CET PMC-53A-E User Manual

Page 1
PMC-53A-E
Intelligent Multifunction Meter
User Manual
Version: V1.0A
March 8, 2019
1
Page 2
CET Electric Technology
Standards Compliance
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and permanent equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
CAUTION
This symbol indicates the potential of personal injury or equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
2
Page 3
Installation, operation and maintenance of the meter should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter must
Ensure that all incoming AC power and other power sources are turned OFF
Before connecting the meter to the power source, check the label on top of the meter to ensure that it is equipped with the appropriate power supply, and
During normal operation of the meter, hazardous voltages are present on its terminal strips and throughout the connected potential transformers (PT) and current transformers (CT). PT and CT secondary circuits are capable of generating lethal voltages and currents with their primary circuits energized. Follow standard safety precautions while performing any installation or service
Do not use the meter for primary protection functions where failure of the device can cause fire, injury or death. The meter should only be used for
Under no circumstances should the meter be connected to a power source if
To prevent potential fire or shock hazard, do not expose the meter to rain or
Setup procedures must be performed only by qualified personnel familiar with
DANGER
Failure to observe the following instructions may result in severe injury or death and/or equipment damage.
be installed in accordance with all local and national electrical codes.
before performing any work on the meter.
the correct voltage and current input specifications for your application.
CET Electric Technology
work (i.e. removing PT fuses, shorting CT secondaries, etc).
shadow protection if needed.
it is damaged.
moisture.
the instrument and its associated electrical equipment.
DO NOT open the instrument under any circumstances.
3
Page 4
CET Electric Technology
Limited warranty
CET Inc. (CET) offers the customer a minimum of 12-month functional warranty on the meter for faulty parts or workmanship from the date of dispatch from the
CET does not accept liability for any damage caused by meter malfunctions. CET accepts no responsibility for the suitability of the meter to the application for
Failure to install, set up or operate the meter according to the instructions herein
Only CET’s duly authorized representative may open your meter. The unit should only be opened in a fully anti-static environment. Failure to do so may damage
distributor. This warranty is on a return to factory for repair basis.
which it was purchased.
will void the warranty.
the electronic components and will void the warranty.
4
Page 5
AI/AO = Analog Input/Output CT = Current Transformer DI/DO = Digital Input/Output DMD = Demand DR = Data Recorder FIFO = First In First Out HTTP = Hyper Text Transfer Protocol I4 = Measured Neutral Current In = Calculated Neutral Current IR or Ir = Residual Current MB = Mega Byte RMS = Root Mean Square PAR = Peak to Average Ratio PF = Power Factor PT = Power Transformer SNTP = Simple Network Time Protocol SMTP = Simple Mail Transfer Protocol SOE = Sequence of Events TDD = Total Demand Distortion TFTP = Trivial File Transfer Protocol THD = Total Harmonics Distortion TOHD = Total Odd Harmonics Distortion TEHD = Total Even Harmonics Distortion TOU = Time of Use Ull = Line-to-Line Voltage Uln = Line-to-Neutral Voltage WAGES = Water, Air, Gas, Electricity, Steam
CET Electric Technology
Glossary
5
Page 6
CET Electric Technology
Table of Contents
Chapter 1 Introduction ............................................................................................................................. 1
1.1 Overview .................................................................................................................................... 1
1.2 Features ...................................................................................................................................... 1
1.3 PMC-53A-E application in Power and Energy Management Systems ........................................ 3
1.4 Getting more information .......................................................................................................... 3
Chapter 2 Installation ............................................................................................................................... 4
2.1 Appearance ................................................................................................................................ 4
2.2 Unit Dimensions ......................................................................................................................... 5
2.3 Terminal Dimensions .................................................................................................................. 5
2.4 Residual Current CT Dimensions ................................................................................................ 6
2.4.1 Solid Core CTs .................................................................................................................. 6
2.4.2 Split Core CTs................................................................................................................... 7
2.5 Mounting .................................................................................................................................... 8
2.6 Wiring connections .................................................................................................................... 8
2.6.1 3-Phase 4-Wire (3P4W) Wye Direct Connection with 3CTs or 4CTs ................................ 9
2.6.2 3-Phase 4-Wire (3P4W) Wye with 3PTs and 3CTs or 4CTs ............................................... 9
2.6.3 3-Phase 3-Wire (3P3W) Direct Delta Connection with 3CTs ......................................... 10
2.6.4 3-Phase 3-Wire (3P3W) Direct Delta Connection with 2CTs ......................................... 10
2.6.5 3-Phase 3-Wire (3P3W) Delta with 2PTs and 3CTs ........................................................ 10
2.6.6 3-Phase 3-Wire (3P3W) Delta with 2PTs and 2CTs ........................................................ 11
2.6.7 1-Phase 3-Wire (1P3W) Direct Connection with 2CTs .................................................. 11
2.6.8 1-Phase 2-Wire, Uln (1P2W-Uln) Direct Connection with 1CT ...................................... 11
2.6.9 1-Phase 2-Wire, Ull (1P2W-Ull) Direct Connection with 1CT ........................................ 12
2.7 Communications Wiring ........................................................................................................... 12
2.7.1 Ethernet Port (10/100BaseT) ........................................................................................ 12
2.7.2 RS485 Port ..................................................................................................................... 12
2.8 Digital Input Wiring .................................................................................................................. 12
2.9 Digital Output Wiring ............................................................................................................... 13
2.10 Pulse Output Wiring ............................................................................................................... 13
2.11 Analog Input Wiring ............................................................................................................... 13
2.12 Residual Current (Ir) Wiring .................................................................................................... 14
2.13 Power Supply Wiring .............................................................................................................. 14
Chapter 3 User Interface ........................................................................................................................ 15
3.1 Front Panel ............................................................................................................................... 15
3.1.1 Front Panel Buttons ...................................................................................................... 15
3.1.2 Data Display .................................................................................................................. 16
3.1.3 Setup Configuration via the Front Panel ....................................................................... 20
3.2 Web Interface ........................................................................................................................... 28
3.2.1 Setting PC's IP Address .................................................................................................. 28
3.2.2 Configure PMC-53A-E’s IP Address ............................................................................... 29
3.2.3 Accessing the Web Interface ......................................................................................... 29
3.2.4 Overview ....................................................................................................................... 31
6
Page 7
CET Electric Technology
3.2.5 Detailed Description ..................................................................................................... 31
Chapter 4 Applications ........................................................................................................................... 38
4.1 Inputs and Outputs .................................................................................................................. 38
4.1.1 Digital Inputs ................................................................................................................. 38
4.1.2 Digital Outputs .............................................................................................................. 38
4.1.3 Energy Pulse Outputs .................................................................................................... 39
4.1.4 Analog Input .................................................................................................................. 39
4.2 Power and Energy .................................................................................................................... 39
4.2.1 Basic Measurements ..................................................................................................... 39
4.2.2 Energy Measurements .................................................................................................. 40
4.2.3 Interval Energy Measurements ..................................................................................... 40
4.2.4 Demand Measurements ............................................................................................... 40
4.3 Power Quality ........................................................................................................................... 41
4.3.1 Phase Angles ................................................................................................................. 41
4.3.2 Unbalance & Sequence Components ........................................................................... 41
4.3.3 Harmonics ..................................................................................................................... 41
4.4 Setpoints .................................................................................................................................. 43
4.5 Logging ..................................................................................................................................... 45
4.5.1 Max/Min Log ................................................................................................................. 45
4.5.2 Peak Demand Log ......................................................................................................... 46
4.5.3 Monthly Energy Log ...................................................................................................... 46
4.5.4 Daily and Monthly Freeze Log ....................................................................................... 47
4.5.5 SOE Log ......................................................................................................................... 47
4.5.6 Data Recorder (DR) Log ................................................................................................. 47
4.6 Time of Use (TOU) .................................................................................................................... 48
4.7 Communications ...................................................................................................................... 49
4.7.1 SNTP .............................................................................................................................. 49
4.7.2 SMTP ............................................................................................................................. 50
4.7.3 Ethernet Gateway ......................................................................................................... 51
4.8 Diagnostics ............................................................................................................................... 52
4.8.1 Voltage Phase Loss ........................................................................................................ 53
4.8.2 Current Phase Loss ........................................................................................................ 53
4.8.3 Phase Reversal .............................................................................................................. 53
Chapter 5 Modbus Register Map ............................................................................................................ 54
5.1 Basic Measurements ................................................................................................................ 54
5.2 Energy Measurements ............................................................................................................. 56
5.2.1 3-Phase Total Energy Measurements ............................................................................ 56
5.2.2 Phase A (L1) Energy Measurements ............................................................................. 57
5.2.3 Phase B (L2) Energy Measurements .............................................................................. 58
5.2.4 Phase C (L3) Energy Measurements .............................................................................. 59
5.2.5 Interval Energy Measurements ..................................................................................... 59
5.3 DI Pulse Counters ..................................................................................................................... 60
5.4 Power Quality Measurements .................................................................................................. 60
5.4.1 Basic PQ Measurements ............................................................................................... 60
7
Page 8
CET Electric Technology
5.4.2 Current Harmonic Measurements ................................................................................ 60
5.4.3 Voltage Harmonic Measurements ................................................................................ 61
5.5 Demands .................................................................................................................................. 61
5.5.1 Present Demands .......................................................................................................... 61
5.5.2 Predicted Demands ....................................................................................................... 61
5.5.3 Peak Demand Log of This Month (Since Last Reset) ..................................................... 61
5.5.4 Peak Demand Log of Last Month (Before Last Reset) ................................................... 62
5.5.5 Demand Data Structure ................................................................................................ 62
5.6 Max/Min Log ............................................................................................................................ 63
5.6.1 Max Log of This Month (Since Last Reset) .................................................................... 63
5.6.2 Min Log of This Month (Since Last Reset) ..................................................................... 63
5.6.3 Max Log of Last Month (Before Last Reset) .................................................................. 64
5.6.4 Min Log of Last Month (Before Last Reset) ................................................................... 65
5.6.5 Max/Min Log Structure ................................................................................................. 66
5.7 Monthly Energy Log ................................................................................................................. 66
5.8 Daily and Monthly Freeze Logs ................................................................................................. 67
5.8.1 Daily Freeze Log ............................................................................................................ 67
5.8.2 Monthly Freeze Log ....................................................................................................... 67
5.9 SOE Log ..................................................................................................................................... 68
5.10 Data Recorder Log .................................................................................................................. 72
5.11 Device Setup ........................................................................................................................... 72
5.11.1 Basic Setup Parameters ............................................................................................... 72
5.11.2 I/O Setup ..................................................................................................................... 75
5.11.3 Communication Setup Parameters ............................................................................. 75
5.11.4 Setpoints Setup ........................................................................................................... 75
5.11.5 Data Recorder Setup ................................................................................................... 77
5.12 TOU Setup .............................................................................................................................. 78
5.12.1 Basic ............................................................................................................................ 78
5.12.2 Season ......................................................................................................................... 78
5.12.3 Daily Profile ................................................................................................................. 79
5.12.4 Alternate Days ............................................................................................................. 81
5.13 Time ........................................................................................................................................ 81
5.14 Remote Control ...................................................................................................................... 82
5.15 Clear/Reset Control ................................................................................................................ 82
5.16 Meter Information.................................................................................................................. 83
Appendix A Data Recorder Parameter List ............................................................................................. 85
Appendix B Data Recorder Default Settings ........................................................................................... 86
Appendix C BACNet MSTP Implementation ........................................................................................... 87
1) Basic Information .................................................................................................................... 87
2) Device Objects ........................................................................................................................ 87
3) Analog Input Objects (PMC-53A-E’s Real-Time Parameters) .................................................. 88
4) Analog Value Objects (PMC-53A-E’s Basic Setup Registers) .................................................... 90
5) Binary Input Objects (PMC-53A-E’s Digital Inputs) ................................................................. 90
6) Binary Output Objects (PMC-53A-E’s Digital Outputs) ........................................................... 90
8
Page 9
CET Electric Technology
7) Additional Front Panel Setup Parameters for BACnet MS/TP ................................................. 91
Appendix D DNP Profile .......................................................................................................................... 92
Appendix E Technical Specifications ..................................................................................................... 100
Appendix F Standards Compliance ....................................................................................................... 102
Appendix G Ordering Guide ................................................................................................................. 103
Contact us ............................................................................................................................................. 104
9
Page 10

Chapter 1 Introduction

This manual explains how to use the PMC-53A-E Ethernet Multifunction Meter. Throughout the manual the term “meter” generally refers to all models.
This chapter provides an overview of the PMC-53A-E meter and summarizes many of its key features.

1.1 Overview

The PMC-53A-E Ethernet Multifunction Meter is CET’s latest offer for the digital power/energy metering market. Housed in a standard DIN form factor measuring 96x96x88mm, it is perfectly suited for industrial, commercial and utility applications requiring direct Ethernet connectivity. The PMC-53A-E features quality construction, multifunction measurements and a large, backlit, Dot-Matrix LCD that is easy to navigate and user friendly. Compliance with the IEC 62053-22 Class 0.5S and ANSI C12.20 Class
0.2 Standards, it is a cost effective replacement for analog instrumentation and is capable of displaying 4 measurements at once. It also optionally provides an I4 input for Neutral Current measurement, one 0/4-20mA Analog Input for measuring external transducers signal as well as an Ir Input for Residual Current measurement. With a standard 100BaseT Ethernet port and a RS485 port supporting multiple protocols, the PMC-53A-E can be easily integrated into Energy Management Systems as well as Building and Utility Automation Systems.
The meter can be setup through its Front Panel, Web Interface or our free PMC Setup software. The meter is also supported by our PecStar® iEMS Integrated Energy Management System. Following is a list of typical applications for the PMC-53A-E:
Industrial, Commercial and Utility Substation Metering Building, Factory and Process Automation Sub-Metering and Cost Allocation Energy Management and Power Quality Monitoring
Contact CET Technical Support @ Support@cet-global.com should you require further assistance with your application.

1.2 Features

Ease of use
Large, backlit, Dot-Matrix LCD display with wide viewing angle Intuitive user interface LED indicators for Energy Pulsing and Communication activities Password-protected setup via the Front Panel, Web Interface or our free PMC Setup software Easy installation with mounting clips, no tools required
Basic Measurements
ULN, ULL per phase and Average Current per phase and Average with calculated Neutral kW, kvar, kVA, PF per phase and Total 3-Phase Total and Per-phase kWh, kvarh Import/Export/Net/Total and kVAh Total Frequency Device Operating Time (Running Hours) Optional Neutral Current (I4) and Residual Current (Ir) measurements
Advanced Measurements
1-Cycle Real-time U & I Waveform Display @ 1s update U and I THD, TOHD, TEHD and Individual Harmonics up to 31st Current TDD, TDD Odd, TDD Even, K-Factor and Crest Factor U and I Unbalance and Phase Angles Displacement PF Fundamental U, I and kW per phase Total Fundamental kW and Total Harmonic kW U and I Symmetrical Components
1
Page 11
CET Electric Technology
12 Monthly Energy Logs of kWh/kvarh Import/Export/Total/Net, kVAh, kvarh Q1-Q4 Interval Energy for kWh/kvarh Imp/Exp and kVAh Demands, Predicted Demands and Peak Demands for kW/kvar/kVA Total and per phase Current
with Timestamp for This Month (or Since Last Reset) and Last Month (or Before Last Reset)
Two TOU schedules, each providing
o 12 Seasons o 20 Daily Profiles, each with 12 Periods in 15-minute interval o 90 Holidays or Alternate Days o 8 Tariffs, each providing the following information
· 3-Phase Total and Per-phase kWh/kvarh Import/Export, kVAh
· kW/kvar/kVA Max. Demands
Setpoints
9 user programmable Setpoints with extensive list of monitoring parameters including Voltage,
Current, Power, THD, etc.
Configurable thresholds, time delays, DO and Alarm Email triggers
SOE Log
100 events time-stamped to ±1ms resolution Setup changes, Setpoint and DI status changes and DO triggers
Max/Min Log
Max/Min Log with Timestamp for real-time measurements such as Voltage, Current, In, I4, Ir,
Frequency, kW, kvar, kVA, PF, Unbalance, K-Factor, Crest Factor and THD
Configurable for This Month/Last Month or Since/Before Last Reset
Freeze Logs
60 Daily Freeze Logs for kWh/kvarh/kVAh Total and kW/kvar/kVA Peak Demands 36 Monthly Freeze Logs for kWh/kvarh/kVAh Total and kW/kvar/kVA Peak Demands with
Timestamps.
Data Recorder Log
5 Data Recorders of 16 parameters each for Real-time Measurements, Harmonics, Energy, Demand,
TOU, Pulse Counters, etc.
Recording interval from 1 minute to 40 days Configurable capacity up to a max. of 1250 days at 15-minute interval for 1 Data Recorder with 6
parameters
Diagnostics
Frequency Out-of-Range, Loss of Voltage / Current kW Direction per phase and Total, Possible incorrect CT Polarity Incorrect U & I Phase Sequence Disconnection of Residual Current Input
Inputs and Outputs
Digital Inputs
o 4 channels, volts free dry contact, 24VDC internally wetted o 1000Hz sampling for status monitoring with programmable debounce o Pulse counting with programmable weight for each channel for collecting WAGES (Water,
Air, Gas, Electricity, Steam) information
o Tariff switching based on DI status
Digital Outputs (Optional)
o 2 Form A mechanical relays for alarming and general purpose control
Pulse Outputs (Optional)
o 2 Form A Solid State Relays for kWh and kvarh pulsing
Optional Analog Inputs Module
o I4 Input for Neutral Current measurement o Ir Input for Residual Current measurement (CT not included) o 0/4-20mA DC input with programmable zero and full scales
2
Page 12
CET Electric Technology
Communications
One 100BaseT Ethernet Port with RJ45 connector, supporting Modbus TCP, HTTP, SMTP, SNTP and
TFTP
One optically isolated RS485 port at max. 38,400 bps, supporting selectable protocol for Modbus
RTU, BACnet MS/TP, DNP 3.0 and Ethernet Gateway
Real-time Clock
Battery-backed Real-time Clock with 6ppm accuracy (<0.5s per day)
System Integration
Supported by CET’s PecStar® iEMS and iEEM Easy integration into Building Automation Systems with BACnet MS/TP or Modbus RTU and Utility
Substation Automation with DNP 3.0
The on-board password protected Web Server allows complete access to its data and supports the
configuration for most of the Setup parameters via a standard web browser.

1.3 PMC-53A-E application in Power and Energy Management Systems

The PMC-53A-E can be used to monitor 3P4W (Wye), 3P3W (Delta), 1P2W-Uln, 1P2W-Ull or 1P3W connected power system. Modbus communications allow real-time data, DI status and other information to be transmitted across a RS485 network to an Integrated Energy Management system such as PecStar®.
Figure 1- 1 Application in Power and Management Systems

1.4 Getting more information

Additional information is available from CET via the following sources:
Visit www.cet-global.com Contact your local representative Contact CET directly via email at support@cet-global.com
3
Page 13

Chapter 2 Installation

Installation of the PMC-53A-E should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter
During the operation of the meter, hazardous voltages are present at the input terminals. Failure
CET Electric Technology
must be installed in accordance with all local and national electrical codes.
to observe precautions can result in serious or even fatal injury and equipment damage.

2.1 Appearance

Caution
Figure 2-1 Front Panel
Figure 2-2 Rear Panel
4
Page 14

2.2 Unit Dimensions

Terminal
Terminal Dimensions
Wire Size
Max. Torque
1
Voltage Input
2.6mm x 3.2mm
1.5mm2
5 kgf.cm/M3
(4.3 lb-in)
Power Supply
2
I4 Input, AI, Ir Input
3
RS485, DI, DO
4
Current Input
6.5mm x 6.5mm
1.0mm2 - 2.5mm2
(14AWG - 22AWG)
6.0 kgf.cm/M3 (5.2 lb-in)

2.3 Terminal Dimensions

CET Electric Technology
Figure 2-3 Unit Dimensions
Figure 2-4 Terminal Dimensions
5
Page 15

2.4 Residual Current CT Dimensions

2.4.1 Solid Core CTs

CT517203 (160A, Ø=46mm)
Figure 2-5 CT517203 Dimensions
CT517403 (400A, Ø=80mm)
CET Electric Technology
CT517603 (1000A, Ø=120mm)
Figure 2-6 CT517403 Dimensions
Figure 2-7 CT517603 Dimensions
6
Page 16
CT519703 (630A, 220x50mm)
CET Electric Technology

2.4.2 Split Core CTs

CT553203 (160A, Ø=48mm)
CT553303 (225A, Ø=68mm)
Figure 2-8 CT519703 Dimensions
Figure 2-9 CT553203 Dimensions
Figure 2-10 CT553303 Dimensions
7
Page 17

2.5 Mounting

Under no circumstances should the CT secondary be open when the CT primary is energized. CT shorting blocks should be installed to allow for easy maintenance.
The PMC-53A-E should be installed in a dry environment with no dust and kept away from heat, radiation and electrical noise source.
Installation steps:
Remove the installation clips from the meter Fit the meter through a 92mmx92mm cutout as shown in Figure 2-11 Re-install the installation clips and push the clips tightly against the panel to secure the meter
Figure 2-11 Panel Cutout Mounting

2.6 Wiring connections

PMC-53A-E can satisfy almost any three phase power systems. Please read this section carefully before installation and choose the correct wiring method for your power system. The following Wiring Modes are supported:
3-Phase 4-Wire (3P4W) Wye Direct Connection with 3CTs or 4CTs 3-Phase 4-Wire (3P4W) Wye with 3PTs and 3CTs or 4CTs 3-Phase 3-Wire (3P3W) Direct Delta Connection With 3CTs 3-Phase 3-Wire (3P3W) Direct Delta Connection with 2CTs 3-Phase 3-Wire (3P3W) Delta with 2PTs and 3CTs 3-Phase 3-Wire (3P3W) Delta with 2PTs and 2CTs 1-Phase 3-Wire (1P3W) Direct Connection with 2CTs 1-Phase 2-Wire, Uln (1P2W-Uln) Direct Connection with 1CT 1-Phase 2-Wire, Ull (1P2W-Ull) Direct Connection with 1CT
Caution
Under no circumstances should the PT secondary be shorted.
8
Page 18
CET Electric Technology

2.6.1 3-Phase 4-Wire (3P4W) Wye Direct Connection with 3CTs or 4CTs

Please consult the Serial Number Label to ensure that the rated system phase voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W.
Figure 2-12 3P4W Direct Connection with 3CTs or 4CTs

2.6.2 3-Phase 4-Wire (3P4W) Wye with 3PTs and 3CTs or 4CTs

Please consult the Serial Number Label to ensure that the rated PT secondary voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W.
Figure 2-13 3P4W with 3PTs and 3CTs or 4CTs
9
Page 19
CET Electric Technology

2.6.3 3-Phase 3-Wire (3P3W) Direct Delta Connection with 3CTs

Please consult the Serial Number Label to ensure that the rated system line voltage is less than or equal to the meter’s rated line voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-14 3P3W Direct Connection with 3CTs

2.6.4 3-Phase 3-Wire (3P3W) Direct Delta Connection with 2CTs

Please consult the Serial Number Label to ensure that the rated system line voltage is less than or equal to the meter’s rated line voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-15 3P3W Direct Connection with 2CTs

2.6.5 3-Phase 3-Wire (3P3W) Delta with 2PTs and 3CTs

Please consult the Serial Number Label to ensure that the rated PT secondary voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-16 3P3W Delta with 2PTs and 3CTs
10
Page 20
CET Electric Technology

2.6.6 3-Phase 3-Wire (3P3W) Delta with 2PTs and 2CTs

Please consult the Serial Number Label to ensure that the rated PT secondary voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-17 3P3W Delta with 2PTs and 2CTs

2.6.7 1-Phase 3-Wire (1P3W) Direct Connection with 2CTs

Please consult the Serial Number Label to ensure that the rated system phase voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 1P3W.
Figure 2-18 1P3W Direct Connection with 2CTs

2.6.8 1-Phase 2-Wire, Uln (1P2W-Uln) Direct Connection with 1CT

Please consult the Serial Number Label to ensure that the rated system phase voltage is less than or equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 1P2W, L-N.
Figure 2-19 1P2W Uln Direct Connection with 1CT
11
Page 21
CET Electric Technology
RJ45 Connector
Pin
Meaning
1
Transmit Data+
2
Transmit Data-
3
Receive Data+
4,5,7,8
NC
6
Receive Data-

2.6.9 1-Phase 2-Wire, Ull (1P2W-Ull) Direct Connection with 1CT

Please consult the Serial Number Label to ensure that the rated system line voltage is less than or equal to the meter’s rated line voltage input specification. Set the Wiring Mode to 1P2W, L-L.
Figure 2-20 1P2W Ull Direct Connection with 1CT

2.7 Communications Wiring

2.7.1 Ethernet Port (10/100BaseT)

The following table illustrates the pin definition for the RJ45 Ethernet connector.
Table 2-1 RJ45 Connector Pin Description for 10/100BaseT Applications

2.7.2 RS485 Port

The following figure illustrates the RS485 communications connections on the PMC-53A-E:
Figure 2-21 Communications Connections
The PMC-53A-E provides one standard RS485 port. Up to 32 devices can be connected on a RS485 bus. The overall length of the RS485 cable connecting all devices should not exceed 1200m.
If the master station does not have a RS485 communications port, a RS232/RS485 or USB/RS485 converter with optically isolated output and surge protection should be used.

2.8 Digital Input Wiring

The following figure illustrates the Digital Input connections on the PMC-53A-E:
Figure 2-22 DI Connections
12
Page 22

2.9 Digital Output Wiring

The following figure illustrates the Digital Output connections on the PMC-53A-E:
Figure 2-23 DO Connections

2.10 Pulse Output Wiring

The following figure illustrates the Pulse Output connections on the PMC-53A-E when the DO Control Mode setup register is programmed for Energy Pulsing:
Figure 2-24 Pulse Output (Solid State Relay) Connections for Energy Pulsing
The following figure illustrates the Pulse Output (Solid State Relay) connections on the PMC-53A-E when the DO Control Mode setup register is programmed for Digital Output:
Figure 2-25 Pulse Output (Solid State Relay) Connections for Remote Control/Alarm

2.11 Analog Input Wiring

The following figure illustrates the Analog Input connections on the PMC-53A-E:
Figure 2-26 AI Connections
13
Page 23

2.12 Residual Current (Ir) Wiring

The following figure illustrates the Residual Current connections on the PMC-53A-E:
Figure 2-27 Residual Current Connections
Note:
1) The Residual Current terminals (either *IR and IR) should be left open and should not be connected to ground if unused. Otherwise, doing so would damage the device.

2.13 Power Supply Wiring

For AC supply, connect the live wire to the L/+ terminal and the neutral wire to the N/- terminal. For DC supply, connect the positive wire to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-28 Power Supply Connections
14
Page 24
CET Electric Technology
Display Mode
Setup Mode
Button
Main Menu
Sub Menus
Password
Page
Enter
Password
Browse/Setup Menu (Until a parameter is
selected)
Enumerated
Parameter
Numeric
Parameter
F1
(Menu Left)
Esc
(Exit)
Esc
(Exit)
Cancel
(Exit)
Esc
(Exit)
Cancel
(Exit)
Cancel
(Exit)
F2
Select Option
↑ (Page Up) or
Select Option
Browse
(View Only)
(Shift Left)
(Cursor Up)
(Previous)
(Shift Left)
F3
Select Option
↓ (Page Down) or
Select Option
Null
(Not Used)
(Increment)
(Cursor Down)
(Next)
(Increment)
F4
(Menu Right)
→ (Menu Right) or
Select Option or
Null (Not Used)
Enter
(Confirm)
OK
(Confirm)
Enter
(Select Parameter)
OK
(Confirm)
OK
(Confirm)

Chapter 3 User Interface

3.1 Front Panel

The PMC-53A-E has a large, easy to read Dot-Matrix LCD display with backlight and four buttons for data display and meter configuration, one LED Pulse Output and a Communication Indicator.
Figure 3-1 Front Panel

3.1.1 Front Panel Buttons

The PMC-53A-E’s Front Panel has been designed with a menu-driven interface that is extremely user friendly such that all one has to do is to simply follow the menu at the bottom of the screen. The button definitions for F1 to F4 under Display Mode and Setup Mode are explained in the following table. The
default password is 0000 (four zeros).
Table 3-1 Button Function
15
Page 25

3.1.2 Data Display

Menu
Display Screens
1st Row
2nd Row
3rd Row
4th Row
<U/I>
Default
Ull avg
I avg
kW Total
PF Total
Display 1 (Voltage L-N)
U1
U2
U3
Uln avg
Display 2 (Voltage L-L)
U12
U23
U31
Ull avg
Display 3 (Current)
I1
I2
I3
I avg
Display 4 (In/I4/Ir)
In
I41
Ir2
Display 5 (Frequency)
Freq.
Display 6 (Voltage Angle)
U1
U2
U3
Display 7 (Current Angle)
I1
I2
I3
Display 8 (Phasor Diagram)
Phasor Diagram
Display 9 (U Waveform)
U1
Display 10 (U Waveform)
U2
Display 11 (U Waveform)
U3
Display 12 (I Waveform)
I1
Display 13 (I Waveform)
I2
Display 14 (I Waveform)
I3
Display 15 (Operating Time)
Operating Time
Display 16 (U Fundamental)
U13
U23
U33
Display 17 (I Fundamental)
I13
I23
I33
CET Electric Technology
Figure 3-2 Data Display Menu
Throughout this document, the phase-to-neutral notations of A/B/C and L1/L2/L3 as well as the phase­to-phase notations of AB/BC/CA and L12/L23/L31 may be used interchangeably for specifying a certain parameter to be a phase-to-neutral or phase-to-phase value, respectively.
The following sections illustrate the available measurements for each display option. Depending on the Wiring Mode selected, certain measurements may not be available. For example, the per-phase Uln, Uln Average, I4, per-phase kW, kvar, kVA and PF measurements are not available when the Wiring Mode is set to 3P3W or 1P2W L-L.
3.1.2.1 U/I
Notes:
1) This parameter only appears if the meter is equipped with the corresponding I4 option.
2) This screen only shows a valid value when the Wiring Mode is set to 3P3W or 3P4W, otherwise, it shows “0”.
3) For U/I Fundamental:
Table 3-2 U/I Display
16
Page 26
U1 = Uan, U2 = Ubn, U3 = Ucn in 3P4W mode
Menu
Display Screens
1st Row
2nd Row
3rd Row
4th Row
<Power>
Display 1
kW Total
kvar Total
kVA Total
PF Total
Display 2
kW1
kW2
kW3
kW Total
Display 3
kvar1
kvar2
kvar3
kvar Total
Display 4
kVA1
kVA2
kVA3
kVA Total
Display 5
PF1
PF2
PF3
PF Total
Display 6
dPF1
dPF2
dPF3
Display 7
(P Fund)
P1
P2
P3
P
Menu
Display Screens
1st Row
2nd Row
3rd Row
4th Row
<Energy>
Display 1
kWh Total
kvarh Total
kVAh Total
Display 2
kWh Imp
kWh Exp
kWh Net
kWh Total
Display 3
kvarh Imp
kvarh Exp
kvarh Net
kvarh Total
Display 4
kVAh Total
Menu
1st 2nd
Display Screens
1st Row
2nd Row
3rd Row
<DMD>1
Default
(Max)
kW Total
kvar Total
VA Total
Timestamp
Timestamp
Timestamp
<Max>
2
Display 1
kW Total
kvar Total
kVA Total
Timestamp
Timestamp
Timestamp
Display 2
I1
I2
I3
Timestamp
Timestamp
Timestamp
<Pres>
3
Display 1
kW Total
kvar Total
kVA Total
Display 2
I1
I2
I3
<Pred>
4
Display 1
kW Total
kvar Total
kVA Total
Display 2
I1
I2
I3
Menu
1st 2nd
Display Screens
1st Row
2nd Row
3rd Row
<Harm1>
Default
U1/U12 THD
U2/U23 THD
U3/U31 THD
<Basic>
Display 12 (U THD)
U1/U12 THD
U2/U23 THD
U3/U31 THD
Display 2 (I THD)
I1 THD
I2 THD
I3 THD
Display 3 (TDD)
I1
I2
I3
Display 4 (K-Factor)
I1
I2
I3
Display 5 (Crest Factor)
I1
I2
I3
Display 6 (Unbalance)
Current
Voltage
Display 7 (U Sequence)
U1
3, 4
U2
3, 4
U0
3, 4
Display 8 (I Sequence)
I1
3, 4
I2
3, 4
I0
3, 4
<Graph>
Display 12
U1/U12 Harm. (Odd)
Display 22
U2/U23 Harm. (Odd)
Display 32
U3/U31 Harm. (Odd)
Display 4
I1 Harm. (Odd)
Display 5
I2 Harm. (Odd)
Display 6
I3 Harm. (Odd)
U1 = Uab, U2 = Ubc, U3 = Uca in 3P3W mode I1 = Ia, I2 = Ib, I3 = Ic
3.1.2.2 Power
3.1.2.3 Energy
CET Electric Technology
Table 3-3 Power Display
Table 3-4 Energy Display
3.1.2.4 Demand
Table 3-5 Demand Display
Notes:
1) DMD = Demand
2) Max = Max.(Peak) Demand of This Month (Since Last Reset)
3) Pres = Present Demand
4) Pred = Predicted Demand
3.1.2.5 Harmonics
17
Page 27
CET Electric Technology
<L15>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
<L25>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
<L35>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
Menu
1st 2
nd 3rd
Display Screens
1st Row
2nd Row
3rd Row
4th Row
<Max/Min>
Default (Max.)
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
<Max>
<U/I>
Display 1
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
U12
U23
U31
Ull avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
I1
I2
I3
I avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
Freq
In
I4
Ir
Timestamp
Timestamp
Timestamp
Timestamp
<Power>
Display 1
P1
P2
P3
P
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
Q1
Q2
Q3
Q
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
S1
S2
S3
S
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
PF1
PF2
PF3
PF
Timestamp
Timestamp
Timestamp
Timestamp
<Harm>
Display 1
L1 U THD
L2 U THD
L3 U THD
Timestamp
Timestamp
Timestamp
Display 2
L1 I THD
L2 I THD
L3 I THD
Timestamp
Timestamp
Timestamp
Display 3
L1 K-Factor
L2 K-Factor
L3 K-Factor
Timestamp
Timestamp
Timestamp
Display 4
L1 C-Factor
L2 C-Factor
L3 C-Factor
Timestamp
Timestamp
Timestamp
Display 5
I Unbal.
U Unbal.
Timestamp
Timestamp
<Min>
<U/I>
Display 1
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
Table 3-6 Harmonics Display
Notes:
1) Harm = Harmonics
2) When the Wiring Mode is 3P3W or 1P2W L-L, the phase A/B/C Voltage THD/TOHD/TEHD/HDxx mean phase AB/BC/CA
Voltage THD/TOHD/TEHD/HDxx.
3) For U/I Sequence Components:
U1/I1 = Positive Sequence Voltage/Current U2/I2 = Negative Sequence Voltage/Current U0/I0 = Zero Sequence Voltage/Current
4) This screen is not shown if the Wiring Mode is set to 1P2W LN, 1P2W LL or 1P3W.
5) L1 to L3 displays the 1st to 31st Voltage and Current HD (ODD/Even) for phase A/B/C respectively.
3.1.2.6 Max/Min
18
Page 28
CET Electric Technology
Display 2
U12
U23
U31
Ull avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
I1
I2
I3
I avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
Freq
In
I4
Ir
Timestamp
Timestamp
Timestamp
Timestamp
<Power>
Display 1
P1
P2
P3
P
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
Q1
Q2
Q3
Q
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
S1
S2
S3
S
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
PF1
PF2
PF3
PF
Timestamp
Timestamp
Timestamp
Timestamp
<Harm>
Display 1
L1 U THD
L2 U THD
L3 U THD
Timestamp
Timestamp
Timestamp
Display 2
L1 I THD
L2 I THD
L3 I THD
Timestamp
Timestamp
Timestamp
Display 3
L1 K-Factor
L2 K-Factor
L3 K-Factor
Timestamp
Timestamp
Timestamp
Display 4
L1 C-Factor
L2 C-Factor
L3 C-Factor
Timestamp
Timestamp
Timestamp
Display 5
I Unbal.
U Unbal.
Timestamp
Timestamp
Menu
1st 2nd
Display screens
1st Row
2nd Row
3rd Row
<TOU>
Default (T1 kWh)
Imp
Exp
<T11>
Display 1 (kWh)
Imp
Exp
Display 2 (kvarh)
Imp
Exp
Display 3 (kVAh)
Tot
Display 4
(Peak Demand)
P Q S
Timestamp
Timestamp
Timestamp
<T21> . . .
<T71>
Display 1 (kWh)
Imp
Exp
Display 2 (kvarh)
Imp
Exp
Display 3 (kVAh)
Tot
Display 4
(Peak Demand)
P Q S
Timestamp
Timestamp
Timestamp
<T81>
Display 1 (kWh)
Imp
Exp
Display 2 (kvarh)
Imp
Exp
Display 3 (kVAh)
Tot
Display 4
(Peak Demand)
P Q S
Timestamp
Timestamp
Timestamp
Menu
Display screens
1st Row
2nd Row
3rd Row
4thRow
<I/O>
Display 1 (DI Status)
DI1
DI2
DI3 DI4
Display 2 (Pulse Counter)
DI1
DI2
DI3 DI4
Display 3 (DO Status)
DO11
DO21
Display 4 (Analog Input)
AI2
Table 3-7 Max/Min Display
3.1.2.7 TOU
Table 3-8 TOU Display
Note:
1. When the Tariff switching is controlled by the TOU Schedule, only the configured Tariffs will be displayed. If the Tariff
Switching is based on the DI status, please refer to Table 4-14 in Section 4.6 to check the relationship between the number of active Tariffs and how many DIs are programmed as a Tariff Switch.
3.1.2.8 I/O
Notes:
1) This display only appears if the meter is equipped with the corresponding DO option.
2) This display only appears if the meter is equipped with the AI option.
Table 3-9 I/O
19
Page 29
CET Electric Technology
3.1.2.9 SOE
The PMC-53A-E supports the display of the SOE Log with up to 100 Events (2 Events per page) such as I/O Changes, Setpoint, etc. on the Front Panel. In addition, the SOE Log can be reset from the Front Panel.
Examples of Event Log Display:
Figure 3-3 SOE Log Displays

3.1.3 Setup Configuration via the Front Panel

Pressing <←>/<F1> or <→>/<F2> to scroll the menu at the bottom until <Setup> appears and then press the button associated with <Setup> to browse or change the setup parameters.
3.1.3.1 Making Setup Changes
1) Entering the Password:
Press <Setup> to enter the Setup Mode. Press <F4>/<Enter> to advance to the Password page. A correct password must be entered before changes are allowed. The default password is “0000”. Press <F2>/<←> to shift the cursor to the left or <F3>/<↑> to increment the numeric value for the
password.
When the password has been entered, pressing <F4>/<OK> will advance to the setup menu if the
password is correct or “Incorrect Password!” message will pop out.
2) Selecting a parameter to change:
Press <F2>/<↑> or <F3>/<↓> to scroll to the desired sub-menu or parameter. Press <F4>/<Enter> to select the sub-menu or parameter. Repeat the step 2 until a setup parameter has been selected.
3) Changing and saving a setup parameter:
For a numeric parameter, press <F2>/<←> to shift the cursor to the left or <F3>/<↑> to increment
the numeric value.
For an enumerated parameter, press <F2>/<←> or <F3>/<↑> to scroll backward and forward in the
selection list.
After modification, press <F4>/<OK> to save the change into memory or <Cancel> to exit the
currently selected parameter without change.
Repeat step 3) until all the configuration is done.
4) Exiting the Setup Mode
Press <F1>/<Esc> to return to the Display Mode. Also, the Setup Mode will be automatically exited if there is a period of inactivity of 1 minute or
longer.
20
Page 30
3.1.3.2 Setup Menu
CET Electric Technology
21
Page 31
CET Electric Technology
Label
Description
Range
Default
Menu
1
st
2
nd
3rd
Password
Enter Password
0000 to 9999
0000
Basic
Wiring Mode
Meter’s Wiring Connection
DEMO/
1P2W L-N/1P2W L-L/
1P3W/3P3W/3P4W
3P4W
PT Primary
PT Primary Ratio
1 to 1000000V
100V
PT Secondary
PT Secondary Ratio
1 to 690V
100V
CT Primary
CT Primary Ratio
1 to 30000A
5A
CT Secondary
CT Secondary Ratio
1 to 5A
5A
I4 Primary*
I4 Primary Ratio
1 to 30000A
5A
I4 Secondary*
I4 Secondary Ratio
1 to 5A
5A
PF Convention
PF Convention
IEC/IEEE/-IEEE1
IEC
kVA Calc.
kVA Calculation Method
Vector/Scalar2
Vector
I1 Polarity
I1 Polarity
Normal/Reverse
Normal
I2 Polarity
I2 Polarity
I3 Polarity
I3 Polarity
THD Calc.
Select between
% of Fundamental or % of
RMS
THDf/THDr3
THDf
DMD Period
Demand Interval
1 to 60 min
15
No. of Windows
Number of Sliding Windows
1 to 15
1
Predicted Resp.
Predicted Response
70 to 99
70
Figure 3-4 Setup Menu
3.1.3.3 Configuration
The Setup Configuration mode provides access to the following setup parameters:
22
Page 32
CET Electric Technology
EN Pulse CNST
Pulse Constant
1000/3200/6400
1000
LED EN Pulse
Enable kWh/kvarh Energy
Pulsing
Disabled/kWh/kvarh
kWh
EN Period
Interval Energy period
5 to 60 min
60
kvarh Calc.
kvarh Calculation Method
RMS/FUND
RMS
OT Threshold
Current Threshold of Device
Operating Time
1 to 1000 (x0.001In)
1
S.R. Mode
Self-Read Mode to both Peak
Demand and Max/Min Log
Auto/Manual
Manual
S.R. Time
Self-Read Time to both Peak
Demand and Max/Min Log
See Note 4)
--D--H
Comm.
RS485 (P1)
Protocol
Protocol
Modbus/BACnet/
DNP/Gateway
Modbus
Unit ID
Modbus Address
Modbus: 1 to 247
BACnet: 1 to 247 DNP: 0 TO 65519
100
Baud Rate
Data rate in bits per second
1200/2400/4800/
9600/19200/38400
9600
Data Format
Data Format
8N2/8O1/8E1/
8N1/8O2/8E2
8E1
Ethernet (P2)
IP Address
Ethernet IP Address
192.168.0.100
Subnet Mask
Ethernet Subnet Mask
255.255.255.0
Gateway
Ethernet Gateway
192.168.0.1
Setpoint
Group #1
Type
Whether and how the
Setpoint is triggered
0 = Disabled;
1 = Over Setpoint
2 = Under Setpoint
0
Parameter
The parameter to be
monitored.
See Note 5)
None
OvLim
Over Limit
0
UnLim
Under Limit
0
ActiveDelay
Active Delay
0 to 9999s
0
InactiveDelay
Inactive Delay
0 to 9999s
0
Trigger1
Setpoint Trigger1
See Note 6)
Trigger2
Setpoint Trigger2
See Note 6)
Group #9
Type
Whether and how the
Setpoint is triggered
0 = Disabled;
1 = Over Setpoint
2 = Under Setpoint
0
Parameter
The parameter to be
monitored.
See Note 5)
None
OvLim
Over Limit
0
UnLim
Under Limit
0
ActiveDelay
Active Delay
0 to 9999s
0
InactiveDelay
Inactive Delay
0 to 9999s
0
Trigger1
Setpoint Trigger1
See Note 6)
Trigger2
Setpoint Trigger2
See Note 6)
I/O
Digital Input
Function
DI Function
DI1~DI3
Function Mode for DI1 to DI4
Digital Input /
Pulse Counter /
TOU Control
Digital Input
DI4
Digital Input /Pulse
Counter
Debounce
Specifies the minimum duration the DI must remain in the Active or Inactive state before a state change is considered to be valid.
DI1
Debounce for DI1 to DI4
1 to 9999 ms
20 ms
DI4
Pulse Weight
Specifies the incremental value for each pulse received
DI1
Pulse Weight for DI1 to DI4
1 to 1000000
1
23
Page 33
CET Electric Technology
DI4
Digital Output
Function
Specifies the function of the Pulse Output.
DO1
DO Control Mode
Digital Output kWh Import kWh Export kWh Total kvarh Import kvarh Export kvarh Total
Digital Output
DO2
Pulse Width
Specifies the duration for which the relay output will be active when a remote control command is received to activate it.
DO1
Pulse Width for DO1 to DO2
0 to 600 (x0.1s)
(0=Latch Mode)
10
DO2
Analog Input7
Type
Select between
0-20mA or 4-20mA input
4-20mA/0-20 mA
4-20mA
Zero Scale
The value that corresponds
to the minimum Analog
Input of 0 or 4 mA
-999,999 to 999,999
400
Full Scale
The value that corresponds
to the maximum Analog
Input of 20 mA
-999,999 to 999,999
2000
Display
Timeout
Backlight Timeout
0 to 60 min
5
Contrast
Display Contrast
0 to 9
5
Language
System Language
Chinese/English
English
Delimiter
Delimiter
See Note 8)
Option1
Main 1st
1st parameter of the Default
Display
See Note 9)
Ullavg
Main 2nd
2nd parameter of the Default
Display
Iavg
Main 3rd
3rd parameter of the Default
Display
P (kW Total)
Main 4th
4th parameter of the Default
Display
PF (PF Total)
SP LCD Alarm
Enable Splash LCD Alarm10
On/Off
On
Clock
Time
Time
(20)YY-MM-DD
/
Date
Date
HH:MM:SS
/
Date Format
Date Format
YYMMDD/
MMDDYY/
DDMMYY
YYMMDD
Maintenance
Password Setup
New Password
Enter new password
Confirm Password
Confirm new password
Clear Registers
Energy
-
Clear all Energy Log
Yes/No
No
Demand
Present Max
Clear Peak Demand Log of
This Month (Since Last Reset)
Yes/No
No
All
Clear Present Demand, Peak
Demand Log of This Month
(Since Last Reset) and Last Month (Before Last Reset)
Yes/No
No
Max/Min
Present
Clear Max/Min Log of This
Month (Since Last Reset)
Yes/No
No
All
Clear Max/Min Log of This
Month (Since Last Reset) and
Last Month (Before Last
Reset)
Yes/No
No
Operating Time
Reset
Clear Device Operating Time
Yes/No
No
24
Page 34
CET Electric Technology
Pulse Counter
All
Clear All DI Counters
Yes/No
No
DIx (x=1 to 4)
Clear DIx Pulse Counter
Yes/No
No
SOE Logs
Clear SOE Logs
Yes/No
No
Clear All Data
-
Clear All of the above
Yes/No
No
DO Control
DO1
DOx Manual Control
Normal/On/Off
Normal
DO2
Information
Check meter information
Firmware
Firmware Version
e.g. V1.00.00
Update
Date of the latest firmware
update
e.g. 20180919
Modbus
Modbus Protocol Version
e.g. V1.0
BACnet MSTP
BACnet MSTP Protocol
Version
e.g. V1.0
DNP
DNP Protocol Version
e.g. V1.0
SN
Serial Number
e.g. 1512150001
* Appear only if the device is equipped with the appropriate option.
Table 3-10 Setup Parameters
Notes:
1) PF Convention (-IEEE is the same as IEEE but with the opposite sign):
Figure 3-5 Power Factor Definitions
2) There are two methods to calculate kVA:
2
Vector: kVA Scalar: kVA
3) There are two methods to calculate THD:
THDf:
Where I1 represents the RMS value of the fundamental component, and In represents the RMS value for the nth harmonic with n for harmonic order. THDr:
Where In represents the RMS value for the nth harmonic with n for harmonic order.
4) The Self-Read Time setting is disabled if the Self-Read Mode is Manual.
5) The table below illustrates the Setpoint Parameters:
= kW
total
=kVAa+kVAb+kVAc
total
total
+kVar
2 total

 
n=2
I
1
n=2
n=1
THD=
THDr=
2
I
n
2
I
n
2
I
n
×100%
×100%
25
Page 35
CET Electric Technology
Key
Setpoint Parameter
Scale
Resolution
Unit
0
None
- - -
1
Uln (Any Phase Voltage)
x1
0.001 V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
0.01
Hz
6
P (kW Total)
0.001
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S (kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
0.01%
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Any Phase Reversal)
1, 2
- - -
25
I4 (Measured)*
x1
0.001
A
26
AI*
1
-
27
IR (Residual Current) *
x1
0.001 A
28
U2 (Negative Symmetrical Component)
x1
V
29
U0 (Zero Symmetrical Component)
* Appear only if the device is equipped with the appropriate option.
Table 3-11 Setpoint Parameters
Notes:
1. When Reversal is set as the Setpoint Parameter, the Setpoint Type should be set to 1 (i.e., Over Setpoint). The Setpoint
Type=2 (i.e., Under Setpoint) is invalid.
2. When Reversal is set as the Setpoint Parameter (with Setpoint Type=1), the Over Limit should be set as 0 and Under Limit
should be as 1. The logic diagram for the Phase Reversal setpoint is illustrated in the following figure:
26
Page 36
CET Electric Technology
Key
Action
Key
Action
0
None
1
DO1 Closed
2
DO2 Closed
3
Email
Key
Parameters
Key
Parameters
Key
Parameters
Key
Parameters
0
U1 (Uan)
10
I3 (Ic)
20
T1 kWh Imp
30
Fund. kW Total
1
U2 (Ubn)
11
Iavg
21
T2 kWh Imp
31
dPF Total
2
U3 (Ucn)
12
P (kW Total)
22
T3 kWh Imp
32
I4
3
Ulnavg
13
Q (kvar Total)
23
T4 kWh Imp
33
U1 THD
4
U12 (Uab)
14
S (kVA Total)
24
I1 (Ia) Demand
34
U2 THD
5
U23 (Ubc)
15
PF (PF Total)
25
I2 (Ib) Demand
35
U3 THD
6
U31 (Uca)
16
Frequency
26
I3 (Ic) Demand
36
Ir
7
Ullavg
17
kWh Import
27
kW Demand
8
I1 (Ia)
18
kWh Export
28
kvar Demand
9
I2 (Ib)
19
kWh Total
29
kVA Demand
Figure 3-6 Reversal Setpoint Logic Diagram
6) The table below illustrates the options for Setpoint Trigger. Please keep in mind that when the DOx is set as Setpoint Trigger,
the DOx Function should be configured as Digital Output correspondingly.
Table 3-12 Setpoint Trigger
7) This menu only appears if the meter is equipped with the corresponding options.
8) The Delimiter setup register supports two options, 1 and 2:
Option 1: “,” is used as the x1000 delimiter and “.” as the decimal point (e.g. 123,456,789.0). Option 2: “ ” is used as the x1000 delimiter and “,” as the decimal point (e.g. 123 456 789,0).
9) The following table illustrates the parameters that can be selected for display in the Default Display screen.
Table 3-13 Default Display Parameters
10) Setting SP LCD Alarm to On would make the LCD blinking when there is a Setpoint occurred and pressing any buttons to
go to the first SOE log screen.
27
Page 37
CET Electric Technology
Browser
Browser Version
Internet Explorer
IE10 and above
Firefox
24.0 and above
Google Chrome
35.0 and above

3.2 Web Interface

The PMC-53A-E’s Web Interface is compatible with various web browsers.
Table 3-14 Web Browser Supported
The default IP Address of the PMC-53A-E Ethernet Port is 192.168.0.100. Please make sure to configure the IP Address and Subnet Mask for the PMC-53A-E (via Front Panel or through communication) and the PC so that they are in the same subnet.

3.2.1 Setting PC's IP Address

To determine the PC's IP Address, click Start and then Settings on Windows 10 (for other Windows common systems, please refer to this link for more instructions).
Figure 3-7 Settings-> Network & Internet on Windows 10
Select Network & Internet and then Change adapter options to find the Ethernet adapter. Double click on it and then select Properties to open the dialog box for configuring its Networking properties.
Double-click on Internet Protocol Version 4 (TCP/IPv4) to show/configure the Ethernet adapter’s IP configuration.
Figure 3-8 Network and Sharing Center
28
Page 38
CET Electric Technology
Figure 3-9 Ethernet Adapter’s IP Configuration

3.2.2 Configure PMC-53A-E’s IP Address

To configure the IP Address, navigate to Setup -> Comm. -> Ethernet on the Front Panel of the PMC­53A-E and then enter the IP address. The default IP address is 192.168.0.100.
Figure 3-10 Setting PMC-53A-E’s IP Address

3.2.3 Accessing the Web Interface

1) Enter the IP Address of the PMC-53A-E in the Address area of Google Chrome and then press
<Enter>.
Figure 3-11 Web Login
2) The PMC-53A-E’s Web Interface appears. The Login password is required, which is “0” by default.
Figure 3-12 Login Page
29
Page 39

3.2.4 Overview

Main Menu
Sub Menu
Description
Metering
Basic
Displays Voltage, Current, Power, PF, Fundamental U/I/P/PF, Phase Angles, Frequency, Neutral Current and Operating Time.
Energy
Displays kWh/kvarh Import/Export/Net/Total and kVAh Total.
The PMC-53A-E’s Web Interface provides a simple way to view the meter’s measurements and configure its setup parameters. The following screen captures illustrate the PMC-53A-E’s Web Interface. The Sub­Menu on the left-hand pane displays the available options under the selected item from the Main Menu at the top. It’s recommended to disconnect from the meter’s web server when it’s not in use with the
logout button at the upper right-hand corner. The PMC-53A-E’s Web Server will terminate the client’s connection after 3 minutes of inactivity.

3.2.5 Detailed Description

Figure 3-13 Basic Measurements
31
Page 40
CET Electric Technology
Demand
Displays Present, Predicted and Peak Demand (This/Last Month or Since/Before Last Reset) for P, Q, S and 3-Ø Current.
TOU
Displays kWh/kvarh Import/Export and kVAh for TOU Tariffs T1 to T8
Max./Min.
Displays Max./Min. values with timestamps for real-time measurements for This Month/Last Month or Before Last Reset/Since Last Reset.
32
Page 41
CET Electric Technology
I/O
Displays the programmed functions and values for DI, DO and AI (if equipped).
Power
Quality
Harmonics
Displays THD, TIHD, TEHD, Crest Factor, K-Factor, TDD, and the 2nd to 31st individual harmonics for Voltage and Current.
33
Page 42
CET Electric Technology
Sym. Comp.
& Unb.
Displays Positive, Negative, and Zero Sequence as well as Unbalance for Voltage and Current
Events
SOE
Display the SOE events with timestamps such as DI/DO Changes, Setpoint Alarms, Setup Changes, etc.
Setup
Basic1
Basic settings such as Wiring Mode, I1/I2/I3 Polaity, PT/CT Primary/Secondary and other setup parameters.
34
Page 43
CET Electric Technology
Comm.
RS-485 (P1), Ethernet (P2), SNTP and SMTP configuration.
Demand
Demand and Self-Read Time configuration
35
Page 44
CET Electric Technology
Clock
Clock Settings including Date, Time, Time Zone and Date Format.
Maintenance2
Clear operation for different values and logs by group or individually.
Device Info.
Serial Number, MAC Address, Firmware Version and Date.
36
Page 45
CET Electric Technology
Parameter
Range/Default*
Parameter
Range/Default*
Parameter
Range/Default*
Wiring Mode
DEMO, 1P2W L-N, 1P2W L-L, 3P3W, 3P4W*
CT Polarity
I1
Reverse/Normal*
I2
Reverse/Normal*
I3
Reverse/Normal*
Rated Parameters
PT Primary
1 to 1000000V; 100V*
CT Primary
1 to 30000A; 5A*
I4 Primary#
1 to 30000A; 5A*
PT Secondary
1 to 690V; 100V*
CT Secondary
1 to 5A; 5A*
I4 Secondary#
1 to 5A; 5A*
Energy Parameters
LED Energy Pulse
Disabled/kvar/kW*
EN Pulse CNST
1000*/3200/6400
EN Period
5 to 60* minutes
Algorithm
PF Convention
IEC*, IEEE, -IEEE
THD Cal.
THDf*/THDr
kVA Cal.
Vector*, Scalar
kvar Cal.
RMS*, Fund
OT Threshold
1 to 1000 (x0.001 Iprim)
Display
Language
English*
Delimiter
99,999.999* or 99 999,999
Category
Button
Function
Groups
Clear Present Max. Demand
Clear Max. Demand of This Month
Clear Present Max./Min
Clear Max./Min. Log of This Month
Clear All DR Logs
Clear all the Data Recorder Logs
Clear SOE Logs
Clear SOE Logs
Clear All Demand
Clear all Demand registers and logs (including Present/Peak Demand for This/Last Month or Since/Before Last Reset)
Clear All Max./Min.
Clear Max./Min. Log of This Month (Since Last Reset) and Last Month (Before Last Reset).
Clear All Pulse Counters
Clear All Pulse Counters
Clear All Energy Registers
Clear 3-Ø Total and Per-Phase Energy registers (including TOU and Interval Energy)
Individuals
Clear DR1 Log
Clear Data Recorder 1’s Log
Clear DR2 Log
Clear Data Recorder 2’s Log
Clear DR3 Log
Clear Data Recorder 3’s Log
Clear DR4 Log
Clear Data Recorder 4’s Log
Clear DR5 Log
Clear Data Recorder 5’s Log
Clear His. Monthly Energy Log
Clear Monthly Energy Log of the last 1 to 12 months
Clear Pres. Monthly Energy Log
Clear Monthly Energy Log of the Present Month
Clear DI1 Pulse Counter
Clear DI1 Pulse Counter
Clear DI2 Pulse Counter
Clear DI2 Pulse Counter
Clear DI3 Pulse Counter
Clear DI3 Pulse Counter
Clear DI4 Pulse Counter
Clear DI4 Pulse Counter
Clear Daily Freeze Logs
Clear all Daily Freeze Logs
Clear Monthly Freeze Logs
Clear All Monthly Freeze Logs
Clear All Data
Perform the Clear operation for all of the above
Table 3-15 Detailed Description of the On-board Web Server
Notes:
1. The following table illustrates the Range and Default Value for each parameter:
#
This parameter only appears if the meter is equipped with the corresponding I4 option.
Table 3-16 Basic Setup Parameters
2. This web page allows the user to perform the following Clear functions:
Table 3-17 Clear Operations
37
Page 46
CET Electric Technology
Setup Parameter
Definition
Options
DIx Function
Each DI can be configured as a Digital Input or Pulse Counter. Only DI1 to DI3 can be set as Tariff Switch.
0=Digital Input*
1=Pulse Counter
2=Tariff Switch
DIx Debounce
Specifies the minimum duration the DI must remain in the Active or Inactive state before a state change is considered to be valid.
1 to 1000 (ms)
(Default=20ms)
DIx Pulse Weight
Specifies the incremental value for each received pulse. This is only used when a DI is configured as a Pulse Counter.
1* to 1,000,000

Chapter 4 Applications

4.1 Inputs and Outputs

4.1.1 Digital Inputs

The PMC-53A-E comes standard with four self-excited Digital Inputs that are internally wetted at 24 VDC with a sampling frequency of 1000Hz and programmable debounce. The PMC-53A-E provides the following programmable functions for its digital inputs:
1) Digital Input The digital inputs are typically used for status monitoring which can help
prevent equipment damage, improve maintenance, and track security breaches. The real-time statuses of the Digital Inputs are available on the Front Panel LCD Display as well as through communications. Changes in Digital Input status are stored as events in the SOE Log in 1 ms resolution.
2) Pulse Counting Pulse counter is supported with programmable Pulse Weight and
facilitates WAGES (Water, Air, Gas, Electricity and Steam) information collection.
3) Tariff Switching Up to 3 Digital Inputs may be used to select to which of the 8 Tariffs the
energy consumption should be accumulated. The 3 Digital Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff 1=000, Tariff 2=001, …, Tariff 8=111 where DI1 represents the least significant digit and DI3 represents the most significant digit. The DI1 Function setup register must first be programmed as a Tariff Switch before configuring DI2 with the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse Counter and DI2 is configured as a Tariff Switch, the TOU will continue to function based on the TOU Schedule.
The following table describes the DI’s setup parameters:
Default*
Table 4-1 DI Setup Parameters

4.1.2 Digital Outputs

The PMC-53A-E comes standard with two Form A Electrometrical Relays. Digital Outputs are normally used for setpoint alarming, load control, or remote control applications.
Digital Outputs on the PMC-53A-E can be used in the following applications:
1) Front Panel Control Manually operated from the Front Panel. Please refer to the DO Control
setup parameter in Section 3.1.3 for a detailed description.
2) Remote Control Remotely operated over communications via our free PMC Setup
software or PecStar® iEMS Integrated Energy Management System.
3) Control Setpoint Control Setpoints can be programmed to trigger DO action upon
becoming active. Please refer to Section 4.4 for a detailed description.
Since there are multiple ways to trigger the Digital Outputs on the PMC-53A-E, a prioritized scheme has been developed to avoid conflicts between different applications. In general, Front Panel Control has the highest priority and can override other control schemes. Remote Control and Control Setpoint share the same priority, meaning that they can all be programmed to control the same Digital Output. This
38
Page 47
CET Electric Technology
Parameter
Phase A
Phase B
Phase C
Total
Average
Uln
● ● ● - ●
Ull
● ● ● - ●
Current
● ● ● - ●
Neutral Current
- - -
In (Calculated)
I4 (Optional)
Residual Current
- - -
Ir - kW
● ● ● ● -
kvar
● ● ● ● -
kVA
● ● ● ● -
PF
● ● ● ● -
dPF
● ● ● ● -
Frequency
U Fundamental
● ● ●
I Fundamental
● ● ●
P Fundamental
● ● ● ●
scheme is equivalent to having an implicit Logical OR operation for the control of a Digital Output and may be useful in providing a generic alarm output signal. However, the sharing of a Digital Output is not recommended if the user intends to generate a control signal in response to a specific setpoint condition.

4.1.3 Energy Pulse Outputs

The PMC-53A-E comes standard with one Front Panel LED Pulse Output for energy pulsing and can be equipped with two optional Solid State Digital Outputs for kWh and kvarh pulsing, replacing the default Digital Outputs. Energy Pulse Outputs are typically used for accuracy testing. Energy Pulsing via the Front Panel LED can be enabled from the Front Panel through the LED EN Pulse setup parameter. The pulse constant can be configured as 1000/3200/6400 pulses per kWh/kvarh through the EN Pulse CNST setup parameter.

4.1.4 Analog Input

The PMC-53A-E comes optionally with an Analog Input which can be programmed as 0mA to 20mA or 4mA to 20mA input. There are 3 setup parameters:
Type: Select between 0-20mA or 4-20mA input. AI Zero: This value corresponds to the minimum Analog Input of 4 mA (for 4-20mA input) and
has a range of -999,999 to +999,999.
AI Full: This value corresponds to the maximum Analog Input of 20 mA and has a range of -
999,999 to +999,999. For example, to measure the oil temperature of a transformer, connect the outputs of the temperature sensor to the AI terminals of the PMC-53A-E. The temperature sensor outputs 4mA when the temperature is -25°C and 20mA when the temperature is 100°C. As such, the Type parameter should be programmed as 4-20mA. The AI FULL parameter should be programmed with the value 100, and the AI ZERO parameter should be programmed with the value -25. Therefore, when the output of the sensor is 20mA, the reading will be 100.00°C. When the output is 4mA, the reading will be -25.00°C. When the output is 12mA, the reading will be (100°C - (-25°C)) x (12mA-4mA) / (20mA-4mA) + (-25°C) = 37.50°C.

4.2 Power and Energy

4.2.1 Basic Measurements

The PMC-53A-E provides the following basic measurements which are available through the Front Panel or communications.
Table 4-2 Basic Measurements
Notes:
1) When the Wiring Mode is 3P3W, the per-phase Uln, kW, kvar, kVA and Power Factor are reserved.
2) The Frequency detection priority is: U1 (U12) > U2 (U23) > U3 (U31). For example, if U1=0, the U2 signal would be used for
Frequency detection instead. If both U1 and U2 are 0, the U3 signal would be used for Frequency detection.
39
Page 48
CET Electric Technology
Per-Phase & 3-Phase
kWh Import/Export/Net/Total kWh Import/Export of TOU T1-8
kvarh Import/Export/Net/Total kvarh Import/Export of TOU T1-8 kvarh of Q1/Q2/Q3/Q4
kVAh kVAh of TOU T1-8
Setup Parameter
Definition
Options
Demand Period (Register: 6029)
1 to 60 minutes. For example, if the # of Sliding Windows is set as 1 and the Demand Period is 15, the demand cycle will be 1×15=15min.
1 to 60 min
Default=15
# of Sliding Windows (Register: 6030)
Number of Sliding Windows.
1 to 15
Default=1
Self-Read Time (Register: 6033)
The Self-Read Time allows the user to specify the time and day of the month for the Peak Demand Self-Read operation. The Self-Read Time supports three options:
A zero value means that the Self-Read will take place at
00:00 of the first day of each month.
A non-zero value means that the Self-Read will take
place at a specific time and day based on the formula: Self-Read Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value will disable the Self-Read operation and
replace it with manual operation. A manual reset will cause the Max. Demand of This Month to be transferred to the Max. Demand of Last Month and then reset. The terms This Month and Last Month will become Since Last Reset and Before Last Reset.
Default=0xFFFF
Predicted Response
The Predicated Response shows the speed of the
70 to 99

4.2.2 Energy Measurements

The PMC-53A-E provides Energy parameters for active energy (kWh), reactive energy (kvarh) and apparent energy (kVAh) with a resolution of 0.1 and a maximum value of ±99,999,999.9. When the maximum value is reached, the energy registers will automatically roll over to zero. The energy can be reset manually through the Front Panel or via communications. Further, the kWh/kvarh Import and Export for Per-Phase and Total, and the kVAh for Per-Phase and Total can be reset via communications.
The PMC-53A-E provides the following energy measurements:
Table 4-3 Energy Measurement

4.2.3 Interval Energy Measurements

The PMC-53A-E provides Interval Energy measurements of kWh Import/Export, kvar Import/Export and kVAh. The Interval Energy measurements represent the amount of energy consumed during the last completed interval as defined by EN Period. The Interval Energy Measurements can only be retrieved through communications and are not available on the Front Panel or Web Interface.
The Interval Energy Period (EN Period) setup parameter can be programmed from the Front Panel, Web Interface or through communications and allows the user to specify the interval for which the real-time energy consumption should be accumulated. Please note that changing the Interval Energy Period would clear the present Interval Energy measurements.

4.2.4 Demand Measurements

Demand is defined as the average power consumption over a fixed interval (usually 15 minutes) based on the Sliding Window method. The PMC-53A-E provides Present Demand and Predicted Demand for Ia, Ib, Ic, kW Total, kvar Total and kVA Total, updated once a second, as well as Max Demand for Ia, Ib, Ic, kW Total, kvar Total and kVA Total of TOU Tariff 1 to 8 in This Month (Since Last Reset) and Last Month (Before Last Reset). Only Import Demand is provided for kW Total, kvar total and kVA Total. Predicted Demand is typically used for pre-alarming and to help users reduce power consumption using a Setpoint to warn that the Demand limit may be exceeded.
The PMC-53A-E provides the following setup parameters:
40
Page 49
CET Electric Technology
(Register: 6031)
predicted demand output. A value between 70 and 99 is recommended for a reasonably fast response. Specify a higher value for higher sensitivity.
Default=70
Phase A/AB
Phase B/BC
Phase C/CA
Harmonic-Voltage
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
2
nd
Harmonics
2
nd
Harmonics
2nd Harmonics
31st Harmonics
31st Harmonics
31st Harmonics
Harmonic-Current
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
TDD
TDD
TDD
TEDD
TEDD
TEDD
TODD
TODD
TODD
K-Factor
K-Factor
K-Factor
Crest Factor
Crest Factor
Crest Factor
2
nd
Harmonics
2
nd
Harmonics
2nd Harmonics
31st Harmonics
31st Harmonics
31st Harmonics
Table 4-4 Demand Setup

4.3 Power Quality

4.3.1 Phase Angles

Phase analysis is used to identify the angle relationship between 3-phase Voltages and Currents. For WYE connected systems, the per phase difference of the Current and Voltage angles should
correspond to the per phase PF. For example, if the PF is 0.5 Lag and the Voltage phase angles are 0.0°,
240.0° and 120.0°, the Current phase angles should have the values of -60.0°, 180.0° and 60.0°.

4.3.2 Unbalance & Sequence Components

The PMC-53A-E provides Voltage and Current Unbalance measurements. The calculation method of Voltage and Current Unbalances is based on the ratio of Positive and Negative Sequence Components.
Voltage Unbalance=
V2
×100% Current Unbalance=
V1
where
V1, V2 are the Positive and Negative Sequence Components for Voltage, respectively.
and
I1, I2 are the Positive and Negative Sequence Components for Current, respectively.
I
×100%
I1

4.3.3 Harmonics

The PMC-53A-E provides Voltage and Current with THD, TOHD, TEHD and up to the 31st individual harmonics analysis. Additionally, TDD, K-Factor, and Crest Factor for Current are provided as well. All harmonic parameters are available via the Front Panel or through communications.
The following table illustrates the available Voltage and Current Harmonics measurements on the PMC­53A-E.
Table 4-5 Harmonic Measurements
Notes:
1) When the wiring mode is 1P2W L-L or 1P2W L-N, the harmonic measurements for Phase B/BC and C/CA are invalid.
2) When the wiring mode is 1P3W, the harmonic measurements for Phase C/CA are invalid.
4.3.3.1 THD & Fundamental
There are two methods for calculating the THD, which are based on Fundamental (THDf) and RMS (THDr). Fundamental is defined as the lowest frequency of a periodic waveform.
41
Page 50
CET Electric Technology
THDf:
2
I
n
THD=
n=2
I
×100%
1
THDr:
2
I
n
THDr=
n=2
×100%
2
I
n
n=1
where I1 represents the RMS value of the fundamental component, and In represents the RMS value for the nth harmonic.
4.3.3.2 TDD To tal Demand Distortion (TDD) is defined as the ratio of the RMS of the Harmonic Current to the RMS
of the Rated or Maximum Fundamental Current Demand. TDD of Current is calculated by the formula below:
 

 
where
IL = Maximum Fundamental Current Demand n = Harmonic Order (1, 2, 3, 4, etc.) I
= RMS Load Current at the nth Harmonic
n
4.3.3.3 K-Factor K-Factor is defined as the weighted sum of the Harmonic Load Current according to their effects on
transformer heating, as derived from ANSI/IEEE C57.110. A K-Factor of 1.0 indicates a linear load (no harmonics). The higher the K-Factor, the greater the harmonic heating effect.
   


󰇛




 
󰇜
 
where
In= nth Harmonic Current in RMS n
=Highest Harmonic order
max
4.3.3.4 Crest Factor Crest Factor is defined as the Peak to Average Ratio (PAR), and its calculation is illustrated below:
X
peak
C=
X
rms
where
|X|
= Peak amplitude of the waveform
peak
X
= RMS value
rms
42
Page 51
CET Electric Technology
Setup Parameter
Definition
Options/Default*
Setpoint Type
Over or Under Setpoint.
0=Over Setpoint* 1=Under Setpoint
Setpoint Parameter
Specify the parameter to be monitored.
See Table 4-7
Over Limit
Specify the value that the setpoint parameter must exceed for Over Setpoint to become active or for Under Setpoint to become inactive.
0*

4.4 Setpoints

The PMC-53A-E comes standard with 9 user programmable Setpoints which provide extensive control by allowing a user to initiate an action in response to a specific condition. Typical setpoint applications include alarming, fault detection and power quality monitoring.
Figure 4-1 Over Setpoint
Figure 4-2 Under Setpoint
Setpoints can be programmed via the Front Panel or through communications and have the following setup parameters:
43
Page 52
CET Electric Technology
Under Limit
Specify the value that the setpoint parameter must go below for Over Setpoint to become inactive or for Under Setpoint to become active.
0*
Active Delay
Specify the minimum duration that the setpoint condition must be met before the setpoint becomes active. An event will be generated and stored in the SOE Log. The range of the Active Delay is between 0 and 9999 seconds.
0 to 9999s
Default=10
Inactive Delay
Specify the minimum duration that the setpoint return condition must be met before the setpoint becomes inactive. An event will be generated and stored in the SOE Log. The range of the Inactive Delay is between 0 and 9999 seconds.
0 to 9999
Default=10
Setpoint Trigger
Specify what action a setpoint would take when it becomes active. Please refer to Table 4-8 below for a list of Setpoint Triggers.
See Table 4-8
Key
Setpoint Parameter
Scale
Resolution
Unit
0
None
- - -
1
Uln (Any Phase Voltage)
x1
0.001 V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
0.01
Hz
6
P (kW Total)
0.001
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S (kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
0.01%
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Phase Reversal)
1, 2
- - -
25
I4 (Measured)*
x1
0.001
A
26
AI*
1
-
27
IR (Residual Current) *
x1
0.001 A
28
U2 (Voltage Negative Sequence
Component)
x1
V
29
U0 (Voltage Zero Symmetrical Component)
Table 4-6 Description for Setpoint Parameters
The table below illustrates the Setpoint Parameters. In addition, the LCD would blink when a setpoint becomes active and if the SP LCD Alarm (Register #6048) is set to Enable.
* Appear only if the device is equipped with the appropriate option.
Table 4-7 Setpoint Parameters
Notes:
3. When Reversal is set as the Setpoint Parameter, the Setpoint Type should be set to 1 (i.e., Over Setpoint). The Setpoint
Type=2 (i.e., Under Setpoint) is invalid.
4. When Reversal is set as the Setpoint Parameter (with Setpoint Type=1), the Over Limit should be set as 0 and Under Limit
should be as 1. The logic diagram for the Phase Reversal setpoint is illustrated in the following figure:
44
Page 53
CET Electric Technology
Key
Action
Key
Action
0
None
1
DO1 Closed
2
DO2 Closed
3
Email
Max/Min Parameters
Uan
Ubn
Ucn
Uln avg
Uab
Ubc
Uca
Ull avg
Ia
Ib
Ic
I avg
Figure 4-3 Phase Reversal Setpoint Logic Diagram
The table below illustrates the options for Setpoint Trigger. Please keep in mind that when DOx is set as the Setpoint Trigger, the DOx Function should be configured as Digital Output accordingly.
Table 4-8 Setpoint Trigger

4.5 Logging

4.5.1 Max/Min Log

The PMC-53A-E records the Max Log and Min Log of This Month (Since Last Reset) and Last Month (Before Last Reset) with timestamp for 45 parameters. Each log includes the relevant parameter value
and its timestamp. The recorded data is stored in the device’s non-volatile memory and will not suffer any loss in the event of a power failure. The PMC-53A-E’s Max/Min Log records the following parameters:
45
Page 54
CET Electric Technology
kWa
kWb
kWc
kW Total
kvara
kvarb
kvarc
kvar Total
kVAa
kVAb
kVAc
kVA Total
PFa
PFb
PFc
PF Total
Frequency
Inc
Uan/Uab THD
Ubn/Ubc THD
Ucn/Uca THD
Ia THD
Ib THD
Ic THD
Ia K-Factor
Ib K-Factor
Ic K-Factor
Ia Crest Factor
Ib Crest
Factor
Ic Crest Factor
U Unbal.
I Unbal.
I4
Ir
Peak Demand Logs of This Month (Since Last Reset) and Last Month (Before Last Reset)
Ia
Ib
Ic
kW Total
kvar Total
kVA Total
kW Total for TOU Tariffs 1 to 8
kvar Total for TOU Tariffs 1 to 8
kVA Total for TOU Tariffs 1 to 8
Active Energy
kWh Import
kWh Export
kWh Net
kWh Total
T1 kWh Import
T2 kWh Import
T3 kWh Import
T4 kWh Import
T5 kWh Import
T6 kWh Import
T7 kWh Import
T8 kWh Import
T1 kWh Export
T2 kWh Export
T3 kWh Export
T4 kWh Export
T5 kWh Export
T6 kWh Export
T7 kWh Export
T8 kWh Export
Reactive Energy
kvarh Import
kvarh Export
kvarh Net
kvarh Total
T1 kvarh Import
T2 kvarh Import
T3 kvarh Import
T4 kvarh Import
T5 kvarh Import
T6 kvarh Import
T7 kvarh Import
T8 kvarh Import
T1 kvarh Export
T2 kvarh Export
T3 kvarh Export
T4 kvarh Export
Table 4-9 Max/Min Log
The same Self-Read Time for the Peak Demand Log is used to specify the time and day of the month for the Max/Min Self-Read operation. Please refer to Section 4.2.4 for a complete description of the Self-Read Time and its operation. The Max/Min Log of This Month can be reset manually via the Front Panel or via communications.

4.5.2 Peak Demand Log

The PMC-53A-E records the Peak Demand of This Month (Since Last Reset) and Last Month (Before Last Reset) with timestamp for Ia, Ib, Ic, kW Total, kvar Total and kVA Total as well as kW Total, kvar Total
and kVA Total for TOU Tariffs 1 to 8. The Peak Demand of This Month (Since Last Reset) can be accessed via the Front Panel and through communications while the Peak Demand of Last Month (Before Last Reset) only can be retrieved through communications. Please refer to Section 4.2.4 for a complete description of the Self-Read Time and its operation.
Table 4-10 Peak Demand Log
Notes:
1) When the wiring mode is 1P2W L-L or 1P2W L-N, the demand measurements for Phase B and C are invalid.
2) When the wiring mode is 1P3W, the demand measurements for Phase C are invalid.

4.5.3 Monthly Energy Log

The PMC-53A-E stores monthly energy data for the present month and the last 12 months. The Monthly Energy Log Self-read Time setup parameter allows the user to specify the time and day of the month
for the Recorder’s Self-read operation via communications. The Monthly Energy Logs are stored in the meter’s non-volatile memory and will not suffer any loss in the event of power failure, and they are stored on a First-In-First-Out basis where the newest log will overwrite the oldest.
The Monthly Energy Log Self-Read Time supports two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the
formula: Energy Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month. The Monthly Energy Logs can be reset manually through the front panel or via communications. The PMC-53A-E provides the following energy data for the present month and the last 12 months:
46
Page 55
CET Electric Technology
T5 kvarh Export
T6 kvarh Export
T7 kvarh Export
T8 kvarh Export
kvarh Q1
kvarh Q2
kvarh Q3
kvarh Q4
Apparent Energy
kVAh
T1 kVAh
T2 kVAh
T3 kVAh
T4 kVAh
T5 kVAh
T6 kVAh
T7 kVAh
T8 kVAh
Freeze Type
Parameters
Depth
Daily Freeze
kWh Total, kvarh Total, kVAh Total
Peak Demands for kW Total, kvar Total and kVA Total
60
Monthly Freeze
kWh Total, kvarh Total, kVAh Total
Peak Demands for kW Total, kvar Total and kVA Total with Timestamp
36
Table 4-11 Energy Measurements for each Monthly Energy Log Record

4.5.4 Daily and Monthly Freeze Log

The PMC-53A-E provides a Daily Freeze Log and a Monthly Freeze Log for Energy and Demand parameters and can store up to 60 daily freeze records (2 months) and 36 monthly freeze records (3 years). All Freeze Logs and their respective setup registers can only be accessed through communications. The PMC-53A-E’s Freeze Logs can freeze and record the following parameters:
Table 4-12 Freeze Log
The Daily Self-Read Time setup parameter allows the user to specify the time of the day for the Daily Freeze Log Self-Read operation, while the Monthly Self-Read Time setup parameter allows the user to specify the time and day of the month for the Monthly Freeze Log Self-Read operation.
1) Daily Freeze Self-Read Time can be set to a zero value or a non-zero value:
A zero value means that the Self-Read will take place at 00:00 everyday. A non-zero value means that the Self-Read will take place at a specific time of the day based on
the formula: Self-Read time = (Hour x 100 + Min) where 0 ≤ Hour ≤ 23 and 0 ≤ Min ≤ 59. For example, the value 1512 means that the Self-Read will take place at 15:12 of each day.
2) Monthly Freeze Self-Read Time can be set to a zero value or a non-zero value:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on
the formula: Monthly Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.

4.5.5 SOE Log

The PMC-53A-E’s SOE Log can store up to 100 events such as Power-on, Power-off, Digital Input status changes, Digital Output status changes, Setup changes and Setpoint events in its non-volatile memory. Each event record includes the event classification, its relevant parameter values and a timestamp in ±1 ms resolution. The SOE Log can be displayed on the Front Panel or Web Interface or retrieved via communications for display. If there are more than 100 events, the newest event will replace the oldest event on a First-In-First-Out basis. The SOE Log can be reset from the Front Panel or via communications.

4.5.6 Data Recorder (DR) Log

The PMC-53A-E provides five Data Recorders capable of recording a maximum of 16 parameters each with a minimum interval of 60s. The Data Recorder Log is stored in the device’s non-volatile memory and will not suffer any loss in the event of a power failure.
The PMC-53A-E’s 4MB log memory is divided equally into 5 buffers of 800kB each. By default, each DR is allocated one 800kB buffer, which can hold a maximum ~118 days of recording with 16 parameters at 15-minute interval. This is equivalent to having a Recording Depth of ~11,377 data records (~118 days x 24 hours per day x 4 data records per hour).
The Data Recorder can be configured to use more than one 800kB buffer if it’s required to maintain recording for a longer period of time. For example, if the entire 4MB log memory is used for a single Data Recorder, it can be configured to hold a maximum of 592 days (1.62 years) of recording with 16 parameters at 15-minute interval. This is equivalent to having a Recording Depth of 56,888 data records
47
Page 56
CET Electric Technology
No. of Parameters
No. of Records
No. of Parameters
No. of Records
1
68,200
9
18,600
2
51,200
10
17,000
3
40,800
11
15,600
4
34,000
12
14,600
5
29,200
13
13,600
6
25,600
14
12,800
7
22,600
15
12,000
8
20,400
16
11,200
Setup Parameters
Value/Option
Default
Trigger Mode
0=Disabled / 1=Triggered by Timer
1
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
1
Recording Depth
1 to 120,000 (entry)
5760
Recording Interval
60 to 3,456,000 seconds
900 s
Offset Time
0 to 43,200 seconds, 0 indicates no offset
0
Number of Parameters
0 to 16
16
Parameter 1 to 16
See Appendix A for a complete list of parameters
See Appendix B
(592 days x 24 hours per day x 4 data records per hour). In order to do this, it’s necessary to free the log memory occupied by Data Recorders #2 to #5 by setting their respective Number of Parameters and Recording Depth setup parameters to 0.
The PMC-53A-E’s Data Recorder has been enhanced such that it can support a maximum Recording Depth of 120,000 records (compared to the max. of 10,000 in PMC-53A), which is equivalent to 1250 days (~3.4 years) of recording at 15-minute interval. However, only one Data Recorder can be configured with a maximum of 6 parameters and 120,000 records.
The following formula can be used to calculate how many bytes would be required for a single record with n parameters where 0 ≤ n ≤ 16.
No. of Bytes per Record = n x 4 + Timestamp @ 8 bytes
With 16 parameters, the no. of bytes required = 16 x 4 + 8 = 72 bytes. If a Data Recorder is allocated a single 800kB buffer, its Recording Depth = 800kB / 72 bytes = 11,377 records.
It should be noted that the above calculation is used to illustrate the internal organization of the data storage and is only an approximation of the actual implementation. The following table defines how many records are actually available for the different number of parameters in each 800kB buffer.
The programming of the Data Recorder is only supported over communications. Each Data Recorder provides the following setup parameters:
Table 4-13 Setup Parameters for Data Recorder
The Data Recorder Log is only operational when the values of Trigger Mode, Recording Depth, Recording Interval, and Number of Parameters are all non-zero.
The Recording Offset parameter can be used to delay the recording by a fixed time from the Recording Interval. For example, if the Recording Interval parameter is set to 3600 (hourly) and the Recording Offset parameter is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour
every hour, i.e. 00:05, 01:05, 02:05, etc. The value of the Recording Offset parameter should be less than the Recording Interval parameter.

4.6 Time of Use (TOU)

TOU is used for electricity pricing that varies depending on the time of day, day of week, and season. The TOU system allows the user to configure an electricity price schedule inside the PMC-53A-E and accumulate energy consumption into different TOU tariffs based on the time of consumption. TOU programming is only supported through communications.
The TOU feature on PMC-53A-E supports two TOU schedules, which can be switched at a pre-defined time. Each TOU schedule supports:
Up to 12 seasons
48
Page 57
CET Electric Technology
Tariff
DI Function
DI1 = Tariff Switch
DI2 & DI1 = Tariff Switch
DI3, DI2 & DI1 = Tariff Switch
T1
DI1 (0=T1)
DI2 + DI1 (00=T1)
DI3 + DI2 + DI1 (000=T1)
T2
DI1 (1=T2)
DI2 + DI1 (01=T2)
DI3 + DI2 + DI1 (001=T2)
T3
Not Available
DI2 + DI1 (10=T3)
DI3 + DI2 + DI1 (010=T3)
T4
Not Available
DI2 + DI1 (11=T4)
DI3 + DI2 + DI1 (011=T4)
T5
Not Available
Not Available
DI3 + DI2 + DI1 (100=T5)
T6
Not Available
Not Available
DI3 + DI2 + DI1 (101=T6)
T7
Not Available
Not Available
DI3 + DI2 + DI1 (110=T7)
T8
Not Available
Not Available
DI3 + DI2 + DI1 (111=T8)
Setup Parameters
Definition
Options
Daily Profile #
Specify a daily rate schedule which can be divided into a maximum of 12 periods in 15-min intervals. Up to 20 Daily Profiles can be programmed for each TOU schedule.
1 to 20, the first period starts at 00:00 and the last period ends at 24:00.
Season #
A year can be divided into a maximum of 12 seasons. Each season is specified with a Start Date and ends with the next season’s Start Date.
1 to 12, starting from January 1st
Alternate Days #
A day can be defined as an Alternate Day, such as May 1st. Each Alternate Day is assigned a Daily Profile.
1 to 90.
Day Types
Specify the day type of the week. Each day of a week can be assigned a day type such as Weekday1, Weekday2, Weekday3 and Alternate Days. The Alternate Day has the highest priority.
Weekday1, Weekday2, Weekday3 & Alternate Days.
Switching Time
Specify when to switch from one TOU schedule to another. Writing 0xFFFFFFFF to this parameter disables switching between TOU schedules.
Format: YYYYMMDDHH Default=0xFFFFFFFF
90 Holidays or Alternate Days 20 Daily Profiles, each with 12 Periods in 15-minute interval 8 Tariffs
Instead of using the TOU schedule to switch between Tariffs, the PMC-53A-E supports Tariff switching based on the status of DI1 to DI3.
The 3 Digital Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff 1=000, Tariff 2=001, Tariff 3= 010, …, Tariff 7=110 and Tariff 8=111 where DI1 represents the least significant digit and DI3 represents the most significant digit. As soon as DI1, DI2 and/or DI3 are configured as Tariff Switches, the current TOU Tariff will be determined by the status of the DIs, and the TOU Schedule will be ignored. The DI1 Function setup register must first be programmed as a Tariff Switch before configuring DI2 and DI3 with the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse Counter, and DI2 is configured as a Tariff Switch, the TOU will continue to function based on the TOU Schedule. The number of Tariffs supported depends on how many DIs are programmed as a Tariff Switch as indicated in the following table.
Table 4-14 DIs and the Number of Tariffs Setup
Each TOU schedule has the following setup parameters and can only be programmed via communications:
Table 4-15 TOU Setup Parameters
For each of the 8 Tariff Rates, the PMC-53A-E provides the following information: Energy: kWh Import/Export, kvarh Import/Export, kVAh for Per-Phase and Total Peak Demand: kW/kvar/kVA of This Month (Since Last Reset) and Last Month (Before Last Reset). TOU data is available through the Front Panel (excluding Peak Demand for Last Month) and
communications.

4.7 Communications

4.7.1 SNTP

SNTP (Simple Network Time Protocol) can be used to synchronize the PMC-53A-E's clock through the
connected Ethernet port providing that the network has been properly configured for the PMC-53A-E to connect to a SNTP Server, wherever it may reside. The programming of the SNTP setup parameters
49
Page 58
CET Electric Technology
Setup Parameters
Definition
Default
Set Clock
Disable/Enable SNTP
Disabled
Time Zone
See Section 5.11.1 Basic Setup Parameters, Register 6053
26 (GMT+08:00)
Interval
SNTP Time Sync. Interval from 1 to 1440 minutes
60
Server IP
The IP Address of the SNTP Server
192.168.0.94
Setup Parameters
Definition
Options/Default*
Server IP
The IP Address of the SMTP Server
See Note 1)
Port
The IP Port No. for the SMTP Server
0 to 65535, 25*
Sender
Sender’s email address5
See Note 2)
Password
SMTP Server’s logon password for Sender’s email address
See Note 3)
Receiver
Receiver’s email address5
See Note 4)
are supported via the Web Interface and Modbus communications. The SNTP server provides the following setup parameters:
Table 4-17 SNTP Setup Parameters

4.7.2 SMTP

The PMC-53A-E can be configured to send Alarm Emails based on the Simple Mail Transfer Protocol (SMTP).
Table 4-18 SMTP Setup Parameters
Notes:
1) The SMTP Server’s IP Address, for example, 192.40.165.68, should be programmed into the Server IP setup parameter.
2) The default Sender’s email address is PMC-53A-E@foxmail.com.
3) The Password should not exceed 20 ASCII Characters.
4) The default Receiver’s email address is PMC-53A-E@163.com. Only one Receiver email address is supported.
5) Both the Sender and Receiver setup parameters should not exceed 36 ASCII characters.
Here is an example on how to configure a Setpoint to trigger an Alarm Email:
1. Click on Setup -> Comm. and configure the SMTP settings as shown below. Please note that all the
SMTP setup parameters should be entered correctly.
2. Click Save to store the configuration in the PMC-53A-E. The message “Successful” will appear if
the configuration is accepted by the meter. Then click Send as illustrated in the above figure. The message “Successful” will appear if a test email has been successfully sent to the Receiver, who should receive the following Test Email. However, if the “Successful” message is not displayed, it means that the test email has not been sent successfully because of incorrect configuration.
Figure 4-4 Setup SMTP via Web Browser
50
Page 59
CET Electric Technology
Figure 4-5 Example of a Test Email
3. Configure an Over ULL Setpoint via the Front Panel as illustrated below. Set Trigger1 as Email.
Figure 4-6 Over Ull Setpoint Configuration via Panel
4. When the ULL measurement goes above the configured Over Limit of 99.70Vac, an Alarm Email
will be sent to the Receiver by the PMC-53A-E, providing that the SMTP configuration is correct. In addition, an event will be recorded in the SOE Log to indicate that an Alarm Email has been triggered by a Setpoint.
Figure 4-7 Email Alarm Results

4.7.3 Ethernet Gateway

The PMC-53A-E’s Ethernet Gateway feature supports Modbus communications between the Master Software (e.g. PecStar iEMS) on a Local Area Network and other RS485-enabled devices (e.g. PMC-53A) via the PMC-53A-E’s Ethernet (P2) and RS485 port (P1). This eliminates the need for an additional, external Ethernet-to-RS485 Gateway, simplifies the overall network design and saves cost. The Master Software sends a “Modbus RTU over TCP/IP” packet (Modbus RTU packet, i.e. the payload, encapsulated in a TCP/IP frame) to the PMC-53A-E’s Ethernet port at its IP Address and IP Port No. 6000. The PMC­53A-E receives this “Modbus RTU over TCP/IP” packet at its Ethernet port, extracts the “encapsulated” Modbus RTU packet, i.e. the payload, from the TCP/IP frame and then in turn forwards it to its RS485 port (P1). The RS485-enabled device receives the Modbus RTU packet and sends its response back to the PMC-53A-E, which in turn encapsulates the Modbus RTU response packet in a TCP/IP frame, sends it back to the Master Software over Ethernet and completes the transaction.
The following illustrates the steps of configuring the PMC-53AE’s Ethernet Gateway:
51
Page 60
CET Electric Technology
1) Go to Setup-> Comm.-> RS485 (P1) to change the Protocol setup parameter from the default
setting of Modbus to Gateway, either via the Web Interface or Front Panel .
Figure 4-7 Select “Gateway” Mode on Web Server
2) Connect the RS485-enabled devices (i.e. PMC-53A) to the RS485 port (P1) of the PMC-53A-E.
Figure 4-8 Typical Application for Ethernet Gateway
3) Configure the Master Software (e.g. PecStar iEMS) on the WorkStation to communicate with
the RS485-enabled devices via PMC-53A-E’s Ethernet port at IP port No. 6000. It should be noted that the Master Software must support the Modbus RTU over TCP/IP protocol for this to work.
4) Make sure the serial port settings such as Baud Rate and Data Format are identical between
the PMC-53A-E’s RS485 port and the RS485-enabled devices.
5) The Master Software should be able to communicate with the RS485-enabled devices via the
PMC-53A-E’s Ethernet Gateway, providing that all the necessary configuration is correct.

4.8 Diagnostics

The PMC-53A-E provides wiring error detection for 3P4W and 3P3W wiring modes and allows the user to check for potential problems, especially during the initial commissioning stage. The following wiring errors may be detected:
Frequency Out-of-Range Voltage/Current Phase Loss Incorrect Voltage and Current Phase Sequence kW Direction per phase and Total Possible Incorrect CT Polarity Disconnection of Residual Current Input
52
Page 61
CET Electric Technology
Bit
Event
B00
Summary Bit (Set if any other bit is set)
B01
Frequency is out of range (45 to 65Hz) (3P4W or 3P3W)
B02
Voltage Phase Loss (3P4W only)
B03
B04-B05
Reserved
B06
B07
B08
Negative kW Total may be abnormal (3P4W or 3P3W)
B09
Negative kWa may be abnormal (3P4W only)
B10
Negative kWb may be abnormal (3P4W only)
B11
Negative kWc may be abnormal (3P4W only)
B12
CTa polarity may be reversed (3P4W only)
B13
CTb polarity may be reversed (3P4W only)
B14
CTc polarity may be reversed (3P4W only)
B15
Disconnection of Residual Current Input
Please note that the error detection above is based on the following assumptions:
The Voltage and Current Phase Sequences are consistent kW is kW Import, which means the kW is over 0 3P4W wiring mode supports all detections 3P3W wiring mode does not support the detection of Voltage Phase Loss, kW Direction per phase
and CT Polarity The Diagnostic register (0101) illustrated below indicates the status of the various wiring error detection with a bit value of 1 meaning active and 0 meaning inactive:
Current Phase Loss(Register 6004) (3P4W or 3P3W)
Voltage Phase Reversal (3P4W only)
Current Phase Reversal (3P4W or 3P3W)
Table 4-19 Wiring Diagnostic Register

4.8.1 Voltage Phase Loss

The Voltage Phase Loss diagnostic is based on the following logic diagram (During Voltage Phase Loss, the Voltage Phase Reversal detection is invalid).
where Un and Iprim represents the Voltage and Current nominal in Primary values
Figure 4-9 Voltage Phase Loss Logic

4.8.2 Current Phase Loss

The Current Phase Loss diagnostic is based on the two detections below (During Current Phase Loss, the Current Phase Reversal Detection is invalid):
1. Max {Ia, Ib, Ic} ≥ 0.1% Iprim
2. Min {Ia, Ib, Ic} = 0

4.8.3 Phase Reversal

The Phase Reversal is based on the Voltage/Current Angles detection. Following is the logic diagram.
Figure 4-10 Phase Reversal Logic
53
Page 62
CET Electric Technology
Format
Description
UINT16/INT16
Unsigned/Signed 16-bit Integer
UINT32/INT32
Unsigned/Signed 32-bit Integer
Float
IEEE 754 32-bit
Single Precision Floating Point Number
Register
Property
Description
Format
Scale
Unit
0000
RO
Uan
Float
x1
V
0002
RO
Ubn
Float
0004
RO
Ucn
Float
0006
RO
Uln Average
Float
0008
RO
Uab
Float
0010
RO
Ubc
Float
0012
RO
Uca
Float
0014
RO
Ull Average
Float
0016
RO
Ia
Float A 0018
RO
Ib
Float
0020
RO
Ic
Float
0022
RO
I Average
Float
0024
RO
kWa
Float W 0026
RO
kWb
Float
0028
RO
kWc
Float
0030
RO
kW Total
Float
0032
RO
kvara
Float
var
0034
RO
kvarb
Float
0036
RO
kvarc
Float
0038
RO
kvar Total
Float
0040
RO
kVAa
Float
VA 0042
RO
kVAb
Float
0044
RO
kVAc
Float
0046
RO
kVA Total
Float
0048
RO
PFa
Float - 0050
RO
PFb
Float
-
0052
RO
PFc
Float - 0054
RO
PF Total
Float - 0056
RO
Frequency
Float
Hz
0058
RO
Uan/Uab (3P3W) Angle
Float ° 0060
RO
Ubn/Ubc (3P3W) Angle
Float ° 0062
RO
Ucn/Uca (3P3W) Angle
Float ° 0064
RO
Ia Angle
Float ° 0066
RO
Ib Angle
Float ° 0068
RO
Ic Angle
Float ° 0070
RO
In (Calculated)
Float A 0072
RO
I41
Float
0074
RO
Displacement PFa
Float - 0076
RO
Displacement PFb
Float
-
0078
RO
Displacement PFc
Float - 0080
RO
Displacement PF Total
Float
-

Chapter 5 Modbus Register Map

This chapter provides a complete description of the Modbus register map (Protocol Version 1.0) for the PMC-53A-E to facilitate the development of 3rd party communications driver for accessing information on the PMC-53A-E. For a complete Modbus Protocol Specification, please visit http://www.modbus.org. The PMC-53A-E supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
The following table provides a description of the different data formats used for the Modbus registers. The PMC-53A-E uses the Big Endian byte ordering system.

5.1 Basic Measurements

54
Page 63
CET Electric Technology
0082
RO
AI1 Scaled
Float
-
0084
RO
Iresidual1
Float
-
0086~0095
RO
Reserved
Float
-
0096
RO
DI Status
1,2
UINT16
-
0097
RO
Reserved
UINT16
-
0098
RO
DO Status
1,3
UINT16
-
0099
RO
Reserved
UINT16
-
0100
RO
Setpoint Status4
UINT16
-
0101
RO
Wiring Diagnostic Status5
UINT16
-
0102
RO
SOE Log Pointer6
UINT32
-
0104
RO
Device Operating Time
7
UINT32
x0.1
0.1Hour
0106~0111
RO
Reserved
UINT32 -
0112
RO
Phase A Fundamental kW
Float
x1
W
0114
RO
Phase B Fundamental kW
Float
0116
RO
Phase C Fundamental kW
Float
0118
RO
Total Fundamental kW
Float
0120
RO
Total Harmonic kW
Float
0122
RO
DR #1 Log Pointer6
UINT32 - -
0124
RO
DR #2 Log Pointer6
UINT32 - -
0126
RO
DR #3 Log Pointer6
UINT32 - -
0128
RO
DR #4 Log Pointer6
UINT32 - -
0130
RO
DR #5 Log Pointer6
UINT32 - -
0132
RO
Daily Freeze Log Pointer8
UINT16 - -
0133
RO
Monthly Freeze Log Pointer8
UINT16 - -
0134~0148
RO
Reserved
UINT32 -
0150
RO
Uan/Uab (3P3W, 1P2W LL) Fundamental
Float
x1
V
0152
RO
Ubn/Ubc (3P3W) Fundamental9
Float
0154
RO
Ucn/Uca (3P3W) Fundamental9
Float
0156
RO
Ia Fundamental
Float
x1
A
0158
RO
Ib Fundamental9
Float
0160
RO
Ic Fundamental9
Float
0162
RO
U1 (Positive Sequence Voltage)10
Float
x1
V
0164
RO
U2 (Negative Sequence Voltage)10
Float
0166
RO
U0 (Zero Sequence Voltage)10
Float
0168
RO
I1 (Positive Sequence Current)10
Float
x1
A
0170
RO
I2 (Negative Sequence Current)10
Float
0172
RO
I0 (Zero Sequence Current)10
Float
Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Setpoint9
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Setpoint8
Setpoint7
Setpoint6
Setpoint5
Setpoint4
Setpoint3
Setpoint2
Setpoint1
Bit
Event
B00
Summary Bit (Set if any other bit is set)
B01
Frequency is out of range (45 to 65Hz) (3P4W or 3P3W)
B02
Voltage Phase Loss (Register 6000) (3P4W only)
B03
Current Phase Loss (Register 6004) (3P4W or 3P3W)
B04
Reserved
B05
Reserved
B06
Voltage Phase Reversal (3P4W only)
B07
Current Phase Reversal (3P4W or 3P3W)
B08
Negative kW Total may be abnormal (3P4W or 3P3W)
B09
Negative kWa is may be abnormal (3P4W only)
B10
Negative kWb may be abnormal (3P4W only)
B11
Negative kWc may be abnormal (3P4W only)
B12
CTa polarity may be reversed (3P4W only)
Table 5-1 Basic Measurements
Notes:
1) I4, AI, Ir, DI Status and DO Status are only meaningful if the meter is equipped with the corresponding option.
2) For the DI Status register, the bit values of B0 to B3 represent the states of DI1 to DI4, respectively, with “1” meaning
Active (Closed) and “0” meaning Inactive (Open).
3) For the DO Status register, the bit values of B0 to B1 represent the states of DO1 and DO2, respectively, with “1”
meaning Active (Closed) and “0” meaning Inactive (Open).
4) For the Setpoint Status register, the bit values indicate the various Setpoint states with “1” meaning Active and “0”
meaning Inactive. The following table illustrates the details of the Alarm Status register.
Table 5-2 Setpoint Alarm Status Register
5) The following table illustrates the Wiring Diagnostic Status with 0 meaning Normal and 1 meaning Abnormal:
55
Page 64
CET Electric Technology
B13
CTb polarity may be reversed (3P4W only)
B14
CTc polarity may be reversed (3P4W only)
B15
Disconnection of Residual Current Input
Register
Property
Description
Format
Scale
Unit
0500
RW
kWh Import
INT32
x0.1
kWh
0502
RW
kWh Export
INT32
0504
RO
kWh Net
INT32
0506
RO
kWh Total
INT32
0508
RW
kvarh Import
INT32
kvarh
0510
RW
kvarh Export
INT32
0512
RO
kvarh Net
INT32
0514
RO
kvarh Total
INT32
0516
RW
kVAh
INT32
kVAh
0518
RW
kvarh Q1
INT32
kvarh
0520
RW
kvarh Q2
INT32
0522
RW
kvarh Q3
INT32
0524
RW
kvarh Q4
INT32
0526
RW
kWh Import of T1
INT32
kWh
0528
RW
kWh Export of T1
INT32
0530
RW
kvarh Import of T1
INT32
kvarh
0532
RW
kvarh Export of T1
INT32
0534
RW
kVAh of T1
INT32
kVAh
0536
RW
kWh Import of T2
INT32
kWh
0538
RW
kWh Export of T2
INT32
0540
RW
kvarh Import of T2
INT32
kvarh
0542
RW
kvarh Export of T2
INT32
0544
RW
kVAh of T2
INT32
kVAh
0546
RW
kWh Import of T3
INT32
kWh
0548
RW
kWh Export of T3
INT32
0550
RW
kvarh Import of T3
INT32
kvarh
0552
RW
kvarh Export of T3
INT32
0554
RW
kVAh of T3
INT32
kVAh
0556
RW
kWh Import of T4
INT32
kWh
0558
RW
kWh Export of T4
INT32
0560
RW
kvarh Import of T4
INT32
kvarh
0562
RW
kvarh Export of T4
INT32
0564
RW
kVAh of T4
INT32
kVAh
0566
RW
kWh Import of T5
INT32
kWh
Table 5-3 Wiring Diagnostic Status Register
6) The PMC-53A-E has one SOE Log and five DR Logs. Each of these logs has a Log Pointer that indicates its current logging
position. The range of the Log Pointer is between 0 and 0xFFFFFFFF, and it is incremented by one for every new log generated and will roll over to 0 if its current value is 0xFFFFFFFF. A value of zero indicates that the SOE or DRx does not contain any Log. If a Clear Log is performed via communications, its Log Pointer will be reset to zero and immediately incremented by one with a new “Clear SOE via Communications” event. When the number of events is larger than the Log Depth, only the latest 100 SOE Logs (up to 120000 DR Logs) will be stored on a FIFO basis.
Use the following equation to determine the latest log location:
Latest Log Location = Modulo [Log Pointer/Log Depth] where Log Pointer may be one of the following: SOE Log Pointer, DR1 - DR5 Log Pointers and Log Depth is as follows:
SOE Log Depth = 100 (fixed)
7) The Device Operating Time means the accumulated Operating Time whenever any per-phase Current exceeds Current
Threshold of Device Operating Time (Register #6049). The Device Operating Time data is stored in non-volatile memory
and will not suffer any loss in the event of a power failure.
8) The range of the Log Pointer for Daily Freeze Log and Monthly Freeze Log is between 0 and 0xFFFF.
9) When the Wiring Mode is 1P2W L-N or 1P2W L-L, the L2 and L3 phase voltages and currents have no meaning, and their
registers are reserved.
10) When the Wiring Mode is 1P2W L-N, 1P2W L-L or 1P3W, the Sequence Components U1/I1, U2/I2 and U0/I0 have no
meaning and their registers are reserved.
DRx Log Depth = DRx Recording Depth (see Section 5.11.5 Data Recorder Setup)

5.2 Energy Measurements

The Energy registers have a maximum value of 999,999,999 and will roll over to zero automatically when it is reached. The actual energy value is 0.1 times of the register value.

5.2.1 3-Phase Total Energy Measurements

56
Page 65
CET Electric Technology
0568
RW
kWh Export of T5
INT32
0570
RW
kvarh Import of T5
INT32
kvarh
0572
RW
kvarh Export of T5
INT32
0574
RW
kVAh of T5
INT32
kVAh
0576
RW
kWh Import of T6
INT32
kWh
0578
RW
kWh Export of T6
INT32
0580
RW
kvarh Import of T6
INT32
kvarh
0582
RW
kvarh Export of T6
INT32
0584
RW
kVAh of T6
INT32
kVAh
0586
RW
kWh Import of T7
INT32
kWh
0588
RW
kWh Export of T7
INT32
0590
RW
kvarh Import of T7
INT32
kvarh
0592
RW
kvarh Export of T7
INT32
0594
RW
kVAh of T7
INT32
kVAh
0596
RW
kWh Import of T8
INT32
kWh
0598
RW
kWh Export of T8
INT32
0600
RW
kvarh Import of T8
INT32
kvarh
0602
RW
kvarh Export of T8
INT32
0604
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0620
RW
kWh Import
INT32
x0.1
kWh
0622
RW
kWh Export
INT32
0624
RO
kWh Net
INT32
0626
RO
kWh Total
INT32
0628
RW
kvarh Import
INT32
kvarh
0630
RW
kvarh Export
INT32
0632
RO
kvarh Net
INT32
0634
RO
kvarh Total
INT32
0636
RW
kVAh
INT32
kVAh
0638
RW
kvarh Q1
INT32
kWh
0640
RW
kvarh Q2
INT32
0642
RW
kvarh Q3
INT32
0644
RW
kvarh Q4
INT32
0646
RW
kWh Import of T1
INT32
kvarh
0648
RW
kWh Export of T1
INT32
0650
RW
kvarh Import of T1
INT32
kWh
0652
RW
kvarh Export of T1
INT32
0654
RW
kVAh of T1
INT32
0656
RW
kWh Import of T2
INT32
kWh
0658
RW
kWh Export of T2
INT32
0660
RW
kvarh Import of T2
INT32
kvarh
0662
RW
kvarh Export of T2
INT32
0664
RW
kVAh of T2
INT32
kVAh
0666
RW
kWh Import of T3
INT32
kWh
0668
RW
kWh Export of T3
INT32
0670
RW
kvarh Import of T3
INT32
kvarh
0672
RW
kvarh Export of T3
INT32
0674
RW
kVAh of T3
INT32
kVAh
0676
RW
kWh Import of T4
INT32
kWh
0678
RW
kWh Export of T4
INT32
0680
RW
kvarh Import of T4
INT32
kvarh
0682
RW
kvarh Export of T4
INT32
0684
RW
kVAh of T4
INT32
kVAh
0686
RW
kWh Import of T5
INT32
kWh
0688
RW
kWh Export of T5
INT32
0690
RW
kvarh Import of T5
INT32
kvarh
0692
RW
kvarh Export of T5
INT32
0694
RW
kVAh of T5
INT32
kVAh
0696
RW
kWh Import of T6
INT32
kWh
0698
RW
kWh Export of T6
INT32
0700
RW
kvarh Import of T6
INT32
kvarh
0702
RW
kvarh Export of T6
INT32
Table 5-4 3-phase Total Energy Measurements

5.2.2 Phase A (L1) Energy Measurements

57
Page 66
CET Electric Technology
0704
RW
kVAh of T6
INT32
kVAh
0706
RW
kWh Import of T7
INT32
kWh
0708
RW
kWh Export of T7
INT32
0710
RW
kvarh Import of T7
INT32
kvarh
0712
RW
kvarh Export of T7
INT32
0714
RW
kVAh of T7
INT32
kVAh
0716
RW
kWh Import of T8
INT32
kWh
0718
RW
kWh Export of T8
INT32
0720
RW
kvarh Import of T8
INT32
kvarh
0722
RW
kvarh Export of T8
INT32
0724
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0740
RW
kWh Import
INT32
x0.1
kWh
0742
RW
kWh Export
INT32
0744
RO
kWh Net
INT32
0746
RO
kWh Total
INT32
0748
RW
kvarh Import
INT32
kvarh
0750
RW
kvarh Export
INT32
0752
RO
kvarh Net
INT32
0754
RO
kvarh Total
INT32
0756
RW
kVAh
INT32
kVAh
0758
RW
kvarh Q1
INT32
kvarh
0760
RW
kvarh Q2
INT32
0762
RW
kvarh Q3
INT32
0764
RW
kvarh Q4
INT32
0766
RW
kWh Import of T1
INT32
kWh
0768
RW
kWh Export of T1
INT32
0770
RW
kvarh Import of T1
INT32
kvarh
0772
RW
kvarh Export of T1
INT32
0774
RW
kVAh of T1
INT32
kVAh
0776
RW
kWh Import of T2
INT32
kWh
0778
RW
kWh Export of T2
INT32
0780
RW
kvarh Import of T2
INT32
kvarh
0782
RW
kvarh Export of T2
INT32
0784
RW
kVAh of T2
INT32
kVAh
0786
RW
kWh Import of T3
INT32
kWh
0788
RW
kWh Export of T3
INT32
0790
RW
kvarh Import of T3
INT32
kvarh
0792
RW
kvarh Export of T3
INT32
0794
RW
kVAh of T3
INT32
kVAh
0796
RW
kWh Import of T4
INT32
kWh
0798
RW
kWh Export of T4
INT32
0800
RW
kvarh Import of T4
INT32
kvarh
0802
RW
kvarh Export of T4
INT32
0804
RW
kVAh of T4
INT32
kVAh
0806
RW
kWh Import of T5
INT32
kWh
0808
RW
kWh Export of T5
INT32
0810
RW
kvarh Import of T5
INT32
kvarh
0812
RW
kvarh Export of T5
INT32
0814
RW
kVAh of T5
INT32
kVAh
0816
RW
kWh Import of T6
INT32
kWh
0818
RW
kWh Export of T6
INT32
0820
RW
kvarh Import of T6
INT32
kvarh
0822
RW
kvarh Export of T6
INT32
0824
RW
kVAh of T6
INT32
kVAh
0826
RW
kWh Import of T7
INT32
kWh
0828
RW
kWh Export of T7
INT32
0830
RW
kvarh Import of T7
INT32
kvarh
0832
RW
kvarh Export of T7
INT32
0834
RW
kVAh of T7
INT32
kVAh
0836
RW
kWh Import of T8
INT32
kWh
0838
RW
kWh Export of T8
INT32
Table 5-5 Phase A Energy Measurements

5.2.3 Phase B (L2) Energy Measurements

58
Page 67
CET Electric Technology
0840
RW
kvarh Import of T8
INT32
kvarh
0842
RW
kvarh Export of T8
INT32
0844
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0860
RW
kWh Import
INT32
x0.1
kWh
0862
RW
kWh Export
INT32
0864
RO
kWh Net
INT32
0866
RO
kWh Total
INT32
0868
RW
kvarh Import
INT32
kvarh
0870
RW
kvarh Export
INT32
0872
RO
kvarh Net
INT32
0874
RO
kvarh Total
INT32
0876
RW
kVAh
INT32
kVAh
0878
RW
kvarh Q1
INT32
kvarh
0880
RW
kvarh Q2
INT32
0882
RW
kvarh Q3
INT32
0884
RW
kvarh Q4
INT32
0886
RW
kWh Import of T1
INT32
kWh
0888
RW
kWh Export of T1
INT32
0890
RW
kvarh Import of T1
INT32
kvarh
0892
RW
kvarh Export of T1
INT32
0894
RW
kVAh of T1
INT32
kVAh
0896
RW
kWh Import of T2
INT32
kWh
0898
RW
kWh Export of T2
INT32
0900
RW
kvarh Import of T2
INT32
kvar
0902
RW
kvarh Export of T2
INT32
0904
RW
kVAh of T2
INT32
kVAh
0906
RW
kWh Import of T3
INT32
kWh
0908
RW
kWh Export of T3
INT32
0910
RW
kvarh Import of T3
INT32
kvarh
0912
RW
kvarh Export of T3
INT32
0914
RW
kVAh of T3
INT32
kVAh
0916
RW
kWh Import of T4
INT32
kWh
0918
RW
kWh Export of T4
INT32
0920
RW
kvarh Import of T4
INT32
kvarh
0922
RW
kvarh Export of T4
INT32
0924
RW
kVAh of T4
INT32
kVAh
0926
RW
kWh Import of T5
INT32
kWh
0928
RW
kWh Export of T5
INT32
0930
RW
kvarh Import of T5
INT32
kvarh
0932
RW
kvarh Export of T5
INT32
0934
RW
kVAh of T5
INT32
kVAh
0936
RW
kWh Import of T6
INT32
kWh
0938
RW
kWh Export of T6
INT32
0940
RW
kvarh Import of T6
INT32
kvarh
0942
RW
kvarh Export of T6
INT32
0944
RW
kVAh of T6
INT32
kVAh
0946
RW
kWh Import of T7
INT32
kWh
0948
RW
kWh Export of T7
INT32
0950
RW
kvarh Import of T7
INT32
kvarh
0952
RW
kvarh Export of T7
INT32
0954
RW
kVAh of T7
INT32
kVAh
0956
RW
kWh Import of T8
INT32
kWh
0958
RW
kWh Export of T8
INT32
0960
RW
kvarh Import of T8
INT32
kvarh
0962
RW
kvarh Export of T8
INT32
0964
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
1100
RW
kWh Import
INT32
x0.1
kWh
Table 5-6 Phase B Energy Measurements

5.2.4 Phase C (L3) Energy Measurements

Table 5-7 Phase C Energy Measurements

5.2.5 Interval Energy Measurements

59
Page 68
CET Electric Technology
1102
RW
kWh Export
INT32
1104
RW
kvarh Import
INT32
kvarh
1106
RW
kvarh Export
INT32
1108
RW
kVAh
INT32
kVAh
Register
Property
Description
Format
Range/Unit
1200
RW
DI1 Pulse Counter
UINT32
0 to 1,000,000,000
DI Pulse Counter = Pulse Counter
x DI Pulse Weight
1202
RW
DI2 Pulse Counter
UINT32
1204
RW
DI3 Pulse Counter
UINT32
1206
RW
DI4 Pulse Counter
UINT32
Register
Property
Description
Format
Scale
Unit
1300
RO
Ia TDD
Float
x1
%
(0.1 means
10%)
1302
RO
Ib TDD
Float
1304
RO
Ic TDD
Float
1306
RO
Ia TDD Odd
Float
1308
RO
Ib TDD Odd
Float
1310
RO
Ic TDD Odd
Float
1312
RO
Ia TDD Even
Float
1314
RO
Ib TDD Even
Float
1316
RO
Ic TDD Even
Float
1318
RO
Ia K-Factor
Float
-
1320
RO
Ib K-Factor
Float
1322
RO
Ic K-Factor
Float
1324
RO
Ia Crest Factor
Float
1326
RO
Ib Crest Factor
Float
1328
RO
Ic Crest Factor
Float
1330
RO
Voltage Unbalance
Float
1332
RO
Current Unbalance
Float
Register
Property
Description
Format
Scale
Unit
1400
RO
Ia THD
Float
x1
%
(0.1 means 10%)
1402
RO
Ib THD
Float
1404
RO
Ic THD
Float
1406
RO
Ia TOHD
Float
1408
RO
Ib TOHD
Float
1410
RO
Ic TOHD
Float
1412
RO
Ia TEHD
Float
1414
RO
Ib TEHD
Float
1416
RO
Ic TEHD
Float
1418
RO
Ia HD02
Float
1420
RO
Ib HD02
Float
1422
RO
Ic HD02
Float
1424~1590
RO
Float
1592
RO
Ia HD31
Float
1594
RO
Ib HD31
Float
1596
RO
Ic HD31
Float
Table 5-8 Interval Energy Measurements
Note:
1) The EN Period (Register# 6047) determines how long the Interval Energy Measurements will be updated. For example, if
EN Period = 60 min, the Interval Energy Measurements will be refreshed hourly on the hour.

5.3 DI Pulse Counters

Table 5-9 DI Pulse Counter

5.4 Power Quality Measurements

5.4.1 Basic PQ Measurements

Table 5-10 Power Quality Measurements

5.4.2 Current Harmonic Measurements

Table 5-11 Current Harmonic Measurements
60
Page 69
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
1600
RO
Uan/Uab THD
Float
x1
%
(0.1 means 10%)
1602
RO
Ubn/Ubc THD
Float
1604
RO
Ucn/Uca THD
Float
1606
RO
Uan/Uab TOHD
Float
1608
RO
Ubn/Ubc TOHD
Float
1610
RO
Ucn/Uca TOHD
Float
1612
RO
Uan/Uab TEHD
Float
1614
RO
Ubn/Ubc TEHD
Float
1616
RO
Ucn/Uca TEHD
Float
1618
RO
Uan/Uab HD02
Float
1620
RO
Ubn/Ubc HD02
Float
1622
RO
Ucn/Uca HD02
Float
1624~1790
RO
Float
1792
RO
Uan/Uab HD31
Float
1794
RO
Ubn/Ubc HD31
Float
1796
RO
Ucn/Uca HD31
Float
Register
Property
Description
Format
Scale
Unit
3000
RO
Ia
Float
x1
A
3002
RO
Ib
Float
3004
RO
Ic
Float
3006
RO
kW Total
Float
x1 W 3008
RO
kvar Total
Float
x1
var
3010
RO
kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
3200
RO
Ia
Float
x1
A
3202
RO
Ib
Float
3204
RO
Ic
Float
3206
RO
kW Total
Float
x1
W
3208
RO
kvar Total
Float
x1
var
3210
RO
kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
3400~3405
RO
Ia
See
Section 5.5.5
Demand Data
Structure
x1
A
3406~3411
RO
Ib
3412~3417
RO
Ic
3418~3423
RO
kW Total
W
3424~3429
RO
kvar Total
var
3430~3435
RO
kVA Total
VA
3436~3441
RO
kW Total of T1
W
3442~3447
RO
kvar Total of T1
var
3448~3453
RO
kVA Total of T1
VA
3454~3459
RO
kW Total of T2
W
3460~3465
RO
kvar Total of T2
var
3466~3471
RO
kVA Total of T2
VA
3472~3477
RO
kW Total of T3
W

5.4.3 Voltage Harmonic Measurements

Table 5-12 Voltage Harmonic Measurements
Notes:
1) When the Wiring Mode is 3P3W or 1P2W L-L, the phase A/B/C Voltage THD/TOHD/TEHD/HDxx mean phase AB/BC/CA
Voltage THD/TOHD/TEHD/HDxx.
2) When the Wiring Mode is 1P2W L-N or 1P2W L-L, the L2 and L3 phase voltages THD/TOHD/TEHD/HDxx have no meaning,
and their registers are reserved. When the Wiring Mode is 1P3W L-N, the L3 phase voltages THD/TOHD/TEHD/HDxx have no meaning, and their registers are reserved.

5.5 Demands

5.5.1 Present Demands

Table 5-13 Present Demand Measurements

5.5.2 Predicted Demands

Table 5-14 Predicted Demand Measurements

5.5.3 Peak Demand Log of This Month (Since Last Reset)

61
Page 70
CET Electric Technology
3478~3483
RO
kvar Total of T3
var
3484~3489
RO
kVA Total of T3
VA
3490~3495
RO
kW Total of T4
W
3496~3501
RO
kvar Total of T4
var
3502~3507
RO
kVA Total of T4
VA
3508~3513
RO
kW Total of T5
W
3514~3519
RO
kvar Total of T5
var
3520~3525
RO
kVA Total of T5
VA
3526~3531
RO
kW Total of T6
W
3532~3537
RO
kvar Total of T6
var
3538~3543
RO
kVA Total of T6
VA
3544~3549
RO
kW Total of T7
W
3550~3555
RO
kvar Total of T7
var
3556~3561
RO
kVA Total of T7
VA
3562~3567
RO
kW Total of T8
W
3568~3573
RO
kvar Total of T8
var
3574~3579
RO
kVA Total of T8
VA
Register
Property
Description
Format
Scale
Unit
3600~3605
RO
Ia
See
Section 5.5.5
Demand Data
Structure
x1
A
3606~3611
RO
Ib
3612~3617
RO
Ic
3618~3623
RO
kW Total
W
3624~3629
RO
kvar Total
var
3630~3635
RO
kVA Total
VA
3636~3641
RO
kW Total of T1
W
3642~3647
RO
kvar Total of T1
var
3648~3653
RO
kVA Total of T1
VA
3654~3659
RO
kW Total of T2
W
3660~3665
RO
kvar Total of T2
var
3666~3671
RO
kVA Total of T2
VA
3672~3677
RO
kW Total of T3
W
3678~3683
RO
kvar Total of T3
var
3684~3689
RO
kVA Total of T3
VA
3690~3695
RO
kW Total of T4
W
3696~3701
RO
kvar Total of T4
var
3702~3707
RO
kVA Total of T4
VA
3708~3713
RO
kW Total of T5
W
3714~3719
RO
kvar Total of T5
var
3720~3725
RO
kVA Total of T5
VA
3726~3731
RO
kW Total of T6
W
3732~3737
RO
kvar Total of T6
var
3738~3743
RO
kVA Total of T6
VA
3744~3749
RO
kW Total of T7
W
3750~3755
RO
kvar Total of T7
var
3756~3761
RO
kVA Total of T7
VA
3762~3767
RO
kW Total of T8
W
3768~3773
RO
kvar Total of T8
var
3774~3779
RO
kVA Total of T8
VA
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Peak Demand Value
Table 5-15 Peak Demand Log of This Month (Since Last Reset)

5.5.4 Peak Demand Log of Last Month (Before Last Reset)

Table 5-16 Peak Demand Log of Last Month (Before Last Reset)

5.5.5 Demand Data Structure

Table 5-17 Demand Data Structure
62
Page 71
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
4000~4005
RO
Uan
See 5.6.5
Max/Min Log
Structure
x1
V
4006~4011
RO
Ubn
4012~4017
RO
Ucn
4018~4023
RO
Uln Average
4024~4029
RO
Uab
4030~4035
RO
Ubc
4036~4041
RO
Uca
4042~4047
RO
Ull Average
4048~4053
RO
Ia
x1
A
4054~4059
RO
Ib
4060~4065
RO
Ic
4066~4071
RO
I Average
4072~4077
RO
kWa
x1
W
4078~4083
RO
kWb
4084~4089
RO
kWc
4090~4095
RO
kW Total
4096~4101
RO
kvara
x1
var
4102~4107
RO
kvarb
4108~4113
RO
kvarc
4114~4119
RO
kvar Total
4120~4125
RO
kVAa
x1
VA
4126~4131
RO
kVAb
4132~4137
RO
kVAc
4138~4143
RO
kVA Total
4144~4149
RO
PFa
x1
-
4150~4155
RO
PFb
4156~4161
RO
PFc
4162~4167
RO
PF Total
4168~4173
RO
Frequency
x1
Hz
4174~4179
RO
In (Calculated)
x1
A
4180~4185
RO
Uan/Uab THD
x1
-
4186~4191
RO
Ubn/Ubc THD
4192~4197
RO
Ucn/Uca THD
4198~4203
RO
Ia THD
4204~4209
RO
Ib THD
4210~4215
RO
Ic THD
4216~4221
RO
Ia K-Factor
4222~4227
RO
Ib K-Factor
4228~4233
RO
Ic K-Factor
4234~4239
RO
Ia Crest Factor
4240~4245
RO
Ib Crest Factor
4246~4251
RO
Ic Crest Factor
4252~4257
RO
Voltage Unbalance
4258~4263
RO
Current Unbalance
4264~4269
RO
I4
x1
A
4270~4275
RO
Ir (Residual Current)
Register
Property
Description
Format
Scale
Unit
4300~4305
RO
Uan
See 5.6.5
Max/Min Log
Structure
x1
V
4306~4311
RO
Ubn
4312~4317
RO
Ucn
4318~4323
RO
Uln Average
4324~4329
RO
Uab
4330~4335
RO
Ubc
4336~4341
RO
Uca
4342~4347
RO
Ull Average
4348~4353
RO
Ia
x1
A
4354~4359
RO
Ib
4360~4365
RO
Ic

5.6 Max/Min Log

5.6.1 Max Log of This Month (Since Last Reset)

Table 5-18 Max Log of This Month (Since Last Reset)

5.6.2 Min Log of This Month (Since Last Reset)

63
Page 72
CET Electric Technology
4366~4371
RO
I Average
4372~4377
RO
kWa
x1
W
4378~4383
RO
kWb
4384~4389
RO
kWc
4390~4395
RO
kW Total
4396~4401
RO
kvara
x1
var
4402~4407
RO
kvarb
4408~4413
RO
kvarc
4414~4419
RO
kvar Total
4420~4425
RO
kVAa
x1
VA
4426~4431
RO
kVAb
4432~4437
RO
kVAc
4438~4443
RO
kVA Total
4444~4449
RO
PFa
x1
-
4450~4455
RO
PFb
4456~4461
RO
PFc
4462~4467
RO
PF Total
4468~4473
RO
Frequency
x1
Hz
4474~4479
RO
In (Calculated)
x1
A
4480~4485
RO
Uan/Uab THD
x1
-
4486~4491
RO
Ubn/Ubc THD
4492~4497
RO
Ucn/Uca THD
4498~4503
RO
Ia THD
4504~4509
RO
Ib THD
4510~4515
RO
Ic THD
4516~4521
RO
Ia K-Factor
4522~4527
RO
Ib K-Factor
4528~4533
RO
Ic K-Factor
4534~4539
RO
Ia Crest Factor
4540~4545
RO
Ib Crest Factor
4546~4551
RO
Ic Crest Factor
4552~4557
RO
Voltage Unbalance
4558~4563
RO
Current Unbalance
4564~4569
RO
I4
x1
A
4570~4575
RO
Ir (Residual Current)
Register
Property
Description
Format
Scale
Unit
4600~4605
RO
Uan
See 5.6.5
Max/Min Log
Structure
x1
V
4606~4611
RO
Ubn
4612~4617
RO
Ucn
4618~4623
RO
Uln Average
4624~4629
RO
Uab
4630~4635
RO
Ubc
4636~4641
RO
Uca
4642~4647
RO
Ull Average
4648~4653
RO
Ia
x1
A
4654~4659
RO
Ib
4660~4665
RO
Ic
4666~4671
RO
I Average
4672~4677
RO
kWa
x1
W
4678~4683
RO
kWb
4684~4689
RO
kWc
4690~4695
RO
kW Total
4696~4701
RO
kvara
x1
var
4702~4707
RO
kvarb
4708~4713
RO
kvarc
4714~4719
RO
kvar Total
4720~4725
RO
kVAa
x1
VA
4726~4731
RO
kVAb
4732~4737
RO
kVAc
4738~4743
RO
kVA Total
4744~4749
RO
PFa
x1
-
4750~4755
RO
PFb
Table 5-19 Min Log of This Month (Since Last Reset)

5.6.3 Max Log of Last Month (Before Last Reset)

64
Page 73
CET Electric Technology
4756~4761
RO
PFc
4762~4767
RO
PF Total
4768~4773
RO
Frequency
x1
Hz
4774~4779
RO
In (Calculated)
x1
-
4780~4785
RO
Uan/Uab THD
4786~4791
RO
Ubn/Ubc THD
4792~4797
RO
Ucn/Uca THD
4798~4803
RO
Ia THD
4804~4809
RO
Ib THD
4810~4815
RO
Ic THD
4816~4821
RO
Ia K-Factor
4822~4827
RO
Ib K-Factor
4828~4833
RO
Ic K-Factor
4834~4839
RO
Ia Crest Factor
4840~4845
RO
Ib Crest Factor
4846~4851
RO
Ic Crest Factor
4852~4857
RO
Voltage Unbalance
4858~4863
RO
Current Unbalance
4864~4869
RO
I4
x1
A
4870~4875
RO
Ir (Residual Current)
Register
Property
Description
Format
Scale
Unit
4900~4905
RO
Uan
See 5.6.5
Max/Min Log
Structure
x1
V
4906~4911
RO
Ubn
4912~4917
RO
Ucn
4918~4923
RO
Uln Average
4924~4929
RO
Uab
4930~4935
RO
Ubc
4936~4941
RO
Uca
4942~4947
RO
Ull Average
4948~4953
RO
Ia
x1
A
4954~4959
RO
Ib
4960~4965
RO
Ic
4966~4971
RO
I Average
4972~4977
RO
kWa
x1
W
4978~4983
RO
kWb
4984~4989
RO
kWc
4990~4995
RO
kW Total
4996~5001
RO
kvara
x1
var
5002~5007
RO
kvarb
5008~5013
RO
kvarc
5014~5019
RO
kvar Total
5020~5025
RO
kVAa
x1
VA
5026~5031
RO
kVAb
5032~5037
RO
kVAc
5038~5043
RO
kVA Total
5044~5049
RO
PFa
x1
-
5050~5055
RO
PFb
5056~5061
RO
PFc
5062~5067
RO
PF Total
5068~5073
RO
Frequency
x1
Hz
5074~5079
RO
In (Calculated)
x1
A
5080~5085
RO
Uan/Uab THD
x1
-
5086~5091
RO
Ubn/Ubc THD
5092~5097
RO
Ucn/Uca THD
5098~5103
RO
Ia THD
5104~5109
RO
Ib THD
5110~5115
RO
Ic THD
5116~5121
RO
Ia K-Factor
5122~5127
RO
Ib K-Factor
5128~5133
RO
Ic K-Factor
5134~5139
RO
Ia Crest Factor
5140~5145
RO
Ib Crest Factor
Table 5-20 Max Log of Last Month (Before Last Reset)

5.6.4 Min Log of Last Month (Before Last Reset)

65
Page 74
5146~5151
RO
Ic Crest Factor
5152~5157
RO
Voltage Unbalance
5158~5163
RO
Current Unbalance
5164~5169
RO
I4
x1
A
5170~5175
RO
Ir (Residual Current)
Table 5-21 Min Log of Last Month (Before Last Reset)
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Max/Min Value
Register
Property
Description
Format
Scale
Unit
0980
RW
Month1
INT16
0* to 12
0981
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
Time Stamp
(20YY/MM/DD
HH:MM:SS)
0982
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
0983
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
0984
RW
kWh Import
INT32
x0.1
kWh
0986
RW
kWh Export
INT32
0988
RO
kWh Net
INT32
0990
RO
kWh Total
INT32
0992
RW
kvarh Import
INT32
x0.1
kvarh
0994
RW
kvarh Export
INT32
0996
RO
kvarh Net
INT32
0998
RO
kvarh Total
INT32
1000
RW
kVAh
INT32
x0.1
kVAh
1002
RW
kvarh Q1
INT32
x0.1
kvarh
1004
RW
kvarh Q2
INT32
1006
RW
kvarh Q3
INT32
1008
RW
kvarh Q4
INT32
1010
RW
kWh Import of T1
INT32
x0.1
kWh
1012
RW
kWh Export of T1
INT32
1014
RW
kvarh Import of T1
INT32
x0.1
kvarh
1016
RW
kvarh Export of T1
INT32
1018
RW
kVAh of T1
INT32
x0.1
kVAh
1020
RW
kWh Import of T2
INT32
x0.1
kWh
1022
RW
kWh Export of T2
INT32
1024
RW
kvarh Import of T2
INT32
x0.1
kvarh
1026
RW
kvarh Export of T2
INT32
1028
RW
kVAh of T2
INT32
x0.1
kVAh
1030
RW
kWh Import of T3
INT32
x0.1
kWh
1032
RW
kWh Export of T3
INT32
1034
RW
kvarh Import of T3
INT32
x0.1
kvarh
1036
RW
kvarh Export of T3
INT32
1038
RW
kVAh of T3
INT32
x0.1
kVAh
1040
RW
kWh Import of T4
INT32
x0.1
kWh
1042
RW
kWh Export of T4
INT32
1044
RW
kvarh Import of T4
INT32
x0.1
kvarh
1046
RW
kvarh Export of T4
INT32
1048
RW
kVAh of T4
INT32
x0.1
kVAh
1050
RW
kWh Import of T5
INT32
x0.1
kWh
1052
RW
kWh Export of T5
INT32
1054
RW
kvarh Import of T5
INT32
x0.1
kvarh
1056
RW
kvarh Export of T5
INT32

5.6.5 Max/Min Log Structure

5.7 Monthly Energy Log

CET Electric Technology
Table 5-22 Max/Min Structure
66
Page 75
CET Electric Technology
1058
RW
kVAh of T5
INT32
x0.1
kVAh
1060
RW
kWh Import of T6
INT32
x0.1
kWh
1062
RW
kWh Export of T6
INT32
1064
RW
kvarh Import of T6
INT32
x0.1
kvarh
1066
RW
kvarh Export of T6
INT32
1068
RW
kVAh of T6
INT32
x0.1
kVAh
1070
RW
kWh Import of T7
INT32
x0.1
kWh
1072
RW
kWh Export of T7
INT32
1074
RW
kvarh Import of T7
INT32
x0.1
kvarh
1076
RW
kvarh Export of T7
INT32
1078
RW
kVAh of T7
INT32
x0.1
kVAh
1080
RW
kWh Import of T8
INT32
x0.1
kWh
1082
RW
kWh Export of T8
INT32
1084
RW
kvarh Import of T8
INT32
x0.1
kvarh
1086
RW
kvarh Export of T8
INT32
1088
RW
kVAh of T8
INT32
x0.1
kVAh
Register
Property
Description
Format
Scale
Unit
12000
RW
Index1
INT16
1 to 60
12001
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
-
12002
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
12003
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
12004
RO
kWh Total
INT32
x0.1
kWh
12006
RO
kvarh Total
INT32
x0.1
kvarh
12008
RO
kVAh Total
INT32
x0.1
kVAh
12010
RO
Peak Demand of kW Total
Float
x1 W 12012
RO
Peak Demand of kvar Total
Float
x1
var
12014
RO
Peak Demand of kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
12500
RW
Index1
INT16
1 to 36
12501
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
-
12502
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
12503
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
12504
RO
kWh Total
INT32
x0.1
kWh
Table 5-23 Monthly Energy Log
Notes:
1) This register represents the Month when it is read. To read the Monthly Energy Log, this register must be first written to
indicate to the device which log to load from memory. The range of this register is from 0 to 12, which represents the
Present Month and the Last 12 Months. For example, if the current month is 2016/10, “0” means 2016/10, “1” means 2016/09, “2” means 2016/08, etc., and ”12” means “2015/10”.
2) For each Monthly Energy Log, the time stamp shows the exact Self-Read Time (20YY/MM/DD HH:MM:SS) when the log
was recorded. For the Monthly Energy Log of the Present Month, the time stamp shows the current time of the meter because the Present Month is not yet over.
3) The Monthly Energy Log for the Present Month can be modified, but the Monthly Energy Logs for the Last 12 Months are
Read Only.

5.8 Daily and Monthly Freeze Logs

5.8.1 Daily Freeze Log

Table 5-24 Daily Freeze Log
Note:
1) Writing a value N between 1 and 60 to the Index register to retrieve the Daily Freeze Log of the Nth entry. For example,
writing 1 to the Index register will retrieve yesterday’s Daily Freeze Log. If N = 0 or N > 60, an exception response will be returned with the Illegal Data Value error code (0x03) as defined by the Modbus protocol. If all the returned values of the Nth Log Record (where 1 ≤ N ≤ 60) are all 0 (including the timestamp), this indicates that the returned Log Record is invalid and that the end of the Log has been reached. If the software is reading the Log for the very first time, it should start with N=1 and stop when either N=60 or when the returned Log Record is invalid. After that, all the software has to do is to read the Log on a daily basis with N=1.

5.8.2 Monthly Freeze Log

67
Page 76
CET Electric Technology
12506
RO
kvarh Total
INT32
x0.1
kvarh
12508
RO
kVAh Total
INT32
x0.1
kVAh
12510~12515
RO
Peak Demand of kW Total
See Table 5-26
Demand Data Structure
12516~12521
RO
Peak Demand of kvar Total
12522~12527
RO
Peak Demand of kVA Total
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Peak Demand Value
Register
Property
Description
Format
10000~10007
RO
Event 1
See Table 5-28
SOE Log Data
Structure
10008~10015
RO
Event 2
10016~10023
RO
Event 3
10024~10031
RO
Event 4
10032~10039
RO
Event 5
10040~10047
RO
Event 6
10048~10055
RO
Event 7
10056~10063
RO
Event 8
10064~10071
RO
Event 9
10072~10079
RO
Event 10
10080~10087
RO
Event 11
10088~10095
RO
Event 12
10792~10799
RO
Event 100
Offset
Property
Description
Unit
+0
RO
Hi: Event Classification
See Table 5-29
SOE Classification
RO
Lo: Sub-Classification
+1
RO
Hi: Year
0-99 (Year-2000)
RO
Lo: Month
1 to 12
+2
RO
Hi: Day
1 to 31
RO
Lo: Hour
0 to 23
+3
RO
Hi: Minute
0 to 59
RO
Lo: Second
0 to 59
+4
RO
Millisecond
0 to 999
+5
RO
Hi: Reserved
-
RO
Lo: Status1
-
+6 to +7
RO
Event Value2
-
Table 5-25 Monthly Freeze Log
Table 5-26 Demand Data Structure
Note:
1) Writing a value N between 1 and 36 to the Index register to retrieve the Monthly Freeze Log of the Nth entry. For example,
writing 1 to the Index register will retrieve last month’s Monthly Freeze Log. If N = 0 or N > 36, an exception response will be returned with the Illegal Data Value error code (0x03) as defined by the Modbus protocol. If all the returned values of the Nth Log Record (where 1 ≤ N ≤ 36) are all 0 (including the timestamp), this indicates that the returned Log Record is invalid and that the end of the Log has been reached. If the software is reading the Log for the very first time, it should start with N=1 and stop when either N=36 or when the returned Log Record is invalid. After that, all the software has to do is to read the Log on a monthly basis with N=1.

5.9 SOE Log

The SOE Log Pointer points to the register address within the SOE Log where the next event will be stored. The following formula is used to determine the register address of the most recent SOE event referenced by the SOE Log Pointer value:
Register Address = 10000 + Modulo[SOE Log Pointer-1/100]*8
Table 5-27 SOE Log
SOE Log Data Structure
Table 5-28 SOE Log Data Structure
68
Page 77
CET Electric Technology
Event
Classification
Sub-
Classification
Status
Event Value
Description
1=DI Changes
1
1/0 DI1 Inactive / DI1 Active
2
1/0 DI2 Inactive / DI2 Active
3
1/0 DI3 Inactive / DI3 Active
4
1/0 DI4 Inactive / DI4 Active
2=DO Changes
1
1/0
DO1 Operated/Released
by Remote Control
2
1/0
DO2 Operated/Released
by Remote Control
3~10
Reserved
11
1/0 DO1 Operated/Released by Setpoint
12
1/0 DO2 Operated/Released by Setpoint
13~20
Reserved
21
1/0 DO1 Operated/Released by Front Panel
22
1/0 DO2 Operated/Released by Front Panel
23~30
Reserved
31 0
DO1 Released when Pulse Time out
32 0
DO2 Released when Pulse Time out
3=Setpoint
1
1/0
Trigger Value / Return
Value
Over Uln Setpoint Active/Return
2
1/0
Over Ull Setpoint Active/Return
3
1/0
Over Current Setpoint Active/Return
4
1/0
Over In Setpoint Active/Return
5
1/0
Over Frequency Setpoint Active/Return
6
1/0
Over kW Total Setpoint Active/Return
7
1/0
Over kvar Total Setpoint Active/Return
8
1/0
Over kVA Total Setpoint Active/Return
9
1/0
Over PF Total Setpoint Active/Return
10
1/0
Over kW Total Present Demand Setpoint
Active/Return
11
1/0
Over kvar Total Present Demand
Setpoint Active/Return
12
1/0
Over kVA Total Present Demand Setpoint
Active/Return
13
1/0
Over kW Total Predicted Demand
Setpoint Active/Return
14
1/0
Over kvar Total Predicted Demand
Setpoint Active/Return
15
1/0
Over kVA Total Predicted Demand
Setpoint Active/Return
16
1/0
Over Voltage THD Setpoint Active/Return
17
1/0
Over Voltage TOHD Setpoint
Active/Return
18
1/0
Over Voltage TEHD Setpoint
Active/Return
19
1/0
Over Current THD Setpoint
Active/Return
20
1/0
Over Current TOHD Setpoint
Active/Return
21
1/0
Over Current TEHD Setpoint
Active/Return
22
1/0
Over Voltage Unbalance Setpoint
Active/Return
23
1/0
Over Current Unbalance Setpoint
Active/Return
24
1/0
Reversal Phase Setpoint Active/Return
25
1/0
Over I4 Setpoint Active/Return
26
1/0
Over AI Setpoint Active/Return
27
Over Ir (Residual Current) Setpoint
Active/Return
Notes:
1. The return value “01” means DI Inactive/ DO Operated/Alarm (including Setpoint & Diagnosis); and the return value “00”
means DI Active/ DO Released/Setpoint Return.
2. The returned Event Value (for SOE Event Classification=Setpoint only) is in Float format, and please refer to Table 5-40 to
check the Unit for each parameter.
SOE Classification
69
Page 78
CET Electric Technology
28
1/0
Over U2 (Negative Sequence) Setpoint
Active/Return
29
1/0
Over U0 (Zero Sequence) Setpoint
Active/Return
30~40
Reserved
41
1/0
Under Uln Setpoint Active/Return
42
1/0
Under Ull Setpoint Active/Return
43
1/0
Under Current Setpoint Active/Return
44
1/0
Under In Setpoint Active/Return
45
1/0
Under Frequency Setpoint Active/Return
46
1/0
Under kW Total Setpoint Active/Return
47
1/0
Under kvar Total Setpoint Active/Return
48
1/0
Under kVA Total Setpoint Active/Return
49
1/0
Under PF Total Setpoint Active/Return
50
1/0
Under kW Total Present Demand
Setpoint Active/Return
51
1/0
Under kvar Total Present Demand
Setpoint Active/Return
52
1/0
Under kVA Total Present Demand
Setpoint Active/Return
53
1/0
Under kW Total Predicted Demand
Setpoint Active/Return
54
1/0
Under kvar Total Predicted Demand
Setpoint Active/Return
55
1/0
Under kVA Total Predicted Demand
Setpoint Active/Return
56
1/0
Under Voltage THD Setpoint
Active/Return
57
1/0
Under Voltage TOHD Setpoint
Active/Return
58
1/0
Under Voltage TEHD Setpoint
Active/Return
59
1/0
Under Current THD Setpoint
Active/Return
60
1/0
Under Current TOHD Setpoint
Active/Return
61
1/0
Under Current TEHD Setpoint
Active/Return
62
1/0
Under Voltage Unbalance Setpoint
Active/Return
63
1/0
Under Current Unbalance Setpoint
Active/Return
64
1/0
Under I4 Setpoint Active/Return
65
1/0
Under AI Setpoint Active/Return
66
Under Ir (Residual Current) Setpoint
Active/Return
67
1/0
Under U2 (Negative Sequence) Setpoint
Active/Return
68
1/0
Under U0 (Zero Sequence) Setpoint
Active/Return
4=Self-
diagnosis
1 1 0
System Parameter Fault
2 1 0
Internal Parameter Fault
3 1 0
TOU Parameter Fault
4 1 0
Memory Fault
5=Operations
1 0 0
Power On
2 0 0
Power Off
3 0 0
Clear Present Energy via Panel
1
4 0 0
Clear Historical Monthly Energy Log via
Panel
2
5 0 0
Clear Peak Demand Log of This Month
(Since Last Reset) via the Front Panel
6 0 0
Clear Present Demand, Peak Demand
Log of This Month (Since Last Reset) and
Last Month (Before Last Reset) via the
Front Panel
7 0 0
Clear Present Max/Min via Front Panel
8 0 0
Clear All Max/Min via Front Panel
70
Page 79
CET Electric Technology
Record Value
Description
1
Switch Schedule 1 to Schedule 2 manually
2
Switch Schedule 2 to Schedule 1 manually
3
Switch Schedule 1 to Schedule 2 automatically
4
Switch Schedule 2 to Schedule 1 automatically
9 0 0
Clear All Data via Front Panel
3
10 0 0
Clear SOE Log via Front Panel
11
0
x=1 to 4
Clear DIx Pulse Counter via Front Panel
12 0 0
Clear All Pulse Counter via Front Panel
13 0 0
Clear Device Operating Time via Front
Panel
14 0 0
Set Clock via Front Panel
15 0 0
Setup Changed via Front Panel
16~17 0 …
Reserved
18 0 0
Restore Factory via Front Panel
19~29 0 …
Reserved
30 0 0
Clear All Energy Registers via
Communications
4
31 0 0
Clear Present Monthly Energy Log via
Communications5
32 0 0
Clear Historical Monthly Energy log via
Communications6
33 0 0
Clear Peak Demand of
This Month (Since Last Reset) via
Communications
34 0 0
Clear All Demand Registers via
Communications
35 0 0
Clear Max./Min. Logs of This Month
(Since Last Reset) via Communications
36 0 0
Clear All Max/Min Logs via
Communications
37 0 0
Clear All Data via Communications
3
38 0 0
Clear SOE Log via Communications
39
0
x=1 to 4
Clear DIx Pulse Counter via
Communications
40 0 0
Clear All DI Pulse Counters via
Communications
41 0 0
Clear Device Operating Time via
Communications
42 0 0
Restore Factory via Communications
43 0 0
Setup Changes via Communications
44 0 0
Preset Energy Value via Communications
45 0 0
Setup TOU Energy via Communications
46 0 1~4
Switch TOU Schedule7
47 0 1~5
Clear DRx Log via Communications
48 0 0
Clear All DR logs via Communications
49
Clear Daily Freeze Log via
Communications
50
Clear Monthly Freeze Log via
Communication
6 Alarm Email
1 0 0
Setpoint Trigger Alarm Email
Notes:
1) Clear Present Energy via Panel means to clear 3-Phase Total Energy registers, Phase A/B/C Energy registers (including TOU
Energy & Interval Energy), and Monthly Energy Log of the Present Month.
2) Clear Historical Monthly Energy Log via Panel means to clear the Monthly Energy Log of the last 1 to 12 months, excluding
the Monthly Energy Log for the Present Month.
3) Clear All Data via Front Panel or Communication means to clear 3-Phase Total Energy registers, Phase A/B/C Energy
registers, Monthly Energy Log of the Present Month, All Peak Demands, All Max/Min Logs, Device Operating Time, All DI Pulse Counters, All DR Logs and All Freeze Logs.
4) Clear All Energy Registers via Communications means to clear the 3-Ø Total and Per-Phase energy registers (including TOU
Energy & Interval Energy).
5) Clear Present Monthly Energy Log via Communications means to clear the Monthly Energy Log of the Present Month.
6) Clear Historical Monthly Energy Log via Communications means to clear Monthly Energy Log of the last 1 to 12 months,
excluding the Monthly Energy Log for the Present Month
7) The event values of Switch TOU Schedule are illustrated in the table below:
Table 5-29 SOE Event Classification
Table 5-30 TOU Switch Records
71
Page 80

5.10 Data Recorder Log

Register
Property
Description
Format
20000~20037
RO
DR Log #1 Buffer
See Table 5-32
Standard DR Log Structure
20038~20075
RO
DR Log #2 Buffer
20076~20113
RO
DR Log #3 Buffer
20114~20151
RO
DR Log #4 Buffer
20152~20189
RO
DR Log #5 Buffer
Offset
Property
Description
Format
+0
RW
DR Log X Pointer
UINT32
+2
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
+3
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
+4
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
+5
RO
Millisecond
UINT16
+6~+7
RO
Parameter #1
Float
+8~+9
RO
Parameter #2
+10~+11
Parameter #3
+36~+37
RO
Parameter #16
Register
Property
Description
Format
Range, Default*
6000
RW
PT Primary1
UINT32
1 to 1,000,000 V, 100*
6002
RW
PT Secondary
UINT32
1 to 690V, 100*
6004
RW
CT Primary
UINT32
1 to 30,000A, 5*
6006
RW
CT Secondary
UINT32
1 to 5A, 5*
6008~6010
RW
Reserved
6012
RW
I4 Primary
UINT32
1 to 30,000A, 5*
6014
RW
I4 Secondary
UINT32
1 to 5A, 5*
6016~6018
RW
Reserved
6020
RW
Wiring Mode
UINT16
0=DEMO, 1=1P2W L-N,
2=1P2W L-L, 3=1P3W L-L-N
4=3P3W, 5=3P4W*
6021
RW
PF Convention
UINT16
0=IEC*, 1=IEEE, 2=-IEEE
6022
RW
kVA Calculation
UINT16
0=Vector*, 1=Scalar
6023
RW
Ia Polarity
UINT16
0=Normal*, 1=Reverse
6024
RW
Ib Polarity
UINT16
6025
RW
Ic Polarity
UINT16
6026~6027
RW
Reserved
6028
RW
THD Calculation
2
UINT16
0= THDf*, 1= THDr
6029
RW
Demand Period
UINT16
1 to 60 (minutes), 15*
6030
RW
Number of Sliding Windows
UINT16
1 to 15, 1*
6031
RW
Predicted Response
UINT16
70 to 99, 70*
6032
RW
Arm before Execute
UINT16
0=Disabled*, 1=Enabled
6033
RW
Self-Read Time3
UINT16
0*
6034
RW
Monthly Energy Log Self-Read
Time
4
UINT16
0*
6035
RW
Energy Pulse Constant
UINT16
0=1000 imp/kxh*
1=3200 imp/kxh 2=6400 imp/kxh
6036
RW
LED Energy Pulse
UINT16
0=Disabled
1=kWh*
2=kvarh
CET Electric Technology
Table 5-31 DR Log
Table 5-32 DR Data Buffer Structure
Notes:
1) Writing n to the DR Log X Pointer register will load the Log Record at pointer position n into the DR Log X Buffer from the
device’s memory.
2) Writing a pointer value that points to a Log Record that is either already expired or has not been generated yet to the DR
Log X Pointer register will generate an exception response with the Illegal Data Value error code (0x03) as defined by the
Modbus protocol.

5.11 Device Setup

5.11.1 Basic Setup Parameters

72
Page 81
CET Electric Technology
6037
RW
Backlight Time-out
UINT16
0 to 60 (mins), 5*
6038
RW
System Language
UINT16
1=English
6039
RW
Date Format
UINT16
0=YYMMDD*
1=MMDDYY 2=DDMMYY
6040
RW
Delimiter5
UINT16
0=Option 1*, 1=Option 2
See Note 4
6041
RW
Monthly Freeze Self-Read Time6
UINT16
0*
6042
RW
Daily Freeze
Self-Read Time7
UINT16
0*
6043
RW
1st parameter of the Default
Display
8
UINT16
0 to 36, 7*
6044
RW
2nd parameter of the Default
Display8
UINT16
0 to 36, 11*
6045
RW
3rd parameter of the Default
Display8
UINT16
0 to 36, 12*
6046
RW
4th parameter of the Default
Display8
UINT16
0 to 36, 15*
6047
RW
EN Period9
UINT16
5 to 60* min
6048
RW
Setpoint Splash LCD Alarm
UINT16
0= Enabled*, 1= Disabled
6049
RW
Current Threshold of Device
Operating Time
UINT16
1* to 1000 (x0.001In)
6050
RW
kvarh Calculation
UINT16
0= RMS*, 1= kvarh Fund.
6051
RW
DNP Polling Object
10
UINT16
0 to 65535, 0x3F*
6052
RW
SNTP Enable
UINT16
0=Disabled*, 1=Enabled
6053
RW
Time Zone11
UINT16
0 to 32, 26*
6054
RW
SNTP Sync. Interval12
UINT16
1 to 1440 (min), 60*
6055
RW
SNTP Server Address
UINT32
If IP address is
192.168.8.94, write
“0xC0A8085E” to this
register
6057
RW
SMTP IP Port
UINT16
0 to 65535, 25*
6058
RW
SMTP Server Address
UINT32
If address is 191.0.0.6,
write “0XBF000006” to this
register
6060~6095
RW
Sender Email
UINT16
See Note (13)
6096~6115
RW
Logon Password
UINT16
See Note (14)
6116~6151
RW
Receiver Email
UINT16
See Note (15)
Table 5-33 Basic Setup Parameters
Notes:
1) The value of [PT Primary/PT Secondary] cannot exceed 10000.
2) There are two ways to calculate THD:
THDf:
2

I
n
 
n=2
×100%
I
1
2
I
n
n=2
×100%
2
I
n
n=1
THD=
where I1 represents the RMS value of the fundamental component, and In represents the RMS value for the nth harmonic with n for harmonic order.
THDr:
THDr=
where In represents the RMS value for the nth harmonic with n for harmonic order.
3) The Self-Read Time applies to both the Peak Demand Log as well as the Max/Min Log and supports the following three
options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self­Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value means the automatic self-read operation is disabled and the log will be transferred manually.
4) The Self-Read Time applies to the Monthly Energy Log supports the following two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self­Read will take place at 12:00pm on the 15th day of each month.
5) The Delimiter setup register supports two options, 1 and 2:
73
Page 82
CET Electric Technology
Key
Parameters
Key
Parameters
Key
Parameters
Key
Parameters
0
U1 (Uan)
10
I3 (Ic)
20
T1 kWh Imp
30
Fund. kW Total
1
U2 (Ubn)
11
Iavg
21
T2 kWh Imp
31
dPF Total
2
U3 (Ucn)
12
P (kW Total)
22
T3 kWh Imp
32
I4
3
Ulnavg
13
Q (kvar Total)
23
T4 kWh Imp
33
U1 THD
4
U12 (Uab)
14
S (kVA Total)
24
I1 (Ia) Demand
34
U2 THD
5
U23 (Ubc)
15
PF (PF Total)
25
I2 (Ib) Demand
35
U3 THD
6
U31 (Uca)
16
Frequency
26
I3 (Ic) Demand
36
Ir
7
Ullavg
17
kWh Import
27
kW Demand
8
I1 (Ia)
18
kWh Export
28
kvar Demand
9
I2 (Ib)
19
kWh Total
29
kVA Demand
Bit
Object Description
Option
B00
Object 1: Binary Inputs
0=Disabled
1=Enabled*
B01
Object 10: Binary Output
B02
Object 20: 32-Bit Binary Counters
B03
Object 20: 16-Bit Binary Counters
B04
Object 21: Analog Inputs
B05
Object 30: Analog Output
B06
Reserved
Code
Time Zone
Code
Time Zone
0
GMT-12:00
17
GMT+03:30
1
GMT-11:00
18
GMT+04:00
2
GMT-10:00
19
GMT+04:30
3
GMT-09:00
20
GMT+05:00
4
GMT-08:00
21
GMT+05:30
5
GMT-07:00
22
GMT+05:45
6
GMT-06:00
23
GMT+06:00
7
GMT-05:00
24
GMT+06:30
8
GMT-04:00
25
GMT+07:00
9
GMT-03:30
26
GMT+08:00
10
GMT-03:00
27
GMT+09:00
11
GMT-02:00
28
GMT+09:30
12
GMT-01:00
29
GMT+10:00
13
GMT+00:00
30
GMT+11:00
14
GMT+01:00
31
GMT+12:00
15
GMT+02:00
32
GMT+13:00
16
GMT+03:00
Option 1: “,” is used as the x1000 delimiter and “.” as the decimal point (e.g. 123,456,789.0).
6) The Monthly Freeze Self-Read Time supports only two options:
7) The Daily Freeze Self-Read Time can be set to a zero value or a non-zero value:
8) The following table illustrates the parameters that can be selected for display in the Default Display screen.
Option 2: “ ” is used as the x1000 delimiter and “,” as the decimal point (e.g. 123 456 789,0).
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.
A zero value means that the Self-Read will take place at 00:00 everyday. A non-zero value means that the Self-Read will take place at a specific time of the day based on the formula: Self-Read
time = (Hour x 100 + Min) where 0 ≤ Hour ≤ 23 and 0 ≤ Min ≤ 59. For example, the value 1512 means that the Self­Read will take place at 15:12 of each day.
Table 5-34 Default Display Parameters
9) The Interval Energy will be reset once the EN Period is changed.
10) The DNP Rolling Polling Objects are list in table below:
Table 5-35 DNP Polling Objects
11) SNTP doesn’t support Daylight Saving Time (DST). The following table lists the supported Time Zones:
Table 5-36 Time Zones
12) The SNTP Sync. Interval should be set between 10 and 1440 minutes.
13) This string register specifies the sender email address that appears in the “From” field of the email. This string may be up to
35 characters long. Please add the value zero “0000” at the end of the string as the string terminator. For example, the default email address is PMC-53A-E@foxmail.com, set the registers as” 0050 004D 0043 002D 0035 0033 0041 002D 0045 0040 0066 006F 0078 006D 0061 0069 006C 002E 0063 006F 006D 0000”.
14) This string register specifies the Logon Password to login the “Sender Email” account. This string may be up to 19 characters
long. Please add the value zero “0000” at the end of the string as the string terminator. For example, if the password is “PMC-53A-E”, set the registers as “0050 004D 0043 002D 0035 0033 0041 002D 0045 0000”
15) This string register specifies the destination email address that appears in the “To” field of the email. This string may be up
to 35 characters long. Please add the value zero “0000” at the end of the string as the string terminator. For example, if the email address is PMC-53A-E@gmail.com, so set the registers as” 0050 004D 0043 002D 0035 0033 0041 002D 0045 0040 0067 006D 0061 0069 006C 002E 0063 006F 006D 0000”.
74
Page 83

5.11.2 I/O Setup

Register
Property
Description
Format
Range, Default*
6200
RW
DI1 Function
UINT16
0 = Digital Input* 1=Pulse Counting
2 =Tariff Switch
6201
RW
DI2 Function
UINT16
6202
RW
DI3 Function
UINT16
6203
RW
DI4 Function
UINT16
6204~6207
Reserved
6208
RW
DI1 Debounce
UINT16
1 to 9999 ms,
20*
6209
RW
DI2 Debounce
UINT16
6210
RW
DI3 Debounce
UINT16
6211
RW
DI4 Debounce
UINT16
6212~6215
Reserved
6216
RW
DI1 Pulse Weight
UINT32
1* to 1000000
6218
RW
DI2 Pulse Weight
UINT32
6220
RW
DI3 Pulse Weight
UINT32
6222
RW
DI4 Pulse Weight
UINT32
6224~6228
Reserved
6230
RW
DO1 Mode
UINT16
0 = Remote
Control/Setpoint*
1 = kWh Import 2 = kWh Export
3 = kWh Total
4 = kvarh Import
5 = kvarh Export
6 = kvarh Total
6231
RW
DO2 Mode
UINT16
6232~6235
RW
Reserved
6236
RW
DO1 Pulse Width
UINT16
0 to 6000 (x0.1s), 10*
(0 = Latch Mode)
6237
RW
DO2 Pulse Width
UINT16
6238~6249
Reserved
6250
RW
AI Type
UINT16
0 = 4~20mA*
1 = 0~20mA
6251
RW
AI Zero Scale
INT32
-999,999 to +999,999 (Default = 400)
6253
RW
AI Full Scale
INT32
-999,999 to +999,999
(Default = 2000)
6255~6259
RW
Reserved
Register
Property
Description
Format
Range, Default*
6400
RW
Serial Port Protocol
UINT16
0=Modbus RTU*
1=BACnet
2= DNP , 3=Gateway
6401
RW
Serial Port Unit ID
UINT16
Modbus RTU: 1 to 247
BACnet/MSTP: 1 to 127
DNP: 0 to 65519
100*
6402
RW
Serial Port Baud Rate
UINT16
0=1200, 1=2400, 2=4800,
3=9600*, 4=19200, 5=38400
6403
RW
Serial Port Comm. Config.
UINT16
0=8N2, 1=8O1, 2=8E1*
3=8N1, 4=8O2, 5=8E2
6404
RW
Ethernet Port-IP Address
UINT32
If IP address is 192.168.8.97,
write “0xC0A80861” to this
register
6406
RW
Ethernet Port-Subnet Mask
UINT32
6408
RW
Ethernet Port-Gateway
UINT32
Register
Property
Description
Format
Range, Default*
6500
RW
Setpoint #1
Setpoint Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
6501
RW
Parameters1
UINT16
0 to 29
0=None*
6502
RW
Over Limit
Float
0*
6504
RW
Under Limit
Float
0*
CET Electric Technology
Table 5-37 I/O Setup Parameters

5.11.3 Communication Setup Parameters

Table 5-38 Communication Setup

5.11.4 Setpoints Setup

75
Page 84
CET Electric Technology
6506
RW
Active Delay
UINT16
0 to 9999 s, 10*
6507
RW
Inactive Delay
UINT16
0 to 9999 s, 10*
6508
RW
Trigger Action 12
UINT16
0 to 3
6509
RW
Trigger Action 22
UINT16
6580
RW
Setpoint #9
Setpoint Type
UINT32
0=Disabled*
1=Over Setpoint
2=Under Setpoint
6581
RW
Parameter1
UINT16
0* to 29
6582
RW
Over Limit
Float
0*
6584
RW
Under Limit
Float
0*
6586
RW
Active Delay
UINT16
0 to 9999 s, 10*
6587
RW
Inactive Delay
UINT16
0 to 9999 s, 10*
6588
RW
Trigger Action 12
UINT16
0 to 3
6589
RW
Trigger Action 22
UINT16
Key
Setpoint Parameter
Scale
Resolution
Unit
0
None
- - -
1
Uln (Any Phase Voltage)
x1
0.001 V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
0.01
Hz
6
P (kW Total)
0.001
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S (kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
0.01%
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Any Phase Reversal)
1, 2
- - -
25
I4 (Measured)*
x1
0.001
A
26
AI*
1
-
27
IR (Residual Current) *
x1
0.001 A
28
U2 (Voltage Negative Sequence
Component)
x1
V
29
U0 (Voltage Zero Symmetrical Component)
Table 5-39 Setpoint Setup Parameters
Notes:
1) The table below illustrates the Setpoint Parameters.
* Appear only if the device is equipped with the appropriate option.
Notes:
5. When Reversal is set as the Setpoint Parameter, the Setpoint Type should be set to 1 (i.e., Over Setpoint). The Setpoint
Type=2 (i.e., Under Setpoint) is invalid.
6. When Reversal is set as the Setpoint Parameter (with Setpoint Type=1), the Over Limit should be set as 0 and Under Limit
should be as 1. The logic diagram for the Phase Reversal setpoint is illustrated in the following figure:
Table 5-40 Setpoint Parameters
76
Page 85
CET Electric Technology
Key
Action
Key
Action
0
None
1
DO1 Closed
2
DO2 Closed
3
Email
Register
Property
Description
Format
6600~6623
RW
Data Recorder #1*
See Table 5-43 DR
Setup Parameter Data
Structure
6624~6647
RW
Data Recorder #2*
6648~6671
RW
Data Recorder #3*
6672~6695
RW
Data Recorder #4*
6696~6719
RW
Data Recorder #5*
Offset
Property
Description
Format
Range
+0
RW
Trigger Mode
UINT16
0=Disabled
1=Triggered by Timer
+1
RW
Recording Mode1
UINT16
0=Stop-when-Full
1=First-In-First-Out
+2
RW
Recording Depth1
UINT32
0 to 120,000
+4
RW
Recording Interval1
UINT32
60 to 3,456,000 s
+6
RW
Recording Offset2
UINT16
0 to 43,200 s
+7
RW
Number of Parameters1
UINT16
0 to 16
Figure 5-1 Reversal Setpoint Logic Diagram
3) The table below illustrates the options for Setpoint Trigger. Please keep in mind that when the DOx is set as Setpoint Trigger,
the DOx Function should be configured as Digital Output correspondingly.
Table 5-41 Setpoint Trigger

5.11.5 Data Recorder Setup

* Please refer to Appendix B for the default configuration for the Data Recorders.
Table 5-42 Data Recorder Setup
77
Page 86
CET Electric Technology
+8
RW
Parameter #11
UINT16
Please refer to Appendices
A and B for a complete list
of the Data Recorder
Parameters and the default
configuration for each DR,
respectively.
+9
RW
Parameter #21
UINT16
+10
RW
Parameter #31
UINT16
RW
UINT16
+23
RW
Parameter #161
UINT16
Register
Property
Description
Format
Range/Option
7000
RO
Current Tariff1
UINT16
0=T1, 1=T2, 2=T3, 3=T4 4=T5, 5=T6, 6=T7, 7=T8
7001
RO
Current Season
UINT16
0 to 11
(Season #1 to #12)
7002
RO
Current Period
UINT16
0 to 11
(Period #1 to #12)
7003
RO
Current Daily Profile No.
UINT16
0 to 19
(Daily Profile #1 to #20)
7004
RO
Current Day Type
UINT16
0=Weekday1 1=Weekday2 2=Weekday3
3= Alternate Day
7005
RO
Current TOU No.
UINT16
0=TOU #1 1=TOU #2
7006
RW
TOU Switch Time
UINT32
See Note (1)
7008
WO
Switch TOU Manually
UINT16
Write 0xFF00 to manually switch the TOU schedules
7009
RW
Sunday Setup
UINT16
0=Weekday1*
1=Weekday2 2=Weekday3
7010
RW
Monday Setup
UINT16
7011
RW
Tuesday Setup
UINT16
7012
RW
Wednesday Setup
UINT16
7013
RW
Thursday Setup
UINT16
7014
RW
Friday Setup
UINT16
7015
RW
Saturday Setup
UINT16
Byte 3
Byte 2
Byte 1
Byte 0
Year-2000 (0-37)
Month (1-12)
Day (1-31)
Hour (00-23)
Offset
Property
Description
Format
Range/Default*
0
RW
Season #1: Start Date
UINT16
0x0101*
1
RW
Season #1: Weekday#1 Daily Profile
UINT16
0* to 19
2
RW
Season #1: Weekday#2 Daily Profile
UINT16
3
RW
Season #1: Weekday#3 Daily Profile
UINT16
4
RW
Season #2: Start Date
UINT16
High-order Byte: Month
Low-order Byte: Day
Table 5-43 DR Setup Parameter Data Structure
Notes:
1) Changing any of these Data Recorder setup registers will reset the Data Recorder.
2) Recording Offset can be used to delay the recording by a fixed amount of time from the Recording Interval. For example,
if the Recording Interval is set to 3600 (hourly) and the Recording Offset is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05, etc. Thus Recording Offset < Recording Interval.

5.12 TOU Setup

5.12.1 Basic

Notes:
1) If DI1 is not programmed as a Tariff Switch, the TOU will function based on the TOU Schedule. The number of Tariffs
supported depends on how many DIs are programmed as a Tariff Switch as indicated in Section 4.6.
2) The following table illustrates the data structure for the TOU Switch Time. For example, 0x1003140C indicates a switch time
of 12:00pm on March 20th, 2016. Writing 0xFFFFFFFF to this register disables the switching between TOU Schedule.

5.12.2 Season

The PMC-53A-E has two sets of Season setup parameters, one for each TOU. The Base Addresses for the two sets are 7100 and 8100, respectively, where the Register Address = Base Address + Offset. For example, the register address for TOU #1’s Season #2’s Start Date is 7100+4 = 7104. Moreover, all the registers in the same set of Season should be written in the identical frame.
Table 5-44 TOU Basic Setup
Table 5-45 TOU Switch Time Format
78
Page 87
CET Electric Technology
5
RW
Season #2: Weekday#1 Daily Profile
UINT16
0* to 19
6
RW
Season #2: Weekday#2 Daily Profile
UINT16
7
RW
Season #2: Weekday#3 Daily Profile
UINT16
8
RW
Season #3: Start Date
UINT16
See Season #2: Start Date
9
RW
Season #3: Weekday#1 Daily Profile
UINT16
0* to 19
10
RW
Season #3: Weekday#2 Daily Profile
UINT16
11
RW
Season #3: Weekday#3 Daily Profile
UINT16
12
RW
Season #4: Start Date
UINT16
See Season #2: Start Date
13
RW
Season #4: Weekday#1 Daily Profile
UINT16
0* to 19
14
RW
Season #4: Weekday#2 Daily Profile
UINT16
15
RW
Season #4: Weekday#3 Daily Profile
UINT16
16
RW
Season #5: Start Date
UINT16
See Season #2: Start Date
17
RW
Season #5: Weekday#1 Daily Profile
UINT16
0* to 19
18
RW
Season #5: Weekday#2 Daily Profile
UINT16
19
RW
Season #5: Weekday#3 Daily Profile
UINT16
20
RW
Season #6: Start Date
UINT16
See Season #2: Start Date
21
RW
Season #6: Weekday#1 Daily Profile
UINT16
0* to 19
22
RW
Season #6: Weekday#2 Daily Profile
UINT16
23
RW
Season #6: Weekday#3 Daily Profile
UINT16
24
RW
Season #7: Start Date
UINT16
See Season #2: Start Date
25
RW
Season #7: Weekday#1 Daily Profile
UINT16
0* to 19
26
RW
Season #7: Weekday#2 Daily Profile
UINT16
27
RW
Season #7: Weekday#3 Daily Profile
UINT16
28
RW
Season #8: Start Date
UINT16
See Season #2: Start Date
29
RW
Season #8: Weekday#1 Daily Profile
UINT16
0* to 19
30
RW
Season #8: Weekday#2 Daily Profile
UINT16
31
RW
Season #8: Weekday#3 Daily Profile
UINT16
32
RW
Season #9: Start Date
UINT16
See Season #2: Start Date
33
RW
Season #9: Weekday#1 Daily Profile
UINT16
0* to 19
34
RW
Season #9: Weekday#2 Daily Profile
UINT16
35
RW
Season #9: Weekday#3 Daily Profile
UINT16
36
RW
Season #10: Start Date
UINT16
See Season #2: Start Date
37
RW
Season #10: Weekday#1 Daily Profile
UINT16
0* to 19
38
RW
Season #10: Weekday#2 Daily Profile
UINT16
39
RW
Season #10: Weekday#3 Daily Profile
UINT16
40
RW
Season #11: Start Date
UINT16
See Season #2: Start Date
41
RW
Season #11: Weekday#1 Daily Profile
UINT16
0* to 19
42
RW
Season #11: Weekday#2 Daily Profile
UINT16
43
RW
Season #11: Weekday#3 Daily Profile
UINT16
44
RW
Season #12: Start Date
UINT16
See Season #2: Start Date
45
RW
Season #12: Weekday#1 Daily Profile
UINT16
0* to 19
46
RW
Season #12: Weekday#2 Daily Profile
UINT16
47
RW
Season #12: Weekday#3 Daily Profile
UINT16
Register
Property
Description
Format
7200~7223
RW
Daily Profile #1
See Table 5-49
Daily Profile Data
Structure
7224~7247
RW
Daily Profile #2
7248~7271
RW
Daily Profile #3
7272~7295
RW
Daily Profile #4
7296~7319
RW
Daily Profile #5
7320~7343
RW
Daily Profile #6
7344~7367
RW
Daily Profile #7
7368~7391
RW
Daily Profile #8
7392~7415
RW
Daily Profile #9
7416~7439
RW
Daily Profile #10
7440~7463
RW
Daily Profile #11
Table 5-46 Season Setup
Notes:
1) Start Date for Season #1 is Jan. 1st and cannot be modified.
2) Setting a Season’s Start Date as 0xFFFF terminates the TOU’s Season settings. All subsequent Seasons’ setup parameters
will be ignored since the previous Season’s duration is from its Start Date to the end of the year.
3) The Start Date of a particular Season must be later than the previous Season’s.

5.12.3 Daily Profile

The PMC-53A-E has two sets of Daily Profile setup parameters, one for each TOU.
79
Page 88
CET Electric Technology
7464~7487
RW
Daily Profile #12
7488~7511
RW
Daily Profile #13
7512~7535
RW
Daily Profile #14
7536~7559
RW
Daily Profile #15
7560~7583
RW
Daily Profile #16
7584~7607
RW
Daily Profile #17
7608~7631
RW
Daily Profile #18
7632~7655
RW
Daily Profile #19
7656~7679
RW
Daily Profile #20
Register
Property
Description
Format
8200~8223
RW
Daily Profile #1
See Table 5-49
Daily Profile Data
Structure
8224~8247
RW
Daily Profile #2
8248~8271
RW
Daily Profile #3
8272~8295
RW
Daily Profile #4
8296~8319
RW
Daily Profile #5
8320~8343
RW
Daily Profile #6
8344~8367
RW
Daily Profile #7
8368~8391
RW
Daily Profile #8
8392~8415
RW
Daily Profile #9
8416~8439
RW
Daily Profile #10
8440~8463
RW
Daily Profile #11
8464~8487
RW
Daily Profile #12
8488~8511
RW
Daily Profile #13
8512~8535
RW
Daily Profile #14
8536~8559
RW
Daily Profile #15
8560~8583
RW
Daily Profile #16
8584~8607
RW
Daily Profile #17
8608~8631
RW
Daily Profile #18
8632~8655
RW
Daily Profile #19
8656~8679
RW
Daily Profile #20
Offset
Property
Description
Format
Note
+0
RW
Period #1 Start Time
UINT16
0x0000
+1
RW
Period #1 Tariff
UINT16
0=T1, …, 7=T8
+2
RW
Period #2
Start Time
High-order Byte: Hour
UINT16
0 ≤ Hour < 24
Low-order Byte: Min
Min = 0, 15, 30, 45
+3
RW
Period #2 Tariff
UINT16
0=T1, …, 7=T8
+4
RW
Period #3 Start Time
UINT16
See Period #2 Start Time
+5
RW
Period #3 Tariff
UINT16
0=T1, …, 7=T8
+6
RW
Period #4 Start Time
UINT16
See Period #2 Start Time
+7
RW
Period #4 Tariff
UINT16
0=T1, …, 7=T8
+8
RW
Period #5 Start Time
UINT16
See Period #2 Start Time
+9
RW
Period #5 Tariff
UINT16
0=T1, …, 7=T8
+10
RW
Period #6 Start Time
UINT16
See Period #2 Start Time
+11
RW
Period #6 Tariff
UINT16
0=T1, …, 7=T8
+12
RW
Period #7 Start Time
UINT16
See Period #2 Start Time
+13
RW
Period #7 Tariff
UINT16
0=T1, …, 7=T8
+14
RW
Period #8 Start Time
UINT16
See Period #2 Start Time
+15
RW
Period #8 Tariff
UINT16
0=T1, …, 7=T8
+16
RW
Period #9 Start Time
UINT16
See Period #2 Start Time
+17
RW
Period #9 Tariff
UINT16
0=T1, …, 7=T8
+18
RW
Period #10 Start Time
UINT16
See Period #2 Start Time
+19
RW
Period #10 Tariff
UINT16
0=T1, …, 7=T8
+20
RW
Period #11 Start Time
UINT16
See Period #2 Start Time
+21
RW
Period #11 Tariff
UINT16
0=T1, …, 7=T8
+22
RW
Period #12 Start Time
UINT16
See Period #2 Start Time
+23
RW
Period #12 Tariff
UINT16
0=T1, …, 7=T8
Table 5-47 TOU #1’s Daily Profile Setup
Table 5-48 TOU #2’s Daily Profile Setup
Notes:
1) Daily Profile #1’s Period #1 Start Time is always 00:00 and cannot be modified.
2) Setting a Period’s Start Time as 0xFFFF terminates the Daily Profile’s settings. All later Daily Profile’ setup parameters will
3) The interval of a period should be 15n (n=1, 2, etc.) minutes.
4) The Start Time of a particular Period must be later than the previous Period’s .
Table 5-49 Daily Profile Data Structure
be ignored, and the previous Period’s duration is from its Start Time to the end of the day.
80
Page 89
CET Electric Technology
Offset
Property
Description
Format
Range/Default*
0
RW
Alternate Day #1 Date¹
UINT32
Table 5-51
2
RW
Alternate Day #1 Daily Profile
UINT16
0* to 19
3
RW
Alternate Day #2 Date¹
UINT32
Table 5-51
5
RW
Alternate Day #2 Daily Profile
UINT16
0* to 19
6
RW
Alternate Day #3 Date¹
UINT32
Table 5-51
8
RW
Alternate Day #3 Daily Profile
UINT16
0* to 19
9
RW
Alternate Day #4 Date¹
UINT32
Table 5-51
11
RW
Alternate Day #4 Daily Profile
UINT16
0* to 19
12
RW
Alternate Day #5 Date¹
UINT32
Table 5-51
14
RW
Alternate Day #5 Daily Profile
UINT16
0* to 19
15
RW
Alternate Day #6 Date¹
UINT32
Table 5-51
17
RW
Alternate Day #6 Daily Profile
UINT16
0* to 19
18
RW
Alternate Day #7 Date¹
UINT32
Table 5-51
19
RW
Alternate Day #7 Daily Profile
UINT16
0* to 19
21
RW
Alternate Day #8 Date¹
UINT32
Table 5-51
22
RW
Alternate Day #8 Daily Profile
UINT16
0* to 19
24
RW
Alternate Day #9 Date¹
UINT32
Table 5-51
25
RW
Alternate Day #9 Daily Profile
UINT16
0* to 19
27
RW
Alternate Day #10 Date¹
UINT32
Table 5-51
29
RW
Alternate Day #10 Daily Profile
UINT16
0* to 19
Table 5-51
0* to 19
240
RW
Alternate Day #81 Date¹
UINT32
Table 5-51
162
RW
Alternate Day #81 Daily Profile
UINT16
0* to 19
243
RW
Alternate Day #82 Date¹
UINT32
Table 5-51
245
RW
Alternate Day #82 Daily Profile
UINT16
0* to 19
246
RW
Alternate Day #83 Date¹
UINT32
Table 5-51
248
RW
Alternate Day #83 Daily Profile
UINT16
0* to 19
249
RW
Alternate Day #84 Date¹
UINT32
Table 5-51
251
RW
Alternate Day #84 Daily Profile
UINT16
0* to 19
252
RW
Alternate Day #85 Date¹
UINT32
Table 5-51
254
RW
Alternate Day #85 Daily Profile
UINT16
0* to 19
255
RW
Alternate Day #86 Date¹
UINT32
Table 5-51
256
RW
Alternate Day #86 Daily Profile
UINT16
0* to 19
258
RW
Alternate Day #87 Date¹
UINT32
Table 5-51
260
RW
Alternate Day #87 Daily Profile
UINT16
0* to 19
261
RW
Alternate Day #88 Date¹
UINT32
Table 5-51
263
RW
Alternate Day #88 Daily Profile
UINT16
0* to 19
264
RW
Alternate Day #89 Date¹
UINT32
Table 5-51
266
RW
Alternate Day #89 Daily Profile
UINT16
0* to 19
267
RW
Alternate Day #90 Date¹
UINT32
Table 5-51
269
RW
Alternate Day #90 Daily Profile
UINT16
0* to 19
Byte 3
Byte 2
Byte 1
Byte 0
Reserved
Year-2000 (0-37)
Month (1-12)
Day (1-31)

5.12.4 Alternate Days

Each Alternate Day is assigned a Daily Profile and has a higher priority than Season. If a particular date is set as an Alternate Day, its assigned Daily Profile will override the “normal” Daily Profile for this day according the TOU settings.
The PMC-53A-E has two sets of Alternate Days setup parameters, one for each TOU. The Base Addresses for the two sets are 7700 and 8700, respectively, where the Register Address = Base Address + Offset. For example, the register address for TOU #2’s Alternative Day #2’s Date is 8700+3 = 8703.
Table 5-50 Alternate Days Setup
Note:
1) The following table illustrates the data structure of the Date register:
Table 5-51 Date Format
When the Year and/or Month are set as 0xFF, it means the Alternate Day is repetitive by year and/or month, i.e. the same day of every year or every month is an Alternate Day.

5.13 Time

There are two sets of Time registers supported by the PMC-53A-E – Year / Month / Day / Hour / Minute
81
Page 90
CET Electric Technology
Register
Property
Description
Format
Note
60000
9000
RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
60001
9001
RW
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002
9002
RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003
RW
Millisecond
UINT16
0 to 999
60004
~
60005
9004
~
9005
RW
UNIX Time
UINT32
0x386D4380 to 0x 7FE8177F
The corresponding time is
2000.01.01 00:00:00 to
2037.12.31 23:59:59
(GMT+00:00 Time Zone)
Register
Property
Description
Format
Note
9100
WO
Arm DO1 Close
UINT16
Writing “0xFF00” to the register to
perform the
described action.
9101
WO
Execute DO1 Close
UINT16
9102
WO
Arm DO1 Open
UINT16
9103
WO
Execute DO1 Open
UINT16
9104
WO
Arm DO2 Close
UINT16
9105
WO
Execute DO2 Close
UINT16
9106
WO
Arm DO2 Open
UINT16
9107
WO
Execute DO2 Open
UINT16
Register
Property
Description
Format
Note
9600
WO
Clear Historical Monthly Energy Log1
UINT16
Writing “0xFF00” to the register to
execute the
described action.
9601
WO
Clear All Energy Registers2
9602
WO
Clear Present Monthly Energy Log3
9603
WO
Clear Peak Demand of
This Month (Since Last Reset)4
/ Second (Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to the PMC-53A-E over Modbus communications, care should be taken to only write one of the two Time register sets. All registers within a Time register set must be written in a single transaction. If registers 60000 to 60004 are being written to at the same time, both Time register sets will be updated to reflect the new time specified in the UNIX Time register set (60004) and the time specified in registers 60000­60002 will be ignored. Writing to the Millisecond register (60003) is optional during a Time Set operation. When broadcasting time, the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect date or time values will be rejected by the meter. In addition, attempting to write a Time value less than Jan 1, 2000 00:00:00 will be rejected.
Table 5-52 Time Registers
Note:
1) The UNIX time in GMT+00:00 Time Zone should be used when writing the meter’s time. The meter will compute internally
and display in Local Time based on the setting of the Time Zone setup register (#6053).

5.14 Remote Control

The DO Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command (Function Code 0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-53A-E does not support the Read Coils command (Function Code 0x01) because DO Control registers are “Write­Only”. The DO Status register 0098 should be read instead to determine the current DO status.
The PMC-53A-E adopts the ARM before EXECUTE operation for the remote control of its Digital Outputs if this function is enabled through the Arm Before Execute Enable Setup register (6032), which is disabled by default. Before executing an OPEN or CLOSE command on a Digital Output, it must be “Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm” a particular DO operation. The DO will be “Disarmed” automatically if an “Execute” command is not received within 15 seconds after it has been “Armed”. If an “Execute” command is received without first having received an “Arm” command, the meter ignores the “Execute” command and returns the 0x04 exception code.

5.15 Clear/Reset Control

Table 5-53 DO Control
82
Page 91
CET Electric Technology
9604
WO
Clear All Demand Registers5
9605
WO
Clear Max/Min Logs of This Month
(Since Last Reset)6
9606
WO
Clear All Max/Min Log7
9607
WO
Clear Device Operating Time
9608
WO
Clear All Data8
9609
WO
Clear SOE Log
9610
WO
Clear DI1 Pulse Counter
9611
WO
Clear DI2 Pulse Counter
9612
WO
Clear DI3 Pulse Counter
9613
WO
Clear DI4 Pulse Counter
9614
WO
Clear Daily Freeze Log
9615
WO
Clear Monthly Freeze Log
9616
WO
Reserved
9617
WO
Send Testing Email
9618
WO
Clear All Pulse Counters
9619
WO
Clear Data Recorder #1 Log
9620
WO
Clear Data Recorder #2 Log
9621
WO
Clear Data Recorder #3 Log
9622
WO
Clear Data Recorder #4 Log
9623
WO
Clear Data Recorder #5 Log
9624
WO
Clear All Data Recorder Log
Register
Property
Description
Format
Note
60200~60219
9800~9819
RO
Meter model1
UINT16
See Note 1)
60220
9820
RO
Firmware Version
UINT16
e.g. 10000 shows the
version is V1.00.00
60221
9821
RO
Protocol Version
UINT16
e.g. 10 shows the
version is V1.0
60222
9822
RO
Firmware Update
Date: Year-2000
UINT16
e.g. 140110 means
January 10, 2014 60223
9823
RO
Firmware Update
Date: Month
UINT16
60224
9824
RO
Firmware Update
Date: Day
UINT16
60225
9825
RO
Serial Number
UINT32
e.g. 1701030100 means
the 100th PEM353 that
was manufactured on
January 3rd, 2017
60227
9827
RO
Reserved
UINT16
60228
9828
RO
Reserved
UINT16
60229
9829
RO
Extension Module
UINT16
See Note 2)
Table 5-54 Clear Control
Notes:
1) Writing 0xFF00 to the Clear Historical Monthly Energy Log register means to clear the Monthly Energy Log of the last 1 to
12 months, excluding the Monthly Energy Log for the Present Month.
2) Writing 0xFF00 to the Clear All Energy Registers register to clear 3-Phase Total Energy registers and Phase A/B/C Energy
registers, including TOU Energy and Interval Energy.
3) Writing 0xFF00 to the Clear Present Monthly Energy Log register means to clear the Monthly Energy Log of the Present
Month.
4) Writing 0xFF00 to the Clear Peak Demand of This Month register to clear Peak Demand Log of This Month (Since Last Reset)
when the Self-Read Time register is set for automatic Self-Read operation. The Peak Demand of Last Month will not be cleared. If the Self-Read Time register is set for manual operation with a register value of 0xFFFF, the Peak Demand of This Month (Since Last Reset) will be transferred to the Peak Demand of Last Month (Before Last Reset) and then cleared.
5) Writing 0xFF00 to the Clear All Demand register to clear all Demand registers and logs, including Real-time Present Demand,
Peak Demand Log of This Month (Since Last Reset) and Last Month (Before Last Reset).
6) Writing 0xFF00 to the Clear Max/Min Log of This Month register to clear the Max/Min log of This Month (Since Last Reset)
when the Self-Read Time register is set for automatic Self-Read operation. The Max/Min log of Last Month will not be cleared. If the Self-Read Time register is set for manual operation with a register value of 0xFFFF, the Max/Min log of This Month (Since Last Reset) will be transferred to the Max/Min log of Last Month (Before Last Reset) and then cleared.
7) Writing 0xFF00 to the Clear All Max/Min Log register to clear both the Max/Min Log of This Month (Since Last Reset) and
the Max/Min Log of Last Month (Before Last Reset).
8) Writing 0xFF00 to the Clear All Data register to perform the Clear operation for the actions specified in registers # 9600 to
# 9607, registers # 9609 to # 9615, registers # 9618 to 9624 and Interval Energy Measurements.

5.16 Meter Information

Notes:
Table 5-55 Meter Information
83
Page 92
CET Electric Technology
Register
Value(Hex)
ASCII
60200
0x50
P
60201
0x4D
M
60202
0x43
C
60203
0x2D
-
60204
0x35
5
60205
0x33
3
60206
0x41
A
60207
0x2D
-
60208
0x45
E
60209-60219
0x20
Null
1) The Meter Model appears from registers 60200 to 60219 and contains the ASCII encoding of the string “PMC-53A-E” as
shown in the following table.
Table 5-56 ASCII Encoding of “PMC-53A-E”
2) Bit 0=0 represents the Standard Model without the I4+AI+Ir option while Bit 0=1 represents the Model with the I4+AI+Ir
option. Bits 1 to 15 are reserved.
84
Page 93
CET Electric Technology
ID
Description
ID
Description
ID
Description
Real-time Measurements (Format: Float)
0
None
14
kWb
28
PF Total
1
Uan
15
kWc
29
Frequency
2
Ubn
16
kW Total
30
Uan/Uab Angle
3
Ucn
17
kvara
31
Ubn/Ubc Angle
4
Uln Average
18
kvarb
32
Ucn/Uca Angle
5
Uab
19
kvarc
33
Ia Angle
6
Ubc
20
kvar Total
34
Ib Angle
7
Uca
21
kVAa
35
Ic Angle
8
Ull Average
22
kVAb
36
In (Calculated)
9
Ia
23
kVAc
37
I4
10
Ib
24
kVA Total
38
AI Scaled
11
Ic
25
PFa
39
Ir (Residual Current)
12
I Average
26
PFb
40
Fundamental Power Total
13
kWa
27
PFc
Power Quality (Format: Float)
41
Phase A Fundamental kW
59
Ib Crest -Factor
160
Ubn/Ubc HD31
42
Phase B Fundamental kW
60
Ic Crest -Factor
161
Ucn/Uca HD31
43
Phase C Fundamental kW
61
Voltage Unbalance
162
Ia THD
44
Fundamental kW Total
62
Current Unbalance
163
Ib THD
45
Total Harmonic kW
63
Uan/Uab THD
164
Ic THD
46
Ia TDD
64
Ubn/Ubc THD
165
Ia TOHD
47
Ib TDD
65
Ucn/Uca THD
166
Ib TOHD
48
Ic TDD
66
Uan/Uab TOHD
167
Ic TOHD
49
Ia TOHD
67
Ubn/Ubc TOHD
168
Ia TEHD
50
Ib TOHD
68
Ucn/Uca TOHD
169
Ib TEHD
51
Ic TOHD
69
Uan/Uab TEHD
170
Ic TEHD
52
Ia TEHD
70
Ubn/Ubc TEHD
171
Ia HD02
53
Ib TEHD
71
Ucn/Uca TEHD
172
Ib HD02
54
Ic TEHD
72
Uan/Uab HD02
173
Ic HD02
55
Ia K-Factor
73
Ubn/Ubc HD02
56
Ib K-Factor
74
Ucn/Uca HD02
258
Ia HD31
57
Ic K-Factor
… … 259
Ib HD31
58
Ia Crest Factor
159
Uan/Uab HD31
260
Ic HD31
Energy Measurements (Format: int32)
261
DI1 Pulse Counter
281
kWh Export of T1
301
kWh Export of T5
262
DI2 Pulse Counter
282
kvarh Import of T1
302
kvarh Import of T5
263
DI3 Pulse Counter
283
kvarh Export of T1
303
kvarh Export of T5
264
DI4 Pulse Counter
284
kVAh of T1
304
kVAh of T5
265 266
Reserved
285
kWh Import of T2
305
kWh Import of T6
286
kWh Export of T2
306
kWh Export of T6
267
kWh Import
287
kvarh Import of T2
307
kvarh Import of T6
268
kWh Export
288
kvarh Export of T2
308
kvarh Export of T6
269
kWh Net
289
kVAh of T2
309
kVAh of T6
270
kWh Total
290
kWh Import of T3
310
kWh Import of T7
271
kvarh Import
291
kWh Export of T3
311
kWh Export of T7
272
kvarh Export
292
kvarh Import of T3
312
kvarh Import of T7
273
kvarh Net
293
kvarh Export of T3
313
kvarh Export of T7
274
kvarh Total
294
kVAh of T3
314
kVAh of T7
275
kVAh
295
kWh Import of T4
315
kWh Import of T8
276
kvarh Q1
296
kWh Export of T4
316
kWh Export of T8
277
kvarh Q2
297
kvarh Import of T4
317
kvarh Import of T8
278
kvarh Q3
298
kvarh Export of T4
318
kvarh Export of T8
279
kvarh Q4
299
kVAh of T4
319
kVAh of T8
280
kWh Import of T1
300
kWh Import of T5
Demand Measurements (Format: Float)
320
Ia Present Demand
326
Ia Peak Demand Log of This Month (Since Last Reset)
321
Ib Present Demand
327
Ib Peak Demand Log of This Month (Since Last Reset)
322
Ic Present Demand
328
Ic Peak Demand Log of This Month (Since Last Reset)
323
kW Total Present Demand
329
kW Peak Demand Log of This Month (Since Last Reset)
324
kvar Total Present Demand
330
kvar Peak Demand Log of This Month (Since Last Reset)
325
kVA Total Present Demand
331
kVA Peak Demand Log of This Month (Since Last Reset)

Appendix A Data Recorder Parameter List

85
Page 94
CET Electric Technology
Parameter
DR 1
DR 2
DR 3
DR 4
DR 5
Trigger Mode
Triggered by
Timer
Triggered by
Timer
Triggered by
Timer
Triggered by
Timer
Triggered by
Timer
Recording Mode
FIFO
FIFO
FIFO
FIFO
FIFO
Recording
Depth
5760
5760
5760
5760
5760
Recording
Interval
900s
900s
900s
900s
900s
Recording
Offset
0 0 0 0 0
Number of
Parameters
15
16
16
15
16
Parameter 1
kWh Import
Uab
Uan
Uan/Uab THD
T1 kWh Imp.
Parameter 2
kWh Export
Ubc
Ubn
Ubn/Ubc THD
T1 kWh Exp.
Parameter 3
kWh Total
Uca
Ucn
Ucn/Uca THD
T1 kvarh Imp.
Parameter 4
kWh Net
Ull avg
Uln avg
Ia THD
T1 kvarh Exp.
Parameter 5
kvarh Import
Ia
kWa
Ib THD
T2 kWh Imp.
Parameter 6
kvarh Export
Ib
kWb
Ic THD
T2 kWh Exp.
Parameter 7
kvarh Total
Ic
kWc
Ia TDD
T2 kvarh Imp.
Parameter 8
kvarh Net
I avg
kvara
Ib TDD
T2 kvarh Exp.
Parameter 9
kVAh Total
In
(Calculated)
kvarb
Ic TDD
T3 kWh Imp.
Parameter 10
kW Total
Demand
kW Total
kvarc
Ia K-Factor
T3 kWh Exp.
Parameter 11
kvar Total
Demand
kvar Total
kVAa
Ib K-Factor
T3 kvarh Imp.
Parameter 12
kVA Total
Demand
kVA Total
kVAb
Ic K-Factor
T3 kvarh Exp.
Parameter 13
Ia Demand
PF Total
kVAc
Ia Crest Factor
T4 kWh Imp.
Parameter 14
Ib Demand
Freq
P.F.a
Ib Crest Factor
T4 kWh Exp.
Parameter 15
Ic Demand
U Unbalance
P.F.b
Ic Crest Factor
T4 kvarh Imp.
Parameter 16
None
I Unbalance
P.F.c
None
T4 kvarh Exp.

Appendix B Data Recorder Default Settings

86
Page 95
CET Electric Technology
Item
Description
Date
March 20, 2017
Vendor Name
CET
Model Name
PMC-53A-E
Applications Software Version
1.00.00
Firmware Revision
1.0
Protocol Version
1
Protocol Revision
7
Description
Intelligent Multifunction Meter
Standardized Device
BACnet Smart Actuator (B-SA)
Interoperability Building
Blocks supported
DS-RP-B, DS-RPM-B, DS-WP-B, DM-DOB-B, DM-TS-B, DM-DDB-B
Segmentation Capability
Not Supported
Data Link Layer Options
MS/TP Master, Baud rate(s): 1200, 2400, 4800, 9600, 19200,
38400
Device Address Binding
None
Networking Options
None
Character Sets Support
ANSI X3.4
Property*
Description
Range/Values
Default
R/W
Object_Identifier
0 to 4194302
26001
R/W
Object_Name
Up to 32 characters
Simple Server
R/W
System_Status
Operational (0)
R
Object_Type
Device (8)
R
Vendor_Name
CET
R/W
Vendor_Identifier
593
R
Model_Name
PMC-53A-E
R
Firmware_Revision
1
R
Application_Software_Version
1.00.00
R/W
Location
Up to 64 characters
LOCAL
R/W
Description
Up to 64 characters
Intelligent
Multifunction Meter
R
Protocol_Version
1
R Protocol_Revision
7
R
Protocol_Service_Supported1
Please see notes below
R
Protocol_Object_Types_Supported2
Please see notes below
R
Object_List
Please refer to sections
3) to 6)
R
Max_APDU_Length_Accepted
480
R
Segmentation
NO_SEGMENTATION
(3)
R/W
APDU_Timeout
0~65535
3000
R/W
Number_Of_APDU_Retries
0~255
3
R/W
Max_Master
1 to 127
127
R/W
Max_Info_Frame
1
R
Device_Address_Binding
{}

Appendix C BACNet MSTP Implementation

1) Basic Information

The PMC-53A-E supports the BACnet MS/TP protocol and can easily be connected to a BACnet MS/TP network using an off-the shelf BACnet router. The PMC-53A-E provides four types of BACnet objects. Standard Protocol Implementation Conformance Statement (PICS) as illustrated in table below describes the required characteristics of the BACnet implementation.

2) Device Objects

Optional Properties Supported: Description, Local_Time, Local_Date, Location Writable Properties: Object_Identifier, Number_Of_APDU_Reries, APDU_Timeout,
System_Status, Object_Name, Location, Description, Max_Master, Max_Info_Frame, Local_Time, Local_Date
Property Range Restrictions: Object_Identifier - valid range is between 0 and 4194302;
Object_Name - limited to 32 characters; Location - limited to 64 characters; Description ­limited to 64 characters; Max_Master – valid range is between 1 and 127.
The following table illustrates the Device Objects on the PMC-53A-E:
87
Page 96
CET Electric Technology
R
Database_Revision
0
R
Local_Time
Configuration by
timing
12:00:00:00 R Local_Date
Configuration by
timing
2016.07.01
Register
Description
Property
Unit
Range
AI 0000
Uan1
R V
AI 0002
Ubn1
R
AI 0004
Ucn1
R
AI 0006
ULN average1
R
AI 0008
Uab
R
AI 0010
Ubc
R
AI 0012
Uca
R
AI 0014
ULL average
R
AI 0016
Ia
R A
AI 0018
Ib
R
AI 0020
Ic
R
AI 0022
I average
R
AI 0024
kWa1
R
kW
AI 0026
kWb1
R
AI 0028
kWc1
R
AI 0030
kW Total
R
AI 0032
kvara1
R
kvar
AI 0034
kvarb1
R
AI 0036
kvarc1
R
AI 0038
kvar Total
R
AI 0040
kVAa1
R
kVA
AI 0042
kVAb1
R
AI 0044
kVAc1
R
AI 0046
kVA Total
R
AI 0048
PFa1
R
0 to 1
AI 0050
PFb1
R
AI 0052
PFc1
R
AI 0054
PF Total
R
AI 0056
Frequency
R
Hz AI 0070
Neutral Current (Calculated)
R A
AI 0072
I4 (Optional Measurement)
R A
AI 0082
AI
R
AI 0084
Ir
R A
AI 0500
kWh Import
R
kWh
0 to
*
R = Read Only; R/W = Read/Write
Notes:
1) Supported services:
o ReadProperty o ReadPropertyMultiple o WriteProperty o TimeSynchronization o Who-Has o Who-Is, I-Am, I-Have
2) Supported object types:
o Analog-Input o Analog-Value o Binary-Input o Binary-Output o Device

3) Analog Input Objects (PMC-53A-E’s Real-Time Parameters)

Optional Properties Supported: Description, Reliability
Use the Present_Value property of the Analog_Input objects for all read-only numeric variables in PMC-53A-E. These objects support the Description and Reliability optional properties and all required Analog_Input object properties. None of them are writable. The values that are not instantaneous (i.e. Accumulated Energy, Peak Demand) are non-volatile.
88
Page 97
CET Electric Technology
AI 0502
kWh Export
R
99999999.9
AI 0504
kWh Net
R
AI 0506
kWh Total
R
AI 0508
kvarh Import*
R
kvarh
AI 0510
kvarh Export*
R
AI 0512
kvarh Net*
R
AI 0514
kvarh Total*
R
AI 0516
kVAh*
R
kWh
AI 3006
kW Total Demand
R
kW
AI 3008
kvar Total Demand
R
kvar
AI 3010
kVA Total Demand
R
kVA
AI 3000
Ia Demand
R A
AI 3002
Ib Demand
R
AI 3004
Ic Demand
R
AI 3418
kW Total Peak Demand
R
kW
AI 3424
kvar Total Peak Demand
R
kvar
AI 3430
kVA Total Peak Demand
R
kVA
AI 3400
Ia Peak Demand
R A
AI 3406
Ib Peak Demand
R
AI 3412
Ic Peak Demand
R
AI 1600
Uan THD2
R %
AI 1602
Ubn THD2
R
AI 1604
Ucn THD2
R
AI 1400
Ia THD
R
AI 1402
Ib THD
R
AI 1404
Ic THD
R
AI 1318
Ia K Factor
R
AI 1320
Ib K Factor
R
AI 1322
Ic K Factor
R
AI 1300
Ia TDD
R
AI 1302
Ib TDD
R
AI 1304
Ic TDD
R
AI 1324
Ia Crest Factor
R
AI 1326
Ib Crest Factor
R
AI 1328
Ic Crest Factor
R
AI 1330
U Unbalance
R
AI 1332
I Unbalance
R
AI 0074
dPFa1
R
-
0 to 1
AI 0076
dPFb1
R
AI 0078
dPFc1
R
AI 0058
Uan Angle3
R °
AI 0060
Ubn Angle3
R
AI 0062
Ucn Angle3
R
AI 0064
Ia Angle
R
AI 0066
Ib Angle
R
AI 0068
Ic Angle
R
AI 0104
Operating Time
R h
AI 0526
Interval kWh Import
R
kWh
0 to
99999999.9 AI 0528
Interval kWh Export
R
AI 0530
Interval kvarh Import*
R
kvarh
AI 0532
Interval kvarh Export*
R
AI 0534
Interval kVAh*
R
kWh
AI 1200
DI #1 Counter
R
-
0 to
999,999,999
AI 1202
DI #2 Counter
R
AI 1204
DI #3 Counter
R
AI 1206
DI #4 Counter
R
*There are no unit types for kvarh and kVAh in BACnet so the return values are in unit of kWh.
Notes:
1) When the Wiring Mode is 3P3W, the per phase line-to-neutral voltages, kWs, kvars, kVAs and
PFs have no meaning, and their registers are reserved.
2) Uan/Ubn/Ucn THD = Uab/Ubc/Uca THD in 3P3W Wiring Mode and represent the harmonics
of the line voltages.
3) Uan/Ubn/Ucn Angle = Uab/Ubc/Uca Angle in 3P3W Wiring Mode and represent the phase
angles of the line voltages.
89
Page 98
CET Electric Technology
Register
Description
Property
Unit/ Range
Default/Note
AV 6000
PT Primary High#
R/W
0 to 1000 kV
0
AV 6001
PT Primary Low#
R/W
1 to 999 V
100
AV 6002
PT Secondary#
R/W
1 to 690
100
AV 6004
CT Primary
R/W
1 to 30000
5
AV 6006
CT Secondary
R/W
1 to 5
5
AV 6012
I4 Primary
R/W
1 to 30000
5
AV 6014
I4 Secondary
R/W
1 to 5
5
AV 6020
Wiring Mode
R/W
0 = DEMO
1 = 1P2W L-N
2 = 1P2W L-L
3 = 1P3W L-L-N
4 = 3P3W, 5 = 3P4W
5
AV 6021
PF Convention
R/W
0 = IEC, 1 = IEEE, 2 = -IEEE
0
AV 6022
kVA Calculation
R/W
0 = Vector, 1 = Scalar
0
AV 6028
THD Calculation
R/W
0 = THDf, 1 = THDr
0
AV 6029
Demand Period
R/W
1 to 60 min
15
AV 6030
Number of Sliding Windows
R/W
1 to 15
1
AV 6047
Interval Energy Period
R/W
5 to 60 min
60
AV 9603
Clear Present Peak Demand
W
65280
Default = 0
Writing “0xFF00”
to the register to
execute the
described action.
AV 9601
Clear Energy
W
AV 9610
Clear DI #1 Counter
W
AV 9611
Clear DI #2 Counter
W
AV 9612
Clear DI #3 Counter
W
AV 9613
Clear DI #4 Counter
W
Register
Description
Property
Note
BI0
DI 1
R
0 = Inactive, 1 = Active
BI1
DI 2
R
0 = Inactive, 1 = Active
BI2
DI 3
R
0 = Inactive, 1 = Active
BI3
DI 4
R
0 = Inactive, 1 = Active
Register
Description
Property
Note
BO0
DO 1
R/W
0 = Inactive, 1 = Active
BO1
DO 2
R/W
0 = Inactive, 1 = Active

4) Analog Value Objects (PMC-53A-E’s Basic Setup Registers)

Optional Properties Supported: Description, Relinquish_Default, Priority_Array Writable Properties: Present_Value, Out_Of_Service, Units, Relinquish_Default
Use the Present Value property of the Analog Value object for some writable variables in the meter other than those used specifically for BACnet configuration or Time Synchronization. Values are checked when written, and errors are returned for invalid entries. The table below describes how the Setup Registers of the PMC-53A-E are represented in BACnet, their valid ranges, their defaults as well as how they are used. PMC-53A-E supports the Description, Relinquish_Default and Priority_Array optional properties. Writable properties include Present_Value, Out_Of_Service, Units and Relinquish_Default, but Units are not non-volatile after modification.
#
PT Primary / PT Secondary Must be less than 10000.

5) Binary Input Objects (PMC-53A-E’s Digital Inputs)

Optional Properties Supported: Description, Reliability
Use the Present_Value properties of the Binary_Input objects as alerts for conditions of potential concern regarding system measurements. These objects support the Description and Reliability optional properties and all required Binary_Input object properties. None of them are writable.

6) Binary Output Objects (PMC-53A-E’s Digital Outputs)

Optional Properties Supported: Inactive_Text, Active_Text
Use the Present_Value property of the Binary_Output objects as alerts for DO conditions. Reading Binary_Output objects have the highest priority. PMC-53A-E supports Inactive_Text, Active_Text optional properties and all required Binary_Output object properties. Present_Value, Out_Of_Service and Polarity properties can be written, but these are non-volatile after modification. The Present_Value can only be written when the Out_Of_Service is true to change the state of the Digital Output and will be written as W when the Out_Of_Service is false.
90
Page 99
CET Electric Technology
Parameters
Description
Option/Range
Default
MAC
MS/TP ID^
0 to127
100
INST
Object Identifier#
0 to 4194302
26001
MAXMAS
Maximum Number of Master
0 to 127
127
LOCK
Disable communication
YES/NO
NO
BAUD
Baud rate
1200/2400/4800/9600/19200/38400
9600
CONFIG
Comm. Port Configuration
8N1/8E1/8O1/8N2/8E2/8O2
8E1

7) Additional Front Panel Setup Parameters for BACnet MS/TP

The following BACnet MS/TP setup parameters should be configured via the PMC-53A-E’s Front Panel before connecting the PMC-53A-E to a BACnet MS/TP network.
^
The MS/TP ID is similar to the Modbus unit ID conceptually
#
The Object Identifier is similar to the IP address of an Ethernet network conceptually and is required to be
unique within the entire BACnet network
91
Page 100
CET Electric Technology
DNP V3.0
Vendor Name: CET
Device Name: PMC-53A-E
Highest DNP Level Supported:
For Requests: Level 1 For Responses: Level 1
Device Function:
Master Slave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP levels Supported (the complete list is described in the attached table):
Maximum Data Link Frame Size (octets):
Transmitted: 292 Received: 292
Maximum Application Fragment Size (octets):
Transmitted: 1024 Received: 300
Maximum Data Link Re-tries:
None  Fixed  Configurable
Maximum Application Layer Re-tries:
None Configurable
Requires Data Link Layer Confirmation:
Never  Always  Sometimes  Configurable
Requires Application Layer Confirmation:
Never  Always  When reporting Event Data (Slave devices only)  When sending multi-fragment responses (Slave devices only)  Sometimes  Configurable
Timeouts while waiting for:
Data Link Confirm: None Fixed at ___ Variable Configurable Complete Appl. Fragment: None Fixed at ___ Variable Configurable Application Confirm: None Fixed at ___ Variable Configurable Complete Appl. Response: None Fixed at ___ Variable Configurable
Others: Transmission Delay, configurable Select/Operate Arm Timeout, fixed at 15 seconds
Sends/Executes Control Operations:
WRITE Binary Outputs Never Always Sometimes Configurable SELECT/OPERATE Never Always Sometimes Configurable DIRECT OPERATE Never Always Sometimes Configurable DIRECT OPERATE - NO ACK Never Always Sometimes Configurable
Count > 1 Never Always Sometimes Configurable Pulse On: Never Always Sometimes Configurable Pulse Off: Never Always Sometimes Configurable Latch On Never Always Sometimes Configurable Latch Off Never Always Sometimes Configurable
Queue: Never Always Sometimes Configurable Clear Queue: Never Always Sometimes Configurable
Attach explanation if "Sometimes" or "Configurable" was checked for any operation.

Appendix D DNP Profile

This section contains the DNP Device Profile Information according to the standard format defined in the DNP 3.0 Subset Definitions Document and should provide a complete application configuration guide.
92
Loading...