to Section 5.8.1 Read General Reference Packet Structure for how to retrieve the WFR log.
66
Table 5-29 WFR Data Structure
Page 67
CET Electric Technology
Register
Property
Description
Format
Range
Default
5999
RW
PT Ratio-Fraction
1
UINT16
0 to 9999
0
6000
RW
PT Ratio-Integer1
UINT16
1 to 10000
1
6001
RW
CT Ratio1
UINT16
1 to 6,000 (5A input)
1 to 30,000 (1A input)
1
6002
RW
I4 Ratio
UINT16
1 to 10,000
1
6003
RW
Wiring Mode
UINT16
0=WYE, 1=DELTA
2=DEMO, 3=3P3W
0
6004
RW
Ull Nominal
Secondary Voltage
(Ull
nominal
)
UINT16
100V to 700V (Ull)
415
6005
RW
Nominal Frequency
(f
nominal
)
UINT16
0=50Hz, 1=60Hz
0
6006
RW
Port 1 Protocol
UINT16
0=Modbus, 1=EGATE
0
6007
RW
Port 1 Unit ID
UINT16
1 to 247
100
6008
RW
Port 1 Baud rate
UINT16
0=1200, 1=2400 2=4800, 3=9600
4=19200, 5=38400
3
6009
RW
Port 1 Configuration
UINT16
0=8N2, 1=8O1, 2=8E1 3=8N1, 4=8O2, 5=8E2
2
6010
RW
Port 2 Unit ID
UINT16
1 to 247
101
6011
RW
Port 2 Baud rate
UINT16
0=1200, 1=2400 2=4800, 3=9600
4=19200, 5=38400
3
6012
RW
Port 2 Configuration
UINT16
0=8N2, 1=8O1, 2=8E1 3=8N1, 4=8O2, 5=8E2
2
6013
RW
IP Address2
UINT32
See Notes 2)
6015
RW
Subnet Mask2
UINT32
6017
RW
Gateway Address2
UINT32
6019
RW
Power Factor
Convention
UINT16
0=IEC, 1=IEEE, 2=-IEEE
0
6020
RW
kVA Calculation
UINT16
0=Vector, 1=Scalar
0
6021
RW
Demand Sync.
UINT16
0= SLD, 1=SYNC DI
0
6022
RW
Demand Period~
UINT16
1 to 60 (minutes)
15
6023
RW
Number of Sliding
Windows
UINT16
1 to 15
1
6024
RW
Predicted Response3
UINT16
70 to 99
70
6025
RW
DI1 Function
UINT16
0=Digital Input
1=Pulse Counter
2=SYNC DI, 3=PPS
4=Tariff Switch
4#
0
6026
RW
DI2 Function
UINT16
6027
RW
DI3 Function
UINT16
6028
RW
DI4 Function
UINT16
0=Digital Input
1=Pulse Counter
2=SYNC DI, 3=PPS
0
6029
RW
DI5 Function
UINT16
6030
RW
DI6 Function
UINT16
6031
RW
DI1 Debounce
UINT16
1 to 1000 (ms)
20
6032
RW
DI2 Debounce
UINT16
6033
RW
DI3 Debounce
UINT16
6034
RW
DI4 Debounce
UINT16
6035
RW
DI5 Debounce
UINT16
6036
RW
DI6 Debounce
UINT16
6037
RW
DI1 Pulse Weight
UINT32
1 to 1,000,000
1
6039
RW
DI2 Pulse Weight
UINT32
6041
RW
DI3 Pulse Weight
UINT32
6043
RW
DI4 Pulse Weight
UINT32
6045
RW
DI5 Pulse Weight
UINT32
6047
RW
DI6 Pulse Weight
UINT32
6049
RW
DO1 Function
UINT16
0= Remote
Control/Setpoint
1=kWh Import 2=kWh Export
3=kvarh Import
4=kvarh Export
5=kWh Total
0
6050
RW
DO2 Function
UINT16
6051
RW
DO3 Function
UINT16

5.9 Device Setup

5.9.1 Basic Setup

67
Page 68
CET Electric Technology
6=kvarh Total
6052
RW
DO1 Pulse Width
UINT16
0 to 999 (x0.1s)
0=Latch Mode
0
6053
RW
DO2 Pulse Width
UINT16
6054
RW
DO3 Pulse Width
UINT16
6055
RW
AI Type
UINT16
0=4-20mA, 1=0-20mA
0
6056
RW
AI Zero scale
INT32
-999,999 to +999,999
400
6058
RW
AI Full scale
INT32
-999,999 to +999,999
2000
6060
RW
AO Key5
UINT16
0 ~16
0 (Uab)
6061
RW
AO Type
UINT16
0=4-20mA, 1=0-20mA
0
6062
RW
AO Zero scale
INT32
-999,999 to +999,999
0
6064
RW
AO Full scale
INT32
-999,999 to +999,999
+999,999
6066
RW
Ia Polarity
UINT16
0=Normal 1=Reverse
0
6067
RW
Ib Polarity
UINT16
6068
RW
Ic Polarity
UINT16
6069
RW
Harmonic Calculation
UINT16
0=Fundamental, 1=RMS
0
6070
RW
Enable Energy Pulse
UINT16
0=Disabled, 1=Enabled
0
6071
RW
Pulse Constant6~
UINT16
0 to 4
0
6072
RW
Self-Read Time7
UINT16
See Notes 7)
65535
6073
RW
Dip/Swell Enable
UINT16
0=Disabled, 1=Enabled
1
6074
RW
Swell Limit
UINT16
105 to 200,
(x0.01Ull
nominal
)
110
6075
RW
Dip Limit
UINT16
10 to 95, (x0.01Ull
nominal
)
90
6076
RW
Dip/Swell Trigger 1
UINT16
0=None
1 - 3=DO1 to DO3
4 - 19=DR1 to DR 16
20 - 21=WR 1 to WR 2
22= Alarm Email
21
6077
RW
Dip/Swell Trigger 2
UINT16
0
6078
RW
SNTP Enable8
UINT16
0=Disabled 1=Enabled
0
6079
RW
Time Zone9
UINT16
0 to 32
26
6080
RW
SNTP Sync. Interval10
UINT16
10 to 1440 (min)
60
6081
RW
IP Address of Time
Server
UINT32
If IP address is
192.168.8.94, write
“0xC0A8085E” to this
register
0.0.0.0
6083
RW
SMTP IP Port
UINT16
0 to 65535
25
6084
RW
IP Address of SMTP
Server
UINT32
If address is 191.0.0.6,
write “0XBF000006” to
this register
0.0.0.0
6086~6121
RW
Source Email
UINT16
See Note (11)
0
6122~6141
RW
Logon Password
UINT16
See Note (12)
0
6142~6177
RW
Destination Email
UINT16
See Note (13)
0
6178
RW
Transient Enable
UINT16
0=Disabled, 1=Enabled
1
6179
RW
Transient Limit
UINT16
5 to 500 (x0.01 Ull
nominal
)
35
6180
RW
Transient Trigger 1
UINT16
0=None
1 - 3=DO1 to DO3
4 - 19=DR1 to DR 16
20 - 21=WR 1 to WR 2
22= Alarm Email
20
6181
RW
Transient Trigger 2
UINT16
0
6182
RW
Email Language
UINT16
0=English
0
6183
RW
Backlight Time-out14
UINT16
0 to 60 (mins)
3
6184
RW
Interruption Limit~
UINT16
0 to 50 (x0.01Un)
10
6185
RW
Arm before Execute#
UINT16
0=Disabled 1=Enabled
0
6186
RW
kvarh Type#
UINT16
0=RMS kvarh
1=Fundamental kvarh
0
6187
RW
EN Period
15,#
UINT16
5 to 60min
60
6188
WO
Send Test Email
UINT16
Writing “0xFF00” to the
Register sends a test Email to the
specified Destination Email address.
6189~6199
WO
Reserved
UINT16
6200
RW
Current On Threshold#
UINT16
1 to 1000 (x0.001In)
1
~The ranges of parameters are changed in Firmware V1.00.05 or later.
#
Available in Firmware V2.00.00 or later
Notes:
1) PT Ratio= PT Ratio-Integer Part + (PT Ratio-Decimal Part/10000)
For 1A configuration, PT Ratio × CT Ratio must be less than 5,000,000
68
Table 5-30 Basic Setup Parameters
Page 69
CET Electric Technology
Tariff
DI Function
DI1 = Tariff Switch
DI2 & DI1 = Tariff Switch
DI3, DI2 & DI1 = Tariff Switch
T1
DI1 (0=T1)
DI2 + DI1 (00=T1)
DI3 + DI2 + DI1 (000=T1)
T2
DI1 (1=T2)
DI2 + DI1 (01=T2)
DI3 + DI2 + DI1 (001=T2)
T3
Not Available
DI2 + DI1 (10=T3)
DI3 + DI2 + DI1 (010=T3)
T4
Not Available
DI2 + DI1 (11=T4)
DI3 + DI2 + DI1 (011=T4)
T5
Not Available
Not Available
DI3 + DI2 + DI1 (100=T5)
T6
Not Available
Not Available
DI3 + DI2 + DI1 (101=T6)
T7
Not Available
Not Available
DI3 + DI2 + DI1 (110=T7)
T8
Not Available
Not Available
DI3 + DI2 + DI1 (111=T8)
Key
Parameter
Scale
Unit
Key
Parameter
Scale
Unit 0 Uab
x1
V
8
kW Total
x1
kW 1 Ubc
V
9
kvar Total
kvar 2 Uca
V
10
kVA Total
kVA
3
Ull Average
V
11
PF Total
x1000
-
4
Ia
A
12
Frequency
x1
Hz
5
Ib
A
13
kW Total Present Demand
x1
kW
6
Ic
A
14
kvar Total Present Demand
kvar
7
I Average
A
15
kVA Total Present Demand
kVA
16
PF Total Present Demand
-
Voltage Input
Current Input
X Value
Energy Pulse Constant (X Value)
100V
1A
4
0=1000 imp/kWh 1=3200 imp/kWh 2=5000 imp/kWh 3=6400 imp/kWh
4=12800 imp/kWh
5A
4
380V
1A
4
5A
1
690V
1A
2
5A
0
Code
Time Zone
Code
Time Zone
0
GMT-12:00
17
GMT+3:30
1
GMT-11:00
18
GMT+4:00
2
GMT-10:00
19
GMT+4:30
3
GMT-9:00
20
GMT+5:00
For 5A configuration, PT Ratio × CT Ratio must be less than 1,000,000
2) The last Octet of the IP Address, Subnet Mask and Gateway can neither be 0000 0000” nor “1111 1111”.
If the IP Address is “192.168.8.97”, write “0xC0A80861” to this register. The default values for the IP Address, Subnet Mask
and Gateway Address are 192.168.0.100, 255.255.255.0 and 192.168.0.1, respectively.
3) The Predicated Response setup parameter allows the user to adjust the sensitivity of the predicted demand output. A value between 70 and 99 is recommended for a reasonably fast response. Specify a higher value for higher sensitivity.
4) The 3 Digital Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff 1=000, Tariff 2=001, Tariff 3= 010, …Tariff 7=110 and Tariff 8=111 where DI1 represents the least significant digit and DI3 represents the most significant digit. As soon as DI1, DI2 and/or DI3 are configured as Tariff Switches, the current TOU Tariff will be determined by the status of the DIs, and the TOU Schedule will be ignored. The DI1 Function setup register must first be programmed as a Tariff Switch before configuring DI2 and DI3 with the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse Counter, and DI2 is configured as a Tariff Switch, the TOU will continue to function based on the TOU Schedule. The number of Tariffs supported depends on how many DIs are programmed as a Tariff Switch as indicated in the following table.
Table 5-31 DIs and the Number of Tariffs Setup
5) Analog Output Parameters
If PF Total is chosen as the AO parameter, the values for ZERO (zero scale) and FULL (full scale) should be set as 1000 times the actual value. The Units for voltage, current, kW, kvar, kVA and FREQ are V, A, kW, kvar, kVA and Hz, respectively.
Table 5-32 Analog Output Parameters
6) Recommended Pulse Constant settings for the different Line Voltage & Current Inputs
Table 5-33 Pulse Constant
7) The Self-Read Time applies to both the Peak Demand Log as well as the Max./Min. Log and supports the following three options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self- Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value means the automatic self-read operation is disabled and the log will be transferred manually.
8) If the PMC-660 is not equipped with the Ethernet Port, SNTP is disabled.
9) SNTP doesn’t support Daylight Time Saving (DTS). The following table lists the supported Time Zones:
69
Page 70
CET Electric Technology
4
GMT-8:00
21
GMT+5:30
5
GMT-7:00
22
GMT+5:45
6
GMT-6:00
23
GMT+6:00
7
GMT-5:00
24
GMT+6:30
8
GMT-4:00
25
GMT+7:00
9
GMT-3:30
26
GMT+8:00
10
GMT-3:00
27
GMT+9:00
11
GMT-2:00
28
GMT+9:30
12
GMT-1:00
29
GMT+10:00
13
GMT-0:00
30
GMT+11:00
14
GMT+1:00
31
GMT+12:00
15
GMT+2:00
32
GMT+13:00
16
GMT+3:00
Register
Property
Description
Format
6600~6609
RW
Setpoint #1 (Standard)
See Section 5.9.2.2
Setpoint Setup Data
Structure
6610~6619
RW
Setpoint #2 (Standard)
6620~6629
RW
Setpoint #3 (Standard)
6630~6639
RW
Setpoint #4 (Standard)
6640~6649
RW
Setpoint #5 (Standard)
6650~6659
RW
Setpoint #6 (Standard)
6660~6669
RW
Setpoint #7 (Standard)
6670~6679
RW
Setpoint #8 (Standard)
6680~6689
RW
Setpoint #9 (Standard)
6690~6699
RW
Setpoint #10 (Standard)
6700~6709
RW
Setpoint #11 (Standard)
6710~6719
RW
Setpoint #12 (Standard)
6720~6729
RW
Setpoint #13 (Standard)
6730~6739
RW
Setpoint #14 (Standard)
6740~6749
RW
Setpoint #15 (Standard)
6750~6759
RW
Setpoint #16 (Standard)
6760~6769
RW
Setpoint #17 (High-Speed)
6770~6779
RW
Setpoint #18 (High-Speed)
6780~6789
RW
Setpoint #19 (High-Speed)
6790~6799
RW
Setpoint #20 (High-Speed)
6800~6809
RW
Setpoint #21 (High-Speed)
6810~6819
RW
Setpoint #22 (High-Speed)
6820~6829
RW
Setpoint #23 (High-Speed)
6830~6839
RW
Setpoint #24 (High-Speed)
Offset
Property
Description
Format
Range
Default
+0
RW
Standard
Type
UINT16
0=Disabled
0
Table 5-34 Time Zones
10) The SNTP Sync. Interval should be set between 10 and 1440 minutes.
11) This string register specifies the source email address that appears in the “From” field of the email. This string may be up to 35 characters long. Please add the value zero “0000” at the end of the string as the string terminator. For example, if the email address is sender@domain.com, set the registers as” 0073 0065 006E 0064 0065 0072 0040 0064 006F 006D 0061 0069 006E 002E 0063 006F 006D 0000”.
12) This string register specifies the Logon Password to login the “Source Email” account. This string may be up to 19 characters long. Please add the value zero “0000” at the end of the string as the string terminator. For example, if the password is “PMC-660”, set the registers as “0050 004D 0043 002D 0036 0036 0030 0000”
13) This string register specifies the destination email address that appears in the “To” field of the email. This string may be up to 35 characters long. Please add the value zero “0000” at the end of the string as the string terminator. For example, if the email address is receiver@domain.com, so set the registers as” 0072 0065 0063 0065 0069 0076 0065 0072 0040 0064 006F 006D 0061 0069 006E 002E 0063 006F 006D 0000”.
14) The Backlight Time-out can be set from 0 to 60 minutes. A zero (0) value indicates that the backlight time-out is disabled. This setup parameter is available in Firmware Version V1.00.04 or later.
15) The Interval Energy will be reset once the EN Period is changed.

5.9.2 Setpoint Setup

5.9.2.1 Setpoint Setup Registers
5.9.2.2 Setpoint Setup Data Structure
70
Table 5-35 Setpoints Setup
Page 71
CET Electric Technology
Setpoint
1=Over Setpoint
2=Under Setpoint
+1
RW
Paramenter1
UINT16
1 to 34
1
+2
RW
Active Limit
INT32
-
999,999
+4
RW
Inactive Limit
INT32
-
999,999
+6
RW
Active Delay
UINT16
0 to 9999 s
10
+7
RW
Inactive Delay
UINT16
0 to 9999 s
10
+8
RW
Trigger 12
UINT16
0 to 22
0
+9
RW
Trigger 22
UINT16
0 to 22
0
+0
RW
High-
speed
Setpoint
Type
UINT16
0=Disabled
1=Over Setpoint
2=Under Setpoint
0
+1
RW
Paramenter1
UINT16
1 to 14
1
+2
RW
Active Limit
INT32
-
999,999
+4
RW
Inactive Limit
INT32
-
999,999
+6
RW
Active Delay
UINT16
0 to 9999 s
10
+7
RW
Inactive Delay
UINT16
0 to 9999 s
10
+8
RW
Trigger 12
UINT16
0 to 22
0
+9
RW
Trigger 22
UINT16
0 to 22
0
Key
Parameter
Scale/Unit
1
Uln
x100, V
2
Ull 3 I
x1000, A
4
I4
2
5
Frequency Deviation
x100, Hz
6
kW Total
x1, kW
7
kvar Total
x1, kvar
8
P.F.
x1000
9
DI1
1) For Over Setpoint, the Active Limit is DI Close (DI=1),
and Inactive Limit is DI Open (DI=0);
2) For Under Setpoint, the Active Limit is DI Open
(DI=0), and Inactive Limit is DI Close (DI=1).
10
DI2
11
DI3
12
DI4
13
DI5
14
DI6
15
AI
x1, /
16
kW Total Present Demand
x1, kW
17
kvar Total Present Demand
x1, kvar
18
P.F. Present Demand
x1000
19
kW Total Predicted Demand
x1, kW
20
kvar Total Predicted Demand
x1, kvar
21
P.F. Predicted Demand
x1000
22
U THD
x100, %
23
U TOHD
24
U TEHD
25
I THD
26
I TOHD
27
I TEHD
28
U Unbalance
x10, %
29
I Unbalance
30
U Deviation
x100, %
31
Phase Reversal
1) For Over Setpoint, the Active Limit is Negative Phase
Sequence, and Inactive Limit is Positive Phase Sequence.
2) For Under Setpoint, the Active Limit is Positive
Phase Sequence, and Inactive Limit is Negative Phase Sequence.
32
I Residual
x1000, A
33
U2 (Negative Sequence Voltage)
x100, V
34
U0 (Zero Sequence Voltage)
Key
Action
Key
Action
0
None
12
DR #9 1 DO1
13
DR #10
2
DO2
14
DR #11
3
DO3
15
DR #12
Table 5-36 Setpoint Setup Register Structure
Notes:
1) Parameter” specifies the parameter to be monitored. The Table 5-37 below provides a list of Setpoint Parameters,
Standard Setpoint can monitor all parameters while the HS Setpoint only can monitor 1 to 14.
2) The I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence Current) if the meter is equipped with the AI option.
3) Trigger 1/2 specifies what action the Setpoint will take when it becomes active. Table 5-38 below provides a list of Setpoint Triggers.
71
Table 5-37 Setpoint Parameters
Page 72
CET Electric Technology
4
DR #1
16
DR #13
5
DR #2
17
DR #14
6
DR #3
18
DR #15
7
DR #4
19
DR #16
8
DR #5
20
WFR #1
8
DR #6
21
WFR #2
10
DR #7
22
Alarm Email
11
DR #8
Register
Property
Description
Format
6840~6849
RW
Logical Module #1
See Section 5.9.3.2
Logical Module
Setup Data Structure
6850~6859
RW
Logical Module #2
6860~6869
RW
Logical Module #3
6870~6879
RW
Logical Module #4
6880~6889
RW
Logical Module #5
6890~6899
RW
Logical Module #6
Register
Property
Description
Format
Range
Default
+0
RW
Enable Logical Module
UINT16
0=Disabled, 1=Enabled
0
+1
RW
Mode 1
UINT16
0=AND, 1=OR
2=NAND, 3=NOR
0
+2
RW
Mode 2
UINT16
0
+3
RW
Mode 3
UINT16
0
+4
RW
Source 11
UINT16
0 to 24
1
+5
RW
Source 21
UINT16
0 to 24
2
+6
RW
Source 31
UINT16
0 to 24
3
+7
RW
Source 41
UINT16
0 to 24
4
+8
RW
Trigger 12
UINT16
0 to 21
0
+9
RW
Trigger 22
UINT16
0 to 21
0
Key
Source
Key
Source
0
None
13
Setpoint #13 (Standard)
1
Setpoint #1 (Standard)
14
Setpoint #14 (Standard)
2
Setpoint #2 (Standard)
15
Setpoint #15 (Standard)
3
Setpoint #3 (Standard)
16
Setpoint #16 (Standard)
4
Setpoint #4 (Standard)
17
Setpoint #17 (High-Speed)
5
Setpoint #5 (Standard)
18
Setpoint #18 (High-Speed)
6
Setpoint #6 (Standard)
19
Setpoint #19 (High-Speed)
7
Setpoint #7 (Standard)
20
Setpoint #20 (High-Speed)
8
Setpoint #8 (Standard)
21
Setpoint #21 (High-Speed)
9
Setpoint #9 (Standard)
22
Setpoint #22 (High-Speed)
10
Setpoint #10 (Standard)
23
Setpoint #23 (High-Speed)
11
Setpoint #11 (Standard)
24
Setpoint #24 (High-Speed)
12
Setpoint #12 (Standard)
Key
Action
Key
Action
0
None
11
DR #8 1 DO1
12
DR #9 2 DO2
13
DR #10
3
DO3
14
DR #11
4
DR #1
15
DR #12
5
DR #2
16
DR #13
6
DR #3
17
DR #14
7
DR #4
18
DR #15
8
DR #5
19
DR #16
8
DR #6
20
WFR #1
10
DR #7
21
WFR #2
Table 5-38 Setpoint Triggers
5.9.3 Logical Module Setup
5.9.3.1 Logical Module Setup Registers
Table 5-39 Logical Modules
5.9.3.2 Logical Module Setup Data Structure
Table 5-40 Logical Module Data Structure
Notes:
1) The Logical Modules can have up to 4 Source inputs. Table 5-41 below provides a list of Logical Module Sources.
Table 5-41 Logical Module Sources
2) Trigger 1/2 specifies what action the Logical Module will take when it becomes active. Table 5-42 below provides a list of Logical Module Triggers.
72
Table 5-42 Logical Module Triggers
Page 73
CET Electric Technology
Register
Property
Description
Format
7000~7022
RW
Data Recorder #1 (High-Speed)
See Section 5.9.4.2
High-speed
Data Recorder
Setup Data Structure
7023~7045
RW
Data Recorder #2 (High-Speed)
7046~7068
RW
Data Recorder #3 (High-Speed)
7069~7091
RW
Data Recorder #4 (High-Speed)
7092~7114
RW
Data Recorder #5 (Standard)
See Section 5.9.4.3
Standard Data
Recorder
Setup Data Structure
7115~7137
RW
Data Recorder #6 (Standard)
7138~7160
RW
Data Recorder #7 (Standard)
7161~7183
RW
Data Recorder #8 (Standard)
7184~7206
RW
Data Recorder #9 (Standard)
7207~7229
RW
Data Recorder #10 (Standard)
7230~7252
RW
Data Recorder #11 (Standard)
7253~7275
RW
Data Recorder #12 (Standard)
7276~7298
RW
Data Recorder #13 (Standard)
7299~7321
RW
Data Recorder #14 (Standard)
7322~7344
RW
Data Recorder #15 (Standard)
7345~7367
RW
Data Recorder #16 (Standard)
7368
RO
Data Recorder #1 Record Size (Bytes)
UINT16
7369
RO
Data Recorder #2 Record Size (Bytes)
UINT16
7370~7381
RO
7382
RO
Data Recorder #15 Record Size (Bytes)
UINT16
7383
RO
Data Recorder #16 Record Size (Bytes)
UINT16
Offset
Property
Description
Format
Range
+0
RW
Trigged Mode 1
UINT16
0=Disabled
1=Triggered by Timer
2=Triggered by Setpoint
+1
RW
Recording Mode2
UINT16
0=Stop-When-Full
+2
RW
Recording Depth3
UINT16
0 to 65535
+3
RW
Recording Interval
UINT32
1 to 60 (cycles)
+5
RW
Recording Offset4
UINT16
0
+6
RW
Number of Parameters5
UINT16
0 to 16
+7
RW
Parameter 1
UINT16
Please refer to Appendices A and B
for a complete list of the Data
Recorder Parameters and the
default configuration for each DR,
respectively.
+8
RW
Parameter 2
UINT16
+9
RW
Parameter 3
UINT16
+10
RW
Parameter 4
UINT16
+11
RW
Parameter 5
UINT16
+12
RW
Parameter 6
UINT16
+13
RW
Parameter 7
UINT16
+14
RW
Parameter 8
UINT16
+15
RW
Parameter 9
UINT16
+16
RW
Parameter 10
UINT16
+17
RW
Parameter 11
UINT16
+18
RW
Parameter 12
UINT16
+19
RW
Parameter 13
UINT16
+20
RW
Parameter 14
UINT16
+21
RW
Parameter 15
UINT16
+22
RW
Parameter 16
UINT16

5.9.4 Data Recorder Setup

5.9.4.1 Data Recorder Setup Registers
Table 5-43 Data Recorder Setup Registers
Notes:
1) DRx Record Size (Bytes) = Number of Parameters*4+8.
DRx Log Size=DRx Recording Depth * DRx Record Size. The Log Size is rounded up to the nearest kB.
5.9.4.2 High-speed Data Recorder Setup Data Structure
Notes:
1) The High-speed Data Recorder can be triggered by Setpoints (Triggered by Setpoint) or on a time basis using the meter clock (Triggered by Timer).
For Triggered by Setpoint, when the Setpoint goes active, the Data Recorder starts to record, and when the Setpoint becomes inactive, the Data Recorder stops.
73
Table 5-44 HS DR Setup Data Structure
Page 74
CET Electric Technology
Offset
Property
Description
Format
Range
+0
RW
Trigged Mode1
UINT16
0=Disabled
1=Triggered by Timer
2=Triggered by Setpoint
+1
RW
Recording Mode
UINT16
0=Stop-When-Full
1=First-In-First-Out
+2
RW
Recording Depth2
UINT16
0 to 65535
+3
RW
Recording Interval
UINT32
1 to 3456000 (seconds)
+5
RW
Recording Offset3
UINT16
0 to 43200 (seconds)
+6
RW
Number of Parameters4
UINT16
0 to 16
+7
RW
Parameter 1
UINT16
Please refer to
Appendices A and B for a
complete list of the Data
Recorder Parameters and
the default configuration
for each DR, respectively.
+8
RW
Parameter 2
UINT16
+9
RW
Parameter 3
UINT16
+10
RW
Parameter 4
UINT16
+11
RW
Parameter 5
UINT16
+12
RW
Parameter 6
UINT16
+13
RW
Parameter 7
UINT16
+14
RW
Parameter 8
UINT16
+15
RW
Parameter 9
UINT16
+16
RW
Parameter 10
UINT16
+17
RW
Parameter 11
UINT16
+18
RW
Parameter 12
UINT16
+19
RW
Parameter 13
UINT16
+20
RW
Parameter 14
UINT16
+21
RW
Parameter 15
UINT16
+22
RW
Parameter 16
UINT16
Register
Property
Description
Format
Range
Default
7700
RW
Recording Mode
UINT16
0=Disabled
1=Stop-When-Full
2= First-In-First-Out
2
7701
RW
Recording Depth1
UINT16
0 to 65535
5760
7702
RW
Recording Interval
UINT16
0=5mins, 1=10mins
2=15mins, 3=30mins
4=60mins
2
7703
RW
Start
Time2
High-order Byte:
Year
UINT16
0-99 (Year-2000)
10
2) For High Speed Data Recorder, the Recording Mode only supports Stop-When-Full.
3) If Recording Depth is set to “0”, the Data Recorder will be disabled.
4) Recording Offset should be set to zero for High-Speed Data Recorder.
5) Appendix A provides a list of available parameters for data recording. Parameters 0 to 28 are available for high-speed data recording. If Number of parameters is set to 0, the Data Recorder is disabled.
6) Modifying Recording Mode, Recording Depth, Recording Interval, Recording Offset, Number of Parameters and
Parameters 1 to 16 will clear the DRx Log and reset the DRx Pointer to “0”.
5.9.4.3 Standard Data Recorder Setup Data Structure
Notes:
1) The Standard Data Recorder can be triggered by Setpoint (Triggered by Setpoint) or on a time basis using the meter clock
2) If the Recording Depth is set to 0, the Data Recorder will be disabled.
3) Recording Offset can be used to delay the recording by a fixed time from the Recording Interval. For example, if Recording
4) Appendix A provides a list of available parameters for data recording. All parameters are available for standard data
5) Modifying Recording Mode, Recording Depth, Recording Interval, Recording Offset, Number of Parameters and

5.9.5 Interval Energy Recorder Setup Registers

74
Table 5-45 Standard DR Setup Data Structure
(Triggered by Timer).
For Triggered by Setpoint, when the Setpoint goes active, the Data Recorder starts to record, and when the Setpoint becomes inactive, the Data Recorder stops.
Interval is set to 3600 (hourly) and Recording Offset is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05…etc. The programmed value of Recording Offset should be less than that of Recording Interval.
recording. If Number of parameters is set to 0, the Data Recorder is disabled.
Parameters 1 to 16 will clear the DRx Log and reset the DRx Pointer to “0”.
Page 75
CET Electric Technology
Low-order Byte:
Month
1 to 12
10
7704
RW
High-order Byte:
Day
UINT16
1 to 31
14
Low-order Byte:
Hour
0 to 23
14
7705
RW
High-order Byte:
Minute
UINT16
0 to 59
46
Low-order Byte:
Second
0 to 59
00
7706
RW
Number of Parameters
UINT16
0 to 5
5
7707
RW
Parameter 1
UINT16
0=kWh Import
1=kWh Export 2=kvarh Import 3=kvarh Export
4=kVAh
0
7708
RW
Parameter 2
UINT16
1
7709
RW
Parameter 3
UINT16
2
7710
RW
Parameter 4
UINT16
3
7711
RW
Parameter 5
UINT16
4
7712
RO
Record Size3
UINT16
Unit: Bytes
28
Register
Property
Description
Format
Range
Default
7600
RW
WFR
Log 1
Recording Depth1
UINT16
0 to 32
10
7601
RW
# of Samples2
UINT16
0= 16, 1=32, 2=64
3=128, 4=256
4
7602
RW
Number of Cycles2
UINT16
320/160/80/40/20
20
7603
RW
Pre-fault Cycles3
UINT16
0 to 10
4
7604
RW
WFR
Log 2
Recording Depth1
UINT16
0 to 32
20
7605
RW
# of Samples2
UINT16
0= 16, 1=32, 2=64
3=128, 4=256
2
7606
RW
Number of Cycles2
UINT16
320/160/80/40/20
80
7607
RW
Pre-fault Cycles3
UINT16
0 to 10
6
Register
Property
Description
Format
Range/Option
16000
RO
Current Tariff1
UINT16
0=T1, 1=T2, 2=T3, 3=T4 4=T5, 5=T6, 6=T7, 7=T8
16001
RO
Current Season
UINT16
0 to 11
(Season #1 to #12)
Table 5-46 Interval Energy Recorder Setup Registers
Notes:
1) If Recording Depth is set to 0, the Energy Log is disabled.
2) When the current time meets or exceeds the Start Time, the Interval Energy Recorder starts to record.
3) Record Size (Bytes)=Number of Parameters*4+8.
Energy Log Size=Recording Depth * Record Size. The Log Size is rounded up to the nearest kB.
4) Modifying Recording Depth, Recording Interval, Start Time, Number of Parameters and Parameters 1 to 5 will clear the
Energy Log and reset the Energy Log Pointer to “0”.

5.9.6 Waveform Recorder (WFR) Setup

The PMC-660 provides 2 independent groups of WFR with a combined total of 32 entries. Each WFR can
simultaneously capture 3-phase Voltage and Current signals at a maximum resolution of 256 samples
per cycles.
Table 5-47 Waveform Recorder Setup Parameters
Notes:
1) The total capacity of WFR 1 and WFR 2 is 32, i.e. WFR Log 1 Recording Depth + WFR Log 2 Recording Depth <= 32.
2) The valid WFR formats (# of samples/cycle x # of cycles) include 16x320, 32x160, 64x80, 128x40 and 256x20.
3) When the WFR format is 256x20, the range of “Pre-fault Cycle” is between 0 and 5. Otherwise, the range is between 0 and
10.
4) WFR Log Size=(Number of Samples*Number of Cycle*2+10)*Recording Depth; The Log Size is rounded up to the nearest
kB.
5) Modifying the Setup Parameters of WFRx will clear the WFRx Log and reset WFRx Pointer will be reset to “0”.

5.9.7 TOU Setup

5.9.7.1 Basic
75
Page 76
CET Electric Technology
16002
RO
Current Period
UINT16
0 to 11
(Period #1 to #12)
16003
RO
Current Daily Profile No.
UINT16
0 to 19
(Daily Profile #1 to #20)
16004
RO
Current Day Type
UINT16
0=Weekday1 1=Weekday2 2=Weekday3
3= Alternate Day
16005
RO
Current TOU No.
UINT16
0=TOU #1, 1=TOU #2
16006
RW
TOU Switch Time
UINT32
See Note (1)
16008
WO
Switch TOU Manually
UINT16
Write 0xFF00 to manually switch the TOU schedules
16009
RW
Sunday Setup
UINT16
0=Weekday1*
1=Weekday2 2=Weekday3
16010
RW
Monday Setup
UINT16
16011
RW
Tuesday Setup
UINT16
16012
RW
Wednesday Setup
UINT16
16013
RW
Thursday Setup
UINT16
16014
RW
Friday Setup
UINT16
16015
RW
Saturday Setup
UINT16
Byte 3
Byte 2
Byte 1
Byte 0
Year-2000 (0-37)
Month (1-12)
Day (1-31)
Hour (00-23)
Offset
Property
Description
Format
Range/Note
0
RW
Season #1: Start Date
UINT16
0x0101
1
RW
Season #1: Weekday#1 Daily Profile
UINT16
0 to 19
2
RW
Season #1: Weekday#2 Daily Profile
UINT16
3
RW
Season #1: Weekday#3 Daily Profile
UINT16
4
RW
Season #2: Start Date
UINT16
High-order Byte: Month
Low-order Byte: Day
5
RW
Season #2: Weekday#1 Daily Profile
UINT16
0 to 19
6
RW
Season #2: Weekday#2 Daily Profile
UINT16
7
RW
Season #2: Weekday#3 Daily Profile
UINT16
8
RW
Season #3: Start Date
UINT16
See Season #2: Start Date
9
RW
Season #3: Weekday#1 Daily Profile
UINT16
0 to 19
10
RW
Season #3: Weekday#2 Daily Profile
UINT16
11
RW
Season #3: Weekday#3 Daily Profile
UINT16
12
RW
Season #4: Start Date
UINT16
See Season #2: Start Date
13
RW
Season #4: Weekday#1 Daily Profile
UINT16
0 to 19
14
RW
Season #4: Weekday#2 Daily Profile
UINT16
15
RW
Season #4: Weekday#3 Daily Profile
UINT16
16
RW
Season #5: Start Date
UINT16
See Season #2: Start Date
17
RW
Season #5: Weekday#1 Daily Profile
UINT16
0 to 19
18
RW
Season #5: Weekday#2 Daily Profile
UINT16
19
RW
Season #5: Weekday#3 Daily Profile
UINT16
20
RW
Season #6: Start Date
UINT16
See Season #2: Start Date
21
RW
Season #6: Weekday#1 Daily Profile
UINT16
0 to 19
22
RW
Season #6: Weekday#2 Daily Profile
UINT16
23
RW
Season #6: Weekday#3 Daily Profile
UINT16
24
RW
Season #7: Start Date
UINT16
See Season #2: Start Date
Table 5-48 TOU Basic Setup
Notes:
1) If DI1 is not programmed as a Tariff Switch, the TOU will function based on the TOU Schedule. If at least one DI (DI1) is
programmed as a Tariff Switch, the TOU Schedule will no longer be used and the Tariff switching will be based on the status of the DIs.
2) The following table illustrates the data structure for the TOU Switch Time. For example, 0x1003140C indicates a switch time
of 12:00pm on March 20th, 2016. Writing 0xFFFFFFFF to this register disables the switching between TOU Schedule.
Table 5-49 TOU Switch Time Format
5.9.7.2 Season
The PMC-660 has two sets of Season setup parameters, one for each TOU. The Base Addresses for the
two sets are 16100 and 17100, respectively, where the Register Address = Base Address + Offset. For
example, the register address for TOU #1’s Season #2’s Start Date is 17100+4 = 17104.
76
Page 77
CET Electric Technology
25
RW
Season #7: Weekday#1 Daily Profile
UINT16
0 to 19
26
RW
Season #7: Weekday#2 Daily Profile
UINT16
27
RW
Season #7: Weekday#3 Daily Profile
UINT16
28
RW
Season #8: Start Date
UINT16
See Season #2: Start Date
29
RW
Season #8: Weekday#1 Daily Profile
UINT16
0 to 19
30
RW
Season #8: Weekday#2 Daily Profile
UINT16
31
RW
Season #8: Weekday#3 Daily Profile
UINT16
32
RW
Season #9: Start Date
UINT16
See Season #2: Start Date
33
RW
Season #9: Weekday#1 Daily Profile
UINT16
0 to 19
34
RW
Season #9: Weekday#2 Daily Profile
UINT16
35
RW
Season #9: Weekday#3 Daily Profile
UINT16
36
RW
Season #10: Start Date
UINT16
See Season #2: Start Date
37
RW
Season #10: Weekday#1 Daily Profile
UINT16
0 to 19
38
RW
Season #10: Weekday#2 Daily Profile
UINT16
39
RW
Season #10: Weekday#3 Daily Profile
UINT16
40
RW
Season #11: Start Date
UINT16
See Season #2: Start Date
41
RW
Season #11: Weekday#1 Daily Profile
UINT16
0 to 19
42
RW
Season #11: Weekday#2 Daily Profile
UINT16
43
RW
Season #11: Weekday#3 Daily Profile
UINT16
44
RW
Season #12: Start Date
UINT16
See Season #2: Start Date
45
RW
Season #12: Weekday#1 Daily Profile
UINT16
0 to 19
46
RW
Season #12: Weekday#2 Daily Profile
UINT16
47
RW
Season #12: Weekday#3 Daily Profile
UINT16
Register
Property
Description
Format
16200~16223
RW
Daily Profile #1
See Table 5-53
Daily Profile Data
Structure
16224~16247
RW
Daily Profile #2
16248~16271
RW
Daily Profile #3
16272~16295
RW
Daily Profile #4
16296~16319
RW
Daily Profile #5
16320~16343
RW
Daily Profile #6
16344~16367
RW
Daily Profile #7
16368~16391
RW
Daily Profile #8
16392~16415
RW
Daily Profile #9
16416~16439
RW
Daily Profile #10
16440~16463
RW
Daily Profile #11
16464~16487
RW
Daily Profile #12
16488~16511
RW
Daily Profile #13
16512~16535
RW
Daily Profile #14
16536~16559
RW
Daily Profile #15
16560~16583
RW
Daily Profile #16
16584~16607
RW
Daily Profile #17
16608~16631
RW
Daily Profile #18
16632~16655
RW
Daily Profile #19
16656~16679
RW
Daily Profile #20
Register
Property
Description
Format
17200~17223
RW
Daily Profile #1
See Table 5-53
Daily Profile Data
Structure
17224~17247
RW
Daily Profile #2
17248~17271
RW
Daily Profile #3
17272~17295
RW
Daily Profile #4
17296~17319
RW
Daily Profile #5
17320~17343
RW
Daily Profile #6
17344~17367
RW
Daily Profile #7
Table 5-50 Season Setup
Notes:
1) Start Date for Season #1 is Jan. 1
2) Setting a Season’s Start Date as 0xFFFF terminates the TOU’s Season settings. All subsequent Seasons’ setup parameters
will be ignored since the previous Season’s duration is from its Start Date to the end of the year.
3) The Start Date of a particular Season must be later than the previous Season’s.
st
and cannot be modified.
5.9.7.3 Daily Profile
The PMC-660 has two sets of Daily Profile setup parameters, one for each TOU.
Table 5-51 TOU #1’s Daily Profile Setup
77
Page 78
CET Electric Technology
17368~17391
RW
Daily Profile #8
17392~17415
RW
Daily Profile #9
17416~17439
RW
Daily Profile #10
17440~17463
RW
Daily Profile #11
17464~17487
RW
Daily Profile #12
17488~17511
RW
Daily Profile #13
17512~17535
RW
Daily Profile #14
17536~17559
RW
Daily Profile #15
17560~17583
RW
Daily Profile #16
17584~17607
RW
Daily Profile #17
17608~17631
RW
Daily Profile #18
17632~17655
RW
Daily Profile #19
17656~17679
RW
Daily Profile #20
Offset
Property
Description
Format
Note
+0
RW
Period #1 Start Time
UINT16
0x0000
+1
RW
Period #1 Tariff
UINT16
0=T1, …, 7=T8
+2
RW
Period #2
Start Time
High-order Byte: Hour
UINT16
0 ≤ Hour < 24
Low-order Byte: Min
Min = 0, 15, 30, 45
+3
RW
Period #2 Tariff
UINT16
0=T1, …, 7=T8
+4
RW
Period #3 Start Time
UINT16
See Period #2 Start Time
+5
RW
Period #3 Tariff
UINT16
0=T1, …, 7=T8
+6
RW
Period #4 Start Time
UINT16
See Period #2 Start Time
+7
RW
Period #4 Tariff
UINT16
0=T1, …, 7=T8
+8
RW
Period #5 Start Time
UINT16
See Period #2 Start Time
+9
RW
Period #5 Tariff
UINT16
0=T1, …, 7=T8
+10
RW
Period #6 Start Time
UINT16
See Period #2 Start Time
+11
RW
Period #6 Tariff
UINT16
0=T1, …, 7=T8
+12
RW
Period #7 Start Time
UINT16
See Period #2 Start Time
+13
RW
Period #7 Tariff
UINT16
0=T1, …, 7=T8
+14
RW
Period #8 Start Time
UINT16
See Period #2 Start Time
+15
RW
Period #8 Tariff
UINT16
0=T1, …, 7=T8
+16
RW
Period #9 Start Time
UINT16
See Period #2 Start Time
+17
RW
Period #9 Tariff
UINT16
0=T1, …, 7=T8
+18
RW
Period #10 Start Time
UINT16
See Period #2 Start Time
+19
RW
Period #10 Tariff
UINT16
0=T1, …, 7=T8
+20
RW
Period #11 Start Time
UINT16
See Period #2 Start Time
+21
RW
Period #11 Tariff
UINT16
0=T1, …, 7=T8
+22
RW
Period #12 Start Time
UINT16
See Period #2 Start Time
+23
RW
Period #12 Tariff
UINT16
0=T1, …, 7=T8
Offset
Property
Description
Format
Note
0
RW
Alternate Day #1 Date¹
UINT32
Table 5-55
2
RW
Alternate Day #1 Daily Profile
UINT16
0 to 19
Table 5-52 TOU #2’s Daily Profile Setup
Table 5-53 Daily Profile Data Structure
Notes:
1) Daily Profile #1’s Period #1 Start Time is always 00:00 and cannot be modified.
2) Setting a Period’s Start Time as 0xFFFF terminates the Daily Profile’s settings. All later Daily Profile’ setup parameters will
be ignored, and the previous Period’s duration is from its Start Time to the end of the day.
3) The minimum interval of a period is 15 minutes.
4) The Start Time of a particular Period must be later than the previous Period’s.
5.9.7.4 Alternate Days
Each Alternate Day is assigned a Daily Profile and has a higher priority than Season. If a particular date
is set as an Alternate Day, its assigned Daily Profile will override the “normal” Daily Profile for this day
according the TOU settings.
The PMC-660 has two sets of Alternate Days setup parameters, one for each TOU. The Base Addresses
for the two sets are 16700 and 17700, respectively, where the Register Address = Base Address + Offset.
For example, the register address for TOU #2’s Alternative Day #2’s Date is 17700+3 = 17703.
78
Page 79
CET Electric Technology
3
RW
Alternate Day #2 Date¹
UINT32
Table 5-55
5
RW
Alternate Day #2 Daily Profile
UINT16
0 to 19
6
RW
Alternate Day #3 Date¹
UINT32
Table 5-55
8
RW
Alternate Day #3 Daily Profile
UINT16
0 to 19
9
RW
Alternate Day #4 Date¹
UINT32
Table 5-55
11
RW
Alternate Day #4 Daily Profile
UINT16
0 to 19
12
RW
Alternate Day #5 Date¹
UINT32
Table 5-55
14
RW
Alternate Day #5 Daily Profile
UINT16
0 to 19
15
RW
Alternate Day #6 Date¹
UINT32
Table 5-55
17
RW
Alternate Day #6 Daily Profile
UINT16
0 to 19
18
RW
Alternate Day #7 Date¹
UINT32
Table 5-55
19
RW
Alternate Day #7 Daily Profile
UINT16
0 to 19
21
RW
Alternate Day #8 Date¹
UINT32
Table 5-55
22
RW
Alternate Day #8 Daily Profile
UINT16
0 to 19
24
RW
Alternate Day #9 Date¹
UINT32
Table 5-55
25
RW
Alternate Day #9 Daily Profile
UINT16
0 to 19
27
RW
Alternate Day #10 Date¹
UINT32
Table 5-55
29
RW
Alternate Day #10 Daily Profile
UINT16
0 to 19
Table 5-55
0 to 19
240
RW
Alternate Day #81 Date¹
UINT32
Table 5-55
162
RW
Alternate Day #81 Daily Profile
UINT16
0 to 19
243
RW
Alternate Day #82 Date¹
UINT32
Table 5-55
245
RW
Alternate Day #82 Daily Profile
UINT16
0 to 19
246
RW
Alternate Day #83 Date¹
UINT32
Table 5-55
248
RW
Alternate Day #83 Daily Profile
UINT16
0 to 19
249
RW
Alternate Day #84 Date¹
UINT32
Table 5-55
251
RW
Alternate Day #84 Daily Profile
UINT16
0 to 19
252
RW
Alternate Day #85 Date¹
UINT32
Table 5-55
254
RW
Alternate Day #85 Daily Profile
UINT16
0 to 19
255
RW
Alternate Day #86 Date¹
UINT32
Table 5-55
256
RW
Alternate Day #86 Daily Profile
UINT16
0 to 19
258
RW
Alternate Day #87 Date¹
UINT32
Table 5-55
260
RW
Alternate Day #87 Daily Profile
UINT16
0 to 19
261
RW
Alternate Day #88 Date¹
UINT32
Table 5-55
263
RW
Alternate Day #88 Daily Profile
UINT16
0 to 19
264
RW
Alternate Day #89 Date¹
UINT32
Table 5-55
266
RW
Alternate Day #89 Daily Profile
UINT16
0 to 19
267
RW
Alternate Day #90 Date¹
UINT32
Table 5-55
269
RW
Alternate Day #90 Daily Profile
UINT16
0 to 19
Byte 3
Byte 2
Byte 1
Byte 0
Reserved
Year-2000 (0-37)
Month (1-12)
Day (1-31)
Table 5-54 Alternate Days Setup
Notes:
1) The following table illustrates the data structure of the Date register:
Table 5-55 Date Format
When the Year and/or Month are set as 0xFF, it means the Alternate Day is repetitive by year and/or month, i.e. the same day of every year or every month is an Alternate Day.

5.9.8 DO Control

The DO Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and
Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command
(Function Code 0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-660 does
not support the Read Coils command (Function Code 0x01) because DO Control registers are “Write-
Only”. The DO Status register 0098 should be read instead to determine the current DO status.
The PMC-660 adopts the ARM before EXECUTE operation for the remote control of its Digital Outputs
if this function is enabled through the Arm Before Execute Enable Setup register (6185) since Firmware
V2.00.00, which is disabled by default. Before executing an OPEN or CLOSE command on a Digital Output,
it must be “Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm”
79
Page 80
CET Electric Technology
Register
Property
Description
Format
Note
9100
WO
Arm DO1 Close
UINT16
Writing “0xFF00” to
the register to
perform the
described action.
9101
WO
Execute DO1 Close
UINT16
9102
WO
Arm DO1 Open
UINT16
9103
WO
Execute DO1 Open
UINT16
9104
WO
Arm DO2 Close
UINT16
9105
WO
Execute DO2 Close
UINT16
9106
WO
Arm DO2 Open
UINT16
9107
WO
Execute DO2 Open
UINT16
9108
WO
Arm DO3 Close
UINT16
9109
WO
Execute DO3 Close
UINT16
9110
WO
Arm DO3 Open
UINT16
9111
WO
Execute DO3 Open
UINT16
Register
Property
Description
Format
Note
6400
WO
Manual WFR Log #1 Trigger
UINT16
Writing “0xFF00” to
the register to
execute the
described action.
6401
WO
Manual WFR Log #2 Trigger
UINT16
6402
WO
Clear DR #1 (High-Speed)
UINT16
6403
WO
Clear DR #2 (High-Speed)
UINT16
6404
WO
Clear DR #3 (High-Speed)
UINT16
6405
WO
Clear DR #4 (High-Speed)
UINT16
6406
WO
Clear DR #5 (Standard)
UINT16
WO
UINT16
6416
WO
Clear DR #15 (Standard)
UINT16
6417
WO
Clear DR #16 (Standard)
UINT16
6418
WO
Clear WFR Log #1
UINT16
6419
WO
Clear WFR Log #2
UINT16
6420
WO
Clear Energy Log
UINT16
6421
WO
Clear PQ Log
UINT16
6422
WO
Clear SOE Log
UINT16
6423
WO
Clear Total Energy and TOU Energy
UINT16
6424
WO
Clear Max./Min. Log of This Month
(Since Last Reset)
UINT16
6425
WO
Clear Peak Demand Log of This Month
(Since Last Reset)
UINT16
6426
WO
Clear Counter #1 (DI1)
UINT16
6427
WO
Clear Counter #2 (DI2)
UINT16
WO
UINT16
6430
WO
Clear Counter #5 (DI5)
UINT16
6431
WO
Clear Counter #6 (DI6)
UINT16
6432
WO
Clear Device Operating Time#
UINT16
6433~6436
WO
Reserved
UINT16
6437
WO
Clear all Logs1
UINT16
Writing “0xFF00” to
the register clears all
of the above
a particular DO operation. The DO will be “Disarmed” automatically if an “Execute” command is not
received within 15 seconds after it has been “Armed”. If an “Execute” command is received without first
having received an “Arm” command, the meter ignores the “Execute” command and returns the 0x04
exception code.
Table 5-56 DO Control

5.9.9 Clear/Reset Control

#
Available in Firmware V2.00.00 or later
Notes:
1) Writing “0XFF00” to the register clears all logs, including Data Recorder, Waveform Recorder, Energy Log, PQ Log, SOE Log,
Max./Min. Log of This Month (Since Last Reset), Peak Demand of This Month (Since Last Reset), DI Counters, Energy Registers and Device Operating Time.
80
Table 5-57 Clear/Reset Registers
Page 81
CET Electric Technology
Register
Property
Description
Format
Note
60000
9000
RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
60001
9001
RW High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002
9002
RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003
RW
Millisecond
UINT16
0 to 999
60004
~
60005
9004
~
9005
RW
UNIX Time
UINT32
0x386D4380 to 0x 7FE8177F
The corresponding time is
2000.01.01 00:00:00 to
2037.12.31 23:59:59
(GMT 0:00 Time Zone)
Register
Property
Description
Format
Note
60200
~
60219
9800
~
9819
RO
Meter model1
UINT16
See Note 1)
60220
9820
RO
Firmware Version
UINT16
e.g. 10000 shows the version
is V1.00.00
60221
9821
RO
Protocol Version
UINT16
e.g. 10 shows the version is
V1.0
60222
9822
RO
Firmware Update Date:
Year-2000
UINT16
e.g. 140110 means January
10, 2014
60223
9823
RO
Firmware Update Date:
Month
UINT16
60224
9824
RO
Firmware Update Date:
Day
UINT16
60225
9825
RO
Serial Number
UINT32
e.g. 1601030100 means the
100th PMC-660 that was
manufactured on January 3rd,
2016
60227
9827
RO
Reserved
UINT16
60228
9828
RO
Reserved
UINT16
60229
9829
RO
Feature Code
UINT16
B3B2B1B0:
0000:
2xRS485+6xDI+3xDO
0001:
1xRS485+1xEthernet +6xDI+3xDO
0010:
2xRS485+6xDI+2xDO+1xAO
0011:
1xRS485+1xEthernet +6xDI+2xDO+1xAO
Other: Reserved

5.10 Time

There are two sets of Time registers supported by the PMC-660 – Year / Month / Day / Hour / Minute /
Second (Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to the PMC-
660 over Modbus communications, care should be taken to only write one of the two Time register sets.
All registers within a Time register set must be written in a single transaction. If registers 60000 to 60004
are being written to at the same time, both Time register sets will be updated to reflect the new time
specified in the UNIX Time register set (60004) and the time specified in registers 60000-60002 will be
ignored. Writing to the Millisecond register (60003) is optional during a Time Set operation. When
broadcasting time, the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect date or
time values will be rejected by the meter. In addition, attempting to write a Time value less than Jan 1,
2000 00:00:00 will be rejected.

5.11 Meter Information

Table 5-58 Time Registers
81
Page 82
CET Electric Technology
B5B4:
00: 5A I4 CT 01: 1A I4 CT 10: Analog Input 11: Reserved
Other bits are reserved.
60230
9830
RO
Current configuration
UINT16
0=5 (A) 3-Phase CT 1=1 (A) 3-Phase CT
60231
9831
RO
Voltage configuration
UINT16
0=120 (V) , 1=415 (V)
2=690 (V)
3=690 (V) 3P3W Open Delta
Register
Value(Hex)
ANSCII
9800
0x50
P
9801
0x4D
M
9802
0x43
C
9803
0x2D
-
9804
0x36
6
9805
0x36
6
9806
0x30
0
9807-9819
0x20
<Null>
Table 5-59 Meter Information
Notes:
1) The Meter Model appears in registers 9800 to 9819 and contains the ASCII encoding of the string “PMC-660” as shown in
the following table.
Table 5-60 ASCII Encoding of “PMC-660”
82
Page 83
CET Electric Technology
Key
Parameters
Scale/Unit
Key
Parameters
Scale/Unit 0 Uan
x100, V 1 Ubn
x100, V
2
Ucn
x100, V 3 Uln average
x100, V 4 Uab
x100, V 5 Ubc
x100, V
6
Uca
x100, V 7 Ull average
x100, V 8 Ia
x1000, A 9 Ib
x1000, A
10
Ic
x1000, A
11
I average
x1000, A
12
I4^
x1000, A
13
kWa
W
14
kWb
W
15
kWc
W
16
kW Total
W
17
kvara
var
18
kvarb
var
19
kvarc
var
20
kvar Total
var
21
kVAa
VA
22
kVAb
VA
23
kVAc
VA
24
kVA Total
VA
25
P.F.a
x1000
26
P.F.b
x1000
27
P.F.c
x1000
28
P.F. Total
x1000
29
Frequency
x100, Hz
30
Counter #1 (DI1)
-
31
Counter #2 (DI2)
-
32
Counter #3 (DI3)
-
33
Counter #4 (DI4)
-
34
Counter #5 (DI5)
-
35
Counter #6 (DI6)
-
36
U Unbalance
x10, %
37
I Unbalance
x10, %
38
Ia K-factor
x10
39
Ib K-factor
x10
40
Ic K-factor
x10
41
Uan THD
x100, %
42
Ubn THD
x100, %
43
Ucn THD
x100, %
44
Uan TOHD
x100, %
45
Ubn TOHD
x100, %
46
Ucn TOHD
x100, %
47
Uan TEHD
x100, %
48
Ubn TEHD
x100, %
49
Ucn TEHD
x100, %
50
Ia THD
x100, %
51
Ib THD
x100, %
52
Ic THD
x100, %
53
Ia TOHD
x100, %
54
Ib TOHD
x100, %
55
Ic TOHD
x100, %
56
Ia TEHD
x100, %
57
Ib TEHD
x100, %
58
Ic TEHD
x100, %
59
Uan 2nd Harmonic
x100, %
60
Ubn 2nd Harmonic
x100, %
61
Ucn 2nd Harmonic
x100, %
62
Uan 3rd Harmonic
x100, %
63
Ubn 3rd Harmonic
x100, %
64
Ucn 3rd Harmonic
x100, %
65
Uan 4th Harmonic
x100, %
66
Ubn 4th Harmonic
x100, %
67
Ucn 4th Harmonic
x100, %
68
Uan 5th Harmonic
x100, %
69
Ubn 5th Harmonic
x100, %
70
Ucn 5th Harmonic
x100, %
71
Uan 6th Harmonic
x100, %
72
Ubn 6th Harmonic
x100, %
73
Ucn 6th Harmonic
x100, %
74
Uan 7th Harmonic
x100, %
75
Ubn 7th Harmonic
x100, %
76
Ucn 7th Harmonic
x100, %
77
Uan 8th Harmonic
x100, %
78
Ubn 8th Harmonic
x100, %
79
Ucn 8th Harmonic
x100, %
80
Uan 9th Harmonic
x100, %
81
Ubn 9th Harmonic
x100, %
81
Ucn 9th Harmonic
x100, %
83
Uan 10th Harmonic
x100, %
84
Ubn 10th Harmonic
x100, %
85
Ucn 10th Harmonic
x100, %
86
Uan 11th Harmonic
x100, %
87
Ubn 11th Harmonic
x100, %
88
Ucn 11th Harmonic
x100, %
89
Uan 12th Harmonic
x100, %
90
Ubn 12th Harmonic
x100, %
91
Ucn 12th Harmonic
x100, %
92
Uan 13th Harmonic
x100, %
93
Ubn 13th Harmonic
x100, %
94
Ucn 13th Harmonic
x100, %
95
Uan 14th Harmonic
x100, %
96
Ubn 14th Harmonic
x100, %
97
Ucn 14th Harmonic
x100, %
98
Uan 15th Harmonic
x100, %
99
Ubn 15th Harmonic
x100, %
100
Ucn 15th Harmonic
x100, %
101
Uan 16th Harmonic
x100, %
102
Ubn 16th Harmonic
x100, %
103
Ucn 16th Harmonic
x100, %
104
Uan 17th Harmonic
x100, %
105
Ubn 17th Harmonic
x100, %
106
Ucn 17th Harmonic
x100, %
107
Uan 18th Harmonic
x100, %
108
Ubn 18th Harmonic
x100, %
109
Ucn 18th Harmonic
x100, %
110
Uan 19th Harmonic
x100, %
111
Ubn 19th Harmonic
x100, %
112
Ucn 19th Harmonic
x100, %
113
Uan 20th Harmonic
x100, %
114
Ubn 20th Harmonic
x100, %
115
Ucn 20th Harmonic
x100, %
116
Uan 21st Harmonic
x100, %
117
Ubn 21st Harmonic
x100, %
118
Ucn 21st Harmonic
x100, %
119
Uan 22nd Harmonic
x100, %
120
Ubn 22nd Harmonic
x100, %
121
Ucn 22nd Harmonic
x100, %
122
Uan 23rd Harmonic
x100, %
123
Ubn 23rd Harmonic
x100, %
124
Ucn 23rd Harmonic
x100, %
125
Uan 24th Harmonic
x100, %
126
Ubn 24th Harmonic
x100, %
127
Ucn 24th Harmonic
x100, %
128
Uan 25th Harmonic
x100, %
129
Ubn 25th Harmonic
x100, %
130
Ucn 25th Harmonic
x100, %
131
Ia 2nd Harmonic
x100, %
132
Ib 2nd Harmonic
x100, %
133
Ic 2nd Harmonic
x100, %
134
Ia 3rd Harmonic
x100, %
135
Ib 3rd Harmonic
x100, %
136
Ic 3rd Harmonic
x100, %
137
Ia 4th Harmonic
x100, %
138
Ib 4th Harmonic
x100, %
139
Ic 4th Harmonic
x100, %
140
Ia 5th Harmonic
x100, %
141
Ib 5th Harmonic
x100, %
142
Ic 5th Harmonic
x100, %
143
Ia 6th Harmonic
x100, %
144
Ib 6th Harmonic
x100, %
145
Ic 6th Harmonic
x100, %
146
Ia 7th Harmonic
x100, %
147
Ib 7th Harmonic
x100, %
148
Ic 7th Harmonic
x100, %
149
Ia 8th Harmonic
x100, %
150
Ib 8th Harmonic
x100, %
151
Ic 8th Harmonic
x100, %
152
Ia 9th Harmonic
x100, %
153
Ib 9th Harmonic
x100, %
154
Ic 9th Harmonic
x100, %
155
Ia 10th Harmonic
x100, %
156
Ib 10th Harmonic
x100, %
157
Ic 10th Harmonic
x100, %

Appendix A - Data Recorder Parameter

83
Page 84
CET Electric Technology
158
Ia 11th Harmonic
x100, %
159
Ib 11th Harmonic
x100, %
160
Ic 11th Harmonic
x100, %
161
Ia 12th Harmonic
x100, %
162
Ib 12th Harmonic
x100, %
163
Ic 12th Harmonic
x100, %
164
Ia 13th Harmonic
x100, %
165
Ib 13th Harmonic
x100, %
166
Ic 13th Harmonic
x100, %
167
Ia 14th Harmonic
x100, %
168
Ib 14th Harmonic
x100, %
169
Ic 14th Harmonic
x100, %
170
Ia 15th Harmonic
x100, %
171
Ib 15th Harmonic
x100, %
172
Ic 15th Harmonic
x100, %
173
Ia 16th Harmonic
x100, %
174
Ib 16th Harmonic
x100, %
175
Ic 16th Harmonic
x100, %
176
Ia 17th Harmonic
x100, %
177
Ib 17th Harmonic
x100, %
178
Ic 17th Harmonic
x100, %
179
Ia 18th Harmonic
x100, %
180
Ib 18th Harmonic
x100, %
181
Ic 18th Harmonic
x100, %
182
Ia 19th Harmonic
x100, %
183
Ib 19th Harmonic
x100, %
184
Ic 19th Harmonic
x100, %
185
Ia 20th Harmonic
x100, %
186
Ib 20th Harmonic
x100, %
187
Ic 20th Harmonic
x100, %
188
Ia 21st Harmonic
x100, %
189
Ib 21st Harmonic
x100, %
190
Ic 21st Harmonic
x100, %
191
Ia 22nd Harmonic
x100, %
192
Ib 22nd Harmonic
x100, %
193
Ic 22nd Harmonic
x100, %
194
Ia 23rd Harmonic
x100, %
195
Ib 23rd Harmonic
x100, %
196
Ic 23rd Harmonic
x100, %
197
Ia 24th Harmonic
x100, %
198
Ib 24th Harmonic
x100, %
199
Ic 24th Harmonic
x100, %
200
Ia 25th Harmonic
x100, %
201
Ib 25th Harmonic
x100, %
202
Ic 25th Harmonic
x100, %
203
Uan Demand
x100, V
204
Ubn Demand
x100, V
205
Ucn Demand
x100, V
206
Uln avg. Demand
x100, V
207
Uab Demand
x100, V
208
Ubc Demand
x100, V
209
Uca Demand
x100, V
210
Ull avg. Demand
x100, V
211
Ia Demand
x1000, A
212
Ib Demand
x1000, A
213
Ic Demand
x1000, A
214
I avg. Demand
x1000, A
215
I4 Demand
x1000, A
216
kWa Demand
W
217
kWb Demand
W
218
kWc Demand
W
219
kW Total Demand
W
220
kvara Demand
var
221
kvarb Demand
var
222
kvarc Demand
var
223
kvar Total Demand
var
224
kVAa Demand
VA
225
kVAb Demand
VA
226
kVAc Demand
VA
227
kVA Total Demand
VA
228
P.F.a Demand
x1000
229
P.F.b Demand
x1000
230
P.F.c Demand
x1000
231
P.F. Total Demand
x1000
232
Freq. Demand
x100, Hz
233
U Unbalance Demand
x10, %
234
I Unbalance Demand
x10, %
235
Uan THD Demand
x100, %
236
Ubn THD Demand
x100, %
237
Ucn THD Demand
x100, %
238
Ia THD Demand
x100, %
239
Ib THD Demand
x100, %
240
Ic THD Demand
x100, %
241
Uan max
per Demand Period
x100, V
242
Ubn max
per Demand Period
x100, V
243
Ucn max
per Demand Period
x100, V
244
Uln avg. max
Per Demand Period
x100, V
245
Uab max
per Demand Period
x100, V
246
Ubc max
per Demand Period
x100, V
247
Uca max
per Demand Period
x100, V
248
Ull avg. max
per Demand Period
x100, V
249
Ia max
per Demand Period
x1000, A
250
Ib max
per Demand Period
x1000, A
251
Ic max
per Demand Period
x1000, A
252
I avg. max
Per Demand Period
x1000, A
253
I4 max
per Demand Period
x1000, A
254
kWa max
per Demand Period
W
255
kWb max
per Demand Period
W
256
kWc max
per Demand Period
W
257
kW Total max
per Demand Period
W
258
kvara max
per Demand Period
var
259
kvarb max
per Demand Period
var
260
kvarc max
per Demand Period
var
261
kvar Total max
per Demand Period
var
262
kVAa max
per Demand Period
VA
263
kVAb max
per Demand Period
VA
264
kVAc max
per Demand Period
VA
265
kVA Total max
per Demand Period
VA
266
P.F.a max
per Demand Period
x1000
267
P.F.b max
per Demand Period
x1000
268
P.F.c max
per Demand Period
x1000
269
P.F. Total max
per Demand Period
x1000
270
Freq. max
per Demand Period
x100, Hz
271
U Unbalance max
Per Demand Period
x10, %
272
I Unbalance max
Per Demand Period
x10, %
273
Uan THD max
per Demand Period
x100, %
274
Ubn THD max
per Demand Period
x100, %
275
Ucn THD max
per Demand Period
x100, %
276
Ia THD max
per Demand Period
x100, %
277
Ib THD max
per Demand Period
x100, %
278
Ic THD max
per Demand Period
x100, %
279
Uan min
per Demand Period
x100, V
280
Ubn min
per Demand Period
x100, V
281
Ucn min
per Demand Period
x100, V
84
Page 85
CET Electric Technology
282
Uln avg. min
Per Demand Period
x100, V
283
Uab min
per Demand Period
x100, V
284
Ubc min
per Demand Period
x100, V
285
Uca min
per Demand Period
x100, V
286
Ull avg. min
Per Demand Period
x100, V
287
Ia min
per Demand Period
x1000, A
288
Ib min
per Demand Period
x1000, A
289
Ic min
per Demand Period
x1000, A
290
I avg. min
per Demand Period
x1000, A
291
I4 min
per Demand Period
x1000, A
292
kWa min
per Demand Period
W
293
kWb min
per Demand Period
W
294
kWc min
per Demand Period
W
295
kW Total min
per Demand Period
W
296
kvara min
per Demand Period
var
297
kvarb min
per Demand Period
var
298
kvarc min
per Demand Period
var
299
kvar Total min
per Demand Period
var
300
kVAa min
per Demand Period
VA
301
kVAb min
per Demand Period
VA
302
kVAc min
per Demand Period
VA
303
kVA Total min
per Demand Period
VA
304
P.F.a min
per Demand Period
x1000
305
P.F.b min
per Demand Period
x1000
306
P.F.c min
per Demand Period
x1000
307
P.F. Total min
per Demand Period
x1000
308
Freq. min
Per Demand Period
x100, Hz
309
U Unbalance min
per Demand Period
x10, %
310
I Unbalance
per Demand Period
x10, %
311
Uan THD min
per Demand Period
x100, %
312
Ubn THD min
per Demand Period
x100, %
313
Ucn THD min
per Demand Period
x100, %
314
Ia THD min
per Demand Period
x100, %
315
Ib THD min
per Demand Period
x100, %
316
Ic THD min
per Demand Period
x100, %
317
dUan/dUab
x100, V
318
dUbn/dUbc
x100, V
319
dUcn/dUca
x100, V
320
dIa
x1000, A
321
dIb
x1000, A
322
dIc
x1000, A
323
kWh Import*,#
kWh
324
kWh Export*,#
kWh
325
kWh Total *,#
kWh
326
kvarh Import*,#
kvarh
327
kvarh Export*,#
kvarh
328
kvarh Total*,#
kvarh
329~
I Residual
x1000, A
^ I4 is valid only if the device is equipped with the I4 option, and it will be automatically changed to I0 (Zero Sequence Current) if the meter is equipped with the AI option. * Parameters # 323 to 328 are accumulative energy values.
#
Available in Firmware V1.00.04 or later
~ Available in Firmware V2.00.00 or later
85
Page 86
CET Electric Technology
Parameter
DR 1 (HS)
DR 2 (HS)
DR 3 (HS)
DR 4 (HS)
Trigger Mode
Disabled
Disabled
Disabled
Disabled
Recording Mode
Stop-When-Full
Stop-When-Full
Stop-When-Full
Stop-When-Full
Recording Depth
0 0 0
0
Recording Interval
2 2 2
2
Recording Offset
0 0 0
0
Number of Parameters
0 0 0
0
Parameter 1~16
Null
Null
Null
Null
Parameter
DR 5
DR 6
DR 7
DR 8
Trigger Mode
Triggered by Timer
Triggered by Timer
Triggered by Timer
Triggered by Timer
Recording Mode
First-In-First-Out
First-In-First-Out
First-In-First-Out
First-In-First-Out
Recording Depth
3360
1440
1440
1440
Recording Interval
900
900
900
900
Recording Offset
0 0 0
0
No. of Parameters
6
15
16
6
Parameter 1
kWh Import
Uab
Uan
Uan THD
Parameter 2
kWh Export
Ubc
Ubn
Ubn THD
Parameter 3
kWh Total
Uca
Ucn
Ucn THD
Parameter 4
kvarh Import
Ull avg
Uln avg
Ia THD
Parameter 5
kvarh Export
Ia
kWa
Ib THD
Parameter 6
kvarh Total
Ib
kWb
Ic THD
Parameter 7
Null
Ic
kWc
Null
Parameter 8
Null
I avg
kvara
Null
Parameter 9
Null
kW Total
kvarb
Null
Parameter 10
Null
kvar Total
kvarc
Null
Parameter 11
Null
kVA Total
kVAa
Null
Parameter 12
Null
P.F. Total
kVAb
Null
Parameter 13
Null
Freq
kVAc
Null
Parameter 14
Null
U Unbalance
P.F.a
Null
Parameter 15
Null
I Unbalance
P.F.b
Null
Parameter 16
Null
Null
P.F.c
Null
Parameter
DR 9
DR 10
DR 11
DR 12
Trigger Mode
Triggered by Timer
Triggered by Timer
Triggered by Timer
Triggered by Timer
Recording Mode
First-In-First-Out
First-In-First-Out
First-In-First-Out
First-In-First-Out
Recording Depth
1440
1440
1440
1440
Recording Interval
900
900
900
900
Recording Offset
0 0 0
0
No. of Parameters
15
16 6 15
Parameter 1
Uab Demand
Uan Demand
Uan THD Demand
Uab max per Demand
Period
Parameter 2
Ubc Demand
Ubn Demand
Ubn THD Demand
Ubc max per Demand
Period
Parameter 3
Uca Demand
Ucn Demand
Ucn THD Demand
Uca max per Demand
Period
Parameter 4
Ull avg Demand
Uln avg Demand
Ia THD Demand
Ull avg max per
Demand Period
Parameter 5
Ia Demand
kWa Demand
Ib THD Demand
Ia max per Demand
Period
Parameter 6
Ib Demand
kWb Demand
Ic THD Demand
Ib max per Demand
Period
Parameter 7
Ic Demand
kWc Demand
Null
Ic max per Demand
Period
Parameter 8
I avg Demand
kvara Demand
Null
I avg max per Demand
Period
Parameter 9
kW Total Demand
kvarb Demand
Null
kW Total max per
Demand Period
Parameter 10
kvar Total Demand
kvarc Demand
Null
kvar Total max per
Demand Period
Parameter 11
kVA Total Demand
kVAa Demand
Null
kVA Total max per
Demand Period
Parameter 12
P.F. Total Demand
kVAb Demand
Null
P.F. Total max per
Demand Period
Parameter 13
Freq Demand
kVAc Demand
Null
Freq max per Demand
Period
Parameter 14
U Unbalance Demand
P.F.a Demand
Null
U Unbalance max per
Demand Period
Parameter 15
I Unbalance Demand
P.F.b Demand
Null
I Unbalance max per
Demand Period
Parameter 16
Null
P.F.c Demand
Null
Null
Parameter
DR 13
DR 14
DR 15
DR 16
Trigger Mode
Triggered by Timer
Triggered by Timer
Triggered by Timer
Triggered by Timer
Recording Mode
First-In-First-Out
First-In-First-Out
First-In-First-Out
First-In-First-Out
Recording Depth
1440
1440
1440
1440
Recording Interval
900
900
900
900
Recording Offset
0 0 0
0
No. of Parameters
16
12
15
16
Parameter 1
Uan max per Demand
Period
Uan THD max per
Demand Period
Uab min per Demand
Period
Uan min per Demand
Period

Appendix B - Data Recorder Default Settings

86
Page 87
CET Electric Technology
Parameter 2
Ubn max per Demand
Period
Ubn THD max per
Demand Period
Ubc min per Demand
Period
Ubn min per Demand
Period
Parameter 3
Ucn max per Demand
Period
Ucn THD max per
Demand Period
Uca min per Demand
Period
Ucn min per Demand
Period
Parameter 4
Uln avg max per
Demand Period
Ia THD max per
Demand Period
Ull avg min per
Demand Period
Uln avg min per Demand Period
Parameter 5
kWa max per Demand
Period
Ib THD max per Demand Period
Ia min per Demand
Period
kWa min per Demand
Period
Parameter 6
kWb max per Demand
Period
Ic THD max per
Demand Period
Ib min per Demand
Period
kWb min per Demand
Period
Parameter 7
kWc max per Demand
Period
Uan THD min per
Demand Period
Ic min per Demand
Period
kWc min per Demand
Period
Parameter 8
kvara max per Demand
Period
Ubn THD min per
Demand Period
I avg min per Demand
Period
kvara min per Demand
Period
Parameter 9
kvarb max per Demand Period
Ucn THD min per
Demand Period
kW Total min per
Demand Period
kvarb min per Demand
Period
Parameter 10
kvarc max per Demand
Period
Ia THD min per
Demand Period
kvar Total min per
Demand Period
kvarc min per Demand
Period
Parameter 11
kVAa max per Demand
Period
Ib THD min per
Demand Period
kVA Total min per
Demand Period
kVAa min per Demand
Period
Parameter 12
kVAb max per Demand
Period
Ic THD min per
Demand Period
P.F. Total min per
Demand Period
kVAb min per Demand
Period
Parameter 13
kVAc max per Demand
Period
Null
Freq min per Demand
Period
kVAc min per Demand
Period
Parameter 14
P.F.a max per Demand
Period
Null
U Unbalance min per
Demand Period
P.F.a min per Demand
Period
Parameter 15
P.F.b max per Demand
Period
Null
I Unbalance min per
Demand Period
P.F.b min per Demand
Period
Parameter 16
P.F.c max per Demand
Period
Null
Null
P.F.c min per Demand
Period
87
Page 88
CET Electric Technology
Event
Classification
Sub-
Classification
Event Value
Scale/Option
Description
1
1
1 / 0
DI1 Close/DI1 Open
2
1 / 0
DI2 Close/DI2 Open
3
1 / 0
DI3 Close/DI3 Open
4
1 / 0
DI4 Close/DI4 Open
5
1 / 0
DI5 Close/DI5 Open
6
1 / 0
DI6 Close/DI6 Open
2
1
1 / 0
DO1 Operated/Released by Remote Control
2
1 / 0
DO2 Operated/Released by Remote Control
3
1 / 0
DO3 Operated/Released by Remote Control
4
1 / 0
DO1 Operated/Released by Setpoint
5
1 / 0
DO2 Operated/Released by Setpoint
6
1 / 0
DO3 Operated/Released by Setpoint
7
1 / 0
DO1 Operated/Released by Dip/swell
8
1 / 0
DO2 Operated/Released by Dip/swell
9
1 / 0
DO3 Operated/Released by Dip/swell
10
1 / 0
DO1 Operated/Released by Transient
11
1 / 0
DO2 Operated/Released by Transient
12
1 / 0
DO3 Operated/Released by Transient
3
1
Trigger Value (x100)
Over Uln Setpoint Active
2
Trigger Value (x100)
Over Ull Setpoint Active
3
Trigger Value (x1000)
Over Current Setpoint Active
4
Trigger Value (x1000)
Over I4 Setpoint Active
5
Trigger Value (x100)
Over Freq. Deviation Setpoint Active
6
Trigger Value
Over kW Total Setpoint Active
7
Trigger Value
Over kvar Total Setpoint Active
8
Trigger Value (x1000)
Over P.F. Total Setpoint Active
9
1
DI1 Close Setpoint Active
10
1
DI2 Close Setpoint Active
11
1
DI3 Close Setpoint Active
12
1
DI4 Close Setpoint Active
13
1
DI5 Close Setpoint Active
14
1
DI6 Close Setpoint Active
15
Trigger Value
Over AI Setpoint Active
16
Trigger Value
Over kW Total Demand Setpoint Active
17
Trigger Value
Over kvar Total Demand Setpoint Active
18
Trigger Value (x1000)
Over P.F. Total Demand Setpoint Active
19
Trigger Value
Over kW Total Predicted Setpoint Active
20
Trigger Value
Over kvar Total Predicted Setpoint Active
21
Trigger Value (x1000)
Over P.F. Total Predicted Setpoint Active
22
Trigger Value (x100)
Over Voltage THD Setpoint Active
23
Trigger Value (x100)
Over Voltage TOHD Setpoint Active
24
Trigger Value (x100)
Over Voltage TEHD Setpoint Active
25
Trigger Value (x100)
Over Current THD Setpoint Active
26
Trigger Value (x100)
Over Current TOHD Setpoint Active
27
Trigger Value (x100)
Over Current TEHD Setpoint Active
28
Trigger Value (x10)
Over Voltage Unbalance Setpoint Active
29
Trigger Value (x10)
Over Current Unbalance Setpoint Active
30
Trigger Value (x100)
Over Voltage Deviation Setpoint Active
31
1
Over Phase Reversal Setpoint Active
32
Trigger Value (x1000)
Over I Residual Setpoint Active
33
Trigger Value (x100)
Over U2 (Negative Sequence Voltage) Setpoint Active
34
Trigger Value (x100)
Over U0 (Zero Sequence Voltage) Setpoint Active
46
Return Value (x100)
Over Uln Setpoint Return
47
Return Value (x100)
Over Ull Setpoint Return
48
Return Value (x1000)
Over Current Setpoint Return
49
Return Value (x1000)
Over I4 Setpoint Return
50
Return Value (x100)
Over Freq. Deviation Setpoint Return
51
Return Value
Over kW Total Setpoint Return
52
Return Value
Over kvar Total Setpoint Return
53
Return Value (x1000)
Over P.F. Total Setpoint Return
54
0
DI1 Close Setpoint Return
55
0
DI2 Close Setpoint Return
56
0
DI3 Close Setpoint Return
57
0
DI4 Close Setpoint Return
58
0
DI5 Close Setpoint Return
59
0
DI6 Close Setpoint Return
60
Return Value
Over AI Setpoint Return
61
Return Value
Over kW Total Demand Setpoint Return
62
Return Value
Over kvar Total Demand Setpoint Return
63
Return Value (x1000)
Over P.F. Total Demand Setpoint Return
64
Return Value
Over kW Total Predicted Setpoint Return
65
Return Value
Over kvar Total Predicted Setpoint Return
66
Return Value (x1000)
Over P.F. Total Predicted Setpoint Return
67
Return Value (x100)
Over Voltage THD Setpoint Return
68
Return Value (x100)
Over Voltage TOHD Setpoint Return
69
Return Value (x100)
Over Voltage TEHD Setpoint Return
70
Return Value (x100)
Over Current THD Setpoint Return
71
Return Value (x100)
Over Current TOHD Setpoint Return

Appendix C – SOE Event Classification

88
Page 89
CET Electric Technology
72
Return Value (x100)
Over Current TEHD Setpoint Return
73
Return Value (x10)
Over Voltage Unbalance Setpoint Return
74
Return Value (x10)
Over Current Unbalance Setpoint Return
75
Return Value (x100)
Over Voltage Deviation Setpoint Return
76
0
Over Phase Reversal e Setpoint Return
77
Return Value (x1000)
Over I Residual Setpoint Return
78
Return Value (x100)
Over U2 (Negative Sequence Voltage) Setpoint Return
79
Return Value (x100)
Over U0 (Zero Sequence Voltage) Setpoint Return
91
Trigger Value (x100)
Under Uln Setpoint Active
92
Trigger Value (x100)
Under Ull Setpoint Active
93
Trigger Value (x1000)
Under Current Setpoint Active
94
Trigger Value (x1000)
Under I4 Setpoint Active
95
Trigger Value (x100)
Under Freq. Deviation Setpoint Active
96
Trigger Value
Under kW Total Setpoint Active
97
Trigger Value
Under kvar Total Setpoint Active
98
Trigger Value (x1000)
Under P.F. Total Setpoint Active
99
0
DI1 Open Setpoint Active
100
0
DI2 Open Setpoint Active
101
0
DI3 Open Setpoint Active
102
0
DI4 Open Setpoint Active
103
0
DI5 Open Setpoint Active
104
0
DI6 Open Setpoint Active
105
Trigger Value
Under AI Setpoint Active
106
Trigger Value
Under kW Total Demand Setpoint Active
107
Trigger Value
Under kvar Total Demand Setpoint Active
108
Trigger Value (x1000)
Under P.F. Total Demand Setpoint Active
109
Trigger Value
Under kW Total Predicted Setpoint Active
110
Trigger Value
Under kvar Total Predicted Setpoint Active
111
Trigger Value (x1000)
Under P.F. Total Predicted Setpoint Active
112
Trigger Value (x100)
Under Voltage THD Setpoint Active
113
Trigger Value (x100)
Under Voltage TOHD Setpoint Active
114
Trigger Value (x100)
Under Voltage TEHD Setpoint Active
115
Trigger Value (x100)
Under Current THD Setpoint Active
116
Trigger Value (x100)
Under Current TOHD Setpoint Active
117
Trigger Value (x100)
Under Current TEHD Setpoint Active
118
Trigger Value (x10)
Under Voltage Unbalance Setpoint Active
119
Trigger Value (x10)
Under Current Unbalance Setpoint Active
120
Trigger Value (x100)
Under Voltage Deviation Setpoint Active
121
1
Under Phase Reversal Setpoint Active
122
Trigger Value (x1000)
Under I Residual Setpoint Active
123
Trigger Value (x100)
Under U2 (Negative Sequence Voltage) Setpoint Active
124
Trigger Value (x100)
Under U0 (Zero Sequence Voltage) Setpoint Active
136
Return Value (x100)
Under Uln Setpoint Return
137
Return Value (x100)
Under Ull Setpoint Return
138
Return Value (x1000)
Under Current Setpoint Return
139
Return Value (x1000)
Under I4 Setpoint Return
140
Return Value (x100)
Under Freq. Deviation Setpoint Return
141
Return Value
Under kW Total Setpoint Return
142
Return Value
Under kvar Total Setpoint Return
143
Return Value (x1000)
Under P.F. Total Setpoint Return
144
1
DI1 Open Setpoint Return
145
1
DI2 Open Setpoint Return
146
1
DI3 Open Setpoint Return
147
1
DI4 Open Setpoint Return
148
1
DI5 Open Setpoint Return
149
1
DI6 Open Setpoint Return
150
Return Value
Under AI Setpoint Return
151
Return Value
Under kW Total Demand Setpoint Return
152
Return Value
Under kvar Total Demand Setpoint Return
153
Return Value (x1000)
Under P.F. Total Demand Setpoint Return
154
Return Value
Under kW Total Predicted Setpoint Return
155
Return Value
Under kvar Total Predicted Setpoint Return
156
Return Value (x1000)
Under P.F. Total Predicted Setpoint Return
157
Return Value (x100)
Under Voltage THD Setpoint Return
158
Return Value (x100)
Under Voltage TOHD Setpoint Return
159
Return Value (x100)
Under Voltage TEHD Setpoint Return
160
Return Value (x100)
Under Current THD Setpoint Return
161
Return Value (x100)
Under Current TOHD Setpoint Return
162
Return Value (x100)
Under Current TEHD Setpoint Return
163
Return Value (x10)
Under Voltage Unbalance Setpoint Return
164
Return Value (x10)
Under Current Unbalance Setpoint Return
165
Return Value (x100)
Under Voltage Deviation Setpoint Return
166
0
Under Phase Reversal Setpoint Return
167
Return Value (x1000)
Under I Residual Setpoint Return
168
Return Value (x100)
Under U2 (Negative Sequence Voltage) Setpoint Return
169
Return Value (x100)
Under U0 (Zero Sequence Voltage) Setpoint Return
4
1
0
Battery Voltage Low
2
0
Power Supply of CPU Fault
3
0
A/D Fault 4 0
FRAM Fault 5 0
System Parameter Fault
6
0
Calibration Parameter Fault
89
Page 90
CET Electric Technology
7
0
Setpoint Parameter Fault
8
0
Data Recorder Parameter Fault
9
0
Waveform Recorder Parameter Fault
10
0
Energy Log Parameter Fault
11
0
TOU Parameter Fault
5
1
0
Power On 2 0
Power Off 3 0
Set Clock via Front Panel
4
0
Setup Changes via Front Panel
5
0
Clear DI Counter via Front Panel
6
0
Clear SOE via Front Panel
7
0
Clear PQ Log via Front Panel
8
0
Clear Energy via Front Panel
9
0
Clear Data Recorder Log via Front Panel
10
0
Clear Waveform Recorder Log via Front Panel
11
0
Clear Energy Log via Front Panel
12
0
Clear Max./Min. Log of This Month (Since Last Reset) via Front Panel
13
0
Clear Peak Demand of This Month (Since Last Reset) via Front Panel
14
0
Setup Changes via Communications
15
0
Clear DI Counter via Communications
16
0
Clear SOE via Communications
17
0
Clear PQ Log via Communications
18
0
Clear Energy via Communications
19
0
Clear Data Recorder Log via Communications
20
0
Clear Waveform Recorder Log via Communications
21
0
Clear Energy Log via Communications
22
0
Clear Max/Min Log of This Month (Since Last Reset) via Communications
23
0
Clear Peak Demand of This Month (Since Last Reset) via Communications
24
0
Clear Device Operating Time via Front Panel
25
0
Clear Device Operating Time via Communications
26
0
Preset Energy Values via Front Panel
27
0
Preset Energy Values via Communications
6
1
0
WF Recorder Triggered by Remote Control
2
Setpoint # X (X = 1 to 24)
WF Recorder Triggered by Setpoint # X
3
0
WF Recorder Triggered by Dip/Swell
4
Setpoint # X (X = 1 to 24)
Data Recorder Triggered by Setpoint # X
5
Setpoint # X (X = 1 to 24)
High Speed Data Recorder Triggered by Setpoint # X
6
0
Data Recorder Triggered by Dip/Swell
7
0
High Speed Data Recorder Triggered by Dip/Swell
8
Setpoint # X (X = 1 to 24)
Alarm Email Triggered by Setpoint # X
9
0
Alarm Email Triggered by Dip/Swell
10
0
WF Recorder Triggered by Transient
11
0
Standard Data Recorder Triggered by Transient
12
0
High Speed Data Recorder Triggered by Transient
13
0
Alarm Email Triggered by Transient
14
1~4
TOU Schedule Switch 7
Record Value
Description
1
Schedule Switch from TOU 1 to TOU 2 manually
2
Schedule Switch from TOU 2 to TOU 1 manually
3
Schedule Switch from TOU 1 to TOU 2 based on the pre-defined Switching Time
4
Schedule Switch from TOU 2 to TOU 1 based on the pre-defined Switching Time
The event values of Switch TOU Schedule are illustrated in the table below:
90
Page 91
CET Electric Technology
Voltage Inputs (V1, V2, V3, VN)
Standard (Un) Optional (Un) Range PT Ratio Overload Burden
240VLN/415VLL 69VLN/120VLL, 400VLN/690VLL 10% to 120% Un 1-10,000
1.2xUn continuous, 2xUn for 10s <0.5VA @ 240V
Frequency
45-65Hz
Current Inputs (I11, I12, I21, I22, I31, I32, I41, I42)
Standard (In / Imax) Optional (In / Imax) Range CT Ratio Overload Burden
5A / 10A 1A / 2A
0.1% to 200% In 1-6,000 (5A) or 1-30,000 (1A) 2xIn continuous, 20xIn for 1s <0.25VA @ 5A
Power Supply (L+, N-)
Standard Burden
95-415VAC/VDC ± 10%, 47-440Hz <6W
Digital Inputs (DI1, DI2, DI3, DI4, DI5, DI6, DIC)
Type Sampling Hysteresis
Dry contact, 24VDC internally wetted 1000Hz 1-1,000ms programmable
Digital Outputs (DO11, DO12, DO21, DO22, DO31, DO32)
Type Loading
Form A Mechanical Relay 8A@250VAC/24VDC for DO1 5A@250VAC/30VDC for DO2 and DO3
LED Pulse Outputs (kWh, kvarh)
Type Pulse Constant
Optical 1000/3200/5000/6400/12800 imp/kxh
Analog Input (I41, I42)
Type Overload
0-20mA / 4-20 mA 24 mA maximum
Analog Output (AO+, AO-)
Type Loading Overload
0-20mA / 4-20 mA 500 Ω maximum 24 mA maximum
Terminal Dimensions
Power Supply Voltage Input Current Input I/O, RS485, I4 Input
0.5N·m
0.5N·m
1.8N·m
0.5N·m
Environmental Conditions
Operating Temp. Storage Temp. Humidity Atmospheric Pressure Pollution Degree Measurement Category
-25°C to 70°C
-40°C to 85°C 5% to 95% non-condensing 70 kPa to 106 kPa 2 CAT III
Mechanical Characteristics
Enclosure Panel Cutout Unit Dimensions Shipping Dimensions IP Rating Shipping Weight
Aluminum Alloy 92x92 mm (3.62˝x3.62˝)
96x96x125 mm (3.78˝x3.78˝×4.92˝) 170x145x155 mm (6.69˝x5.71˝×6.10˝)
52
1.1 kg

Appendix D - Technical Specifications

91
Page 92
CET Electric Technology
Parameters
Accuracy
Resolution
Voltage
±0.1%
0.001V
Current
±0.1%
0.001A
I4 Measured
±0.1%
0.001A
Ir Calculated
±0.1% F.S.
0.001A
kW, kvar, kVA
±0.2%
0.001k
kWh, kVAh
IEC 62053-22 Class 0.2S
0.01kXh
kvarh
IEC 62053-24 Class 0.5S
0.01kvarh
P.F.
±0.2%
0.001
Frequency
±0.01 Hz
0.01Hz
Harmonics
IEC 61000-4-7 Class A
0.01%
K-Factor
IEC 61000-4-7 Class A
0.1
Phase Angles
±1°
0.1°
AI
±0.5% F.S.
-
AO
±0.5% F.S.
-
Accuracy
92
Page 93
CET Electric Technology
Safety Requirements
LVD Directive 2014 / 35 / EU
EN61010-1: 2010 EN61010-2-030: 2010
Electrical safety in low voltage distribution systems up to 1000Vac and 1500 Vdc
IEC 61557-12: 2008 (PMD)
Insulation AC Voltage: 4kV @ 1 minute Insulation resistance: >100MΩ Impulse Voltage: 6kV, 1.2/50µs
IEC 62052-11: 2003
Electromagnetic Compatibility
EMC Directive 2004/108/EC (EN 61326: 2006)
Immunity Tests
Electrostatic Discharge
IEC 61000-4-2: 2008 Level III
Radiated Fields
IEC 61000-4-3: 2010 Level III
Fast Transients
IEC 61000-4-4: 2012 Level IV
Surges
IEC 61000-4-5: 2005 Level IV
Conducted Disturbances
IEC 61000-4-6: 2008 Level III
Magnetic Fields
IEC 61000-4-8: 2009 Level IV
Voltage Dips and Interruptions
IEC 61000-4-11: 2004 Level III
Oscillatory waves
IEC 61000-4-12: 2006 Level III
Radio Disturbances
CISPR 22:2006, Level B
Emission Tests
Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment
EN 55011: 2009 + A1: 2010 (CISPR 11)
Limits and methods of measurement of radio disturbance characteristics of information technology equipment
EN 55022: 2010+AC: 2011
(CISPR 22)
Limits for harmonic current emissions for equipment with rated current ≤16 A
EN 61000-3-2: 2006+A1: 2009+A2:2009
Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current ≤16 A
EN 61000-3-3: 2008
Emission standard for residential, commercial and light-industrial environments
EN 61000-6-4: 2007+A1: 2011 Testing and measurement techniques - Ring wave immunity test.
EN 61000-4-12: 2006
Mechanical Tests
Spring Hammer Test
IEC 62052-11: 2003
Vibration Test
IEC 62052-11: 2003
Shock Test
IEC 62052-11: 2003

Appendix E - Standards Compliance

93
Page 94
CET Electric Technology

Appendix F – Ordering Guide

94
Page 95
CET Electric Technology
CET Inc.
8/F, Westside, Building 201, Terra Industrial & Tradepark,
Che Gong Miao, Shenzhen, Guangdong, P.R.China 518040
Tel: +86.755.8341.5187
Fax: +86.755.8341.0291
E: sales@cet-global.com
W: www.cet-global.com
95
Loading...