This manual may not be reproduced in whole or in part by any means without the express
written permission from CET Inc. (CET).
The information contained in this manual is believed to be accurate at the time of publication;
however, CET assumes no responsibility for any errors which may appear here and reserves
the right to make changes without notice. Please consult CET or your local representative for
the latest product specifications.
Standards Compliance
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and
permanent equipment damage if proper precautions are not taken during the installation,
operation or maintenance of the device.
CAUTION
This symbol indicates the potential of personal injury or equipment damage if proper
precautions are not taken during the installation, operation or maintenance of the device.
2
Page 3
Installation, operation and maintenance of the meter should only be
performed by qualified, competent personnel that have the appropriate
training and experience with high voltage and current devices. The meter must
Ensure that all incoming AC power and other power sources are turned OFF
Before connecting the meter to the power source, check the label on top of
the meter to ensure that it is equipped with the appropriate power supply, and
During normal operation of the meter, hazardous voltages are present on its
terminal strips and throughout the connected potential transformers (PT) and
current transformers (CT). PT and CT secondary circuits are capable of
generating lethal voltages and currents with their primary circuits energized.
Follow standard safety precautions while performing any installation or service
Do not use the meter for primary protection functions where failure of the
device can cause fire, injury or death. The meter should only be used for
Under no circumstances should the meter be connected to a power source if
To prevent potential fire or shock hazard, do not expose the meter to rain or
Setup procedures must be performed only by qualified personnel familiar with
DANGER
Failure to observe the following instructions may result in severe injury or
death and/or equipment damage.
be installed in accordance with all local and national electrical codes.
before performing any work on the meter.
the correct voltage and current input specifications for your application.
CET Electric Technology
work (i.e. removing PT fuses, shorting CT secondaries, …etc).
shadow protection if needed.
it is damaged.
moisture.
the instrument and its associated electrical equipment.
DO NOT open the instrument under any circumstances.
3
Page 4
CET Electric Technology
Limited warranty
CET Inc. (CET) offers the customer a minimum of 12-month functional warranty
on the meter for faulty parts or workmanship from the date of dispatch from the
CET does not accept liability for any damage caused by meter malfunctions. CET
accepts no responsibility for the suitability of the meter to the application for
Failure to install, set up or operate the meter according to the instructions herein
Only CET’s duly authorized representative may open your meter. The unit should
only be opened in a fully anti-static environment. Failure to do so may damage
distributor. This warranty is on a return to factory for repair basis.
which it was purchased.
will void the warranty.
the electronic components and will void the warranty.
5.12.4 Alternate Days ............................................................................................................. 77
5.13 Time ........................................................................................................................................ 78
5.14 Remote Control ...................................................................................................................... 78
5.15 Clear/Reset Control ................................................................................................................ 79
5.16 Meter Information.................................................................................................................. 80
Appendix A Data Recorder Parameter List ............................................................................................. 82
Appendix B Data Recorder Default Settings ........................................................................................... 83
Appendix C BACNet MSTP Implementation ........................................................................................... 84
Appendix D N2 Implementation ............................................................................................................. 89
Appendix E DNP Profile .......................................................................................................................... 91
Appendix F Technical Specifications ....................................................................................................... 99
Appendix G Standards Compliance ...................................................................................................... 101
Appendix H Ordering Guide ................................................................................................................. 102
Contact us ............................................................................................................................................. 103
7
Page 8
CET Electric Technology
Chapter 1 Introduction
This manual explains how to use the PMC-53A Intelligent Multifunction Meter. Throughout the manual
the term “meter” generally refers to all models.
This chapter provides an overview of the PMC-53A meter and summarizes many of its key features.
1.1 Overview
The PMC-53A Intelligent Multifunction Meter is CET’s latest offer for the low-cost digital power/energy
metering market. The PMC-53A features quality construction, multifunction measurements and a large,
backlit, Dot-Matrix LCD that is easy to navigate. Housed in a standard DIN form factor measuring
96x96x88mm, it is perfectly suited for industrial, commercial and utility applications. Compliance with
the IEC 62053-22 Class 0.5S Standard, it is a cost effective replacement for analog instrumentation and
is capable of displaying 4 measurements at once. It optionally provides I4 input for Neutral Current
measurement, a second RS485 port, up to six Digital Inputs for status monitoring, pulse counting or
Tariff switching, up to four Relay Outputs for control and alarming applications, up to four Solid State
Relays for energy pulsing as well as other I/O options for different applications.
You can setup the meter through its front panel or via our free PMC Setup software. The meter is also
supported by our PecStar® iEMS Integrated Energy Management System. Following is a list of typical
applications for the PMC-53A:
Industrial, Commercial and Utility Substation Metering
Building, Factory and Process Automation
Sub-metering and Cost Allocation
Energy Management and Power Quality Monitoring
Contact CET Technical Support at support@cet-global.com should you require further assistance with
your application.
1.2 Features
Ease of use
Large, backlit, Dot-Matrix LCD display with wide viewing angle
Intuitive user interface
LED indicators for Energy Pulsing and Communication activities
Password-protected setup via front panel or free PMC Setup software
Easy installation with mounting clips, no tools required
Basic Measurements (True RMS)
ULN, ULL per phase and Average
Current per phase and Average with calculated Neutral
kW, kvar, kVA, PF per phase and Total
kWh, kvarh Import / Export / Net / Total and kVAh Total
Frequency
Device Operating Time (Running Hours)
Optional I4 measurements
Calculated Residual Current Ir (with optional I4 Input)
8
Page 9
CET Electric Technology
Advanced Measurements
1-Cycle Real-time U & I Waveform Display @ 1s update rate
U and I THD, TOHD, TEHD and Individual Harmonics up to 31st
Current TDD, TDD Odd, TDD Even, K-Factor and Crest Factor
U and I Unbalance and Phase Angles
Displacement PF
Fundamental U, I and kW per phase
Total Fundamental kW & Total Harmonic kW*
U and I Symmetrical (Sequence) Components*
kvarh Q1-Q4
Interval Energy for kWh/kvarh Imp/Exp and kVAh
Demands, Predicted Demands and Peak Demands for kW/kvar/kVA Total and per phase Current
with Timestamp for This Month (or Since Last Reset) and Last Month (or Before Last Reset)
Two TOU schedules, each providing
o 12 Seasons
o 20 Daily Profiles, each with 12 Periods in 15-minute interval
o 90 Holidays or Alternate Days
o 8 Tariffs, each providing the following information
· kWh/kvarh Import/Export, kVAh
· kW/kvar/kVA Max. Demands
12 Monthly Energy Logs of kWh/kvarh Import/Export/Total/Net, kVAh, kvarh Q1-Q4 as well as
kWh/kvarh Import/Export and kVAh per Tariff
*Available in Firmware V1.00.03 or later
Setpoints
9 user programmable Setpoints with extensive list of monitoring parameters including Voltage,
Current, Power and THD, etc.
Configurable thresholds, time delays and DO triggers
SOE Log
100 events time-stamped to ±1ms resolution
Recording events for Setup changes, Setpoint and DI status changes as well as DO operations
Max/Min Log
Max./Min. Log with timestamp for parameters such as Voltage, Current, In (calculated), I4, Ir,
Frequency, kW, kvar, kVA, PF, Unbalance, K-Factor, Crest-Factor and THD
Configurable for This Month/Last Month or Since/Before Last Reset
Freeze Logs (Optional)
60 Daily Freeze Logs for kWh/kvarh/kVAh Total and kW/kvar/kVA Peak Demands.
36 Monthly Freeze Logs for kWh/kvarh/ kVAh Total and kW/kvar/kVA Peak Demands with
Timestamp.
Data Recorder Log (Optional)
5 Data Recorders of 16 parameters each for real-time measurements, harmonics, energy, demand,
TOU, Pulse Counters…etc.
Recording interval from 1 minute to 40 days
Configurable capacity up to a max. of 100 days at 15-minute interval
9
Page 10
CET Electric Technology
Diagnostics
Frequency Out-of-Range, Loss of Voltage / Current
kW Direction per phase and Total, Possible Incorrect CT Polarity
Incorrect U & I Phase Sequence
Communications
Optically isolated RS485 port at max. 38,400 bps
Selectable Modbus RTU, BACnet MS/TP*, Metasys N2* and DNP 3.0~
Optional 2nd RS485 port with Modbus RTU support only
*Available in Firmware V1.00.03 or later
~Available in Firmware V1.00.06 or later
Optional Inputs and Outputs
Digital Inputs
o Up to 6 channels, volts free dry contact, 24VDC internally wetted
o 1000Hz sampling for status monitoring with programmable debounce
o Pulse counting with programmable weight for each channel for collecting WAGES (Water,
Air, Gas, Electricity, Steam) information
oTariff switching based on DI status
Digital Outputs
o Up to 4 Form A mechanical relays for alarming and general purpose control
Pulse Outputs
oUp to 4 Form A Soild State Relays for kWh and kvarh pulsing with Max. Load Voltage @
50VDC and Max. Forward Current @ 50mA
Optional Expansion Modules
Expansion Module A Options
o I4 Input
o 2nd RS485 port with optical isolation, supporting Modbus RTU
Expansion Module B Options
o 2xDigital Inputs and 2xRelay Outputs
o 2xDigital Inputs and 2xSold State Pulse Outputs
o 2xRTD Inputs (PT100 sensor not included)
o 1xAI and 1xAO (0/4-20mA)
System Integration
Supported by CET’s PecStar® iEMS and iEEM
Modbus RTU for easy integration into 3rd-party Energy Management, Automation or SCADA
systems
BACnet MSTP and Metasys N2 for Building Automation
DNP 3.0 for Utility Substation Automation
10
Page 11
CET Electric Technology
1.3 PMC-53A’ application in Power and Energy Management Systems
The PMC-53A can be used to monitor 4P3W (Wye), 3P3W (Delta), 1P2W-Uln, 1P2W-Ull or 1P3W
connected power system. Modbus communications allow real-time data, DI status and other
information to be transmitted across a RS485 network to an Integrated Energy Management system
such as PecStar® iEMS.
1.4 Getting more information
Additional information is available from CET via the following sources:
Visit www.cet-global.com
Contact your local representative
Contact CET Technical Support directly via email at support@cet-global.com
11
Page 12
CET Electric Technology
Installation of the PMC-53A should only be performed by qualified, competent personnel
that have the appropriate training and experience with high voltage and current devices.
During the operation of the meter, hazardous voltages are present at the input terminals.
Failure to observe precautions can result in serious or even fatal injury and equipment
damage.
Chapter 2 Installation
Caution
The meter must be installed in accordance with all local and national electrical codes.
2.1 Appearance
Figure 2-1 Appearance
12
Page 13
2.2 Unit Dimensions
Terminal
Terminal Dimensions
Wire Size
Max. Torque
1
Voltage Input
2.6mm x 3.2mm
1.5mm2
5 kgf.cm/M3
(4.3 lb-in)
Power Supply
2
Expansion Module A & B
RS485
DI
DO
3
Current Input
6.5mm x 6.5mm
1.0mm2 - 2.5mm2
(14AWG - 22AWG)
6.0 kgf.cm/M3
(5.2 lb-in)
2.3 Terminal Dimensions
CET Electric Technology
Figure 2-2 Unit Dimensions
Figure 2-3 Terminal Dimensions
Table 2-1 Terminal Dimensions
2.4 Mounting
The PMC-53A should be installed in a dry environment with no dust and kept away from heat, radiation
and electrical noise source.
Installation steps:
Remove the installation clips from the meter
Fit the meter through a 92mmx92mm cutout as shown in Figure 2-4
Re-install the installation clips and push the clips tightly against the panel to secure the meter
13
Page 14
CET Electric Technology
Under no circumstances should the CT secondary be open when the CT primary is
energized. CT shorting blocks should be installed to allow for easy maintenance.
Figure 2-4 Panel Cutout Mounting
2.5 Wiring connections
PMC-53A can satisfy almost any three phase power systems. Please read this section carefully before
installation and choose the correct wiring method for your power system. The following Wiring Modes
are supported:
3-Phase 4-Wire (3P4W) Wye Direct Connection with 3CTs
3-Phase 4-Wire (3P4W) Wye Direct Connection with 4CTs
3-Phase 4-Wire (3P4W) Wye with 3PTs and 3CTs
3-Phase 4-Wire (3P4W) Wye with 3PTs and 4CTs
3-Phase 3-Wire (3P3W) Direct Delta Connection With 3CTs
3-Phase 3-Wire (3P3W) Direct Delta Connection with 2CTs
3-Phase 3-Wire (3P3W) Delta with 2PTs and 3CTs
3-Phase 3-Wire (3P3W) Delta with 2PTs and 2CTs
1-Phase 3-Wire (1P3W) Direct Connection with 2CTs
1-Phase 2-Wire, Uln (1P2W-Uln) Direct Connection with 1CT
1-Phase 2-Wire, Ull (1P2W-Ull) Direct Connection with 1CT
Caution
Under no circumstances should the PT secondary be shorted.
14
Page 15
CET Electric Technology
2.5.1 3-Phase 4-Wire (3P4W) Wye Direct Connection with 3CTs
Please consult the serial number label to ensure that the rated system phase voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W.
Figure 2-5 3P4W Direct Connection with 3CTs
2.5.2 3-Phase 4-Wire (3P4W) Wye Direct Connection with 4CTs
Please consult the serial number label to ensure that the rated system phase voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W
Figure 2-6 3P4W Direct Connection with 4CTs (Optional I41 & I42)
2.5.3 3-Phase 4-Wire (3P4W) Wye with 3PTs and 3CTs
Please consult the serial number label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W.
15
Page 16
CET Electric Technology
Figure 2-7 3P4W with 3PTs and 3CTs
2.5.4 3-Phase 4-Wire (3P4W) Wye with 3PTs and 4CTs
Please consult the serial number label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P4W.
Figure 2-8 3P4W with 3PTs and 4CTs (Optional I41 & I42)
2.5.5 3-Phase 3-Wire (3P3W) Direct Delta Connection with 3CTs
Please consult the serial number label to ensure that the rated system line voltage is less than or equal
to the meter’s rated line voltage input specification. Set the Wiring Mode to 3P3W.
16
Page 17
CET Electric Technology
Figure 2-9 3P3W Direct Connection with 3CTs
2.5.6 3-Phase 3-Wire (3P3W) Direct Delta Connection with 2CTs
Please consult the serial number label to ensure that the rated system line voltage is less than or equal
to the meter’s rated line voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-10 3P3W Direct Connection with 2CTs
2.5.7 3-Phase 3-Wire (3P3W) Delta with 2PTs and 3CTs
Please consult the serial number label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P3W.
17
Page 18
CET Electric Technology
Figure 2-11 3P3W Delta with 2PTs and 3CTs
2.5.8 3-Phase 3-Wire (3P3W) Delta with 2PTs and 2CTs
Please consult the Serial Number Label to ensure that the rated PT secondary voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 3P3W.
Figure 2-12 3P3W Delta with 2PTs and 2CTs
2.5.9 1-Phase 3-Wire (1P3W) Direct Connection with 2CTs
Please consult the Serial Number Label to ensure that the rated system phase voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 1P3W.
18
Page 19
CET Electric Technology
Figure 2-13 1P3W Direct Connection with 2CTs
2.5.10 1-Phase 2-Wire, Uln (1P2W-Uln) Direct Connection with 1CT
Please consult the Serial Number Label to ensure that the rated system phase voltage is less than or
equal to the meter’s rated phase voltage input specification. Set the Wiring Mode to 1P2W, L-N.
Figure 2-14 1P2W Uln Direct Connection with 1CT
2.5.11 1-Phase 2-Wire, Ull (1P2W-Ull) Direct Connection with 1CT
Please consult the Serial Number Label to ensure that the rated system line voltage is less than or equal
to the meter’s rated phase voltage input specification. Set the Wiring Mode to 1P2W, L-L.
19
Page 20
CET Electric Technology
Figure 2-15 1P2W Ull Direct Connection with 1CT
2.6 Communications Wiring
The following figure illustrates the RS485 communications connections on the PMC-53A:
Figure 2-14 Communications Connections
The PMC-53A provides one standard RS485 port and one optional RS485. Up to 32 devices can be
connected on a RS485 bus. The overall length of the RS485 cable connecting all devices should not
exceed 1200m.
If the master station does not have a RS485 communications port, a RS232/RS485, USB/RS485 or
Ethernet/RS485 converter with optically isolated output and surge protection should be used.
2.7 Digital or Pulse Input Wiring
The following figure illustrates the Digital Input connections on the PMC-53A:
Figure 2-16 DI Connections
2.8 Digital (Relay) Output Wiring
The following figures illustrate the Digital (Relay) Output connections on the PMC-53A:
20
Page 21
CET Electric Technology
Figure 2-17 DO Connections
2.9 Pulse Output Wiring
The following figure illustrates the Pulse Output connections on the PMC-53A when the DO Control
Mode setup register is programmed for Energy Pulsing:
Figure 2-18 Pulse Output (Solid State Relay) Connections for Energy Pulsing
The following figure illustrates the Pulse Output (Solid State Relay) connections on the PMC-53A when
the DO Control Mode setup register is programmed for Remote Control/Alarm:
Figure 2-19 Pulse Output (Solid State Relay) Connections for Remote Control/Alarm
2.10 Analog Input Wiring
The following figure illustrates the Analog Input connections on the PMC-53A:
Figure 2-20 AI Connections
2.11 Analog Output Wiring
The following figure illustrates the Analog Output connections on the PMC-53A:
21
Page 22
CET Electric Technology
Figure 2-21 AO Connections
2.12 RTD Input Wiring
The following figure illustrates the RTD Input connections on the PMC-53A:
Figure 2-22 RTD Input Connections
2.13 Power Supply Wiring
For AC supply, connect the live wire to the L/+ terminal and the neutral wire to the N/- terminal.
For DC supply, connect the positive wire to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-23 Power Supply Connections
22
Page 23
CET Electric Technology
Display Mode
Setup Mode
Button
Main Menu
Sub Menus
Password
Page
Enter
Password
Browse/Setup Menu
(Until a parameter is
selected)
Enumerated
Parameter
Numeric
Parameter
F1
←
(Menu Left)
Esc
(Exit)
Esc
(Exit)
Cancel
(Exit)
Esc
(Exit)
Cancel
(Exit)
Cancel
(Exit)
F2
Select Option
↑ (Page Up) or
Select Option
Browse
(View Only)
←
(Shift Left)
↑
(Cursor Up)
←
(Previous)
←
(Shift Left)
F3
Select Option
↓ (Page Down) or
Select Option
Null
(Not Used)
↑
(Increment)
↓
(Cursor Down)
↑
(Next)
↑
(Increment)
F4
→
(Menu Right)
→ (Menu Right) or
Select Option or
Null (Not Used)
Enter
(Confirm)
OK
(Confirm)
Enter
(Select Parameter)
OK
(Confirm)
OK
(Confirm)
Chapter 3 Front Panel
The PMC-53A has a large, easy to read Dot-Matrix LCD display with backlight and four buttons for data
display and meter configuration. This chapter introduces the front panel operations.
Figure 3-1 Front Panel
3.1 Using the Front Panel Buttons
The PMC-53A’s front panel has been designed with a menu-driven interface that is extremely user
friendly such that all one has to do is to simply follow the menu at the bottom of the screen. The button
definitions for F1 to F4 under Display Mode and Setup Mode are explained in the following table. The
default password is 0000 (four zeros).
Table 3-1 Button Function
23
Page 24
3.2 Data Display
Press Button
Display Screens
1st Row
2nd Row
3rd Row
4th Row
<U/I>
Default
Ull avg
I avg
kW Total
PF Total
Display 1 (Volts L-N)
U1
U2
U3
Uln avg
Display 2 (Volts L-L)
U12
U23
U31
Ull avg
Display 3 (Currents)
I1
I2
I3
I avg
Display 4 (In/I4/Ir)
In
I41
Ir#2 Display 5 (Frequency)
Frequency
Display 6 (Volts Angle)
U1
U2
U3
Display 7 (Currents Angle)
I1
I2
I3
Display 8 (Phasor Diagram)
Phasor Diagram
Display 9 (U Waveform)#
U1 Real-time 1-cycle Waveform
Display 10 (U Waveform)#
U2 Real-time 1-cycle Waveform
Display 11 (U Waveform)#
U3 Real-time 1-cycle Waveform
Display 12 (I Waveform)#
I1 Real-time 1-cycle Waveform
Display 13 (I Waveform)#
I2 Real-time 1-cycle Waveform
Display 14 (I Waveform)#
I3 Real-time 1-cycle Waveform
Display 15 (Operating Time)
Operating Time (Running Hours)
Display 16 (U Fund)*
U13
U23
U33 Display 17 (I Fund)*
I13
I23
I33
CET Electric Technology
Figure 3-2 Data Display Menu
Throughout this document, the phase-to-neutral notations of A/B/C and L1/L2/L3 as well as the phaseto-phase notations of AB/BC/CA and L12/L23/L31 may be used interchangeably for specifying a certain
parameter to be a phase-to-neutral or phase-to-phase value, respectively.
The following sections illustrate the available measurements for each display option. Depending on the
Wiring Mode selected, certain measurements may not be available. For example, the per-phase Uln,
Uln Average, I4, per-phase kW, kvar, kVA and PF measurements are not available when the Wiring Mode
is set to 3P3W or 1P2W L-L.
3.2.1 U/I
* Available in Firmware V1.00.03 or later
#
Available in Firmware V1.00.06 or later
Table 3-2 U/I Display
24
Page 25
CET Electric Technology
Press Button
Display
Screens
1st Row
2nd Row
3rd Row
4th Row
<Power>
Display 1
kW Total
kvar Total
kVA Total
PF Total
Display 2
kW1
kW2
kW3
kW Total
Display 3
kvar1
kvar2
kvar3
kvar Total
Display 4
kVA1
kVA2
kVA3
kVA Total
Display 5
PF1
PF2
PF3
PF Total
Display 6
dPF1
dPF2
dPF3
Display 7
(P Fund)*
P1
P2
P3
P
Press Button
Display
Screens
1st Row
2nd Row
3rd Row
4th Row
<Energy>
Display 1
kWh Total
kvarh Total
kVAh Total
Display 2
kWh Imp
kWh Exp
kWh Net
kWh Total
Display 3
kvarh Imp
kvarh Exp
kvarh Net
kvarh Total
Display 4
kVAh Total
Press Button
Display
Screens
1st Row
2nd Row
3rd Row
<DMD>
1
<Max>
2
Display 1
kW Total
kvar Total
kVA Total
Timestamp
Timestamp
Timestamp
Display 2
I1
I2
I3
Timestamp
Timestamp
Timestamp
<Pres>
3
Display 1
kW Total
kvar Total
kVA Total
Display 2
I1
I2
I3
<Pred>
4
Display 1
kW Total
kvar Total
kVA Total
Display 2
I1
I2
I3
Press Button
Display Screens
1st Row
2nd Row
3rd Row
<Harmonics>
<Basic>
Display 11 (U THD)
U1/U12
U2/U23
U3/U31
Display 2 (I THD)
I1
I2
I3
Display 3 (TDD)
I1
I2
I3
Display 4 (K-Factor)
I1
I2
I3
Display 5 (Crest Factor)
I1
I2
I3
Notes:
1) The I4 parameter only appears if the meter is equipped with the corresponding I4 option.
2) The Ir parameter only shows a valid value when the Wiring Mode is set to 3P3W or 3P4W;
otherwise, it shows “0”.
3) For U/I Fundamental:
U1 = Uan, U2 = Ubn, U3 = Ucn in 3P4W mode
U1 = Uab, U2 = Ubc, U3 = Uca in 3P3W mode
I1 = Ia, I2 = Ib, I3 = Ic
3.2.2 Power
* Available in Firmware V1.00.03 or later
Table 3-3 Power Display
3.2.3 Energy
Table 3-4 Energy Display
3.2.4 Demand
Table 3-5 Demand Display
Notes:
1) DMD = Demand
2) Max = Max. (Peak) Demand of This Month (Since Last Reset)
3) Pres = Present Demand
4) Pred = Predicted Demand
3.2.5 Harmonics
25
Page 26
CET Electric Technology
Display 6 (Unbalance)
Current
Voltage
Display 7
(U Sequence)*
U1
2,3
U2
2,3
U0
2,3
Display 8
(I Sequence)*
I1
2,3
I2
2,3
I0
2,3
<Graph>
Display 11
U1/U12 Harmonic Spectrum (Odd)
Display 21
U2/U23 Harmonic Spectrum (Odd)
Display 31
U3/U31 Harmonic Spectrum (Odd)
Display 4
I1 Harmonic Spectrum (Odd)
Display 5
I2 Harmonic Spectrum (Odd)
Display 6
I3 Harmonic Spectrum (Odd)
<L1>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
<L2>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
<L3>
Display 1 [HD (ODD)]
HD3 ~ HD15
Display 2 [HD (ODD)]
HD17 ~ HD29
Display 3 [HD (ODD)]
HD31
Display 1 [HD (Even)]
HD2 ~ HD14
Display 2 [HD (Even)]
HD16 ~ HD28
Display 3 [HD (Even)]
HD30
Press Button
Display
Screens
1st Row
2nd Row
3rd Row
4th Row
<Max./Min.>
-
Default
(Max.)
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
<Max.>
<U/I>
Display 1
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
U12
U23
U31
Ull avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
I1
I2
I3
I avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
Freq
In
I4
Ir*
Timestamp
Timestamp
Timestamp
Timestamp
<Power>
Display 1
P1
P2
P3
P
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
Q1
Q2
Q3
Q
Timestamp
Timestamp
Timestamp
Timestamp
* Available in Firmware V1.00.03 or later
Table 3-6 Harmonics Display
Notes:
1) When the Wiring Mode is 3P3W or 1P2W L-L, the phase A/B/C Voltage THD/TOHD/TEHD/HDxx
3) This screen is not shown if the Wiring Mode is set to 1P2W LN, 1P2W LL or 1P3W.
3.2.6 Max./Min.
26
Page 27
CET Electric Technology
Display 3
S1
S2
S3
S
Timestamp
Timestamp
Timestamp
Display 4
PF1
PF2
PF3
PF
Timestamp
Timestamp
Timestamp
Timestamp
<Harm>
Display 1
L1 U THD
L2 U THD
L3 U THD
Timestamp
Timestamp
Timestamp
Display 2
L1 I THD
L2 I THD
L3 I THD
Timestamp
Timestamp
Timestamp
Display 3
L1 K-Factor
L2 K-Factor
L3 K-Factor
Timestamp
Timestamp
Timestamp
Display 4
L1 C-Factor
L2 C-Factor
L3 C-Factor
Timestamp
Timestamp
Timestamp
Display 6
I Unbal.
U Unbal.
Timestamp
Timestamp
<Min.>
<U/I>
Display 1
U1
U2
U3
Uln avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
U12
U23
U31
Ull avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
I1
I2
I3
I avg
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
Freq
In
I4
Ir*
Timestamp
Timestamp
Timestamp
Timestamp
<Power>
Display 1
P1
P2
P3
P
Timestamp
Timestamp
Timestamp
Timestamp
Display 2
Q1
Q2
Q3
Q
Timestamp
Timestamp
Timestamp
Timestamp
Display 3
S1
S2
S3
S
Timestamp
Timestamp
Timestamp
Timestamp
Display 4
PF1
PF2
PF3
PF
Timestamp
Timestamp
Timestamp
Timestamp
<Harm>
Display 1
L1 U THD
L2 U THD
L3 U THD
Timestamp
Timestamp
Timestamp
Display 2
L1 I THD
L2 I THD
L3 I THD
Timestamp
Timestamp
Timestamp
Display 3
L1 K-Factor
L2 K-Factor
L3 K-Factor
Timestamp
Timestamp
Timestamp
Display 4
L1 C-Factor
L2 C-Factor
L3 C-Factor
Timestamp
Timestamp
Timestamp
Display 6
I Unbal.
U Unbal.
Timestamp
Timestamp
Press button
Display screens
1st Row
2nd Row
3rd Row
<TOU>
<T1>
Display 1 (kWh)
Import
Export
Display 2 (kvarh)
Import
Export
Display 3 (kVAh)
Total
Display 4
(Peak Demand)
P Q S
Timestamp
Timestamp
Timestamp
<T2>
.
.
.
<T7>
Display 1 (kWh)
Import
Export
Display 2 (kvarh)
Import
Export
Display 3 (kVAh)
Total
Display 4
(Peak Demand)
P Q S
Timestamp
Timestamp
Timestamp
<T8>
Display 1 (kWh)
Import
Export
Display 2 (kvarh)
Import
Export
Display 3 (kVAh)
Total
Display 4
P Q S
*Available in Firmware V1.00.06 or later
Table 3-7 Max./Min. Display
3.2.7 TOU
27
Page 28
CET Electric Technology
(Peak Demand)
Timestamp
Timestamp
Timestamp
Press button
Display screens
1st Row
2nd Row
3rd Row
<I/O>
Display 1 (DI Status)
DI1, DI21
DI3, DI41
DI5, DI6
1
Display 2 (Pulse Counter)
DI1, DI21
DI3, DI41
DI5, DI6
1
Display 3 (DO Status)
DO1, DO22
DO3, DO42
Display 4 (Analog Input)
AI3
Display 5 (Analog Output)
AO4
Display 6 (Temperature)
TC15
TC25
Table 3-8 TOU Display
3.2.8 I/O
Table 3-9 I/O
Notes:
1) This display only appears if the meter is equipped with the corresponding DI option.
2) This display only appears if the meter is equipped with the corresponding DO option.
3) This display only appears if the meter is equipped with the AI option.
4) This display only appears if the meter is equipped with the AO option.
5) This display only appears if the meter is equipped with the RTD option.
3.2.9 SOE
The PMC-53A with Firmware V1.00.03 or later supports the display of the SOE Log with up to 100 Events
(2 Events per page) such as I/O Changes, Setpoint, …etc, on the Front Panel. In addition, the SOE Log
can be reset from the Front Panel.
Examples of Event Log Display:
Figure 3-3 SOE Log Displays
3.3 Setup Configuration via the Front Panel
Pressing <←>/<F1> or <→>/<F2> to scroll the menu at the bottom until <Setup> appears and then
press the button associated with <Setup> to browse or change the setup parameters.
3.3.1 Making Setup Changes
1) Entering the Password:
Press <Setup> to enter the Setup Mode.
Press <F4>/<Enter> to advance to the Password page.
A correct password must be entered before changes are allowed. The factory default password is
Press <F2>/<←> to shift the cursor to the left or <F3>/<↑> to increment the numeric value for the
“0000”.
password.
28
Page 29
CET Electric Technology
When the password has been entered, pressing <F4>/<OK> willadvance to the setup menu if the
password is correct.
2) Selecting a parameter to change:
Press <F2>/<↑> or <F3>/<↓> to scroll to the desired sub-menu or parameter.
Press <F4>/<Enter> to select the sub-menu or parameter.
Repeat the step 2 until a setup parameter has been selected.
3) Changing and saving a setup parameter:
For a Numeric parameter, press <F2>/<←> to shift the cursor to the left or <F3>/<↑> to increment
the numeric value
For an Enumerated parameter, press <F2>/<←> or <F3>/<↑> to scroll backward and forward in the
selection list.
After modification, press <F4>/<OK> to save the change into memory or <Cancel> to exit the
currently selected parameter without change.
Repeat step 3) until all setup parameters have been changed.
4) Exiting the Setup Mode
Press <F1>/<Esc> to return to the Display Mode.
Also, the Setup Mode will be automatically exited if there is a period of inactivity of 1 minute or
longer.
29
Page 30
3.3.2 Setup Menu
CET Electric Technology
Figure 3-3 Setup Menu
30
Page 31
CET Electric Technology
Label
Description
Range
Default
Menu
1st
2nd
3rd
Password
Enter Password
0000 to 9999
0000
Basic
Wiring Mode
Meter’s Wiring Connection
DEMO/
1P2W L-N/1P2W L-L/
1P3W/3P3W/3P4W
3P4W
PT Primary
PT Primary Ratio
1 to 1000000V
100V
PT Secondary
PT Secondary Ratio
1 to 690V
100V
CT Primary
CT Primary Ratio
1 to 30000A
5A
CT Secondary
CT Secondary Ratio
1 to 5A
5A
I4 Primary~
I4 Primary Ratio
1 to 30000A
5A
I4 Secondary~
I4 Secondary Ratio
1 to 5A
5A
PF Convention
PF Convention
IEC/IEEE/-IEEE
IEC
kVA Calc.
kVA Calculation Method
Vector/Scalar
Vector
I1 Polarity
I1 Polarity
Normal/Reversed
Normal
I2 Polarity
I2 Polarity
I3 Polarity
I3 Polarity
THD Calc.
Select between
% of Fundamental or
% of RMS
THDf/THDr
THDf
DMD Period
Demand Interval
1 to 60 min
15
No. of Windows
Number of Sliding Windows
1 to 15
1
Predicted Resp.
Predicted Response
70 to 99
70
EN Pulse CNST
Pulse Constant
1000/3200
1000
LED EN Pulse
Enable kWh/kvarh Energy
Pulsing
Disabled/kWh/kvarh
kWh
EN Period*
Interval Energy period
5 to 60 min
60
kvarh Calc.~
kvarh Calculation Method
RMS/FUND
RMS
OT Threshold~
Current Threshold of
Device Operating Time
1 to 1000 (x0.001In)
1
Comm.
COM1
Protocol
Protocol
Modbus/BACnet*/N2*/DNP~
Modbus
Unit ID
Modbus Address
Modbus RTU/N2*: 1 to 247
BACnet/MSTP*: 1 to 127
DNP~: 0 to 65519
100
Baud Rate
Data rate in bits per second
1200/2400/4800/
9600/19200/38400
9600
Data Format
Data Format
8N2/8O1/8E1/
8N1/8O2/8E2
8E1
COM2
Protocol
Protocol
Modbus
Modbus
Unit ID
Modbus Address
1 to 247
101
Baud Rate
Data rate in bits per second
1200/2400/4800/
960019200/38400
9600
Data Format
Data Format
8N2/8O1/8E1/
8N1/8O2/8E2
8E1
Setpoint*
Group #1
Type
Setpoint Type
0=Disabled, 1=Over Setpoint
2=Under Setpoint
0
Parameter
1
Setpoint Source
See Table 3-11
None
OvLim
Over Limit
0
UnLim
Under Limit
0
ActiveDelay
Active Delay
0 to 9999s
10
InactiveDelay
Inactive Delay
0 to 9999s
10
Trigger1
2
Setpoint Trigger1
See Table 3-12
Trigger22
Setpoint Trigger2
See Table 3-12
…
3.3.3 Configuration
The Setup Configuration mode provides access to the following setup parameters:
31
Page 32
CET Electric Technology
Group #9
Type
Setpoint Type
0=Disabled, 1=Over Setpoint
2=Under Setpoint
0
Parameter1
Setpoint Source
See Table 3-11
None
OvLim
Over Limit
0 UnLim
Under Limit
0 ActiveDelay
Active Delay
0 to 9999s
0
InactiveDelay
Inactive Delay
0 to 9999s
10
Trigger12
Setpoint Trigger1
See Table 3-12
10
Trigger22
Setpoint Trigger2
See Table 3-12
I/O
Digital Input3
Function3
DI Function
DI1
Function Mode for DI1 to DI6
Digital Input /
Pulse Counter /
Tariff Switch
4
Digital
Input
…
DI6
Debounce3
Specifies the minimum duration the DI must remain in the Active or Inactive
state before a state change is considered to be valid.
DI1
Debounce for DI1 to DI6
1 to 9999 ms
20 ms
…
DI6
Pulse Weight3
Specifies the incremental value for each pulse received
DI1
Pulse Weight for DI1 to DI6
1 to 1000000
1
…
DI6
Digital Output3
Pulse Width3
Specifies the duration for which the relay output will be active when a remote
control command is received to activate it.
DO1
Pulse Width for DO1 to DO4
0 to 600 (x0.1s)
(0=Latch Mode)
10
DO2
DO3
DO4
Function3
Specifies the function of the Digital Output.
DO1#
DO Control Mode
Remote Control / Alarm
kWh Import
kWh Export
kWh Total
kvarh Import
kvarh Export
kvarh Total
Remote
Control/
Alarm
DO2#
DO3
DO4
RTD
3
RTD1 Compensation
RTD Compensation5
0 to 2000 (x0.01Ω)
0.00Ω
RTD2 Compensation
Analog Input3
Type
Select between
0-20mA or 4-20mA input
4-20mA / 0-20 mA
4-20mA
Zero Scale
The value that corresponds to
the minimum Analog Input of
0 or 4 mA
-999,999 to 999,999
400
Full Scale
The value that corresponds to
the maximum Analog Input of
20 mA
-999,999 to 999,999
2000
Analog Output3
Type
Select between
0-20mA or 4-20mA output
4-20mA / 0-20mA
4-20mA
Key6
The parameter to which the
Analog Output is proportional
See Table 3-13
Uab
Zero Scale
The parameter value that
corresponds to the minimum
Analog Output of 0 mA or 4
mA
-999,999 to 999,999
0
Full scale
The parameter value that
corresponds to the maximum
Analog Output of 20 mA
-999,999 to 999,999
0
Display
Timeout
Backlight Timeout
0 to 60 min
5
Contrast
Display Contrast
0 to 9
5
32
Page 33
CET Electric Technology
Language
System Language
Chinese/English
English
Delimiter7
Delimiter
Option1/Option2
Option1
Main 1st*
Default Display 1st parameter
See Note 8)
Ullavg
Main 2nd*
Default Display 2nd parameter
Iavg
Main 3rd*
Default Display 3rd parameter
P (kW Total)
Main 4th*
Default Display 4th parameter
PF (Total)
SP LCD Alarm~
9
Enable Flashing LCD Alarm
On/Off
On
Clock
Time
Time
(20)YY-MM-DD
/
Date
Date
HH:MM:SS
/
Date Format
Date Format
YYMMDD/
MMDDYY/
DDMMYY
YYMMDD
Maintenance
Password Setup
New Password
Enter new password
Confirm Password
Confirm new password
Clear Registers
Energy
Present10
Clear Present Energy
Measurements and Energy Log
Yes/No
No
History11
Clear Historical Monthly
Energy Log
Yes/No
No
Demand
Present Max
Clear Peak Demand Log of This
Month (Since Last Reset)
Yes/No
No
All
Clear Present Demand, Peak
Demand Log of This Month
(Since Last Reset) and Last
Month (Before Last Reset)
Yes/No
No
Max./Min.
Present
Clear Max./Min. Log of This
Month (Since Last Reset)
Yes/No
No
All
Clear Max./Min. Log of This
Month (Since Last Reset) and
Last Month (Before Last Reset)
Yes/No
No
Operating Time
Reset
Clear Device Operating Time
Yes/No
No
Pulse Counter
All
Clear All DI Counters
Yes/No
No
DI1
Clear
DIx Pulse Counter
Yes/No
No
…
DI6
SOE Logs*
Clear SOE Logs
Yes/No
No
Clear All Data
-
Clear All of the above
Yes/No
No
DO Control
DO1
DOx Manual Control
Normal/On/Off
Normal
DO2
DO3
DO4
Information
Check meter information
Firmware
Firmware Version
e.g. V1.00.01
Update
Date of the latest firmware
update
e.g.20160701
Modbus
Modbus Protocol Version
e.g. V1.4
BACnet MSTP*
BACnet MSTP Protocol Version
e.g. V1.7
N2*
N2 Protocol Version
e.g. V1.0
DNP~
DNP Protocol Version
e.g. V1.0
SN
Serial Number
e.g. 1506005094
* Available in Firmware V1.00.03 or later
#
Available in Firmware V1.00.04 or later
~ Available in Firmware V1.00.06 or later
Notes:
1) The table below illustrates the Setpoint Parameters.
Table 3-10 Setup Parameters
33
Page 34
CET Electric Technology
Key
Setpoint Parameter
Scale
Unit
0
None
-
-
1
Uln (Any Phase Voltage)
x1
V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
Hz
6
P (kW Total)
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S DMD(kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Phase Reversal)3
-
25
I4 (Measured)*
x1
A
26
AI*
-
27
Reserved
-
-
28
RTD1*
x1
°C
29
RTD2*
30
Ir (Residual Current)~
x1
A
31
U2 (-ve Sequence Unbalance)~
x1
V
32
U0 (Zero Sequence Unbalance)~
Key
Action
Key
Action
0
None
3
DO3 Closed
1
DO1 Closed
4
DO4 Closed
2
DO2 Closed
Others
Reserved
Key
Parameter
Scale
Unit
Key
Parameter
Scale
Unit 0 Uab
x1
V
10
kVA Total
x1
kVA 1 Ubc
V
11
PF Total
x1000
- 2 Uca
V
12
Frequency
x100
-
3
Ull Average
V
13
kW Total Present Demand
x1
kW
4
Ia
A
14
kvar Total Present Demand
kvar
5
Ib
A
15
kVA Total Present Demand
kVA
6
Ic
A
16
Uan
x1
V 7 I Average
A
17
Ubn
V
8
kW Total
x1
kW
18
Ucn
V
9
kvar Total
kvar
19
Uln Average
V
* Appears only if the device is equipped with the appropriate option
~ Available in Firmware V1.00.06 or later
Table 3-11 Setpoint Parameters
2) The table below illustrates the options for Setpoint Trigger.
Table 3-12 Setpoint Trigger
3) This menu only appears if the meter is equipped with the corresponding options.
4) Tariff Switching is available in Firmware V1.00.03 or later and only valid for DI1 to DI3.
5) Please refer to Chapter 4.1.6 for a detailed description of RTD Compensation.
6) Analog Output Parameters
If PF Total or Freq is chosen as the AO parameter, the values for ZERO (zero scale) and FULL (full
scale) should be set as 1000 or 100 times the actual value, respectively. The Units for Voltage,
Current, kW, kvar, kVA and FREQ are V, A, kW, kvar, kVA and Hz, respectively.
Table 3-13 Analog Output Parameters
34
Page 35
CET Electric Technology
Key
Parameters
Key
Parameters
Key
Parameters
Key
Parameters
0
U1 (Uan)
10
I3 (Ic)
20
T1 kWh Imp
30
Fund. kW Total*
1
U2 (Ubn)
11
Iavg
21
T2 kWh Imp
31
dPF Total*
2
U3 (Ucn)
12
P (kW Total)
22
T3 kWh Imp
32
I4*
3
Ulnavg
13
Q (kvar Total)
23
T4 kWh Imp
33
U1 THD*
4
U12 (Uab)
14
S (kVA Total)
24
I1 (Ia) Demand
34
U2 THD*
5
U23 (Ubc)
15
PF (PF Total)
25
I2 (Ib) Demand
35
U3 THD*
6
U31 (Uca)
16
Frequency
26
I3 (Ic) Demand
36
Ir*
7
Ullavg
17
kWh Import
27
kW Demand
8
I1 (Ia)
18
kWh Export
28
kvar Demand*
9
I2 (Ib)
19
kWh Total
29
kVA Demand*
7) The Delimiter setup register supports two options, 1 and 2:
Option 1: “,” is used as the x1000 delimiter and “.” as the decimal point (e.g. 123,456,789.0).
Option 2: “ ” is used as the x1000 delimiter and “,” as the decimal point (e.g. 123 456 789,0).
8) The following table illustrates the parameters that can be selected for display in the Default Display
screen.
* Available in Firmware V1.00.06 or later
Table 3-14 Default Display Parameters
9) Setting SP LCD Alarm to On would make the LCD blink when there is an active Setpoint alarm, and
pressing any button would jump to the first SOE log screen.
10) Select Present to clear 3-Phase Total Energy registers, Phase A/B/C Energy registers, Tariff Energy
and Monthly Energy Log of the Present Month.
11) Select History to clear the Monthly Energy Log of the last 1 to 12 months, excluding the Monthly
Energy Log for the Present Month.
35
Page 36
CET Electric Technology
Setup Parameter
Definition
Options
DIx Function
Each DI can be configured as a Digital Input or Pulse Counter.
Only DI1 to DI3 can be set as Tariff Switch.
0=Digital Input*
1=Pulse Counter
2=Tariff Switch
DIx Debounce
Specifies the minimum duration the DI must remain in the
Active or Inactive state before a state change is considered to
be valid.
1 to 1000 (ms)
(Default=20ms)
DIx Pulse Weight
Specifies the incremental value for each received pulse. This is
only used when a DI is configured as a Pulse Counter.
1* to 1,000,000
Chapter 4 Applications
4.1 Inputs and Outputs
4.1.1 Digital Inputs
The PMC-53A comes optionally with four or six self-excited Digital Inputs that are internally wetted at
24 VDC with a sampling frequency of 1000Hz and programmable debounce. The PMC-53A provides the
following programmable functions for its digital inputs:
1) Digital Input The digital inputs are typically used for status monitoring which
can help prevent equipment damage, improve maintenance, and
track security breaches. The real-time statuses of the Digital Inputs
are available on the front panel LCD Display as well as through
communications. Changes in Digital Input status are stored as
events in the SOE Log in 1 ms resolution.
2) Pulse Counting Pulse counting is supported with programmable pulse weight and
facilitates WAGES (Water, Air, Gas, Electricity and Steam)
information collection.
3) Tariff Switching Up to 3 Digital Inputs may be used to select to which of the 8 Tariffs
the energy consumption should be accumulated. The 3 Digital
Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff
1=000, Tariff 2=001, …, Tariff 8=111 where DI1 represents the least
significant digit and DI3 represents the most significant digit. The
DI1 Function setup register must first be programmed as a Tariff
Switch before configuring DI2 with the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse
Counter and DI2 is configured as a Tariff Switch, the TOU will
continue to function based on the TOU Schedule. This feature is
available in Firmware V1.00.03 or later.
The following table describes the DI’s setup parameters:
Default*
Table 4-1 DI Setup Parameters
4.1.2 Digital Outputs
The PMC-53A comes optionally with two or four Form A Electrometrical Relays or Solid State Relays.
Digital Outputs are normally used for setpoint alarming, load control, or remote control applications.
Digital Outputs on the PMC-53A can be used in the following applications:
36
Page 37
CET Electric Technology
1) Front Panel Control Manually operated from the front panel. Please refer to the DO
Control setup parameter in Section 3.3.3 for a detailed description.
2) Remote Control Remotely operated over communications via our free PMC Setup
software or PecStar® iEMS Integrated Energy Management System.
3) Control Setpoint Control Setpoints can be programmed to trigger DO action upon
becoming active. Please refer to Section 4.4 for a detailed
description.
Since there are multiple ways to trigger the Digital Outputs on the PMC-53A, a prioritized scheme has
been developed to avoid conflicts between different applications. In general, Front Panel Control has
the highest priority and can override other control schemes. Remote Control and Control Setpoint share
the same priority, meaning that they can all be programmed to control the same Digital Output. This
scheme is equivalent to having an implicit Logical OR operation for the control of a Digital Output and
may be useful in providing a generic alarm output signal. However, the sharing of a Digital Output is not
recommended if the user intends to generate a control signal in response to a specific setpoint condition.
4.1.3 Energy Pulse Outputs
The PMC-53A comes standard with one front panel LED Pulse Output for energy pulsing and can be
equipped with two or four optional Solid State Relay Outputs for kWh and kvarh pulsing. Energy Pulse
Outputs are typically used for accuracy testing. Energy Pulsing via the front panel LED can be enabled
from the front panel through the LED EN Pulse setup parameter. The pulse constant can be configured
as 1000/3200 pulses per kWh or kvarh through the EN Pulse CNST setup parameter.
4.1.4 Analog Input
The PMC-53A comes optionally with an Analog Input which can be programmed as 0mA to 20mA or
4mA to 20mA input. There are 3 setup parameters:
Type: Select between 0-20mA or 4-20mA input.
AI Zero: This value corresponds to the minimum Analog Input of 4 mA (for 4-20mA input) and
has a range of -999,999 to +999,999.
AI Full: This value corresponds to the maximum Analog Input of 20 mA and has a range of -
999,999 to +999,999.
For example, to measure the oil temperature of a transformer, connect the outputs of the temperature
sensor to the AI terminals of the PMC-53A. The temperature sensor outputs 4mA when the
temperature is -25°C and 20mA when the temperature is 100°C. As such, the Type parameter should
be programmed as 4-20mA. The AI FULL parameter should be programmed with the value 100, and the AI ZERO parameter should be programmed with the value -25. Therefore, when the output of the
sensor is 20mA, the reading will be 100.00°C. When the output is 4mA, the reading will be -25.00°C.
When the output is 12mA, the reading will be (100°C - (-25°C)) x (12mA-4mA) / (20mA-4mA) + (-25°C)
= 37.50°C.
4.1.5 Analog Output
The PMC-53A comes optionally with one Analog Output which can be programmed as 0mA to 20mA or
4mA to 20mA output.
37
Page 38
CET Electric Technology
Parameter
Phase A
Phase B
Phase C
Total
Average
Uln
● ● ● - ●
Ull
● ● ● - ●
Current
● ● ● - ●
Neutral Current
- - -
In (Calculated)
I4 (Optional)
Residual
Current~
- - -
Ir~
kW
● ● ● ● -
kvar
● ● ● ● -
kVA
● ● ● ● -
Power Factor
● ● ● ● -
Frequency
● - - - -
U Fundamental*
●●●
I Fundamental*
●●●
U Sequence*
U1 (Positive Sequence)
U2 (Negative Sequence)
U0 (Zero Sequence)
I Sequence*
I1 (Positive Sequence)
I2 (Negative Sequence)
I0 (Zero Sequence)
There are 4 setup parameters:
Type: Select between 0-20mA or 4-20mA output.
AO Zero: Defines the zero scale value of the parameter when the Analog Output is 0 or 4 mA
according to the AO Type. The value ranges between -999,999 to +999,999.
AO Full: Defines the full scale value of the parameter when the Analog Output is 20 mA. The
value ranges between -999,999 and +999,999.
Key: Defines the parameter to which the Analog Output is proportional. The Analog Output
Parameters are listed in Table 3-13.
For example, an AO of 4-20mA is required to be proportional to Phase A current. The maximum value
of phase A current is 2000A, and the minimum value is 500A. As such, the Type parameter should be
programmed as 4-20mA. The Key parameter should be programmed with Ia (Phase A Current). The AO FULL parameter should be programmed with the value 2000. The AO ZERO parameter should be
programmed with the value 500. Therefore, when Phase A Current is 500A or below, The AO output is
4mA. When Phase A Current is 2000A, the AO output is 20mA. When Phase A Current is 1250A, the AO
is (1250A-500A) x (20mA-4mA) / (2000A-500A) + 4mA = 12.00 (mA).
4.1.6 RTD Input
The PMC-53A optionally provides two RTD Inputs for temperature measurements. The PT100 sensors
are optional and not included. The 2-wire outputs of the PT100 sensor are connected to the RTD Input
of the PMC-53A if so equipped. The PMC-53A can provide accurate temperature monitoring with the
optional RTD inputs for measuring the temperature of the Neutral Conductor, Transformer or other
equipment. There is a RTD Compensation register for each channel which can be used to compensate
the measurement accuracy, and the compensation can be set according to formula:
RTD Compensation = 0.29xL where L ≤ 8 is the PT100 sensor’s cable length in m
4.2 Power and Energy
4.2.1 Basic Measurements
The PMC-53A provides the following basic measurements which are available through the Front Panel
or communications.
* Available in Firmware V1.00.03 or later.
~ Available in Firmware V1.00.06 or later.
Table 4-2 Basic Measurements
38
Page 39
CET Electric Technology
3-Phase Energy
kWh Import/Export/Net/Total
kWh Import/Export of TOU T1-8
kvarh Import/Export/Net/Total
kvarh Import/Export of TOU T1-8
kvarh of Q1/Q2/Q3/Q4
kVAh Total
kVAh Total of TOU T1-8
Per-Phase Energy
(Phase A/B/C):
kWh Import/Export/Net/Total
kWh Import/Export of TOU T1-8
kvarh Import/Export/Net/Total
kvarh Import/Export of TOU T1-8
kvarh of Q1/Q2/Q3/Q4
kVAh
kVAh of TOU T1-8
Setup Parameter
Definition
Options
Demand Period
1 to 60 minutes. For example, if the # of Sliding Windows is
set as 1 and the Demand Period is 15, the demand cycle will
be 1×15=15min.
1 to 60 min
Default=15
# of Sliding
Windows
Number of Sliding Windows.
1 to 15
Default=1
Self-Read Time
The Self-Read Time allows the user to specify the time and
day of the month for the Peak Demand Self-Read operation.
The Self-Read Time supports three options:
Default=0xFFFF
4.2.2 Energy Measurements
The PMC-53A provides Energy parameters for active energy (kWh), reactive energy (kvarh) and
apparent energy (kVAh) with a resolution of 0.1k and a maximum value of ±100,000,000.0. When the
maximum value is reached, the energy registers will automatically roll over to zero. The energy can be
reset manually through the Front Panel or via communications. Further, the energy can be preset to
user defined values via communications.
The PMC-53A provides the following energy measurements:
Table 4-3 Energy Measurement
4.2.3 Interval Energy Measurements
The PMC-53A provides Interval Energy measurements of kWh Import/Export, kvar Import/Export and
kVAh since Firmware V1.00.03. The Interval Energy measurements represent the amount of energy
consumed during the last completed interval as defined by EN Period. The Interval Energy
Measurements can only be retrieved through communications and are not available on the Front Panel.
The Interval Energy Period (EN Period) setup parameter can be programmed from the Front Panel or
through communications and allows the user to specify the interval for which the real-time energy
consumption should be accumulated. Please note that changing the Interval Energy Period would clear
the present Interval Energy measurements.
4.2.4 Demand Measurements
Demand is defined as the average power consumption over a fixed interval (usually 15 minutes) based
on the sliding window method. The PMC-53A provides Present Demand and Predicted Demand for Ia,
Ib, Ic, kW Total, kvar Total and kVA Total as well as kW Total, kvar Total and kVA Total of TOU Tariff 1 to
8. Only Import Demand is provided for kW Total, kvar total and kVA Total. Predicted Demand is typically
used for pre-alarming and to help users reduce power consumption using a Setpoint to warn that the
Demand limit may be exceeded.
The PMC-53A provides the following setup parameters:
39
Page 40
CET Electric Technology
A zero value means that the Self-Read will take place at
00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place
at a specific time and day based on the formula: Self-Read
Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day
≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each
month.
A 0xFFFF value will disable the Self-Read operation and
replace it with Manual operation. A manual reset will
cause the Max. Demand of This Month to be transferred
to the Max. Demand of Last Month and then reset. The
terms This Month and Last Month will become Since Last
Reset and Before Last Reset.
Predicted
Response
The Predicated Response shows the speed of the predicted
demand output. A value between 70 and 99 is recommended
for a reasonably fast response. Specify a higher value for
higher sensitivity.
70 to 99
Default=70
Table 4-4 Demand Setup
4.3 Power Quality
4.3.1 Phase Angles
Phase analysis is used to identify the angle relationship between 3-phase Voltages and Currents.
For WYE connected systems, the per phase difference of the Current and Voltage angles should
correspond to the per phase PF. For example, if the PF is 0.5 Lag and the Voltage phase angles are 0.0°,
240.0° and 120.0°, the Current phase angles should have the values of -60.0°, 180.0° and 60.0°.
4.3.2 Power Quality Parameters
The PMC-53A provides the following PQ parameters:
4.3.2.1 Harmonics
The PMC-53A provides harmonic analysis for THD, TOHD, TEHD and individual harmonics up to the 31st
order. All harmonic parameters are available on the Front Panel and through communications. In
addition, the PMC-53A also provides TDD, K-factor and Crest-factor measurements for Current.
4.3.2.2 TDD
To tal Demand Distortion (TDD) is defined as the ratio of the RMS (Root Mean Square) of the Harmonic
Current to the RMS of the Rated or Maximum Fundamental Current Demand.
TDD of Current is calculated by the formula below:
where
IL = Maximum Fundamental Current Demand
h = Harmonic Order (1, 2, 3, 4, etc.)
I
= RMS Load Current at the nth Harmonic
h
4.3.2.3 K-Factor
K-Factor is defined as the weighted sum of the Harmonic Load Current according to their effects on transformer heating, as derived from ANSI/IEEE C57.110. A K-Factor of 1.0 indicates a linear load (no
40
Page 41
CET Electric Technology
)(
)(
K
2
hh
1h
2
hh
1h
max
max
h
h
I
hI
Factor
x
x
rms
peak
C
Phase A/AB
Phase B/BC
Phase C/CA
Harmonic-Voltage
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
2
nd
Harmonics
2
nd
Harmonics
2nd Harmonics
…
31st Harmonics
31st Harmonics
31st Harmonics
Harmonic-Current
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
TDD
TDD
TDD
TEDD
TEDD
TEDD
TODD
TODD
TODD
K-factor
K-factor
K-factor
Crest-factor
Crest-factor
Crest-factor
2
nd
Harmonics
2
nd
Harmonics
2nd Harmonics
…
31st Harmonics
31st Harmonics
31st Harmonics
100%
V1
V2
100%
I1
I2
harmonics). The higher the K-Factor, the greater the harmonic heating effect.
where
Ih = hth Harmonic Current in RMS
h
= Highest harmonic order
max
4.3.2.4 Crest Factor
Crest Factor is defined as the Peak to Average Ratio (PAR), and its calculation is illustrated below:
where
|X|
= Peak amplitude of the waveform
peak
X
= RMS value
rms
The following table illustrates the available Voltage and Current Harmonics measurements on the PMC53A.
Table 4-5 Harmonic Measurements
4.3.3 Unbalance
The PMC-53A provides Voltage and Current Unbalance measurements. The calculation method of
Voltage and Current Unbalances are listed below:
Voltage Unbalance =
where
V1, V2 are the Positive and Negative Sequence Components for Voltage, respectively.
and
I1, I2 are the Positive and Negative Sequence Components for Current, respectively.
Current Unbalance =
41
Page 42
CET Electric Technology
4.4 Setpoints
The PMC-53A comes standard with 9 user programmable Setpoints which provide extensive control by
allowing a user to initiate an action in response to a specific condition. Typical setpoint applications
include alarming, fault detection and power quality monitoring.
Figure 4-1 Over Setpoint
Figure 4-2 Under Setpoint
Setpoints can be programmed via the Front Panel or through communications and have the following
setup parameters:
42
Page 43
CET Electric Technology
Setup Parameter
Definition
Options/Default*
Setpoint Type
Over or Under Setpoint.
0=Over Setpoint*
1=Under Setpoint
Setpoint
Parameter
Specify the parameter to be monitored.
See Table 4-7
Over Limit
Specify the value that the setpoint parameter must exceed
for Over Setpoint to become active or for Under Setpoint
to become inactive.
0*
Under Limit
Specify the value that the setpoint parameter must go
below for Over Setpoint to become inactive or for Under
Setpoint to become active.
0*
Active Delay
Specify the minimum duration that the setpoint condition
must be met before the setpoint becomes active. An event
will be generated and stored in the SOE Log. The range of
the Active Delay is between 0 and 9999 seconds.
0 to 9999s
Default=10
Inactive Delay
Specify the minimum duration that the setpoint return
condition must be met before the setpoint becomes
inactive. An event will be generated and stored in the SOE
Log. The range of the Inactive Delay is between 0 and 9999
seconds.
0 to 9999
Default=10
Setpoint Trigger
Specify what action a setpoint would take when it becomes
active. Please refer to Table 4-8 below for a list of Setpoint
Triggers.
See table 4-8
Key
Setpoint Parameter
Scale
Unit
0
None
- - 1
Uln (Any Phase Voltage)
x1
V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
Hz
6
P (kW Total)
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S DMD (kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Phase Reversal)3
- 25
I4 (Measured)*
x1
A
26
AI*
-
27
Reserved
- - 28
RTD1*
x1
°C
29
RTD2*
30
Ir (Residual Current)~
x1 A 31
U2 (-ve Sequence Unbalance)~
x1
V
32
U0 (Zero Sequence Unbalance)~
Table 4-6 Description for Setpoint Parameters
In addition, the LCD would blink when there is an active setpoint alarm if the SP LCD Alarm (Register
#6048) is set to Enable via the Front Panel or through communications.
* Valid only if the device is equipped with the appropriate option
~ Available in Firmware V1.00.06 or later
Table 4-7 Setpoint Parameters
43
Page 44
CET Electric Technology
Key
Action
Key
Action
0
None
3
DO3 Closed
1
DO1 Closed
4
DO4 Closed
2
DO2 Closed
Others
Reserved
Max./Min. Parameters
Ia
Ib
Ic
I avg
Uan
Ubn
Ucn
Uln avg
Uab
Ubc
Uca
Ull avg
kWa
kWb
kWc
kW Total
kvara
kvarb
kvarc
kvar Total
kVAa
kVAb
kVAc
kVA Total
PFa
PFb
PFc
PF Total
Frequency
I4
Ia THD
Ib THD
Ic THD
Uan/Uab THD
Ubn/Ubc THD
Ucn/Uca THD
Ia K-Factor
Ib K-Factor
Ic K-Factor
Ia Crest-factor
Ib Crest-factor
Ic Crest-factor
U Unbal.
I Unbal.
In
(Calculated)
Ir*
Peak Demand Logs of This Month (Since Last Reset) and Last Month (Before Last Reset)
Ia
Ib
Ic
Table 4-8 Setpoint Triggers
Only when DOx Mode is set to Remote Control/Setpoint would setting the Setpoint Trigger to DOx
Closed valid. In addition,
Only when the PMC-53A’s Basic Functionoption is “3” (4xDI+3xRelay Output) or “A”
(4xDI+2xSS Pulse Output) would setting the Setpoint Trigger to DO1 Closed or DO2 Closed
have meaning.
Only when the Expansion Module B is equipped with the “2xDI + 2xDO (Relay Output)” or
“2xDI + 2xSS Pulse Output” options would setting the Setpoint Trigger to DO3 Closed or DO4
Closed have meaning.
4.5 Logging
4.5.1 Max./Min. Log
The PMC-53A records the Max. Log and Min. Log of This Month (Since Last Reset) and Last Month
(Before Last Reset) with timestamp for 45 parameters. Each log includes the relevant parameter value
and its timestamp. The recorded data is stored in non-volatile memory and will not suffer any loss in
the event of a power failure. The PMC-53A’s Max./Min. Log records the following parameters:
* Available in Firmware V1.00.06 or later
Table 4-9 Max./Min. Log
The same Self-Read Time for the Peak Demand Log is used to specify the time and day of the month
for the Max./Min. Self-Read operation. Please refer to Section 4.2.4 for a complete description of the
Self-Read Time and its operation. The Max./Min. Log of This Month can be reset manually from the
Front Panel or via communications.
4.5.2 Peak Demand Log
The PMC-53A records the Peak Demand of This Month (Since Last Reset) and Last Month (Before Last
Reset) with timestamp for Ia, Ib, Ic, kW Total, kvar Total and kVA Total as well as kW Total, kvar Total and
kVA Total for TOU Tariffs 1 to 8. The Peak Demand of This Month (Since Last Reset) can be accessed from
the Front Panel as well as communications while the Peak Demand of Last Month (Before Last Reset)
can only be retrieved through communications. Please refer to Section 4.2.4 for a complete description
of the Self-Read Time and its operation.
44
Page 45
CET Electric Technology
kW Total
kvar Total
kVA Total
kW Total for TOU Tariffs 1 to 8
kvar Total for TOU Tariffs 1 to 8
kVA Total for TOU Tariffs 1 to 8
Active Energy
kWh Import
kWh Export
kWh Net
kWh Total
T1 kWh Import
T2 kWh Import
T3 kWh Import
T4 kWh Import
T5 kWh Import
T6 kWh Import
T7 kWh Import
T8 kWh Import
T1 kWh Export
T2 kWh Export
T3 kWh Export
T4 kWh Export
T5 kWh Export
T6 kWh Export
T7 kWh Export
T8 kWh Export
Reactive Energy
kvarh Import
kvarh Export
kvarh Net
kvarh Total
T1 kvarh Import
T2 kvarh Import
T3 kvarh Import
T4 kvarh Import
T5 kvarh Import
T6 kvarh Import
T7 kvarh Import
T8 kvarh Import
T1 kvarh Export
T2 kvarh Export
T3 kvarh Export
T4 kvarh Export
T5 kvarh Export
T6 kvarh Export
T7 kvarh Export
T8 kvarh Export
kvarh Q1
kvarh Q2
kvarh Q3
kvarh Q4
Apparent Energy
kVAh
T1 kVAh
T2 kVAh
T3 kVAh
T4 kVAh
T5 kVAh
T6 kVAh
T7 kVAh
T8 kVAh
Freeze Type
Parameters
Depth
Daily Freeze
kWh Total, kvarh Total, kVAh Total
Peak Demands for kW Total, kvar Total and kVA Total
60
Monthly Freeze
kWh Total, kvarh Total, kVAh Total
Peak Demands for kW Total, kvar Total and kVA Total with Timestamp
36
Table 4-10 Peak Demand Log
4.5.3 Monthly Energy Log
The PMC-53A stores monthly energy data for the present month and the last 12 months. The Monthly
Energy Log Self-read Time setup parameter allows the user to specify the time and day of the month
for the Recorder’s Self-read operation via communications. The Monthly Energy Logs are stored in the
meter’s non-volatile memory and will not suffer any loss in the event of power failure, and they are
stored on a First-In-First-Out basis where the newest log will overwrite the oldest.
The Monthly Energy Log Self-Read Time supports two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on the
formula: Energy Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For
example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15thday of each
month.
The Monthly Energy Logs can be reset manually through the front panel or via communications.
The PMC-53A provides the following energy data for the present month and the last 12 months:
Table 4-11 Energy Measurements for each Monthly Energy Log Record
4.5.4 Daily and Monthly Freeze Log (Optional)
The PMC-53A optionally provides a Daily Freeze Log and a Monthly Freeze Log for Energy and Demand
parameters and can store up to 60 daily freeze records (2 months) and 36 monthly freeze records (3
years). All Freeze Logs and their respective setup registers can only be accessed through
communications. The PMC-53A’s Freeze Logs can freeze and record the following parameters:
Table 4-12 Freeze Log
The Daily Self-Read Time setup parameter allows the user to specify the time of the day for the Daily
Freeze Log Self-Read operation, while the Monthly Self-Read Time setup parameter allows the user to
45
Page 46
CET Electric Technology
Setup Parameters
Value/Option
Default
Trigger Mode
0=Disabled / 1=Triggered by Timer
1
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
1
Recording Depth
1 to 10,000 (entry)
5760
Recording Interval
60 to 3,456,000 seconds
900 s
Offset Time
0 to 43,200 seconds, 0 indicates no offset
0
Number of Parameters
0 to 16
16
Parameter 1 to 16
See Appendix A for a complete list of parameters
See Appendix B
specify the time and day of the month for the Monthly Freeze Log Self-Read operation.
1) Daily Freeze Self-Read Time can be set to a zero value or a non-zero value:
A zero value means that the Self-Read will take place at 00:00 everyday.
A non-zero value means that the Self-Read will take place at a specific time of the day based on
the formula: Self-Read time = (Hour x 100 + Min) where 0 ≤ Hour ≤ 23 and 0 ≤ Min ≤ 59. For
example, the value 1512 means that the Self-Read will take place at 15:12 of each day.
2) Monthly Freeze Self-Read Time can be set to a zero value or a non-zero value:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on
the formula: Monthly Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28.
For example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th
day of each month.
4.5.5 SOE Log
The PMC-53A’s SOE Log can store up to 100 events such as Power-on, Power-off, Digital Input status
changes, Digital Output status changes, Setup changes and Setpoint events in its non-volatile memory.
Each event record includes the event classification, its relevant parameter values and a timestamp in ±1
ms resolution. The SOE Log can be displayed on the Front Panel and retrieved via communications. If
there are more than 100 events, the newest event will replace the oldest event on a First-In-First-Out
basis. The SOE Log can be reset from the Front Panel or via communications.
4.5.6 Data Recorder (DR) Log (Optional)
The PMC-53A optionally provides five Data Recorders capable of recording a maximum of 16 parameters
each. The Data Recorder Log is stored in the device’s non-volatile memory and will not suffer any loss
in the event of a power failure. The programming of the Data Recorder is only supported over
communications. Each Data Recorder provides the following setup parameters:
Table 4-13 Setup Parameters for Data Recorder
The Data Recorder Log is only operational when the values of Trigger Mode, Recording Depth,
Recording Interval, and Number of Parameters are all non-zero.
The Recording Offset parameter can be used to delay the recording by a fixed time from the Recording
Interval. For example, if the Recording Interval parameter is set to 3600 (hourly) and the Recording
Offset parameter is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour
every hour, i.e. 00:05, 01:05, 02:05…etc. The value of the Recording Offset parameter should be less
than the Recording Interval parameter.
46
Page 47
CET Electric Technology
Tariff
DI Function
DI1 = Tariff Switch
DI2 & DI1 = Tariff Switch
DI3, DI2 & DI1 = Tariff Switch
T1
DI1 (0=T1)
DI2 + DI1 (00=T1)
DI3 + DI2 + DI1 (000=T1)
T2
DI1 (1=T2)
DI2 + DI1 (01=T2)
DI3 + DI2 + DI1 (001=T2)
T3
Not Available
DI2 + DI1 (10=T3)
DI3 + DI2 + DI1 (010=T3)
T4
Not Available
DI2 + DI1 (11=T4)
DI3 + DI2 + DI1 (011=T4)
T5
Not Available
Not Available
DI3 + DI2 + DI1 (100=T5)
T6
Not Available
Not Available
DI3 + DI2 + DI1 (101=T6)
T7
Not Available
Not Available
DI3 + DI2 + DI1 (110=T7)
T8
Not Available
Not Available
DI3 + DI2 + DI1 (111=T8)
Setup Parameters
Definition
Options
Daily Profile #
Specify a daily rate schedule which can be divided into
a maximum of 12 periods in 15-min intervals.
Up to 20 Daily Profiles can be programmed for each
TOU schedule.
1 to 20, the first
period starts at
00:00 and the last
period ends at
24:00.
Season #
A year can be divided into a maximum of 12 seasons.
Each season is specified with a Start Date and ends with
the next season’s Start Date.
1 to 12, starts from
January 1st
Alternate Days #
A day can be defined as an Alternate Day, such as May
1st. Each Alternate Day is assigned a Daily Profile.
1 to 90.
Day Types
Specify the day type of the week. Each day of a week
can be assigned a day type such as Weekday1,
Weekday2, Weekday3 and Alternate Days. The
Alternate Day has the highest priority.
Weekday1,
Weekday2,
Weekday3 and
Alternate Days
4.6 Time of Use (TOU)
TOU is used for electricity pricing that varies depending on the time of day, day of week, and season.
The TOU system allows the user to configure an electricity price schedule inside the PMC-53A and
accumulate energy consumption into different TOU tariffs based on the time of consumption. TOU
programming is only supported through communications.
The TOU feature on PMC-53A supports two TOU schedules, which can be switched at a pre-defined
time. Each TOU schedule supports:
Up to 12 seasons
90 Holidays or Alternate Days
20 Daily Profiles, each with 12 Periods in 15-minute interval
8 Tariffs
Instead of using the TOU schedule to switch between Tariffs, the PMC-53A supports Tariff switching
based on the status of DI1 to DI3 in Firmware V1.00.03 or later.
The 3 Digital Inputs (DI1, DI2 and DI3) represent 3 binary digits where Tariff 1=000, Tariff 2=001, Tariff
3= 010, …Tariff 7=110 and Tariff 8=111 where DI1 represents the least significant digit and DI3
represents the most significant digit. As soon as DI1, DI2 and/or DI3 are configured as Tariff Switches,
the current TOU Tariff will be determined by the status of the DIs, and the TOU Schedule will be ignored.
The DI1 Function setup register must first be programmed as a Tariff Switch before configuring DI2 and
DI3 with the same function. In other words, if DI1 is configured as a Digital Input or Energy Pulse Counter, and DI2 is configured as a Tariff Switch, the TOU will continue to function based on the TOU
Schedule. The number of Tariffs supported depends on how many DIs are programmed as a Tariff Switch
as indicated in the following table.
Table 4-14 DIs and the Number of Tariffs Setup
Each TOU schedule has the following setup parameters and can only be programmed via
communications:
47
Page 48
CET Electric Technology
Switching Time
Specify when to switch from one TOU schedule to
another. Writing 0xFFFFFFFF to this parameter disables
switching between TOU schedules.
Format:
YYYYMMDDHH
Default=0xFFFFFFFF
Bit
Event
B00
Summary Bit (Set if any other bit is set)
B01
Frequency is out of range (45 to 65Hz) (3P4W or 3P3W)
B02
Any phase voltage < 10% of PT Primary (Register 6000) (3P4W only)
B03
Any phase current < 10% of CT Primary (Register 6004) (3P4W or 3P3W)
B04
RTD 1 broken (RTD Input option only)
B05
RTD 2 broken (RTD Input option only)
B06
Voltage Phase Reversal (3P4W only)
B07
Current Phase Reversal (3P4W or 3P3W)
B08
Negative kW Total may be abnormal (3P4W or 3P3W)
B09
Negative kWa may be abnormal (3P4W only)
B10
Negative kWb may be abnormal (3P4W only)
B11
Negative kWc may be abnormal (3P4W only)
B12
CTa polarity may be reversed (3P4W only)
B13
CTb polarity may be reversed (3P4W only)
B14
CTc polarity may be reversed (3P4W only)
B15
Reserved
Table 4-15 TOU Setup Parameters
For each of the 8 Tariff Rates, the PMC-53A provides the following information:
Energy: kWh Import/Export, kvarh Import/Export, kVAh – Per Phase and Total
Peak Demand: kW/kvar/kVA of This Month (Since Last Reset) and Last Month (Before Last Reset).
TOU data is available through the front panel and communications.
4.7 Diagnostics
The PMC-53A provides wiring error detection for 3P4W and 3P3W wiring modes, which allow users to
check for possible problems especially during the initial commissioning stage. The following wiring
errors may be detected:
Frequency Out-of-Range
Voltage / Current Phase Loss
Incorrect Voltage and Current Phase Sequence
kW Direction per phase and Total
Possible Incorrect CT Polarity
Broken RTD
Please note the detections above are based on the assumptions below:
The Voltage and Current Phase Sequence are consistent
kW is kW Import, which means the kW is over 0
The wiring is correct
3P4W wiring mode supports all detections
3P3W wiring mode does not support the detection of Voltage Phase Loss, kW Direction per phase
and CT Polarity
The Diagnostic register (0101) indicates the status of the wiring error detection with a bit value of 1
meaning active and 0 meaning inactive which are illustrated in table below:
Table 4-16 Wiring Diagnostic Register
48
Page 49
CET Electric Technology
Format
Description
UINT16/INT16
Unsigned/Signed 16-bit Integer
UINT32/INT32
Unsigned/Signed 32-bit Integer
Float
IEEE 754 32-bit
Single Precision Floating Point Number
Register
Property
Description
Format
Scale
Unit
0000
RO
Uan
Float
x1
V
0002
RO
Ubn
Float
0004
RO
Ucn
Float
0006
RO
Uln Average
Float
0008
RO
Uab
Float
0010
RO
Ubc
Float
0012
RO
Uca
Float
0014
RO
Ull Average
Float
0016
RO
Ia
Float A 0018
RO
Ib
Float
0020
RO
Ic
Float
0022
RO
I Average
Float
0024
RO
kWa
Float W 0026
RO
kWb
Float
0028
RO
kWc
Float
0030
RO
kW Total
Float
0032
RO
kvara
Float
var
0034
RO
kvarb
Float
0036
RO
kvarc
Float
0038
RO
kvar Total
Float
0040
RO
kVAa
Float
VA
0042
RO
kVAb
Float
0044
RO
kVAc
Float
0046
RO
kVA Total
Float
0048
RO
PFa
Float - 0050
RO
PFb
Float - 0052
RO
PFc
Float - 0054
RO
PF Total
Float - 0056
RO
Frequency
Float
Hz
0058
RO
Uan/Uab (3P3W) Angle
Float ° 0060
RO
Ubn/Ubc (3P3W) Angle
Float ° 0062
RO
Ucn/Uca (3P3W) Angle
Float ° 0064
RO
Ia Angle
Float ° 0066
RO
Ib Angle
Float ° 0068
RO
Ic Angle
Float
°
0070
RO
In (Calculated)
Float A 0072
RO
I41
Float
0074
RO
Displacement PFa
Float
-
Chapter 5 Modbus Register Map
This chapter provides a complete description of the Modbus register map (Protocol Version 1.4) for the
PMC-53A to facilitate the development of 3rd party communications driver for accessing information on
the PMC-53A. For a complete Modbus Protocol Specification, please visit http://www.modbus.org. The
PMC-53A supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
The following table provides a description of the different data formats used for the Modbus registers.
The PMC-53A uses the Big Endian byte ordering system.
5.1 Basic Measurements
49
Page 50
CET Electric Technology
0076
RO
Displacement PFb
Float
-
0078
RO
Displacement PFc
Float
-
0080
RO
Displacement PF Total
Float
-
0082
RO
AI1 Scaled
Float
-
0084
RO
Reserved
Float
-
0086
RO
RTD 11
Float
︒C
0088
RO
RTD 21
Float
0090
RO
AO1
Float
-
0092
RO
Reserved
Float
-
0094
RO
Reserved
Float
-
0096
RO
DI Status
1,2
UINT16
-
0097
RO
Reserved
UINT16
-
0098
RO
DO Status
1,3
UINT16
-
0099
RO
Reserved
UINT16
-
0100
RO
Setpoint Status4
UINT16
-
0101
RO
Wiring Diagnostic Status5
UINT16
-
0102
RO
SOE Log Pointer6
UINT32
-
0104
RO
Device Operating Time
7
UINT32
x0.1
0.1Hour
0106-0111
RO
Reserved
UINT32 -
0112
RO
Phase A Fundamental kW
Float
x1
W
0114
RO
Phase B Fundamental kW
Float
0116
RO
Phase C Fundamental kW
Float
0118
RO
Fundamental kW Total
Float
0120
RO
Total Harmonic kW
Float
0122
RO
DR #1 Log Pointer
1,6
UINT32 - -
0124
RO
DR #2 Log Pointer
1,6
UINT32 - -
0126
RO
DR #3 Log Pointer
1,6
UINT32 - -
0128
RO
DR #4 Log Pointer
1,6
UINT32 - -
0130
RO
DR #5 Log Pointer
1,6
UINT32 - -
0132-0148
RO
Reserved
UINT32 -
0150
RO
Uan/Uab Fundamental*
Float
x1
V
0152
RO
Ubn/Ubc Fundamental*9
Float
0154
RO
Ucn/Uca Fundamental*9
Float
0156
RO
Ia Fundamental*
Float
x1
A
0158
RO
Ib Fundamental*9
Float
0160
RO
Ic Fundamental*9
Float
0162
RO
U1 (Positive Sequence Voltage)*10
Float
x1
V
0164
RO
U2 (Negative Sequence Voltage)*10
Float
0166
RO
U0 (Zero Sequence Voltage)*10
Float
0168
RO
I1 (Positive Sequence Current)*10
Float
x1
A
0170
RO
I2 (Negative Sequence Current)*10
Float
0172
RO
I0 (Zero Sequence Current)*10
Float
0174
RO
Ir (Residual Current)#
Float
Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Setpoint9
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Setpoint8
Setpoint7
Setpoint6
Setpoint5
Setpoint4
Setpoint3
Setpoint2
Setpoint1
* Available in Firmware V1.00.03 or later
#
Available in Firmware V1.00.06 or later
Notes:
1) I4, AI, RTD1, RTD2, AO, DI Status, DO Status and DRx Log Pointers are only meaningful if the
meter is equipped with the corresponding option.
2) For the DI Status register, the bit values of B0 to B5 represent the states of DI1 to DI6,
respectively, with “1” meaning Active (Closed) and “0” meaning Inactive (Open).
3) For the DO Status register, the bit values of B0 to B3 represent the states of DO1 to DO4,
respectively, with “1” meaning Active (Closed) and “0” meaning Inactive (Open).
4) For the Setpoint Status register, the bit values indicate the various Setpoint states with “1”
meaning Active and “0” meaning Inactive. The following table illustrates the details of the Alarm Status register.
5) The following table illustrates the Wiring Diagnostic Status with 0 meaning Normal and 1 meaning
Abnormal:
Table 5-1 Basic Measurements
Table 5-2 Alarm Status Register
50
Page 51
CET Electric Technology
Bit
Event
B00
Summary Bit (Set if any other bit is set)
B01
Frequency is out of range (45 to 65Hz) (3P4W or 3P3W)
B02
Any phase voltage < 10% of PT Primary (Register 6000) (3P4W only)
B03
Any phase current < 10% of CT Primary (Register 6004) (3P4W or 3P3W)
B04
RTD 1 broken (RTD Input option only)
B05
RTD 2 broken (RTD Input option only)
B06
Voltage Phase Reversal (3P4W only)
B07
Current Phase Reversal (3P4W or 3P3W)
B08
Negative kW Total may be abnormal (3P4W or 3P3W)
B09
Negative kWa is may be abnormal (3P4W only)
B10
Negative kWb may be abnormal (3P4W only)
B11
Negative kWc may be abnormal (3P4W only)
B12
CTa polarity may be reversed (3P4W only)
B13
CTb polarity may be reversed (3P4W only)
B14
CTc polarity may be reversed (3P4W only)
B15
Reserved
Register
Property
Description
Format
Scale
Unit
0500
RW
kWh Import
INT32
x0.1
kWh
0502
RW
kWh Export
INT32
Table 5-3 Wiring Diagnostic Status Register
6) The range of the Log Pointers (SOE and DRx) is between 0 and 0xFFFFFFFFH. The Log Pointer is
incremented by one for every new log generated and will roll over to 0 if its current value is
0xFFFFFFFFH. If a Clear SOE Log or Clear DRx Log is performed from the front panel or via
communications, the corresponding Log Pointer will be reset to zero. Therefore, any 3rd party
software should assume that a Clear Log action has been performed if it sees the SOE Log Pointer
rolling over to zero or to a value that is smaller than its own pointer.
7) The Device Operating Time means the accumulated running time whenever any per-phase Current
exceeds the Current Threshold of the Device Operating Time (Register #6049). The Device Operating Time data is stored in non-volatile memory and will not suffer any loss in the event of a
power failure.
8) The PMC-53A has one SOE Log and five DR Logs. Each of these logs has a Log Pointer that indicates
its current logging position. The range of the Log Pointer is between 0 and 0xFFFFFFFF, and it is
incremented by one for every new log generated and will roll over to 0 if its current value is
0xFFFFFFFF. A value of zero indicates that the SOE or DRx does not contain any Log. If a Clear Log is
performed via communications, its Log Pointer will be reset to zero.
Use the following equation to determine the latest log location:
Latest Log Location = Modulo [Log Pointer / Log Depth]
where Log Pointer may be one of the following:
SOE Log Pointer, DR1 – DR5 Log Pointers
and Log Depth is as follows:
SOE Log Depth = 100 (fixed)
DRx Log Depth = DRx Recording Depth (see Section 5.11.5 Data Recorder Setup)
9) When the Wiring Mode is 1P2W L-N or 1P2W L-L, the L2 and L3 phase voltages and currents have
no meaning, and their registers are reserved.
10) When the Wiring Mode is 1P2W L-N, 1P2W L-L or 1P3W, the Sequence Components U1/I1, U2/I2
and U0/I0 have no meaning and their registers are reserved.
5.2 Energy Measurements
The Energy registers have a maximum value of 1,000,000,000 and will roll over to zero
automatically when it is reached. The actual energy value is 0.1 times of the register value.
5.2.1 3-Phase Total Energy Measurements
51
Page 52
CET Electric Technology
0504
RO
kWh Net
INT32
0506
RO
kWh Total
INT32
0508
RW
kvarh Import
INT32
kvarh
0510
RW
kvarh Export
INT32
0512
RO
kvarh Net
INT32
0514
RO
kvarh Total
INT32
0516
RW
kVAh
INT32
kVAh
0518
RW
kvarh Q1
INT32
kvarh
0520
RW
kvarh Q2
INT32
0522
RW
kvarh Q3
INT32
0524
RW
kvarh Q4
INT32
0526
RW
kWh Import of T1
INT32
kWh
0528
RW
kWh Export of T1
INT32
0530
RW
kvarh Import of T1
INT32
kvarh
0532
RW
kvarh Export of T1
INT32
0534
RW
kVAh of T1
INT32
kVAh
0536
RW
kWh Import of T2
INT32
kWh
0538
RW
kWh Export of T2
INT32
0540
RW
kvarh Import of T2
INT32
kvarh
0542
RW
kvarh Export of T2
INT32
0544
RW
kVAh of T2
INT32
kVAh
0546
RW
kWh Import of T3
INT32
kWh
0548
RW
kWh Export of T3
INT32
0550
RW
kvarh Import of T3
INT32
kvarh
0552
RW
kvarh Export of T3
INT32
0554
RW
kVAh of T3
INT32
kVAh
0556
RW
kWh Import of T4
INT32
kWh
0558
RW
kWh Export of T4
INT32
0560
RW
kvarh Import of T4
INT32
kvarh
0562
RW
kvarh Export of T4
INT32
0564
RW
kVAh of T4
INT32
kVAh
0566
RW
kWh Import of T5
INT32
kWh
0568
RW
kWh Export of T5
INT32
0570
RW
kvarh Import of T5
INT32
kvarh
0572
RW
kvarh Export of T5
INT32
0574
RW
kVAh of T5
INT32
kVAh
0576
RW
kWh Import of T6
INT32
kWh
0578
RW
kWh Export of T6
INT32
0580
RW
kvarh Import of T6
INT32
kvarh
0582
RW
kvarh Export of T6
INT32
0584
RW
kVAh of T6
INT32
kVAh
0586
RW
kWh Import of T7
INT32
kWh
0588
RW
kWh Export of T7
INT32
0590
RW
kvarh Import of T7
INT32
kvarh
0592
RW
kvarh Export of T7
INT32
0594
RW
kVAh of T7
INT32
kVAh
0596
RW
kWh Import of T8
INT32
kWh
0598
RW
kWh Export of T8
INT32
0600
RW
kvarh Import of T8
INT32
kvarh
0602
RW
kvarh Export of T8
INT32
0604
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0620
RW
kWh Import
INT32
x0.1
kWh
0622
RW
kWh Export
INT32
0624
RO
kWh Net
INT32
0626
RO
kWh Total
INT32
0628
RW
kvarh Import
INT32
kvarh
0630
RW
kvarh Export
INT32
0632
RO
kvarh Net
INT32
0634
RO
kvarh Total
INT32
0636
RW
kVAh
INT32
kVAh
0638
RW
kvarh Q1
INT32
kWh
Table 5-4 3-phase Total Energy Measurements
5.2.2 Phase A (L1) Energy Measurements
52
Page 53
CET Electric Technology
0640
RW
kvarh Q2
INT32
0642
RW
kvarh Q3
INT32
0644
RW
kvarh Q4
INT32
0646
RW
kWh Import of T1
INT32
kvarh
0648
RW
kWh Export of T1
INT32
0650
RW
kvarh Import of T1
INT32
kWh
0652
RW
kvarh Export of T1
INT32
0654
RW
kVAh of T1
INT32
0656
RW
kWh Import of T2
INT32
kWh
0658
RW
kWh Export of T2
INT32
0660
RW
kvarh Import of T2
INT32
kvarh
0662
RW
kvarh Export of T2
INT32
0664
RW
kVAh of T2
INT32
kVAh
0666
RW
kWh Import of T3
INT32
kWh
0668
RW
kWh Export of T3
INT32
0670
RW
kvarh Import of T3
INT32
kvarh
0672
RW
kvarh Export of T3
INT32
0674
RW
kVAh of T3
INT32
kVAh
0676
RW
kWh Import of T4
INT32
kWh
0678
RW
kWh Export of T4
INT32
0680
RW
kvarh Import of T4
INT32
kvarh
0682
RW
kvarh Export of T4
INT32
0684
RW
kVAh of T4
INT32
kVAh
0686
RW
kWh Import of T5
INT32
kWh
0688
RW
kWh Export of T5
INT32
0690
RW
kvarh Import of T5
INT32
kvarh
0692
RW
kvarh Export of T5
INT32
0694
RW
kVAh of T5
INT32
kVAh
0696
RW
kWh Import of T6
INT32
kWh
0698
RW
kWh Export of T6
INT32
0700
RW
kvarh Import of T6
INT32
kvarh
0702
RW
kvarh Export of T6
INT32
0704
RW
kVAh of T6
INT32
kVAh
0706
RW
kWh Import of T7
INT32
kWh
0708
RW
kWh Export of T7
INT32
0710
RW
kvarh Import of T7
INT32
kvarh
0712
RW
kvarh Export of T7
INT32
0714
RW
kVAh of T7
INT32
kVAh
0716
RW
kWh Import of T8
INT32
kWh
0718
RW
kWh Export of T8
INT32
0720
RW
kvarh Import of T8
INT32
kvarh
0722
RW
kvarh Export of T8
INT32
0724
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0740
RW
kWh Import
INT32
x0.1
kWh
0742
RW
kWh Export
INT32
0744
RO
kWh Net
INT32
0746
RO
kWh Total
INT32
0748
RW
kvarh Import
INT32
kvarh
0750
RW
kvarh Export
INT32
0752
RO
kvarh Net
INT32
0754
RO
kvarh Total
INT32
0756
RW
kVAh
INT32
kVAh
0758
RW
kvarh Q1
INT32
kvarh
0760
RW
kvarh Q2
INT32
0762
RW
kvarh Q3
INT32
0764
RW
kvarh Q4
INT32
0766
RW
kWh Import of T1
INT32
kWh
0768
RW
kWh Export of T1
INT32
0770
RW
kvarh Import of T1
INT32
kvarh
0772
RW
kvarh Export of T1
INT32
0774
RW
kVAh of T1
INT32
kVAh
Table 5-5 Phase A Energy Measurements
5.2.3 Phase B (L2) Energy Measurements
53
Page 54
CET Electric Technology
0776
RW
kWh Import of T2
INT32
kWh
0778
RW
kWh Export of T2
INT32
0780
RW
kvarh Import of T2
INT32
kvarh
0782
RW
kvarh Export of T2
INT32
0784
RW
kVAh of T2
INT32
kVAh
0786
RW
kWh Import of T3
INT32
kWh
0788
RW
kWh Export of T3
INT32
0790
RW
kvarh Import of T3
INT32
kvarh
0792
RW
kvarh Export of T3
INT32
0794
RW
kVAh of T3
INT32
kVAh
0796
RW
kWh Import of T4
INT32
kWh
0798
RW
kWh Export of T4
INT32
0800
RW
kvarh Import of T4
INT32
kvarh
0802
RW
kvarh Export of T4
INT32
0804
RW
kVAh of T4
INT32
kVAh
0806
RW
kWh Import of T5
INT32
kWh
0808
RW
kWh Export of T5
INT32
0810
RW
kvarh Import of T5
INT32
kvarh
0812
RW
kvarh Export of T5
INT32
0814
RW
kVAh of T5
INT32
kVAh
0816
RW
kWh Import of T6
INT32
kWh
0818
RW
kWh Export of T6
INT32
0820
RW
kvarh Import of T6
INT32
kvarh
0822
RW
kvarh Export of T6
INT32
0824
RW
kVAh of T6
INT32
kVAh
0826
RW
kWh Import of T7
INT32
kWh
0828
RW
kWh Export of T7
INT32
0830
RW
kvarh Import of T7
INT32
kvarh
0832
RW
kvarh Export of T7
INT32
0834
RW
kVAh of T7
INT32
kVAh
0836
RW
kWh Import of T8
INT32
kWh
0838
RW
kWh Export of T8
INT32
0840
RW
kvarh Import of T8
INT32
kvarh
0842
RW
kvarh Export of T8
INT32
0844
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
0860
RW
kWh Import
INT32
x0.1
kWh
0862
RW
kWh Export
INT32
0864
RO
kWh Net
INT32
0866
RO
kWh Total
INT32
0868
RW
kvarh Import
INT32
kvarh
0870
RW
kvarh Export
INT32
0872
RO
kvarh Net
INT32
0874
RO
kvarh Total
INT32
0876
RW
kVAh
INT32
kVAh
0878
RW
kvarh Q1
INT32
kvarh
0880
RW
kvarh Q2
INT32
0882
RW
kvarh Q3
INT32
0884
RW
kvarh Q4
INT32
0886
RW
kWh Import of T1
INT32
kWh
0888
RW
kWh Export of T1
INT32
0890
RW
kvarh Import of T1
INT32
kvarh
0892
RW
kvarh Export of T1
INT32
0894
RW
kVAh of T1
INT32
kVAh
0896
RW
kWh Import of T2
INT32
kWh
0898
RW
kWh Export of T2
INT32
0900
RW
kvarh Import of T2
INT32
kvar
0902
RW
kvarh Export of T2
INT32
0904
RW
kVAh of T2
INT32
kVAh
0906
RW
kWh Import of T3
INT32
kWh
0908
RW
kWh Export of T3
INT32
0910
RW
kvarh Import of T3
INT32
kvarh
Table 5-6 Phase B Energy Measurements
5.2.4 Phase C (L3) Energy Measurements
54
Page 55
CET Electric Technology
0912
RW
kvarh Export of T3
INT32
0914
RW
kVAh of T3
INT32
kVAh
0916
RW
kWh Import of T4
INT32
kWh
0918
RW
kWh Export of T4
INT32
0920
RW
kvarh Import of T4
INT32
kvarh
0922
RW
kvarh Export of T4
INT32
0924
RW
kVAh of T4
INT32
kVAh
0926
RW
kWh Import of T5
INT32
kWh
0928
RW
kWh Export of T5
INT32
0930
RW
kvarh Import of T5
INT32
kvarh
0932
RW
kvarh Export of T5
INT32
0934
RW
kVAh of T5
INT32
kVAh
0936
RW
kWh Import of T6
INT32
kWh
0938
RW
kWh Export of T6
INT32
0940
RW
kvarh Import of T6
INT32
kvarh
0942
RW
kvarh Export of T6
INT32
0944
RW
kVAh of T6
INT32
kVAh
0946
RW
kWh Import of T7
INT32
kWh
0948
RW
kWh Export of T7
INT32
0950
RW
kvarh Import of T7
INT32
kvarh
0952
RW
kvarh Export of T7
INT32
0954
RW
kVAh of T7
INT32
kVAh
0956
RW
kWh Import of T8
INT32
kWh
0958
RW
kWh Export of T8
INT32
0960
RW
kvarh Import of T8
INT32
kvarh
0962
RW
kvarh Export of T8
INT32
0964
RW
kVAh of T8
INT32
kVAh
Register
Property
Description
Format
Scale
Unit
1100
RW
kWh Import
INT32
x0.1
kWh
1102
RW
kWh Export
INT32
1104
RW
kvarh Import
INT32
kvarh
1106
RW
kvarh Export
INT32
1108
RW
kVAh
INT32
kVAh
Register
Property
Description
Format
Range/Unit
1200
RW
DI1 Pulse Counter
UINT32
0 to 1,000,000,000
DI Pulse Counter= Pulse Counter
x DI Pulse Weight
1202
RW
DI2 Pulse Counter
UINT32
1204
RW
DI3 Pulse Counter
UINT32
1206
RW
DI4 Pulse Counter
UINT32
1208
RW
DI5 Pulse Counter
UINT32
1210
RW
DI6 Pulse Counter
UINT32
Register
Property
Description
Format
Scale
Unit
1300
RO
Ia TDD
Float
x1
%
(0.1 means
10%)
1302
RO
Ib TDD
Float
1304
RO
Ic TDD
Float
1306
RO
Ia TDD Odd
Float
1308
RO
Ib TDD Odd
Float
1310
RO
Ic TDD Odd
Float
1312
RO
Ia TDD Even
Float
1314
RO
Ib TDD Even
Float
Table 5-7 Phase C Energy Measurements
5.2.5 Interval Energy Measurements
The Interval Energy registers have been added to the Modbus Map in Firmware V1.00.03 or later.
Table 5-8 Interval Energy Measurements
5.3 DI Pulse Counters
Table 5-9 DI Pulse Counter
5.4 Harmonic Measurements
5.4.1 Power Quality Measurements
55
Page 56
CET Electric Technology
1316
RO
Ic TDD Even
Float
1318
RO
Ia K-factor
Float
-
1320
RO
Ib K-factor
Float
1322
RO
Ic K-factor
Float
1324
RO
Ia Crest-factor
Float
1326
RO
Ib Crest-factor
Float
1328
RO
Ic Crest-factor
Float
1330
RO
Voltage Unbalance
Float
1332
RO
Current Unbalance
Float
Register
Property
Description
Format
Scale
Unit
1400
RO
Ia THD
Float
x1
%
(0.1 means 10%)
1402
RO
Ib THD
Float
1404
RO
Ic THD
Float
1406
RO
Ia TOHD
Float
1408
RO
Ib TOHD
Float
1410
RO
Ic TOHD
Float
1412
RO
Ia TEHD
Float
1414
RO
Ib TEHD
Float
1416
RO
Ic TEHD
Float
1418
RO
Ia HD02
Float
1420
RO
Ib HD02
Float
1422
RO
Ic HD02
Float
1424~1590
RO
…
Float
1592
RO
Ia HD31
Float
1594
RO
Ib HD31
Float
1596
RO
Ic HD31
Float
Register
Property
Description
Format
Scale
Unit
1600
RO
Uan/Uab THD
Float
x1
%
(0.1 means 10%)
1602
RO
Ubn/Ubc THD
Float
1604
RO
Ucn/Uca THD
Float
1606
RO
Uan/Uab TOHD
Float
1608
RO
Ubn/Ubc TOHD
Float
1610
RO
Ucn/Uca TOHD
Float
1612
RO
Uan/Uab TEHD
Float
1614
RO
Ubn/Ubc TEHD
Float
1616
RO
Ucn/Uca TEHD
Float
1618
RO
Uan/Uab HD02
Float
1620
RO
Ubn/Ubc HD02
Float
1622
RO
Ucn/Uca HD02
Float
1624~1790
RO
…
Float
1792
RO
Uan/Uab HD31
Float
1794
RO
Ubn/Ubc HD31
Float
1796
RO
Ucn/Uca HD31
Float
Table 5-10 Power Quality Measurements
5.4.2 Current Harmonic Measurements
Table 5-11 Current Harmonic Measurements
5.4.3 Voltage Harmonic Measurements
Table 5-12 Voltage Harmonic Measurements
Notes:
1) When the Wiring Mode is 3P3W or 1P2W L-L, the phase A/B/C Voltage THD/TOHD/TEHD/HDxx
mean phase AB/BC/CA Voltage THD/TOHD/TEHD/HDxx.
2) When the Wiring Mode is 1P2W L-N or 1P2W L-L, the L2 and L3 phase voltages
THD/TOHD/TEHD/HDxx have no meaning, and their registers are reserved. When the Wiring Mode is 1P3W L-N, the L3 phase voltages THD/TOHD/TEHD/HDxx have no meaning, and their
registers are reserved.
5.5 Demands
56
Page 57
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
3000
RO
Ia
Float
x1
A
3002
RO
Ib
Float
3004
RO
Ic
Float
3006
RO
kW Total
Float
x1 W 3008
RO
kvar Total
Float
x1
var
3010
RO
kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
3200
RO
Ia
Float
x1
A
3202
RO
Ib
Float
3204
RO
Ic
Float
3206
RO
kW Total
Float
x1
W
3208
RO
kvar Total
Float
x1
var
3210
RO
kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
3400~3405
RO
Ia
See
Section 5.5.5
Demand Data
Structure
x1
A
3406~3411
RO
Ib
3412~3417
RO
Ic
3418~3423
RO
kW Total
W
3424~3429
RO
kvar Total
var
3430~3435
RO
kVA Total
VA
3436~3441
RO
kW Total of T1
W
3442~3447
RO
kvar Total of T1
var
3448~3453
RO
kVA Total of T1
VA
3454~3459
RO
kW Total of T2
W
3460~3465
RO
kvar Total of T2
var
3466~3471
RO
kVA Total of T2
VA
3472~3477
RO
kW Total of T3
W
3478~3483
RO
kvar Total of T3
var
3484~3489
RO
kVA Total of T3
VA
3490~3495
RO
kW Total of T4
W
3496~3501
RO
kvar Total of T4
var
3502~3507
RO
kVA Total of T4
VA
3508~3513
RO
kW Total of T5
W
3514~3519
RO
kvar Total of T5
var
3520~3525
RO
kVA Total of T5
VA
3526~3531
RO
kW Total of T6
W
3532~3537
RO
kvar Total of T6
var
3538~3543
RO
kVA Total of T6
VA
3544~3549
RO
kW Total of T7
W
3550~3555
RO
kvar Total of T7
var
3556~3561
RO
kVA Total of T7
VA
3562~3567
RO
kW Total of T8
W
3568~3573
RO
kvar Total of T8
var
3574~3579
RO
kVA Total of T8
VA
Register
Property
Description
Format
Scale
Unit
3600~3605
RO
Ia
See
Section 5.5.5
Demand Data
Structure
x1
A
3606~3611
RO
Ib
3612~3617
RO
Ic
3618~3623
RO
kW Total
W
3624~3629
RO
kvar Total
var
5.5.1 Present Demands
Table 5-13 Present Demand Measurements
5.5.2 Predicted Demands
Table 5-14 Predicted Demand Measurements
5.5.3 Peak Demand Log of This Month (Since Last Reset)
Table 5-15 Peak Demand Log of This Month (Since Last Reset)
5.5.4 Peak Demand Log of Last Month (Before Last Reset)
57
Page 58
CET Electric Technology
3630~3635
RO
kVA Total
VA
3636~3641
RO
kW Total of T1
W
3642~3647
RO
kvar Total of T1
var
3648~3653
RO
kVA Total of T1
VA
3654~3659
RO
kW Total of T2
W
3660~3665
RO
kvar Total of T2
var
3666~3671
RO
kVA Total of T2
VA
3672~3677
RO
kW Total of T3
W
3678~3683
RO
kvar Total of T3
var
3684~3689
RO
kVA Total of T3
VA
3690~3695
RO
kW Total of T4
W
3696~3701
RO
kvar Total of T4
var
3702~3707
RO
kVA Total of T4
VA
3708~3713
RO
kW Total of T5
W
3714~3719
RO
kvar Total of T5
var
3720~3725
RO
kVA Total of T5
VA
3726~3731
RO
kW Total of T6
W
3732~3737
RO
kvar Total of T6
var
3738~3743
RO
kVA Total of T6
VA
3744~3749
RO
kW Total of T7
W
3750~3755
RO
kvar Total of T7
var
3756~3761
RO
kVA Total of T7
VA
3762~3767
RO
kW Total of T8
W
3768~3773
RO
kvar Total of T8
var
3774~3779
RO
kVA Total of T8
VA
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Peak Demand Value
Register
Property
Description
Format
Scale
Unit
4000~4005
RO
Uan
See 5.6.5
Max./Min. Log
Structure
x1
V
4006~4011
RO
Ubn
4012~4017
RO
Ucn
4018~4023
RO
Uln Average
4024~4029
RO
Uab
4030~4035
RO
Ubc
4036~4041
RO
Uca
4042~4047
RO
Ull Average
4048~4053
RO
Ia
x1
A
4054~4059
RO
Ib
4060~4065
RO
Ic
4066~4071
RO
I Average
4072~4077
RO
kWa
x1
W
4078~4083
RO
kWb
4084~4089
RO
kWc
4090~4095
RO
kW Total
4096~4101
RO
kvara
x1
var
4102~4107
RO
kvarb
4108~4113
RO
kvarc
4114~4119
RO
kvar Total
Table 5-16 Peak Demand Log of Last Month (Before Last Reset)
5.5.5 Demand Data Structure
Table 5-17 Demand Data Structure
5.6 Max./Min. Log
5.6.1 Max. Log of This Month (Since Last Reset)
58
Page 59
CET Electric Technology
4120~4125
RO
kVAa
x1
VA
4126~4131
RO
kVAb
4132~4137
RO
kVAc
4138~4143
RO
kVA Total
4144~4149
RO
PFa
x1
-
4150~4155
RO
PFb
4156~4161
RO
PFc
4162~4167
RO
PF Total
4168~4173
RO
Frequency
x1
Hz
4174~4179
RO
In (Calculated)
x1
A
4180~4185
RO
Uan/Uab THD
x1
-
4186~4191
RO
Ubn/Ubc THD
4192~4197
RO
Ucn/Uca THD
4198~4203
RO
Ia THD
4204~4209
RO
Ib THD
4210~4215
RO
Ic THD
4216~4221
RO
Ia K-factor
4222~4227
RO
Ib K-factor
4228~4233
RO
Ic K-factor
4234~4239
RO
Ia Crest-factor
4240~4245
RO
Ib Crest-factor
4246~4251
RO
Ic Crest-factor
4252~4257
RO
Voltage Unbalance
4258~4263
RO
Current Unbalance
4264~4269
RO
I4
x1
A
4270~4275
RO
Ir* (Residual Current)
Register
Property
Description
Format
Scale
Unit
4300~4305
RO
Uan
See 5.6.5
Max./Min. Log
Structure
x1
V
4306~4311
RO
Ubn
4312~4317
RO
Ucn
4318~4323
RO
Uln Average
4324~4329
RO
Uab
4330~4335
RO
Ubc
4336~4341
RO
Uca
4342~4347
RO
Ull Average
4348~4353
RO
Ia
x1
A
4354~4359
RO
Ib
4360~4365
RO
Ic
4366~4371
RO
I Average
4372~4377
RO
kWa
x1
W
4378~4383
RO
kWb
4384~4389
RO
kWc
4390~4395
RO
kW Total
4396~4401
RO
kvara
x1
var
4402~4407
RO
kvarb
4408~4413
RO
kvarc
4414~4419
RO
kvar Total
4420~4425
RO
kVAa
x1
VA
4426~4431
RO
kVAb
4432~4437
RO
kVAc
4438~4443
RO
kVA Total
4444~4449
RO
PFa
x1
-
4450~4455
RO
PFb
4456~4461
RO
PFc
4462~4467
RO
PF Total
4468~4473
RO
Frequency
x1
Hz
4474~4479
RO
In (Calculated)
x1
A
4480~4485
RO
Uan/Uab THD
x1
-
4486~4491
RO
Ubn/Ubc THD
4492~4497
RO
Ucn/Uca THD
4498~4503
RO
Ia THD
#
Available in Firmware V1.00.06 or later
Table 5-18 Max. Log of This Month (Since Last Reset)
5.6.2 Min. Log of This Month (Since Last Reset)
59
Page 60
CET Electric Technology
4504~4509
RO
Ib THD
4510~4515
RO
Ic THD
4516~4521
RO
Ia K-factor
4522~4527
RO
Ib K-factor
4528~4533
RO
Ic K-factor
4534~4539
RO
Ia Crest-factor
4540~4545
RO
Ib Crest-factor
4546~4551
RO
Ic Crest-factor
4552~4557
RO
Voltage Unbalance
4558~4563
RO
Current Unbalance
4564~4569
RO
I4
x1
A
4570~4575
RO
Ir* (Residual Current)
Register
Property
Description
Format
Scale
Unit
4600~4605
RO
Uan
See 5.6.5
Max./Min. Log
Structure
x1
V
4606~4611
RO
Ubn
4612~4617
RO
Ucn
4618~4623
RO
Uln Average
4624~4629
RO
Uab
4630~4635
RO
Ubc
4636~4641
RO
Uca
4642~4647
RO
Ull Average
4648~4653
RO
Ia
x1
A
4654~4659
RO
Ib
4660~4665
RO
Ic
4666~4671
RO
I Average
4672~4677
RO
kWa
x1
W
4678~4683
RO
kWb
4684~4689
RO
kWc
4690~4695
RO
kW Total
4696~4701
RO
kvara
x1
var
4702~4707
RO
kvarb
4708~4713
RO
kvarc
4714~4719
RO
kvar Total
4720~4725
RO
kVAa
x1
VA
4726~4731
RO
kVAb
4732~4737
RO
kVAc
4738~4743
RO
kVA Total
4744~4749
RO
PFa
x1
-
4750~4755
RO
PFb
4756~4761
RO
PFc
4762~4767
RO
PF Total
4768~4773
RO
Frequency
x1
Hz
4774~4779
RO
In (Calculated)
x1
-
4780~4785
RO
Uan/Uab THD
4786~4791
RO
Ubn/Ubc THD
4792~4797
RO
Ucn/Uca THD
4798~4803
RO
Ia THD
4804~4809
RO
Ib THD
4810~4815
RO
Ic THD
4816~4821
RO
Ia K-factor
4822~4827
RO
Ib K-factor
4828~4833
RO
Ic K-factor
4834~4839
RO
Ia Crest-factor
4840~4845
RO
Ib Crest-factor
4846~4851
RO
Ic Crest-factor
4852~4857
RO
Voltage Unbalance
4858~4863
RO
Current Unbalance
4864~4869
RO
I4
x1
A
4870~4875
RO
Ir* (Residual Current)
#
Available in Firmware V1.00.06 or later
Table 5-19 Min. Log of This Month (Since Last Reset)
5.6.3 Max. Log of Last Month (Before Last Reset)
#
Available in Firmware V1.00.06 or later
Table 5-20 Max. Log of Last Month (Before Last Reset)
60
Page 61
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
4900~4905
RO
Uan
See 5.6.5
Max./Min. Log
Structure
x1
V
4906~4911
RO
Ubn
4912~4917
RO
Ucn
4918~4923
RO
Uln Average
4924~4929
RO
Uab
4930~4935
RO
Ubc
4936~4941
RO
Uca
4942~4947
RO
Ull Average
4948~4953
RO
Ia
x1
A
4954~4959
RO
Ib
4960~4965
RO
Ic
4966~4971
RO
I Average
4972~4977
RO
kWa
x1
W
4978~4983
RO
kWb
4984~4989
RO
kWc
4990~4995
RO
kW Total
4996~5001
RO
kvara
x1
var
5002~5007
RO
kvarb
5008~5013
RO
kvarc
5014~5019
RO
kvar Total
5020~5025
RO
kVAa
x1
VA
5026~5031
RO
kVAb
5032~5037
RO
kVAc
5038~5043
RO
kVA Total
5044~5049
RO
PFa
x1
-
5050~5055
RO
PFb
5056~5061
RO
PFc
5062~5067
RO
PF Total
5068~5073
RO
Frequency
x1
Hz
5074~5079
RO
In (Calculated)
x1
A
5080~5085
RO
Uan/Uab THD
x1
-
5086~5091
RO
Ubn/Ubc THD
5092~5097
RO
Ucn/Uca THD
5098~5103
RO
Ia THD
5104~5109
RO
Ib THD
5110~5115
RO
Ic THD
5116~5121
RO
Ia K-factor
5122~5127
RO
Ib K-factor
5128~5133
RO
Ic K-factor
5134~5139
RO
Ia Crest-factor
5140~5145
RO
Ib Crest-factor
5146~5151
RO
Ic Crest-factor
5152~5157
RO
Voltage Unbalance
5158~5163
RO
Current Unbalance
5164~5169
RO
I4
x1
A
5170~5175
RO
Ir* (Residual Current)
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Max./Min. Value
5.6.4 Min. Log of Last Month (Before Last Reset)
#
Available in Firmware V1.00.06 or later
Table 5-21 Min. Log of Last Month (Before Last Reset)
5.6.5 Max./Min. Log Structure
Table 5-22 Max./Min. Structure
61
Page 62
5.7 Monthly Energy Log
Register
Property
Description
Format
Scale
Unit
0980
RW
Month1
INT16
0* to 12
0981
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
Time Stamp
(20YY/MM/DD
HH:MM:SS)
0982
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
0983
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
0984
RW
kWh Import
INT32
x0.1
kWh
0986
RW
kWh Export
INT32
0988
RO
kWh Net
INT32
0990
RO
kWh Total
INT32
0992
RW
kvarh Import
INT32
x0.1
kvarh
0994
RW
kvarh Export
INT32
0996
RO
kvarh Net
INT32
0998
RO
kvarh Total
INT32
1000
RW
kVAh
INT32
x0.1
kVAh
1002
RW
kvarh Q1
INT32
x0.1
kvarh
1004
RW
kvarh Q2
INT32
1006
RW
kvarh Q3
INT32
1008
RW
kvarh Q4
INT32
1010
RW
kWh Import of T1
INT32
x0.1
kWh
1012
RW
kWh Export of T1
INT32
1014
RW
kvarh Import of T1
INT32
x0.1
kvarh
1016
RW
kvarh Export of T1
INT32
1018
RW
kVAh of T1
INT32
x0.1
kVAh
1020
RW
kWh Import of T2
INT32
x0.1
kWh
1022
RW
kWh Export of T2
INT32
1024
RW
kvarh Import of T2
INT32
x0.1
kvarh
1026
RW
kvarh Export of T2
INT32
1028
RW
kVAh of T2
INT32
x0.1
kVAh
1030
RW
kWh Import of T3
INT32
x0.1
kWh
1032
RW
kWh Export of T3
INT32
1034
RW
kvarh Import of T3
INT32
x0.1
kvarh
1036
RW
kvarh Export of T3
INT32
1038
RW
kVAh of T3
INT32
x0.1
kVAh
1040
RW
kWh Import of T4
INT32
x0.1
kWh
1042
RW
kWh Export of T4
INT32
1044
RW
kvarh Import of T4
INT32
x0.1
kvarh
1046
RW
kvarh Export of T4
INT32
1048
RW
kVAh of T4
INT32
x0.1
kVAh
1050
RW
kWh Import of T5
INT32
x0.1
kWh
1052
RW
kWh Export of T5
INT32
1054
RW
kvarh Import of T5
INT32
x0.1
kvarh
1056
RW
kvarh Export of T5
INT32
1058
RW
kVAh of T5
INT32
x0.1
kVAh
1060
RW
kWh Import of T6
INT32
x0.1
kWh
1062
RW
kWh Export of T6
INT32
1064
RW
kvarh Import of T6
INT32
x0.1
kvarh
1066
RW
kvarh Export of T6
INT32
1068
RW
kVAh of T6
INT32
x0.1
kVAh
1070
RW
kWh Import of T7
INT32
x0.1
kWh
1072
RW
kWh Export of T7
INT32
1074
RW
kvarh Import of T7
INT32
x0.1
kvarh
1076
RW
kvarh Export of T7
INT32
1078
RW
kVAh of T7
INT32
x0.1
kVAh
1080
RW
kWh Import of T8
INT32
x0.1
kWh
1082
RW
kWh Export of T8
INT32
1084
RW
kvarh Import of T8
INT32
x0.1
kvarh
1086
RW
kvarh Export of T8
INT32
1088
RW
kVAh of T8
INT32
x0.1
kVAh
CET Electric Technology
Table 5-23 Monthly Energy Log
62
Page 63
CET Electric Technology
Register
Property
Description
Format
Scale
Unit
12000
RW
Index1
INT16
1 to 60
12001
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
-
12002
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
12003
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
12004
RO
kWh Total
INT32
x0.1
kWh
12006
RO
kvarh Total
INT32
x0.1
kvarh
12008
RO
kVAh Total
INT32
x0.1
kVAh
12010
RO
Peak Demand of kW Total
Float
x1
W
12012
RO
Peak Demand of kvar Total
Float
x1
var
12014
RO
Peak Demand of kVA Total
Float
x1
VA
Register
Property
Description
Format
Scale
Unit
12500
RW
Index1
INT16
1 to 36
12501
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
INT16
-
12502
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
INT16
12503
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
INT16
12504
RO
kWh Total
INT32
x0.1
kWh
12506
RO
kvarh Total
INT32
x0.1
kvarh
12508
RO
kVAh Total
INT32
x0.1
kVAh
12510~12515
RO
Peak Demand of kW Total
See Table 5-26
Demand Data Structure
12516~12521
RO
Peak Demand of kvar Total
12522~12527
RO
Peak Demand of kVA Total
Offset
Description
+0
High
Year - 2000
Low
Month
+1
High
Day
Notes:
1) This register represents the Month when it is read. To read the Monthly Energy Log, this register
must be first written to indicate to the PMC-53A which log to load from memory. The range of
this register is from 0 to 12, which represents the Present Month and the Last 12 Months. For
example, if the current month is 2016/10, “0” means 2016/10, “1” means 2016/09, “2” means
2016/08, … and ”12” means “2015/10”.
2) For each Monthly Energy Log, the time stamp shows the exact Self-Read Time (20YY/MM/DD
HH:MM:SS) when the log was recorded. For the Monthly Energy Log of the Present Month, the
time stamp shows the current time of the meter because the Present Month is not yet over.
3) The Monthly Energy Log for the Present Month can be modified, but the Monthly Energy Logs
for the Last 12 Months are Read Only.
5.8 Daily and Monthly Freeze Logs (Optional)
5.8.1 Daily Freeze Log
Table 5-24 Daily Freeze Log
Notes:
1) There is no Log Pointer that indicates the current logging position. Writing a value N between 1
and 60 to the Index register to retrieve the Daily Freeze Log of the Nth entry. For example, writing
1 to the Indexregister will retrieve yesterday’s Daily Freeze Log. If N = 0 or N > 60, an exception
response will be returned with the Illegal Data Value error code (0x03) as defined by the Modbus
protocol. If all the returned values of the Nth Log Record (where 1 ≤ N ≤ 60) are all 0 (including the
timestamp), this indicates that the returned Log Record is invalid and that the end of the Log has
been reached. If the software is reading the Log for the very first time, it should start with N=1 and
stop when either N=60 or when the returned Log Record is invalid. After that, all the software has
to do is to read the Log on a daily basis with N=1.
5.8.2 Monthly Freeze Log
Table 5-25 Monthly Freeze Log
63
Page 64
CET Electric Technology
Low
Hour
+2
High
Minute
Low
Second
+3
-
Millisecond
+4~+5
-
Peak Demand Value
Register
Property
Description
Format
10000~10007
RO
Event 1
See Table 5-28
SOE Log Data
Structure
10008~10015
RO
Event 2
10016~10023
RO
Event 3
10024~10031
RO
Event 4
10032~10039
RO
Event 5
10040~10047
RO
Event 6
10048~10055
RO
Event 7
10056~10063
RO
Event 8
10064~10071
RO
Event 9
10072~10079
RO
Event 10
10080~10087
RO
Event 11
10088~10095
RO
Event 12
…
…
10792~10799
RO
Event 100
Offset
Property
Description
Unit
+0
RO
High-order Byte: Event Classification
See Table 5-29
SOE Classification
RO
Low-order Byte: Sub-Classification
+1
RO
Record Time: Year
0-99 (Year-2000)
RO
Record Time: Month
1 to 12
+2
RO
Record Time: Day
1 to 31
RO
Record Time: Hour
0 to 23
+3
RO
Record Time: Minute
0 to 59
RO
Record Time: Second
0 to 59
+4
RO
Record Time: Millisecond
0 to 999
+5
RO
High-order Byte: Reserved
-
RO
Low-order Byte: Status2
-
+6 to +7
RO
Event Value2
-
Table 5-26 Demand Data Structure
Notes:
1) There is no Log Pointer that indicates the current logging position. Writing a value N between 1
and 36 to the Index register to retrieve the Monthly Freeze Log of the Nth entry. For example,
writing 1 to the Index register will retrieve last month’s Monthly Freeze Log. If N = 0 or N > 36, an
exception response will be returned with the Illegal Data Value error code (0x03) as defined by the
Modbus protocol. If all the returned values of the Nth Log Record (where 1 ≤ N ≤ 36) are all 0
(including the timestamp), this indicates that the returned Log Record is invalid and that the end
of the Log has been reached. If the software is reading the Log for the very first time, it should
start with N=1 and stop when either N=36 or when the returned Log Record is invalid. After that,
all the software has to do is to read the Log on a monthly basis with N=1.
5.9 SOE Log
The SOE Log Pointer points to the register address within the SOE Log where the next event will be
stored. The following formula is used to determine the register address of the most recent SOE event
referenced by the SOE Log Pointer value:
1) Clear Present Energy Log means to clear 3-Phase Total Energy registers, Phase A/B/C Energy
registers, Tariff Energy and Monthly Energy Log of the Present Month.
Table 5-29 SOE Event Classification
67
Page 68
CET Electric Technology
Record Value
Description
1
Switch Schedule 1 to Schedule 2 manually
2
Switch Schedule 2 to Schedule 1 manually
3
Switch Schedule 1 to Schedule 2 automatically
4
Switch Schedule 2 to Schedule 1 automatically
Register
Property
Description
Format
20000~20037
RO
DR Log #1 Buffer
See Table 5-32
Standard DR Log Structure
20038~20075
RO
DR Log #2 Buffer
20076~20113
RO
DR Log #3 Buffer
20114~20151
RO
DR Log #4 Buffer
20152~20189
RO
DR Log #5 Buffer
Offset
Property
Description
Format
+0
RW
DR Log X Pointer
UINT32
+2
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
+3
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
+4
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
+5
RO
Millisecond
UINT16
+6~+7
RO
Parameter #1
Float
+8~+9
RO
Parameter #2
+10~+11
Parameter #3
…
…
+36~+37
RO
Parameter #16
Register
Property
Description
Format
Range, Default*
6000
RW
PT Primary1
UINT32
1 to 1,000,000 V, 100*
6002
RW
PT Secondary
UINT32
1 to 690V, 100*
6004
RW
CT Primary
UINT32
1 to 30,000A, 5*
6006
RW
CT Secondary
UINT32
1 to 5A, 5*
6008~6010
RW
Reserved
UINT32
6012
RW
I4 Primary
UINT32
1 to 30,000A, 5*
6014
RW
I4 Secondary
UINT32
1 to 5A, 5*
6016~6018
RW
Reserved
UINT32
6020
RW
Wiring Mode
UINT16
0=DEMO, 1=1P2W L-N,
2) Clear Historical Monthly Energy Log means to clear the Monthly Energy Log of the last 1 to 12
months, excluding the Monthly Energy Log for the Present Month.
3) Clear All Data via Front Panel or Communication means to clear 3-Phase Total Energy registers,
Phase A/B/C Energy registers, Monthly Energy Log of the Present Month, All Peak Demands, All
Max./Min. Logs, Device Operating Time, All DI Pulse Counters, All DR Logs and All Freeze Logs.
4) Clear All Energy Registers means to clear the 3-Ø Total and Per-Phase energy registers.
5) Clear Present Monthly Energy Log means to clear the Monthly Energy Log of the Present Month.
6) Clear Historical Monthly Energy Log means to clear Monthly Energy Log of the last 1 to 12 months,
excluding the Monthly Energy Log for the Present Month.
7) The event values of Switch TOU Schedule are illustrated in the table below:
Table 5-30 TOU Switch Records
5.10 Data Recorder Log (Optional)
Table 5-31 DR Log
Table 5-32 DR Data Buffer Structure
Notes:
1)Writing n to the DR Log X Pointer register will load the Log Record at pointer position n into the
DR Log X Buffer from the device’s memory.
2) Writing a pointer value that points to a Log Record that is either already expired or has not been
generated yet to the DR Log X Pointer register will generate an exception response with the Illegal
Data Value error code (0x03) as defined by the Modbus protocol.
5.11 Device Setup
5.11.1 Basic Setup Parameters
68
Page 69
CET Electric Technology
2=1P2W L-L, 3=1P3W
4=3P3W, 5=3P4W*
6021
RW
PF Convention
UINT16
0=IEC*, 1=IEEE, 2=-IEEE
6022
RW
kVA Calculation
UINT16
0=Vector*, 1=Scalar
6023
RW
Ia Polarity
UINT16
0=Normal*, 1=Reverse
6024
RW
Ib Polarity
UINT16
6025
RW
Ic Polarity
UINT16
6026~6027
RW
Reserved
UINT16 6028
RW
THD Calculation
2
UINT16
0= THDf*, 1= THDr
6029
RW
Demand Period
UINT16
1 to 60 (minutes), 15*
6030
RW
Number of Sliding Windows
UINT16
1 to 15, 1*
6031
RW
Predicted Response
UINT16
70 to 99, 70*
6032
RW
Arm before Execute
UINT16
0=Disabled*, 1=Enabled
6033
RW
Self-Read Time3
UINT16
0xFFFF*
6034
RW
Monthly Energy Log Self-Read
Time
4
UINT16
0*
6035
RW
Energy Pulse Constant
UINT16
0=1000 imp/kxh*
1=3200 imp/kxh
6036
RW
LED Energy Pulse
UINT16
0=Disabled
1=kWh*
2=kvarh
6037
RW
Backlight Time-out
UINT16
0 to 60 (mins), 5*
6038
RW
System Language
UINT16
1=English
6039
RW
Date Format
UINT16
0=YYMMDD*
1=MMDDYY
2=DDMMYY
6040
RW
Delimiter4
UINT16
0=Option 1*, 1=Option 2
See Note 4
6041
RW
Monthly Freeze
Self-Read Time5
UINT16
0*
6042
RW
Daily Freeze
Self-Read Time6
UINT16
0*
6043
RW
Default Display 1st parameter
7
UINT16
0 to 36, 7* (Ullavg)
6044
RW
Default Display 2nd parameter7
UINT16
0 to 36, 11* (Iavg)
6045
RW
Default Display 3rd parameter7
UINT16
0 to 36, 12* (P)
6046
RW
Default Display 4th parameter7
UINT16
0 to 36, 15* (PF)
6047
RW
EN Period8
UINT16
5 to 60* min
6048
RW
Setpoint LCD Flash Alarm~
UINT16
0=Enabled*, 1=Disabled
6049
RW
Current Threshold of
Device Operating Time~
UINT16
1* to 1000 (x0.001In)
6050
RW
kvarh Calculation~
UINT16
0=RMS*, 1=kvarh Fund.
6051
RW
DNP Polling Object~
9
UINT16
0 to 65535, 0x3F*
%100THD
1
2
2
I
I
n
n
%100THD
1
2
2
2
n
n
n
n
I
I
#
Available in Firmware V1.00.03 or later
~ Available in Firmware V1.00.06 or later
Notes:
1) The value of [PT Primary/PT Secondary] cannot exceed 10000.
2) There are two ways to calculate THD:
THDf (based on Fundamental):
where In represents the RMS value for the nth harmonic and I1 represents the RMS value of the
Fundamental component.
THDr (based on RMS):
where In represents the RMS value for the nth harmonic.
Table 5-33 Basic Setup Parameters
69
Page 70
CET Electric Technology
Key
Parameters
Key
Parameters
Key
Parameters
Key
Parameters
0
U1 (Uan)
10
I3 (Ic)
20
T1 kWh Imp
30
Fund. kW Total*
1
U2 (Ubn)
11
Iavg
21
T2 kWh Imp
31
dPF Total*
2
U3 (Ucn)
12
P (kW Total)
22
T3 kWh Imp
32
I4*
3
Ulnavg
13
Q (kvar Total)
23
T4 kWh Imp
33
U1 THD*
4
U12 (Uab)
14
S (kVA Total)
24
I1 (Ia) Demand
34
U2 THD*
5
U23 (Ubc)
15
PF (PF Total)
25
I2 (Ib) Demand
35
U3 THD*
6
U31 (Uca)
16
Frequency
26
I3 (Ic) Demand
36
Ir*
7
Ullavg
17
kWh Import
27
kW Demand
8
I1 (Ia)
18
kWh Export
28
kvar Demand*
9
I2 (Ib)
19
kWh Total
29
kVA Demand*
Bit
Object Description
Option
0
Object 1: Binary Inputs
0=Disabled
1=Enabled*
1
Object 10: Binary Output
2
Object 20: 32-Bit Binary Counters
3
Object 20: 16-Bit Binary Counters
4
Object 30: Analog Inputs Primary Readings
5
Object 40: Analog Output Status
6 to 15
Reserved
Register
Property
Description
Format
Range, Default*
6200
RW
DI1 Function
UINT16
0 = Digital Input*
1=Pulse Counting
2 =Tariff Switch1
6201
RW
DI2 Function
UINT16
6202
RW
DI3 Function
UINT16
6203
RW
DI4 Function
UINT16
6204
RW
DI5 Function
UINT16
6205
RW
DI6 Function
UINT16
6206~6207
Reserved
6208
RW
DI1 Debounce
UINT16
1 to 9999 ms,
3) The Self-Read Time applies to both the Peak Demand Log as well as the Max./Min. Log and
supports the following three options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on
the formula: Self-Read Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For
example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day
of each month.
A 0xFFFF value means the automatic self-read operation is disabled and the log will be
transferred manually.
4) The Delimiter setup register supports two options, 1 and 2:
Option 1: “,” is used as the x1000 delimiter and “.” as the decimal point (e.g. 123,456,789.0).
Option 2: “” is used as the x1000 delimiter and “,” as the decimal point (e.g. 123 456 789,0).
5) The Monthly Energy Log Self-Read Time and Monthly Freeze Self-Read Time support only two
options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on
the formula: Self-Read Time = Day * 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For
example, the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day
of each month.
6) The Daily Freeze Self-Read Time can be set to a zero value or a non-zero value:
A zero value means that the Self-Read will take place at 00:00 everyday.
A non-zero value means that the Self-Read will take place at a specific time of the day based
on the formula: Self-Read time = (Hour x 100 + Min) where 0 ≤ Hour ≤ 23 and 0 ≤ Min ≤ 59. For
example, the value 1512 means that the Self-Read will take place at 15:12 of each day.
7) The following table illustrates the parameters that can be selected for display in the Default Display
screen.
*Available in Firmware V1.00.06 or later
8) The Interval Energy registers will be reset once the EN Period is changed.
9) The DNP Polling Objects are listed in table below:
5.11.2 I/O Setup
Table 5-34 Default Display Parameters
Table 5-35 DNP Polling Objects
70
Page 71
CET Electric Technology
6209
RW
DI2 Debounce
UINT16
20*
6210
RW
DI3 Debounce
UINT16
6211
RW
DI4 Debounce
UINT16
6212
RW
DI5 Debounce
UINT16
6213
RW
DI6 Debounce
UINT16
6214~6215
Reserved
6216
RW
DI1 Pulse Weight
UINT32
1* to 1000000
6218
RW
DI2 Pulse Weight
UINT32
6220
RW
DI3 Pulse Weight
UINT32
6222
RW
DI4 Pulse Weight
UINT32
6224
RW
DI5 Pulse Weight
UINT32
6226
RW
DI6 Pulse Weight
UINT32
6228 Reserved
UINT32
6230
RW
DO1 Mode#2
UINT16
0 = Remote
Control/Setpoint*
1 = kWh Import
2 = kWh Export
3 = kWh Total
4 = kvarh Import
5 = kvarh Export
6 = kvarh Total
6231
RW
DO2 Mode#2
UINT16
6232
RW
DO3 Mode3
UINT16
6233
RW
DO4 Mode3
UINT16
6234
RW
Reserved
UINT16
-
6235
RW
Reserved
UINT16
-
6236
RW
DO1 Pulse Width
UINT16
0 to 6000 (x0.1s),
10*
(0 = Latch Mode)
6237
RW
DO2 Pulse Width
UINT16
6238
RW
DO3 Pulse Width
UINT16
6239
RW
DO4 Pulse Width
UINT16
6240~6247
Reserved
UINT16
-
6248
RW
RTD 1 Compensation
UINT16
0 to 2000 (x0.01Ω), 0*
6249
RW
RTD 2 Compensation
UINT16
0 to 2000 (x0.01Ω), 0*
6250
RW
AI Type
UINT16
0 = 4~20mA*
1 = 0~20mA
6251
RW
AI Zero Scale
INT32
-999,999 to +999,999
(Default = 400)
6253
RW
AI Full Scale
INT32
-999,999 to +999,999
(Default = 2000)
6255~6259
RW
Reserved
UINT16
-
6260
RW
AO Type
UINT16
0 = 4~20mA*
1 = 0~20mA
6261
RW
AO Key4
UINT16
0* to 19
6262
RW
AO Zero Scale
INT32
-999,999 to +999,999
(Default =0)
6264
RW
AO Full Scale
INT32
-999,999 to +999,999
(Default = 0)
Key
Parameter
Scale
Unit
Key
Parameter
Scale
Unit 0 Uab
x1
V
10
kVA Total
x1
kVA 1 Ubc
V
11
PF Total
x1000
- 2 Uca
V
12
Frequency
x100
-
3
Ull Average
V
13
kW Total Present Demand
x1
kW
4
Ia
A
14
kvar Total Present Demand
kvar
5
Ib
A
15
kVA Total Present Demand
kVA
6
Ic
A
16
Uan
x1
V 7 I Average
A
17
Ubn
V
#
Available in Firmware V1.00.04 or later
Notes:
1) The Tariff Switch option is supported in Firmware V1.00.03 or later.
2) This is available only when the Basic Function option is “3” (4xDI and 2xRelay Output) or “A” (4xDI
3) This is available only when Expansion Module B is equipped with the “B4” option (2xDI and 2xSS
4) Analog Output Parameters:
Table 5-35 I/O Setup Parameters
and 2xSS Pulse Output). Please refer to the Ordering Guide for more details.
Pulse Output). Please refer to the Ordering Guide for more details.
The Units for Voltage, Current, kW, kvar, kVA and Frequency are V, A, kW, kvar, kVA and Hz,
respectively.
71
Page 72
CET Electric Technology
8
kW Total
x1
kW
18
Ucn
V
9
kvar Total
kvar
19
Uln Average
V
Register
Property
Description
Format
Range, Default*
6400
RW
Port1 Protocol
UINT16
0=Modbus RTU*
1=BACnet/MSTP#
2=N2#, 3=DNP~
6401
RW
Port1 Unit ID
UINT16
Modbus RTU/N2: 1 to 247
BACnet/MSTP: 1 to 127
DNP: 0 to 65519
Default=100
6402
RW
Port1 Baud Rate1
UINT16
0=1200, 1=2400, 2=4800,
3=9600*, 4=19200, 5=38400
6403
RW
Port1 Comm. Config.
UINT16
0=8N2, 1=8O1,2=8E1*
3=8N1, 4=8O2, 5=8E2
6404
RW
Port2 Protocol
UINT16
0=Modbus RTU*
6405
RW
Port2 Unit ID
UINT16
1 to 247, 101*
6406
RW
Port2 Baud Rate1
UINT16
0=1200, 1=2400, 2=4800,
3=9600*, 4=19200, 5=38400
6407
RW
Port2 Comm. Config.
UINT16
0=8N2, 1=8O1,2=8E1*
3=8N1, 4=8O2, 5=8E2
Register
Property
Description
Format
Range, Default*
6500
RW
Setpoint #1
Setpoint Type
UINT16
0=Disabled*
1=Over Setpoint
2=Under Setpoint
6501
RW
Parameters1
UINT16
0 to 32
6502
RW
Over Limit
2
Float
0*
6504
RW
Under Limit
2
Float
0*
6506
RW
Active Delay
UINT16
0 to 9999 s, 10*
6507
RW
Inactive Delay
UINT16
0 to 9999 s, 10*
6508
RW
Trigger Action 13
UINT16
0 to 4
6509
RW
Trigger Action 23
UINT16
…
…
…
6580
RW
Setpoint #9
Setpoint Type
UINT32
0=Disabled*
1=Over Setpoint
2=Under Setpoint
6581
RW
Parameter1
UINT16
0* to 32
6582
RW
Over Limit
Float
0*
6584
RW
Under Limit
Float
0*
6586
RW
Active Delay
UINT16
0 to 9999 s, 10*
6587
RW
Inactive Delay
UINT16
0 to 9999 s, 10*
6588
RW
Trigger Action 12
UINT16
0 to 4
6589
RW
Trigger Action 22
UINT16
Key
Setpoint Parameter
Scale
Unit
0
None
- - 1
Uln (Any Phase Voltage)
x1
V
2
Ull (Any Line Voltage)
3
I (Any Phase Current)
A
4
In (Calculated)
5
Frequency
Hz
Table 5-36 Analog Output Parameters
5.11.3 Communication Setup Parameters
#
Available in Firmware V1.00.03 or later. Please refer to Appendices C and D for the detailed information of BACnet MSTP and
N2 protocol.
~Available in Firmware V1.00.06 or later. Please refer to Appendix E for the detailed information of DNP.
Table 5-37 Communication Setup
Notes:
1)If the Baud Rate is set to an invalid value, it will default to 9600bps automatically.
5.11.4 Setpoints Setup
Table 5-38 Setpoint Setup Parameters
Notes:
1) The PMC-53A provides the following setpoint parameters:
72
Page 73
CET Electric Technology
6
P (kW Total)
W
7
Q (kvar Total)
var
8
S (kVA Total)
VA
9
PF (PF Total)
-
10
P DMD (kW Total Present Demand)
W
11
Q DMD (kvar Total Present Demand)
var
12
S (kVA Total Present Demand)
VA
13
P DMD Pred (kW Total Predicted Demand)
W
14
Q DMD Pred (kvar Total Predicted Demand)
var
15
S DMD Pred (kVA Total Predicted Demand)
VA
16
U THD
100%
17
U TOHD
100%
18
U TEHD
100%
19
I THD
100%
20
I TOHD
100%
21
I TEHD
100%
22
U Unbal (Voltage Unbalance)
100%
23
I Unbal (Current Unbalance)
100%
24
Reversal (Phase Reversal)3
-
25
I4 (Measured)*
x1
A
26
AI*
-
27
Reserved
-
-
28
RTD1*
x1
°C
29
RTD2*
30
Ir (Residual Current)~
x1
A
31
U2~
x1
V
32
U0~
Key
Action
Key
Action 0 None
3
DO3 Closed4
1
DO1 Closed
4
4
DO4 Closed4
2
DO2 Closed4
Others
Reserved
Register
Property
Description
Format
6600~6622
RW
Data Recorder #1*
See Table 5-42 DR
Setup Parameter Data
Structure
6623~6645
RW
Data Recorder #2*
6646~6668
RW
Data Recorder #3*
6669~6691
RW
Data Recorder #4*
6692~6714
RW
Data Recorder #5*
Offset
Property
Description
Format
Range
+0
RW
Trigger Mode
UINT16
0=Disabled
1=Triggered by Timer
* Valid only if the device is equipped with the appropriate option
~ Available in Firmware V1.00.06
Table 5-39 Setpoint Parameters
2) For Over Setpoint, the setpoint parameter must exceed the Over Limit to become active and go
below the Under Limit to become inactive.
For Under Setpoint, the setpoint parameter must go below the Under Limit to become active and
exceed the Over Limit to become inactive.
3) The PMC-53A provides the following Setpoint Triggers:
Table 5-40 Setpoint Triggers
4) Only when DOx Mode is set to Remote Control/Setpoint, setting Setpoint Triggers to DOx Closed
is valid. In addition,
Only when the PMC-53A’s Basic Functionoption is “3” (4xDI+3xRelay Output) or “A”
(4xDI+2xSS Pulse Output) would setting the Setpoint Trigger to DO1 Closed or DO2 Closed
have meaning.
Only when the Expansion Module B is equipped with the “2xDI + 2xDO (Relay Output)” or
“2xDI + 2xSS Pulse Output” options would setting the Setpoint Trigger to DO3 Closed or DO4
Closed have meaning.
5.11.5 Data Recorder Setup
* Please refer to Appendix B for the default configuration for the Data Recorders.
Table 5-41 Data Recorder Setup
73
Page 74
CET Electric Technology
+1
RW
Recording Mode1
UINT16
0=Stop-when-Full
1=First-In-First-Out
+2
RW
Recording Depth1
UINT16
0 to 10,000
+3
RW
Recording Interval1
UINT32
60 to 3456000s
+5
RW
Offset Time2
UINT16
0 to 43200s
+6
RW
Number of Parameters1
UINT16
0 to 16
+7
RW
Parameter #11
UINT16
Please refer to Appendices
A and B for a complete list
of the Data Recorder
Parameters and the default
configuration for each DR,
respectively.
+8
RW
Parameter #21
UINT16
+9
RW
Parameter #31
UINT16 … RW
…
UINT16
+22
RW
Parameter #161
UINT16
Register
Property
Description
Format
Range/Option
7000
RO
Current Tariff1
UINT16
0=T1, 1=T2, 2=T3, 3=T4
4=T5, 5=T6, 6=T7, 7=T8
7001
RO
Current Season
UINT16
0 to 11
(Season #1 to #12)
7002
RO
Current Period
UINT16
0 to 11
(Period #1 to #12)
7003
RO
Current Daily Profile No.
UINT16
0 to 19
(Daily Profile #1 to #20)
7004
RO
Current Day Type
UINT16
0=Weekday1
1=Weekday2
2=Weekday3
3= Alternate Day
7005
RO
Current TOU No.
UINT16
0=TOU #1
1=TOU #2
7006
RW
TOU Switch Time
UINT32
See Note (1)
7008
WO
Switch TOU Manually
UINT16
Write 0xFF00 to manually
switch the TOU schedules
7009
RW
Sunday Setup
UINT16
0=Weekday1*
1=Weekday2
2=Weekday3
7010
RW
Monday Setup
UINT16
7011
RW
Tuesday Setup
UINT16
7012
RW
Wednesday Setup
UINT16
7013
RW
Thursday Setup
UINT16
7014
RW
Friday Setup
UINT16
7015
RW
Saturday Setup
UINT16
Byte 3
Byte 2
Byte 1
Byte 0
Year-2000 (0-37)
Month (1-12)
Day (1-31)
Hour (00-23)
Table 5-42 DR Setup Parameter Data Structure
Notes:
1) Changing any of these Data Recorder setup registers will reset the Data Recorder.
2) Recording Offset can be used to delay the recording by a fixed amount of time from the
Recording Interval. For example, if the Recording Interval is set to 3600 (hourly) and the
Recording Offset is set to 300 (5 minutes), the recording will take place at 5 minutes after the
hour every hour, i.e. 00:05, 01:05, 02:05…etc. The value of the Recording Offset parameter
should be less than the Recording Interval parameter.
5.12 TOU Setup
5.12.1 Basic
Notes:
1) If DI1 is not programmed as a Tariff Switch, the TOU will function based on the TOU Schedule. If at
least one DI (DI1) is programmed as a Tariff Switch, the TOU Schedule will no longer be used and
the Tariff switching will be based on the status of the DIs.
2) The following table illustrates the data structure for the TOU Switch Time. For example, 0x1003140C
indicates a switch time of 12:00pm on March 20th, 2016. Writing 0xFFFFFFFF to this register disables
the switching between TOU Schedule.
Table 5-43 TOU Basic Setup
Table 5-44 TOU Switch Time Format
74
Page 75
CET Electric Technology
Offset
Property
Description
Format
Range/Default*
0
RW
Season #1: Start Date
UINT16
0x0101*
1
RW
Season #1: Weekday#1 Daily Profile
UINT16
0* to 19
2
RW
Season #1: Weekday#2 Daily Profile
UINT16
3
RW
Season #1: Weekday#3 Daily Profile
UINT16
4
RW
Season #2: Start Date
UINT16
High-order Byte: Month
Low-order Byte: Day
5
RW
Season #2: Weekday#1 Daily Profile
UINT16
0* to 19
6
RW
Season #2: Weekday#2 Daily Profile
UINT16
7
RW
Season #2: Weekday#3 Daily Profile
UINT16
8
RW
Season #3: Start Date
UINT16
See Season #2: Start Date
9
RW
Season #3: Weekday#1 Daily Profile
UINT16
0* to 19
10
RW
Season #3: Weekday#2 Daily Profile
UINT16
11
RW
Season #3: Weekday#3 Daily Profile
UINT16
12
RW
Season #4: Start Date
UINT16
See Season #2: Start Date
13
RW
Season #4: Weekday#1 Daily Profile
UINT16
0* to 19
14
RW
Season #4: Weekday#2 Daily Profile
UINT16
15
RW
Season #4: Weekday#3 Daily Profile
UINT16
16
RW
Season #5: Start Date
UINT16
See Season #2: Start Date
17
RW
Season #5: Weekday#1 Daily Profile
UINT16
0* to 19
18
RW
Season #5: Weekday#2 Daily Profile
UINT16
19
RW
Season #5: Weekday#3 Daily Profile
UINT16
20
RW
Season #6: Start Date
UINT16
See Season #2: Start Date
21
RW
Season #6: Weekday#1 Daily Profile
UINT16
0* to 19
22
RW
Season #6: Weekday#2 Daily Profile
UINT16
23
RW
Season #6: Weekday#3 Daily Profile
UINT16
24
RW
Season #7: Start Date
UINT16
See Season #2: Start Date
25
RW
Season #7: Weekday#1 Daily Profile
UINT16
0* to 19
26
RW
Season #7: Weekday#2 Daily Profile
UINT16
27
RW
Season #7: Weekday#3 Daily Profile
UINT16
28
RW
Season #8: Start Date
UINT16
See Season #2: Start Date
29
RW
Season #8: Weekday#1 Daily Profile
UINT16
0* to 19
30
RW
Season #8: Weekday#2 Daily Profile
UINT16
31
RW
Season #8: Weekday#3 Daily Profile
UINT16
32
RW
Season #9: Start Date
UINT16
See Season #2: Start Date
33
RW
Season #9: Weekday#1 Daily Profile
UINT16
0* to 19
34
RW
Season #9: Weekday#2 Daily Profile
UINT16
35
RW
Season #9: Weekday#3 Daily Profile
UINT16
36
RW
Season #10: Start Date
UINT16
See Season #2: Start Date
37
RW
Season #10: Weekday#1 Daily Profile
UINT16
0* to 19
38
RW
Season #10: Weekday#2 Daily Profile
UINT16
39
RW
Season #10: Weekday#3 Daily Profile
UINT16
40
RW
Season #11: Start Date
UINT16
See Season #2: Start Date
41
RW
Season #11: Weekday#1 Daily Profile
UINT16
0* to 19
42
RW
Season #11: Weekday#2 Daily Profile
UINT16
43
RW
Season #11: Weekday#3 Daily Profile
UINT16
44
RW
Season #12: Start Date
UINT16
See Season #2: Start Date
45
RW
Season #12: Weekday#1 Daily Profile
UINT16
0* to 19
46
RW
Season #12: Weekday#2 Daily Profile
UINT16
47
RW
Season #12: Weekday#3 Daily Profile
UINT16
5.12.2 Season
The PMC-53A has two sets of Season setup parameters, one for each TOU. The Base Addresses for the
two sets are 7100 and 8100, respectively, where the Register Address = Base Address + Offset. For
example, the register address for TOU #1’s Season #2’s Start Date is 7100+4 = 7104.
Notes:
1) Start Date for Season #1 is Jan. 1st and cannot be modified.
2) Setting a Season’sStart Date as 0xFFFF terminates the TOU’s Season settings. All subsequent
Seasons’ setup parameters will be ignored since the previous Season’s duration is from its Start Date to the end of the year.
3) The Start Date of a particular Season must be later than the previous Season’s.
Table 5-45 Season Setup
75
Page 76
CET Electric Technology
Register
Property
Description
Format
7200~7223
RW
Daily Profile #1
See Table 5-48
Daily Profile Data
Structure
7224~7247
RW
Daily Profile #2
7248~7271
RW
Daily Profile #3
7272~7295
RW
Daily Profile #4
7296~7319
RW
Daily Profile #5
7320~7343
RW
Daily Profile #6
7344~7367
RW
Daily Profile #7
7368~7391
RW
Daily Profile #8
7392~7415
RW
Daily Profile #9
7416~7439
RW
Daily Profile #10
7440~7463
RW
Daily Profile #11
7464~7487
RW
Daily Profile #12
7488~7511
RW
Daily Profile #13
7512~7535
RW
Daily Profile #14
7536~7559
RW
Daily Profile #15
7560~7583
RW
Daily Profile #16
7584~7607
RW
Daily Profile #17
7608~7631
RW
Daily Profile #18
7632~7655
RW
Daily Profile #19
7656~7679
RW
Daily Profile #20
Register
Property
Description
Format
8200~8223
RW
Daily Profile #1
See Table 5-48
Daily Profile Data
Structure
8224~8247
RW
Daily Profile #2
8248~8271
RW
Daily Profile #3
8272~8295
RW
Daily Profile #4
8296~8319
RW
Daily Profile #5
8320~8343
RW
Daily Profile #6
8344~8367
RW
Daily Profile #7
8368~8391
RW
Daily Profile #8
8392~8415
RW
Daily Profile #9
8416~8439
RW
Daily Profile #10
8440~8463
RW
Daily Profile #11
8464~8487
RW
Daily Profile #12
8488~8511
RW
Daily Profile #13
8512~8535
RW
Daily Profile #14
8536~8559
RW
Daily Profile #15
8560~8583
RW
Daily Profile #16
8584~8607
RW
Daily Profile #17
8608~8631
RW
Daily Profile #18
8632~8655
RW
Daily Profile #19
8656~8679
RW
Daily Profile #20
Offset
Property
Description
Format
Note
+0
RW
Period #1 Start Time
UINT16
0x0000
+1
RW
Period #1 Tariff
UINT16
0=T1, …, 7=T8
+2
RW
Period #2
Start Time
High-order Byte: Hour
UINT16
0 ≤ Hour < 24
Low-order Byte: Min
Min = 0, 15, 30, 45
+3
RW
Period #2 Tariff
UINT16
0=T1, …, 7=T8
+4
RW
Period #3 Start Time
UINT16
See Period #2 Start Time
+5
RW
Period #3 Tariff
UINT16
0=T1, …, 7=T8
+6
RW
Period #4 Start Time
UINT16
See Period #2 Start Time
+7
RW
Period #4 Tariff
UINT16
0=T1, …, 7=T8
+8
RW
Period #5 Start Time
UINT16
See Period #2 Start Time
+9
RW
Period #5 Tariff
UINT16
0=T1, …, 7=T8
+10
RW
Period #6 Start Time
UINT16
See Period #2 Start Time
+11
RW
Period #6 Tariff
UINT16
0=T1, …, 7=T8
+12
RW
Period #7 Start Time
UINT16
See Period #2 Start Time
5.12.3 Daily Profile
The PMC-53A has two sets of Daily Profile setup parameters, one for each TOU.
Table 5-46 TOU #1’s Daily Profile Setup
Table 5-47 TOU #2’s Daily Profile Setup
76
Page 77
CET Electric Technology
+13
RW
Period #7 Tariff
UINT16
0=T1, …, 7=T8
+14
RW
Period #8 Start Time
UINT16
See Period #2 Start Time
+15
RW
Period #8 Tariff
UINT16
0=T1, …, 7=T8
+16
RW
Period #9 Start Time
UINT16
See Period #2 Start Time
+17
RW
Period #9 Tariff
UINT16
0=T1, …, 7=T8
+18
RW
Period #10 Start Time
UINT16
See Period #2 Start Time
+19
RW
Period #10 Tariff
UINT16
0=T1, …, 7=T8
+20
RW
Period #11 Start Time
UINT16
See Period #2 Start Time
+21
RW
Period #11 Tariff
UINT16
0=T1, …, 7=T8
+22
RW
Period #12 Start Time
UINT16
See Period #2 Start Time
+23
RW
Period #12 Tariff
UINT16
0=T1, …, 7=T8
Offset
Property
Description
Format
Range/Default*
0
RW
Alternate Day #1 Date¹
UINT32
Table 5-50
2
RW
Alternate Day #1 Daily Profile
UINT16
0* to 19
3
RW
Alternate Day #2 Date¹
UINT32
Table 5-50
5
RW
Alternate Day #2 Daily Profile
UINT16
0* to 19
6
RW
Alternate Day #3 Date¹
UINT32
Table 5-50
8
RW
Alternate Day #3 Daily Profile
UINT16
0* to 19
9
RW
Alternate Day #4 Date¹
UINT32
Table 5-50
11
RW
Alternate Day #4 Daily Profile
UINT16
0* to 19
12
RW
Alternate Day #5 Date¹
UINT32
Table 5-50
14
RW
Alternate Day #5 Daily Profile
UINT16
0* to 19
15
RW
Alternate Day #6 Date¹
UINT32
Table 5-50
17
RW
Alternate Day #6 Daily Profile
UINT16
0* to 19
18
RW
Alternate Day #7 Date¹
UINT32
Table 5-50
19
RW
Alternate Day #7 Daily Profile
UINT16
0* to 19
21
RW
Alternate Day #8 Date¹
UINT32
Table 5-50
22
RW
Alternate Day #8 Daily Profile
UINT16
0* to 19
24
RW
Alternate Day #9 Date¹
UINT32
Table 5-50
25
RW
Alternate Day #9 Daily Profile
UINT16
0* to 19
27
RW
Alternate Day #10 Date¹
UINT32
Table 5-50
29
RW
Alternate Day #10 Daily Profile
UINT16
0* to 19
…
…
Table 5-50
…
…
0* to 19
240
RW
Alternate Day #81 Date¹
UINT32
Table 5-50
162
RW
Alternate Day #81 Daily Profile
UINT16
0* to 19
243
RW
Alternate Day #82 Date¹
UINT32
Table 5-50
245
RW
Alternate Day #82 Daily Profile
UINT16
0* to 19
246
RW
Alternate Day #83 Date¹
UINT32
Table 5-50
248
RW
Alternate Day #83 Daily Profile
UINT16
0* to 19
249
RW
Alternate Day #84 Date¹
UINT32
Table 5-50
251
RW
Alternate Day #84 Daily Profile
UINT16
0* to 19
Table 5-48 Daily Profile Data Structure
Notes:
1) Daily Profile #1’s Period #1 Start Time is always 00:00 and cannot be modified.
2) Setting a Period’sStart Time as 0xFFFF terminates the Daily Profile’s settings. All subsequent Daily
Profiles’ setup parameters will be ignored, and the previous Period’s duration is from its Start Time
to the end of the day.
3) The minimum interval of a period is 15 minutes.
4) The Start Time of a particular Period must be later than the previous Period’s .
5.12.4 Alternate Days
Each Alternate Day is assigned a Daily Profile and has a higher priority than Season. If a particular date
is set as an Alternate Day, its assigned Daily Profile will override the “normal” Daily Profile for this day
according the TOU settings.
The PMC-53A has two sets of Alternate Days setup parameters, one for each TOU. The Base Addresses
for the two sets are 7700 and 8700, respectively, where the Register Address = Base Address + Offset.
For example, the register address for TOU #2’s Alternative Day #2’s Date is 8700+3 = 8703.
77
Page 78
CET Electric Technology
252
RW
Alternate Day #85 Date¹
UINT32
Table 5-50
254
RW
Alternate Day #85 Daily Profile
UINT16
0* to 19
255
RW
Alternate Day #86 Date¹
UINT32
Table 5-50
256
RW
Alternate Day #86 Daily Profile
UINT16
0* to 19
258
RW
Alternate Day #87 Date¹
UINT32
Table 5-50
260
RW
Alternate Day #87 Daily Profile
UINT16
0* to 19
261
RW
Alternate Day #88 Date¹
UINT32
Table 5-50
263
RW
Alternate Day #88 Daily Profile
UINT16
0* to 19
264
RW
Alternate Day #89 Date¹
UINT32
Table 5-50
266
RW
Alternate Day #89 Daily Profile
UINT16
0* to 19
267
RW
Alternate Day #90 Date¹
UINT32
Table 5-50
269
RW
Alternate Day #90 Daily Profile
UINT16
0* to 19
Byte 3
Byte 2
Byte 1
Byte 0
Reserved
Year-2000 (0-37)
Month (1-12)
Day (1-31)
Register
Property
Description
Format
Note
60000
9000
RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
60001
9001
RW
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002
9002
RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003
RW
Millisecond
UINT16
0 to 999
60004
~
60005
9004
~
9005
RW
UNIX Time
UINT32
0x386D4380 to 0x 7FE8177F
The corresponding time is
2000.01.01 00:00:00 to
2037.12.31 23:59:59
(GMT 0:00 Time Zone)
Table 5-49 Alternate Days Setup
Notes:
1) The following table illustrates the data structure of the Date register:
Table 5-50 Date Format
When the Year and/or Month are set as 0xFF, it means the Alternate Day is repetitive by year and/or
month, i.e. the same day of every year or every month is an Alternate Day.
5.13 Time
There are two sets of Time registers supported by the PMC-53A – Year / Month / Day / Hour / Minute /
Second (Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to the PMC53A over Modbus communications, care should be taken to only write one of the two Time register sets.
All registers within a Time register set must be written in a single transaction. If registers 60000 to 60004
are being written to at the same time, both Time register sets will be updated to reflect the new time
specified in the UNIX Time register set (60004) and the time specified in registers 60000-60002 will be
ignored. Writing to the Millisecond register (60003) is optional during a Time Set operation. When
broadcasting time, the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect date or
time values will be rejected by the meter. In addition, attempting to write a Time value less than Jan 1,
2000 00:00:00 will be rejected.
5.14 Remote Control
The DO Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and
Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command
(Function Code 0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-53A does
not support the Read Coils command (Function Code 0x01) because DO Control registers are “WriteOnly”. The DO Status register 0098 should be read instead to determine the current DO status.
The PMC-53A adopts the ARM before EXECUTE operation for the remote control of its Digital Outputs
Table 5-51 Time Registers
78
Page 79
CET Electric Technology
Register
Property
Description
Format
Note
9100
WO
Arm DO1 Close
UINT16
Writing “0xFF00”
to the register to
perform the
described action.
9101
WO
Execute DO1 Close
UINT16
9102
WO
Arm DO1 Open
UINT16
9103
WO
Execute DO1 Open
UINT16
9104
WO
Arm DO2 Close
UINT16
9105
WO
Execute DO2 Close
UINT16
9106
WO
Arm DO2 Open
UINT16
9107
WO
Execute DO2 Open
UINT16
9108
WO
Arm DO3 Close
UINT16
9109
WO
Execute DO3 Close
UINT16
9110
WO
Arm DO3 Open
UINT16
9111
WO
Execute DO3 Open
UINT16
9112
WO
Arm DO4 Close
UINT16
9113
WO
Execute DO4 Close
UINT16
9114
WO
Arm DO4 Open
UINT16
9115
WO
Execute DO4 Open
UINT16
Register
Property
Description
Format
Note
9600
WO
Clear Historical Monthly Energy Log1
UINT16
Writing “0xFF00”
to the register to
execute the
described action.
9601
WO
Clear All Energy Registers2
9602
WO
Clear Present Monthly Energy Log3
9603
WO
Clear Peak Demand of
This Month (Since Last Reset)4
9604
WO
Clear All Demand Registers5
9605
WO
Clear Max/Min Logs of This Month
(Since Last Reset)6
9606
WO
Clear All Max./Min. Log7
9607
WO
Clear Device Operating Time
9608
WO
Clear All Data8
9609
WO
Clear SOE Log
9610
WO
Clear DI1 Pulse Counter
9611
WO
Clear DI2 Pulse Counter
9612
WO
Clear DI3 Pulse Counter
9613
WO
Clear DI4 Pulse Counter
9614
WO
Clear DI5 Pulse Counter
9615
WO
Clear DI6 Pulse Counter
9616
WO
Reserved
9617
WO
Reserved
9618
WO
Clear All Pulse Counters
9619
WO
Clear Data Recorder #1 Log
9620
WO
Clear Data Recorder #2 Log
9621
WO
Clear Data Recorder #3 Log
9622
WO
Clear Data Recorder #4 Log
9623
WO
Clear Data Recorder #5 Log
9624
WO
Clear All Data Recorder Log
if this function is enabled through the Arm Before Execute Enable Setup register (6032), which is
disabled by default. Before executing an OPEN or CLOSE command on a Digital Output, it must be
“Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm” a
particular DO operation. The DO will be “Disarmed” automatically if an “Execute” command is not
received within 15 seconds after it has been “Armed”. If an “Execute” command is received without first
having received an “Arm” command, the meter ignores the “Execute” command and returns the 0x04
exception code.
5.15 Clear/Reset Control
Table 5-52 DO Control
Notes:
1) Writing 0xFF00 to the Clear Historical Monthly Energy Log register to clear the Monthly Energy Log
of the last 1 to 12 months, excluding the Monthly Energy Log for the Present Month.
Table 5-53 Clear Control
79
Page 80
CET Electric Technology
Register
Property
Description
Format
Note
60200~60219
9800~9819
RO
Meter model1
UINT16
See Note 1)
60220
9820
RO
Firmware Version
UINT16
e.g. 10000 shows the
version is V1.00.00
60221
9821
RO
Protocol Version
UINT16
e.g. 10 shows the
version is V1.0
60222
9822
RO
Firmware Update
Date: Year-2000
UINT16
e.g. 140110 means
January 10, 2014
60223
9823
RO
Firmware Update
Date: Month
UINT16
60224
9824
RO
Firmware Update
Date: Day
UINT16
60225
9825
RO
Serial Number
UINT32
e.g. 1701030100 means
the 100th PEM353 that
was manufactured on
January 3rd, 2017
60227
9827
RO
Reserved
UINT16
60228
9828
RO
Reserved
UINT16
60229
9829
RO
Feature Code
UINT16
Bit 0 to Bit 2 (Expansion
A):
000=None
001=RS485
010=I4
011=SPI
Bit 3 to Bit 5 (Expansion
B):
000=None
001=1xAI + 1xAO
010=2xDI + 2xDO
011=2xRTD
100=2xDI + 2x SS Pulse
Output
101=Reserved
Bit 6 (Flash):
0=Disabled
1=Enabled
Bit 8 to Bit 7 (Basic
Function):
00=4xDI + 2xDO
01=None
10=4xDI + 2 x SS Pulse
2) Writing 0xFF00 to the Clear All Energy Registers register to clear the 3-Ø Total and Per-Phase energy
registers.
3) Writing 0xFF00 to the Clear Present Monthly Energy Log register to clear the Monthly Energy Log
of the Present Month.
4) Writing 0xFF00 to the Clear Peak Demand of This Month register to clear Peak Demand Log of This
Month (Since Last Reset) when the Self-Read Time register is set for automatic Self-Read operation.
The Peak Demand of Last Month will not be cleared. If the Self-Read Time register is set for manual
operation with a register value of 0xFFFF, the Peak Demand of This Month (Since Last Reset) will be
transferred to the Peak Demand of Last Month (Before Last Reset) and then cleared.
5) Writing 0xFF00 to the Clear All Demand register to clear all Demand registers and logs, including
Real-time Present Demand, Peak Demand Log of This Month (Since Last Reset) and Last Month
(Before Last Reset).
6) Writing 0xFF00 to the Clear Max./Min. Log of This Month register to clear the Max./Min. log of
This Month (Since Last Reset) when the Self-Read Time register is set for automatic Self-Read
operation. The Max./Min. log of Last Month will not be cleared. If the Self-Read Time register is set
for manual operation with a register value of 0xFFFF, the Max./Min. log of This Month (Since Last
Reset) will be transferred to the Max./Min. log of Last Month (Before Last Reset) and then cleared.
7) Writing 0xFF00 to the Clear All Max./Min. Log register to clear both the Max./Min Log of This
Month (Since Last Reset) and the Max./Min. Log of Last Month (Before Last Reset).
8) Writing 0xFF00 to the Clear All Data register to perform the Clear operation for the actions specified
in registers # 9600 to 9607, registers # 9609 to # 9615, registers # 9618 to 9624 and Daily and
Monthly Freeze Logs.
5.16 Meter Information
80
Page 81
CET Electric Technology
Output
Bit 15 to Bit 16:
Reserved
Register
Value(Hex)
ASCII
60200
0x50
P
60201
0x4D
M
60202
0x43
C
60203
0x2D
-
60204
0x35
5
60205
0x33
3
60206
0x41
A
60207-60219
0x20
Null
* Available in Firmware V1.00.04 or later
Table 5-54 Meter Information
Notes:
1) The Meter Model appears from registers 60200 to 60219 and contains the ASCII encoding of the
string “PMC-53A” as shown in the following table.
Table 5-55 ASCII Encoding of “PMC-53A”
81
Page 82
CET Electric Technology
ID
Description
ID
Description
ID
Description
Real-time Measurements
0
None
14
kWb
28
PF Total
1
Uan
15
kWc
29
Frequency
2
Ubn
16
kW Total
30
Uan/Uab Angle
3
Ucn
17
kvara
31
Ubn/Ubc Angle
4
Uln Average
18
kvarb
32
Ucn/Uca Angle
5
Uab
19
kvarc
33
Ia Angle
6
Ubc
20
kvar Total
34
Ib Angle
7
Uca
21
kVAa
35
Ic Angle
8
Ull Average
22
kVAb
36
In (Calculated)
9
Ia
23
kVAc
37
I4
10
Ib
24
kVA Total
38
RTD 1
11
Ic
25
PFa
39
RTD 2
12
I Average
26
PFb
40
AI Scaled
13
kWa
27
PFc
332
Ir* (Residual Current)
Power Quality
41
Phase A Fundamental kW
59
Ib Crest -Factor
160
Ubn/Ubc HD31
42
Phase B Fundamental kW
60
Ic Crest -Factor
161
Ucn/Uca HD31
43
Phase C Fundamental kW
61
Voltage Unbalance
162
Ia THD
44
Fundamental kW Total
62
Current Unbalance
163
Ib THD
45
Total Harmonic kW
63
Uan/Uab THD
164
Ic THD
46
Ia TDD
64
Ubn/Ubc THD
165
Ia TOHD
47
Ib TDD
65
Ucn/Uca THD
166
Ib TOHD
48
Ic TDD
66
Uan/Uab TOHD
167
Ic TOHD
49
Ia TOHD
67
Ubn/Ubc TOHD
168
Ia TEHD
50
Ib TOHD
68
Ucn/Uca TOHD
169
Ib TEHD
51
Ic TOHD
69
Uan/Uab TEHD
170
Ic TEHD
52
Ia TEHD
70
Ubn/Ubc TEHD
171
Ia HD02
53
Ib TEHD
71
Ucn/Uca TEHD
172
Ib HD02
54
Ic TEHD
72
Uan/Uab HD02
173
Ic HD02
55
Ia K-Factor
73
Ubn/Ubc HD02
……56
Ib K-Factor
74
Ucn/Uca HD02
258
Ia HD31
57
Ic K-Factor
……259
Ib HD31
58
Ia Crest-Factor
159
Uan/Uab HD31
260
Ic HD31
Energy Measurements
261
DI1 Pulse Counter
281
kWh Export of T1
301
kWh Export of T5
262
DI2 Pulse Counter
282
kvarh Import of T1
302
kvarh Import of T5
263
DI3 Pulse Counter
283
kvarh Export of T1
303
kvarh Export of T5
264
DI4 Pulse Counter
284
kVAh of T1
304
kVAh of T5
265
DI5 Pulse Counter
285
kWh Import of T2
305
kWh Import of T6
266
DI6 Pulse Counter
286
kWh Export of T2
306
kWh Export of T6
267
kWh Import
287
kvarh Import of T2
307
kvarh Import of T6
268
kWh Export
288
kvarh Export of T2
308
kvarh Export of T6
269
kWh Net
289
kVAh of T2
309
kVAh of T6
270
kWh Total
290
kWh Import of T3
310
kWh Import of T7
271
kvarh Import
291
kWh Export of T3
311
kWh Export of T7
272
kvarh Export
292
kvarh Import of T3
312
kvarh Import of T7
273
kvarh Net
293
kvarh Export of T3
313
kvarh Export of T7
274
kvarh Total
294
kVAh of T3
314
kVAh of T7
275
kVAh
295
kWh Import of T4
315
kWh Import of T8
276
kvarh Q1
296
kWh Export of T4
316
kWh Export of T8
277
kvarh Q2
297
kvarh Import of T4
317
kvarh Import of T8
278
kvarh Q3
298
kvarh Export of T4
318
kvarh Export of T8
279
kvarh Q4
299
kVAh of T4
319
kVAh of T8
280
kWh Import of T1
300
kWh Import of T5
Demand Measurements
320
Ia Present Demand
326
Ia Peak Demand Log of This Month (Since Last Reset)
321
Ib Present Demand
327
Ib Peak Demand Log of This Month (Since Last Reset)
322
Ic Present Demand
328
Ic Peak Demand Log of This Month (Since Last Reset)
323
kW Total Present Demand
329
kW Peak Demand Log of This Month (Since Last Reset)
324
kvar Total Present Demand
330
kvar Peak Demand Log of This Month (Since Last Reset)
325
kVA Total Present Demand
331
kVA Peak Demand Log of This Month (Since Last Reset)
The PMC-53A with the Firmware V1.00.03 or later supports the BACnet MS/TP protocol and can
easily be connected to a BACnet MS/TP network using an off-the shelf BACnet router. The PMC53A provides four types of BACnet objects. Standard Protocol Implementation Conformance
Statement (PICS) as illustrated in table below describes the required characteristics of the BACnet
implementation.
Property Range Restrictions: Object_Identifier - valid range is between 0 and 4194302;
Object_Name - limited to 32 characters; Location - limited to 64 characters; Description limited to 64 characters; Max_Master – valid range is between 1 and 127.
The following table illustrates the Device Objects on the PMC-53A:
84
Page 85
(3)
R/W
APDU_Timeout
0~65535
3000
R/W
Number_Of_APDU_Retries
0~255
3
R/W
Max_Master
1 to 127
127
R/W
Max_Info_Frame
1
R
Device_Address_Binding
{}
R
Database_Revision
0
R
Local_Time
Configuration by
timing
12:00:00:00 R Local_Date
Configuration by
timing
2016.07.01
*
Register
Description
Property
Unit
Range
AI 0000
Uan1
R V
AI 0002
Ubn1
R
AI 0004
Ucn1
R
AI 0006
ULN average1
R
AI 0008
Uab
R
AI 0010
Ubc
R
AI 0012
Uca
R
AI 0014
ULL average
R
AI 0016
Ia
R A
AI 0018
Ib
R
AI 0020
Ic
R
AI 0022
I average
R
AI 0024
kWa1
R
kW
AI 0026
kWb1
R
AI 0028
kWc1
R
AI 0030
kW Total
R
AI 0032
kvara1
R
kvar
AI 0034
kvarb1
R
AI 0036
kvarc1
R
AI 0038
kvar Total
R
AI 0040
kVAa1
R
kVA
R = Read Only; R/W = Read/Write
Notes:
1) Supported services:
o ReadProperty
o ReadPropertyMultiple
o WriteProperty
o TimeSynchronization
o Who-Has
o Who-Is, I-Am, I-Have
2) Supported object types:
o Analog-Input
o Analog-Value
o Binary-Input
o Binary-Output
o Device
CET Electric Technology
3) Analog Input Objects (PMC-53A’s Real-Time Parameters)
Use the Present_Value property of the Analog_Input objects for all read-only numeric variables
in PMC-53A. These objects support the Description and Reliability optional properties and all
required Analog_Input object properties. None of them are writable. The values that are not
instantaneous (i.e. Accumulated Energy, Peak Demand) are non-volatile.
85
Page 86
CET Electric Technology
AI 0042
kVAb1
R
AI 0044
kVAc1
R
AI 0046
kVA Total
R
AI 0048
PFa1
R
0 to 1
AI 0050
PFb1
R
AI 0052
PFc1
R
AI 0054
PF Total
R
AI 0056
Frequency
R
Hz
AI 0070
Neutral Current (Calculated)
R A
AI 0072
I4 (Optional Measurement)
R A
AI 0082
AI
R
AI 0086
RTD1
R ℃
AI 0088
RTD2
R ℃
AI 0090
AO
R
AI 0174
Ir
R A
AI 0500
kWh Import
R
kWh
0 to
99999999.9
AI 0502
kWh Export
R
AI 0504
kWh Net
R
AI 0506
kWh Total
R
AI 0508
kvarh Import*
R
kvarh
AI 0510
kvarh Export*
R
AI 0512
kvarh Net*
R
AI 0514
kvarh Total*
R
AI 0516
kVAh*
R
kWh
AI 3006
kW Total Demand
R
kW
AI 3008
kvar Total Demand
R
kvar
AI 3010
kVA Total Demand
R
kVA
AI 3000
Ia Demand
R A
AI 3002
Ib Demand
R
AI 3004
Ic Demand
R
AI 3418
kW Total Peak Demand
R
kW
AI 3424
kvar Total Peak Demand
R
kvar
AI 3430
kVA Total Peak Demand
R
kVA
AI 3400
Ia Peak Demand
R A
AI 3406
Ib Peak Demand
R
AI 3412
Ic Peak Demand
R
AI 1600
Uan THD2
R %
AI 1602
Ubn THD2
R
AI 1604
Ucn THD2
R
AI 1400
Ia THD
R
AI 1402
Ib THD
R
AI 1404
Ic THD
R
AI 1318
Ia K Factor
R
AI 1320
Ib K Factor
R
AI 1322
Ic K Factor
R
AI 1300
Ia TDD
R
AI 1302
Ib TDD
R
AI 1304
Ic TDD
R
AI 1324
Ia Crest Factor
R
AI 1326
Ib Crest Factor
R
AI 1328
Ic Crest Factor
R
AI 1330
U Unbalance
R
AI 1332
I Unbalance
R
AI 0074
dPFa1
R
-
0 to 1
AI 0076
dPFb1
R
AI 0078
dPFc1
R
AI 0058
Uan Angle3
R °
AI 0060
Ubn Angle3
R
AI 0062
Ucn Angle3
R
AI 0064
Ia Angle
R
AI 0066
Ib Angle
R
AI 0068
Ic Angle
R
AI 0104
Operating Time
R h
AI 0526
Interval kWh Import
R
kWh
0 to
99999999.9
AI 0528
Interval kWh Export
R
AI 0530
Interval kvarh Import*
R
kvarh
86
Page 87
CET Electric Technology
AI 0532
Interval kvarh Export*
R
AI 0534
Interval kVAh*
R
kWh
AI 1200
DI #1 Counter
R
-
0 to
999,999,999
AI 1202
DI #2 Counter
R
AI 1204
DI #3 Counter
R
AI 1206
DI #4 Counter
R
AI 1208
DI #5 Counter
R
AI 1210
DI #6 Counter
R
Register
Description
Property
Unit/ Range
Default/Note
AV 6000
PT Primary High#
R/W
0 to 1000 kV
0
AV 6001
PT Primary Low#
R/W
1 to 999 V
100
AV 6002
PT Secondary#
R/W
1 to 690
100
AV 6004
CT Primary
R/W
1 to 30000
5
AV 6006
CT Secondary
R/W
1 to 5
5
AV 6012
I4 Primary
R/W
1 to 30000
5
AV 6014
I4 Secondary
R/W
1 to 5
5
AV 6020
Wiring Mode
R/W
0 = DEMO
1 = 1P2W L-N
2 = 1P2W L-L,
3 = 1P3W L-L-N
4 = 3P3W, 5 = 3P4W
5
AV 6021
PF Convention
R/W
0 = IEC, 1 = IEEE, 2 = -IEEE
0
AV 6022
kVA Calculation
R/W
0 = Vector, 1 = Scalar
0
AV 6028
THD Calculation
R/W
0 = THDf, 1 = THDr
0
AV 6029
Demand Period
R/W
1 to 60 min
15
AV 6030
Number of Sliding Windows
R/W
1 to 15
1
AV 6047
Interval Energy Period
R/W
5 to 60 min
60
AV 9603
Clear Present Peak Demand
W
65280
Default = 0
Writing
“0xFF00” to the
register to
execute the
described
action.
AV 9601
Clear Energy
W
65280
AV 9610
Clear DI #1 Counter
W
65280
AV 9611
Clear DI #2 Counter
W
65280
AV 9612
Clear DI #3 Counter
W
65280
AV 9613
Clear DI #4 Counter
W
65280
AV 9614
Clear DI #5 Counter
W
65280
*There are no unit types for kvarh and kVAh in BACnet so the return values are in unit of kWh.
Notes:
1) When the Wiring Mode is 3P3W, the per phase line-to-neutral voltages, kWs, kvars, kVAs and
PFs have no meaning, and their registers are reserved.
2) Uan/Ubn/Ucn THD = Uab/Ubc/Uca THD in 3P3W Wiring Mode and represent the harmonics
of the line voltages.
3) Uan/Ubn/Ucn Angle = Uab/Ubc/Uca Angle in 3P3W Wiring Mode and represent the phase
angles of the line voltages.
4) Analog Value Objects (PMC-53A’s Basic Setup Registers)
Use the Present Value property of the Analog Value object for some writable variables in the
meter other than those used specifically for BACnet configuration or Time Synchronization.
Values are checked when written, and errors are returned for invalid entries. The table below
describes how the Setup Registers of the PMC-53A are represented in BACnet, their valid ranges,
their defaults as well as how they are used. PMC-53A supports the Description,
Relinquish_Default and Priority_Array optional properties. Writable properties include
Present_Value, Out_Of_Service, Units and Relinquish_Default, but Units are not non-volatile
after modification.
87
Page 88
CET Electric Technology
AV 9615
Clear DI #6 Counter
W
65280
Register
Description
Property
Note
BI0
DI 1
R
0 = Inactive, 1 = Active
BI1
DI 2
R
0 = Inactive, 1 = Active
BI2
DI 3
R
0 = Inactive, 1 = Active
BI3
DI 4
R
0 = Inactive, 1 = Active
BI4
DI 5
R
0 = Inactive, 1 = Active
BI5
DI 6
R
0 = Inactive, 1 = Active
Register
Description
Property
Note
BO0
DO 1
R/W
0 = Inactive, 1 = Active
BO1
DO 2
R/W
0 = Inactive, 1 = Active
BO2
DO 3
R/W
0 = Inactive, 1 = Active
BO3
DO 4
R/W
0 = Inactive, 1 = Active
Parameters
Description
Option/Range
Default
MAC
MS/TP ID^
0 to127
100
INST
Object Identifier#
0 to 4194302
26001
MAXMAS
Maximum Number of Master
0 to 127
127
LOCK
Disable communication
YES/NO
NO
BAUD
Baud rate
1200/2400/4800/9600/19200/38400
9600
CONFIG
Comm. Port Configuration
8N1/8E1/8O1/8N2/8E2/8O2
8E1
#
PT Ratio × CT Ratio × Rated Phase Voltage Input × Rated Current Input x √3 must be less than 790,000,000.
5) Binary Input Objects (PMC-53A’s Digital Inputs)
Use the Present_Value properties of the Binary_Input objects as alerts for conditions of potential
concern regarding system measurements. These objects support the Description and Reliability
optional properties and all required Binary_Input object properties. None of them are writable.
6) Binary Output Objects (PMC-53A’s Digital Outputs)
Use the Present_Value property of the Binary_Output objects as alerts for DO conditions.
Reading Binary_Output objects have the highest priority. PMC-53A supports Inactive_Text,
Active_Text optional properties and all required Binary_Output object properties. Present_Value,
Out_Of_Service and Polarity properties can be written, but these are non-volatile after
modification. The Present_Value can only be written when the Out_Of_Service is true to change
the state of the Digital Output and will be written as W when the Out_Of_Service is false.
7) Additional Front Panel Setup Parameters for BACnet MS/TP
The following BACnet MS/TP setup parameters should be configured via the PMC-53A’s Front
Panel before connecting the PMC-53A to a BACnet MS/TP network.
^
The MS/TP ID is similar to the Modbus unit ID conceptually
#
The Object Identifier is similar to the IP address of an Ethernet network conceptually and is required to be
unique within the entire BACnet network
88
Page 89
CET Electric Technology
Item
Description
Device Address
1-247 (100*)
Baud Rate
1200/2400/4800/9600*/19200/38400
Interface
RS485 Half Duplex
Word Length
8
Stop Bits
1*/2
Parity
Even*/Odd/None
Command
PMC-53A’s Response
Identify Device Type
VND
Synchronization Time
Supported
Poll Without Ack
Always respond with No COS Poll Response
Poll With Ack
Always respond with No COS Poll Response
Read Analog Input
Supported
Override Analog Input
Only used to override the Command Register. When an unsupported
command is received, the PMC-53A will respond with the Undefined
Command Error Code 0x01.
AI
PMC-53A
AI
Point
PMC-53A
Point
Parameter
Unit
Parameter
Unit 1 Uan1
V
47
kW Total Peak Demand
kW
2
Ubn1
48
kvar Total Peak Demand
kvar 3 Ucn1
49
kVA Total Peak Demand
kVA 4 ULN average1
50
Ia Peak Demand
A
5
Uab
V
51
Ib Peak Demand
6
Ubc
52
Ic Peak Demand
7
Uca
53
Uan THD2
%
8
ULL average
54
Ubn THD2
9
Ia
A
55
Ucn THD2
10
Ib
56
Ia THD
11
Ic
57
Ib THD
12
I average
58
Ic THD
13
kWa1
kW
59
Ia K Factor
-
14
kWb1
60
Ib K Factor
15
kWc1
61
Ic K Factor
16
kW Total
62
Ia TDD
%
17
kvara1
kvar
63
Ib TDD
18
kvarb1
64
Ic TDD
19
kvarc1
65
Ia Crest Factor
-
20
kvar Total
66
Ib Crest Factor
21
kVAa1
kVA
67
Ic Crest Factor
22
kVAb1
68
U Unbalance
%
23
kVAc1
69
I Unbalance
24
kVA Total
70
dPFa
-
25
PFa1
-
71
dPFb
Appendix D N2 Implementation
The PMC-53A with Firmware V1.00.03 or later supports the JCI's Metasys N2 protocol, in addition to
BACnet MS/TP, which allows it to connect directly to the Metasys N2 Network. The user can select the
desired protocol via the Front Panel's COMM menu. The N2 protocol assigns key analog parameters to
ADF points. The Command Register with override capability is used to reset groups of parameters held
in the device.
Before integrating the PMC-53A into a Metasys N2 Network, please make sure that all N2 devices are
configured, started and running properly. No more than 32 N2 devices should be connected to an NCM’s
N2 Bus segment, and no more than 100 N2 devices when repeaters are used. There are no additional
communication setup parameters for the Metasys N2 protocol.
* Default
1) Supported N2 Commands
2) Map Table
89
Page 90
CET Electric Technology
26
PFb1
72
dPFc
27
PFc1
73
Uan Angle3
°
28
PF Total
74
Ubn Angle3
29
Frequency
Hz
75
Ucn Angle3
30
Neutral Current
(Calculated)
A
76
Ia Angle
31
I4 (Optional
Measurement)
A
77
Ib Angle
32
kWh Import
kWh
78
Ic Angle
33
kWh Export
79
Operating Time
h
34
kWh Total
80
Interval kWh Import4
kWh
35
kWh Net
81
Interval kWh Export4
36
kvarh Import
kvarh
82
Interval kvarh Import4
kvarh
37
kvarh Export
83
Interval kvarh Export4
38
kvarh Total
84
Interval kVAh4
kVAh
39
kvarh Net
85
DI #1 Counter
40
kVAh
kVAh
86
DI #2 Counter
41
kW Total Demand
kW
87
DI #3 Counter
42
kvar Total Demand
kvar
88
DI #4 Counter
43
kVA Total Demand
kVA
89
DI #5 Counter
44
Ia Demand
A
90
DI #6 Counter
45
Ib Demand
91
Clear5
46
Ic Demand
Override Value for Command Register
Action
156001
All Energy values
156002
All Demand values
156003
Reserved
Notes:
1) When the Wiring Mode is 3P3W, the per phase line-to-neutral voltages, kWs, kvars, kVAs and PFs
have no meaning, and their ADF points are reserved.
2) Uan/Ubn/Ucn THD = Uab/Ubc/Uca THD in 3P3W Wiring Mode and represent the harmonics of the
line voltages.
3) Uan/Ubn/Ucn Angle = Uab/Ubc/Uca Angle in 3P3W Wiring Mode and represent the phase angles
of the line voltages.
4) Interval Energy Period (EN Period) can be modified via the Front Panel.
5) The Command register, ADF point 91, is used to reset groups of accumulated values held in the
device. The following table illustrates the override values written to the Command register and
their corresponding actions. It is not essential to release the Command Register for the reset to
operate. The last Command (156003) is reserved, and the device will respond with 0 if received.
90
Page 91
CET Electric Technology
DNP V3.0
Vendor Name: CET
Device Name: PMC-53A
Highest DNP Level Supported:
For Requests: Level 1
For Responses: Level 1
Device Function:
Master
Slave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP levels Supported (the complete list is
described in the attached table):
Maximum Data Link Frame Size (octets):
Transmitted: 292
Received: 292
Maximum Application Fragment Size (octets):
Transmitted: 1024
Received: 300
Maximum Data Link Re-tries:
None
Fixed
Configurable
Maximum Application Layer Re-tries:
None
Configurable
Requires Data Link Layer Confirmation:
Never
Always
Sometimes
Configurable
Requires Application Layer Confirmation:
Never
Always
When reporting Event Data (Slave devices only)
When sending multi-fragment responses (Slave devices only)
Sometimes
Configurable
Timeouts while waiting for:
Data Link Confirm: None Fixed at ___ Variable Configurable
Complete Appl. Fragment: None Fixed at ___ Variable Configurable
Application Confirm: None Fixed at ___ Variable Configurable
Complete Appl. Response: None Fixed at ___ Variable Configurable
Others: Transmission Delay, configurable
Select/Operate Arm Timeout, fixed at 15 seconds
Sends/Executes Control Operations:
WRITE Binary Outputs Never Always Sometimes Configurable
SELECT/OPERATE Never Always Sometimes Configurable
DIRECT OPERATE Never Always Sometimes Configurable
DIRECT OPERATE - NO ACK Never Always Sometimes Configurable
Count > 1 Never Always Sometimes Configurable
Pulse On: Never Always Sometimes Configurable
Pulse Off: Never Always Sometimes Configurable
Latch On Never Always Sometimes Configurable
Latch Off Never Always Sometimes Configurable
Queue: Never Always Sometimes Configurable
Clear Queue: Never Always Sometimes Configurable
Attach explanation if "Sometimes" or "Configurable" was checked for any operation.
Appendix E DNP Profile
This section contains the DNP Device Profile Information according to the standard format defined in
the DNP 3.0 Subset Definitions Document and should provide a complete application configuration
guide.
91
Page 92
CET Electric Technology
DNP V3.0
Reports Binary Input Change Events when no specific
variation requested:
Never
Only time-tagged
Only non-time-tagged
Configurable to send time-tagged or non-time-
tagged
Reports time-tagged Binary Input Change Events when no
specific variation requested:
Never
Binary Input Change with Time
Binary Input Change with Relative Time
Configurable to send Binary Input Change With
Time and Binary Input Change With Relative
Time
Sends Unsolicited Responses:
Never
Configurable - enable/disable
Only certain objects
Sometimes (attach explanation)
ENABLE/DISABLE UNSOLICITED Function codes
supported
Sends Static Data in Unsolicited Responses:
Never
When Device Restarts
When Status Flags Change
No other options are permitted.
Default Counter Object/Variation:
No Counters Reported
Configurable
Default Object
Default Variation:
Point-by-point list attached
Counters Roll Over at:
No Counters Reported
Configurable
16 Bits
32 Bits
Other Value: ______
Point-by-point list attached
Sends Multi-Fragment Responses
Yes
No
Configurable
Sequential File Transfer Support:
Append File Mode Yes No
Custom Status Code Strings Yes No
Permissions Field Yes No
File Events Assigned to Class Yes No
File Events Send Immediately Yes No
Multiple Blocks in a Fragment Yes No
Max. Number of Files Open: 0
OBJECT
REQUEST
(slave must parse)
RESPONSES
(master must parse)
Obj
Var
Description
Func Codes
(dec)
Qual Code
(hex)
Func Codes
(dec)
Qual Code
(hex)
1 2 Binary Input Status with Flag
1
0x06
129
0x00
10 2 Binary Output Status
1
0x06
129
0x00
12 1 Control Relay Output Block
3,4,5
0x28
129
0x28
20 5 32-Bit Binary Counter without Flag
1
0x06
129
0x00
20 6 16-Bit Binary Counter without Flag
1
0x06
129
0x00
30 3 32-Bit Analog Input without Flag
1
0x06
129
0x00
40 2 16-BIT ANALOG OUTPUT STATUS
1
0x06
129
0x00
41 2 16-BIT ANALOG OUTPUT BLOCK
3,4,5
0x28
129
0x28
50 1 Date and Time
1
0x07
129
0x07
60 1 Class 0 Data
1
0x06
129
80 1 Internal Indicator
2
0x00
129
N/A
N/A
Cold Restart (respond Obj. 52:2)
13
N/A
129
0x07
Level 1 Implementation (DNP-L1)
92
Page 93
CET Electric Technology
Function Code
Qualifier Code
Code
(dec)
Description
PMC-53A
Code
(hex)
Description
PMC-53A
0
Confirm
0x00
8-bit start/stop indices
√
1
Read
√
0x01
16-bit start/stop indices
2
Write
√
0x06
Request for all points
√
3
Select
√
0x07
Single field index, 8-bit format
√
4
Operate
√
0x08
Single field index, 16-bit format
5
Direct Operate With Acknowledge
√
0x17
Control point
6
Direct Operate Without
Acknowledge
0x28
Control point
√
7
Freeze with Acknowledge
8
Immediate Freeze - No
Acknowledge
9
Freeze and Clear with
Acknowledge
10
Freeze and Clear - No
Acknowledge
13
Cold Restart
√
20
Enable Spontaneous Messages
√
21
Disable Spontaneous Messages
√
22
Assign Classes
23
Delay Measurement
129
Solicited Response
√
130
Unsolicited Response
Request
Response
Func.
Code
Description
PMC-53A
Func.
Code
Description
PMC-53A
0
Reset of Remote Link
√ 0 ACK - Positive Acknowledgement
√
1
Reset of User Process
1 NACK - Message Not Accepted, Link Busy
√
2
Test Function for Link
2
Not Used
3
User Data
3
Not Used
4
Unconfirmed User Data
√
4
Not Used
5
Not Used
5
Not Used
6
Not Used
6
Not Used
7
Not Used
7
Not Used
8
Not Used
8
Not Used
9
Request Link Status
√
9
Not Used
10
Not Used
10
Not Used
11
Not Used
11
Status of Link
√
12
Not Used
12
Not Used
13
Cold Restart
√
13
Respond Object 52:2
√
14
Not Used
14
Link Service Not Functioning
15
Not Used
15
Link Service Not Used or Implemented
Port Configuration
Description
Notes
Port Name
COM1
Baud Rate
1200/2400/4800/9600*/19200/38400
Default*
Parity
8E1*/8O1/8N1/8E2/8O2/8N2
Application Layer's Function and Qualifier Code Description
Data Link Layer
The PMC-53A can be assigned a device address between 0 and 65519. After device restart, Function
Code 0 (Reset of Remote Link) must be executed to enable DNP communication. The following table
describes which Data Link Layer functions are supported.
Physical Layer
The Port 1 RS-485 is designed to support the DNP 3.0 protocol.
93
Page 94
CET Electric Technology
Point
Description
Format
Range
0
DI11
UINT8
Bit Flags
1
DI21
UINT8
Bit Flags
2
DI31
UINT8
Bit Flags
3
DI41
UINT8
Bit Flags
4
DI5
1,2
UINT8
Bit Flags
5
DI6
1,2
UINT8
Bit Flags
Point
Description
Format
Range
0
Clear Present Energy Log
UINT8
Always 0
1
Clear All Energy Registers
UINT8
Always 0
2
Clear Present Monthly Energy Log
UINT8
Always 0
3
Clear Peak Demand of This Month (Since Last Reset)
UINT8
Always 0
4
Clear All Demand Registers
UINT8
Always 0
5
Clear Max/Min Logs of This Month (Since Last Reset)
UINT8
Always 0
6
Clear All Max./Min. Log
UINT8
Always 0
7
Clear Device Operating Time
UINT8
Always 0
8
Clear All Data
UINT8
Always 0
9
Clear DI1 Pulse Counter
UINT8
Always 0
10
Clear DI2 Pulse Counter
UINT8
Always 0
11
Clear DI3 Pulse Counter
UINT8
Always 0
12
Clear DI4 Pulse Counter
UINT8
Always 0
13
Clear DI5 Pulse Counter
UINT8
Always 0
14
Clear DI6 Pulse Counter
UINT8
Always 0
15
Clear All Pulse Counters
UINT8
Always 0
16
DO11
UINT8
Bit Flags
17
DO21
UINT8
Bit Flags
18
DO3
1,2
UINT8
Bit Flags
19
DO4
1,2
UINT8
Bit Flags
20-29
Reserved
30-43
Wiring Diagnostics Status
UINT8
Bit Flags
No.
Event
30
Frequency is out of range (45 to 65Hz) (3P4W or 3P3W)
31
Any phase voltage < 10% of PT Primary (Register 6000) (3P4W only)
32
Any phase current < 10% of CT Primary (Register 6004) (3P4W or 3P3W)
33
RTD 1 broken (RTD Input option only)
34
RTD 2 broken (RTD Input option only)
…
Voltage Phase Reversal (3P4W only)
Current Phase Reversal (3P4W or 3P3W)
Negative kW Total may be abnormal (3P4W or 3P3W)
Negative kWa is may be abnormal (3P4W only)
Negative kWb may be abnormal (3P4W only)
Negative kWc may be abnormal (3P4W only)
CTa polarity may be reversed (3P4W only)
CTb polarity may be reversed (3P4W only)
DNP Point Map
Object 1 - Binary Input Status with Flags (Included in Class 0 responses)
Read with Object 1, Variation 2, and Qualifier 6.
Supported Flags:
Bit 0 (ONLINE): 0=Offline, 1=Online
Bit 7 (STATE): 0=Off, 1=On
Notes:
1) If the Device Model does not support DI, the Bit 0 and Bit 7 for the bytes of all DI status above would be set to “0”.
2) If 4xDIs are supported on the Device Model, the Bit 0 and Bit 7 in bytes for DI5 and DI6 status would be set to “0”.
Object 10 - Binary Output States (Included in Class 0 responses)
Read with Object 10, Variation 2, and Qualifier 6.
Notes:
1) If the Device Model does not support DO, the Bit 0 and Bit 7 for the bytes of all DO status above would be set to “0”.
2) If 2xDOs are supported on the Device Model, the Bit 0 and Bit 7 in bytes for DO3 and DO4 status would be set to “0”.
3) The following table shows the details of Point 30-43.
94
Page 95
CET Electric Technology
43
CTc polarity may be reversed (3P4W only)
Point
Description
Format
Range
0
Clear Present Energy Log
UINT8
N/A
1
Clear All Energy Registers
UINT8
N/A 2 Clear Present Monthly Energy Log
UINT8
N/A 3 Clear Peak Demand of This Month (Since Last Reset)
UINT8
N/A
4
Clear All Demand Registers
UINT8
N/A
5
Clear Max/Min Logs of This Month (Since Last Reset)
UINT8
N/A
6
Clear All Max./Min. Log
UINT8
N/A
7
Clear Device Operating Time
UINT8
N/A
8
Clear All Data
UINT8
N/A
9
Clear DI1 Pulse Counter
UINT8
N/A
10
Clear DI2 Pulse Counter
UINT8
N/A
11
Clear DI3 Pulse Counter
UINT8
N/A
12
Clear DI4 Pulse Counter
UINT8
N/A
13
Clear DI5 Pulse Counter
UINT8
N/A
14
Clear DI6 Pulse Counter
UINT8
N/A
15
Clear All Pulse Counters
UINT8
N/A
16
DO1
UINT8
Bit Flags
17
DO2
UINT8
Bit Flags
18
DO3
UINT8
Bit Flags
19
DO4
UINT8
Bit Flags
Point
Description
Format
Unit
Scale
Range
0
kWh Import
INT32
kWh
10
0-999,999,999
1
kWh Export
INT32
kWh
2
kWh Net
INT32
kWh
3
kWh Total
INT32
kWh
4
kvarh Import
INT32
kvarh
5
kvarh Export
INT32
kvarh
6
kvarh Net
INT32
kvarh
7
kvarh Total
INT32
kvarh
8
kVAh
INT32
kVAh
9
kvarh Q1
INT32
kvarh
10
kvarh Q2
INT32
kvarh
11
kvarh Q3
INT32
kvarh
12
kvarh Q4
INT32
kvarh
13
Interval kWh Import
INT32
kWh
14
Interval kWh Export
INT32
kWh
15
Interval kvarh Import
INT32
kvarh
16
Interval kvarh Export
INT32
kvarh
17
Interval kVAh
INT32
kVAh
18
DI1 Pulse Counter
1
UINT32
1
1
0-999,999,999
19
DI2 Pulse Counter1
UINT32
1
20
DI3 Pulse Counter1
UINT32
1
21
DI4 Pulse Counter1
UINT32
1
Supported Flags:
Bit 0 (ONLINE):
0 = Offline, which represents that the control of the Output could not be implemented.
1 = Online, which represents that the Output works properly, once control request has been sent, the command could be
correctly implemented.
Bit 7 (STATE): 0=Off, 1=On
Object 12 - Control Relay Outputs
Responds to Function Codes: 03 (Select), 04 (Operate) and 05 (Direct Operate), Variation 1, Qualifier
0x28, with a Count of 1 only. Only one control object at a time may be specified.
Please refer to the DNP V3.00 Data Object Library document for a detailed description of the Object
Coding format for the Control Relay Output Block as well as the meanings of the returned Status.
Object 20 - 32-BIT Binary Counters - Primary Readings (Included in Class 0 responses)
Read with Object 20, Variation 5, and Qualifier 6.
95
Page 96
CET Electric Technology
22
DI5 Pulse Counter
1,2
UINT32
1
23
DI6 Pulse Counter
1,2
UINT32
1
Point
Description
Format
Range 0 Scale for Energy and Operating Time
UINT16
10 1 Scale for Current, PF, I Seq., I Fund., and I Demand
UINT16
1000
2
Scale for U, Freq, Phase Angle, RTD, U Fund., U Seq.,
1) If the Device Model does not support DI, all DI Pulse Counters would be set to “0”.
2) If 4xDIs are supported on the Device Model, DI5 and DI6 Pulse Counter would be set to “0”.
Object 20 - 16-BIT Binary Counters - Primary Readings (Included in Class 0 responses)
Read with Object 20, Variation 6, and Qualifier 6.
Notes:
1) The read-out value 10000 represents the Version is V1.00.00.
2) The following table illustrates the details of Feature Code. Bit 6 and Bit 9 to Bit 15 for the Byte are reserved. Points for I4,
AI Scaled, RTD1, RTD2 and AO in Object 30 are only meaningful if the meter is equipped with the corresponding option.
Object 30 - Analog Inputs Primary Readings (Included in Class 0 responses)
Read with Object 30, Variation 3, and Qualifier 6.
96
Page 97
CET Electric Technology
31
Ubn/Ubc (3P3W) Angle
INT32
32
Ucn/Uca (3P3W) Angle
INT32
33
Ia Angle
INT32
34
Ib Angle
INT32
35
Ic Angle
INT32
36
In (Calculated)
INT32
x1000
A
37
I4
INT32
38
Ir
INT32
39
Displacement PFa
INT32
x1000
-
40
Displacement PFb1
INT32
41
Displacement PFc1
INT32
42
Displacement PF Total
INT32
43
AI Scaled
INT32
x1
-
44
RTD 1
INT32
x100
︒C
45
RTD 2
INT32
46
AO
INT32
x1
-
47
Device Operating Time
INT32
x10
h
48
Phase A Fundamental kW
INT32
x1
W
49
Phase B Fundamental kW1
INT32
50
Phase C Fundamental kW1
INT32
51
Fundamental kW Total
INT32
52
Total Harmonic kW
INT32
53
Uan/Uab Fundamental
INT32
x100
V
54
Ubn/Ubc Fundamental
INT32
55
Ucn/Uca Fundamental
INT32
56
Ia Fundamental
INT32
x1000
A
57
Ib Fundamental1
INT32
58
Ic Fundamental1
INT32
59
U1 (+ve Sequence Voltage)2
INT32
x100
V
60
U2 (-ve Sequence Voltage)2
INT32
61
U0 (Zero Sequence Voltage)2
INT32
62
I1 (+ve Sequence Current)2
INT32
x1000
A
63
I2 (-ve Sequence Current)2
INT32
64
I0 (Zero Sequence Current)2
INT32
65
Ia TDD
INT32
x100
-
66
Ib TDD
INT32
67
Ic TDD
INT32
68
Ia K Factor
INT32
69
Ib K Factor
INT32
70
Ic K Factor
INT32
71
Ia Crest-factor
INT32
72
Ib Crest-factor
INT32
73
Ic Crest-factor
INT32
74
Voltage Unbalance
INT32
75
Current Unbalance
INT32
76
Uan/Uab THD
INT32
77
Ubn/Ubc THD
INT32
78
Ucn/Uca THD
INT32
79
Ia THD
INT32
80
Ib THD
INT32
81
Ic THD
INT32
82
Ia Present Demand
INT32
x1000
A
83
Ib Present Demand
INT32
84
Ic Present Demand
INT32
85
∑kW Present Demand
INT32
x1
W
86
∑kvar Present Demand
INT32
var
87
∑kVA Present Demand
INT32
VA
88
Ia Peak Demand of This Month (Since Last Reset)
INT32
x1000
A
89
Ib Peak Demand of This Month (Since Last Reset)
INT32
90
Ic Peak Demand of This Month (Since Last Reset)
INT32
91
∑kW Peak Demand of This Month (Since Last Reset)
INT32
x1
W
92
∑kvar Peak Demand of This Month (Since Last Reset)
INT32
var
93
∑kVA Peak Demand of This Month (Since Last Reset)
INT32
VA
94
Ia Peak Demand of Last Month (Before Last Reset)
INT32
x1000
A
95
Ib Peak Demand of Last Month (Before Last Reset)
INT32
96
Ic Peak Demand of Last Month (Before Last Reset)
INT32
97
Page 98
CET Electric Technology
97
∑kW Peak Demand of Last Month (Before Last Reset)
INT32
x1
W
98
∑kvar Peak Demand of Last Month (Before Last Reset)
INT32
var
99
∑kVA Peak Demand of Last Month (Before Last Reset)
INT32
VA
Point
Property
Description
Format
Range
0
RO
Class 0 Points
UINT16
0-65535
Point
Property
Description
Format
Range
0
WO
Class 0 Points
UINT16
0-65535
Bit Point
Descriptions
Value
Bit 0
Object 1 - Binary Input Status Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 1
Object 10 - Binary Output States Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 2
Object 20 - 32 BIT Binary Counters Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 3
Object 20 - 16 BIT Binary Counters Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 4
Object 30 -Analog Inputs Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 5
Object 40 - Analog Output Status Included in Class 0 responses?
0=No, 1=Yes (default)
Bit 6- Bit 15
Reserved
Point
Description
Format
Range
7
Device Restart
UINT8
0-1
Notes:
1) When the Wiring Mode is 1P2W L-N or 1P2W L-L, the L2 and L3 phase voltages and currents have no meaning, and their
registers are reserved.
2) When the Wiring Mode is 1P2W L-N, 1P2W L-L or 1P3W, the Sequence Components U1/I1, U2/I2 and U0/I0 have no
meaning and their registers are reserved.
Object 40 - Analog Output Status Objects
Read with Object 40, Variation 2, and Qualifier 6.
Object 41 - Analog Output Command Objects
Responds to Function Codes: 03 (Select), 04 (Operate) and 05 (Direct Operate), Variation 2, Qualifier
0x28, with a Count of 1 only.
Note: The following table illustrates the details of Bit Values for Class 0 Points.
Object 50 - Date and Time
Read and Write function is supported for this object, which occupies 6 bytes for the device's time. The
time shows the number of UNIX milliseconds since 00:00:00 January 1, 1970, calculated by UNIX
seconds*1000 + milliseconds.
Object 60 - Class Objects
Read with Function Code 1, Variation 1, and Qualifier 6. Only Class 0 polls are supported.
Object 80 - Internal Indicator
This is a Write Only function. Clear the Restart Bit with Function Code 2, Variation 1, Qualifier 0.
98
Page 99
CET Electric Technology
Voltage Inputs (V1, V2, V3, VN)
Standard Un
Range
Overload
Burden
Measurement Category
400VLN/690VLL
10V to 1.2Un
1.2xUn continuous, 2xUn for 1s
<0.02VA per phase
CAT III up to 600VLL
Frequency
45-65Hz
Current Inputs (I11, I12, I21, I22, I31, I32)
Standard In=5A/1A Auto-scale
Optional In=1A
Range
Starting Current
Overload
Measurement Category
Burden
Class 0.5S for 5A and Class 1 for 1A
Class 0.5S
0.1% to 200% In
0.1% In
2xIn continuous, 20xIn for 1s
CAT III up to 600VLL
<0.15VA per phase
Optional I4 Input (I41, I42)
In
Range
Starting Current
5A (5A/1A Auto-Scale)
0.1% to 120% In
0.1% In
Power Supply (L+, N-, GND)
Standard
Optional
Optional
Burden
Overvoltage Category
95-250VAC/DC, ±10%, 47-440Hz
20-60VDC
95-480VAC/DC, ±10%, 47-440Hz
<2W
CAT III up to 300VLN