CET PMC-512-D User Manual

Page 1
PMC-512-D
DC Multi-Circuit Power Monitor
User Manual
Version: V1.0
Page 2
1
CET Inc.
This manual may not be reproduced in whole or in part by any means without the express
written permission from CET.
The information contained in this Manual is believed to be accurate at the time of
publication; however, CET assumes no responsibility for any errors which may appear here
and reserves the right to make changes without notice. Please consult CET or your local
representative for latest product specifications.
Standards Compliance
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and
permanent equipment damage if proper precautions are not taken during the installation,
operation or maintenance of the device.
CAUTION
This symbol indicates the potential of personal injury or equipment damage if proper
precautions are not taken during the installation, operation or maintenance of the device.
Page 3
2
CET Inc.
DANGER
Failure to observe the following instructions may result in severe injury or
death and/or equipment damage.
Installation, operation and maintenance of the meter should only be
performed by qualified, competent personnel that have the appropriate
training and experience with high voltage and current devices. The meter
must be installed in accordance with all local and national electrical codes.
Ensure that all incoming AC power and other power sources are turned OFF
before performing any work on the meter.
Before connecting the meter to the power source, check the label on top of
the meter to ensure that it is equipped with the appropriate power supply,
and the correct voltage and current input specifications for your application.
During normal operation of the meter, hazardous voltages are present on its
terminal strips and throughout the connected potential transformers (PT)
and current transformers (CT). PT and CT secondary circuits are capable of
generating lethal voltages and currents with their primary circuits energized.
Follow standard safety precautions while performing any installation or
service work (i.e. removing PT fuses, shorting CT secondaries, …etc).
Do not use the meter for primary protection functions where failure of the
device can cause fire, injury or death. The meter should only be used for
shadow protection if needed.
Under no circumstances should the meter be connected to a power source if
it is damaged.
To prevent potential fire or shock hazard, do not expose the meter to rain or
moisture.
Setup procedures must be performed only by qualified personnel familiar
with the instrument and its associated electrical equipment.
Page 4
3
CET Inc.
Limited warranty
CET offers the customer a minimum of 12-month functional warranty on the
meter for faulty parts or workmanship from the date of dispatch from the
distributor. This warranty is on a return to factory for repair basis.
CET does not accept liability for any damage caused by meter malfunctions.
CET accepts no responsibility for the suitability of the meter to the application
for which it was purchased.
Failure to install, set up or operate the meter according to the instructions
herein will void the warranty.
Only CET’s duly authorized representative may open your meter. The unit
should only be opened in a fully anti-static environment. Failure to do so may
damage the electronic components and will void the warranty.
Page 5
4
CET Inc.
Table of Contents
Chapter 1 Introduction ............................................................................................................................. 8
1.1 Overview .................................................................................................................................... 8
1.2 Features ..................................................................................................................................... 8
1.3 PMC-512-D’ application in Monitoring Management Systems ............................................... 10
1.4 Getting more information........................................................................................................ 10
2.1 Appearance .............................................................................................................................. 11
2.1.1 Main Unit ..................................................................................................................... 11
2.1.2 CTs ................................................................................................................................ 12
2.1.3 Switching Power Supplies ............................................................................................ 12
2.2 Unit Dimensions ....................................................................................................................... 12
2.3 Overall Setup ........................................................................................................................... 13
2.4 Mounting ................................................................................................................................. 13
2.4.1 Mounting PMC-512-D with 35mm DIN Rail ................................................................. 13
2.4.2 CTs Dimensions and Terminal Definitions.................................................................... 14
2.4.3 Switching Power Supply ............................................................................................... 17
2.5 Wiring Connections.................................................................................................................. 17
2.5.1 PMC-512-D Wiring ....................................................................................................... 17
2.5.2 Mains Hall Effect CT Wiring .......................................................................................... 19
2.5.3 Residual Current Hall Effect CT Wiring ......................................................................... 20
2.5.4 Branch Circuits Hall Effect CT Wiring ........................................................................... 20
2.5.5 Mains & Branch Circuits Hall Effect CT wiring (sharing the same PMC-DP) ................. 21
2.5.6 Communications Wiring ............................................................................................... 21
2.5.7 Digital Input Wiring ...................................................................................................... 22
2.5.8 Analog Input Wiring ..................................................................................................... 22
2.5.9 Digital Output Wiring ................................................................................................... 22
2.5.10 Power Supply Wiring .................................................................................................. 22
Chapter 3 User Interface ........................................................................................................................ 23
3.1 Front Panel LED Indicators ....................................................................................................... 23
3.2 Front Panel Buttons ................................................................................................................. 24
3.2.1 PMC-512-D Transducer Version ................................................................................... 24
3.2.2 Buttons on LCD PMC-512-D (Future) ........................................................................... 24
3.3 Data Display (Optional with the Future LCD Version) .............................................................. 25
3.3.1 Auto-Scroll.................................................................................................................... 25
3.3.2 Metering ...................................................................................................................... 25
3.3.3 Alarm Status ................................................................................................................. 25
3.3.4 DI/DO Status ................................................................................................................ 26
3.3.5 SOE Log ........................................................................................................................ 26
3.3.6 Information .................................................................................................................. 26
3.4 Setup and Maintenance via the Front Panel ........................................................................... 26
3.4.1 Making Setup Changes ................................................................................................. 26
3.4.2 Setup Menu .................................................................................................................. 28
Page 6
5
CET Inc.
3.4.3 Configuration ............................................................................................................... 29
3.4.4 Maintenance ................................................................................................................ 31
Chapter 4 Applications ........................................................................................................................... 32
4.1 Inputs and Outputs .................................................................................................................. 32
4.1.1 Digital Inputs ................................................................................................................ 32
4.1.2 Analog Input ................................................................................................................. 32
4.1.3 Energy Pulse Outputs ................................................................................................... 32
4.2 Power, Energy and Demand .................................................................................................... 33
4.2.1 Basic Measurements .................................................................................................... 33
4.2.2 Energy Measurements ................................................................................................. 33
4.2.3 Demands ...................................................................................................................... 33
4.3 Alarm Setpoints ....................................................................................................................... 34
4.3.1 Alarm Status ................................................................................................................. 34
4.3.2 Universal Hysteresis and Current ON/OFF Status ........................................................ 34
4.3.3 Voltage Alarms and ON/OFF Status ............................................................................. 35
4.3.4 Mains Current Alarms .................................................................................................. 37
4.3.5 DC Residual Current Alarm .......................................................................................... 38
4.3.6 SM Current Alarm ........................................................................................................ 39
4.3.7 AI Alarm ....................................................................................................................... 41
4.3.8 DI Alarm ....................................................................................................................... 42
4.4 Data Logging ............................................................................................................................ 43
4.4.1 Peak Demand Log......................................................................................................... 43
4.4.2 Monthly Energy Log ..................................................................................................... 43
4.4.3 SOE Recorder ............................................................................................................... 43
4.4.4 Data Recorder Log ........................................................................................................ 43
Chapter 5 Modbus Register Map ........................................................................................................... 45
5.1 Status Register ......................................................................................................................... 45
5.1.1 General Status .............................................................................................................. 45
5.1.2 Instantaneous Alarm .................................................................................................... 46
5.1.3 Latched Alarm .............................................................................................................. 47
5.2 Basic Measurements ................................................................................................................ 48
5.3 Energy Measurements ............................................................................................................. 48
5.4 Monthly Energy Log ................................................................................................................. 48
5.5 Demands .................................................................................................................................. 49
5.5.1 Present Demands ......................................................................................................... 49
5.5.2 Peak Demand Log of This Month (Since Last Reset) .................................................... 50
5.5.3 Peak Demand Log of Last Month (Before Last Reset) .................................................. 50
5.6 Log Register ............................................................................................................................. 50
5.6.1 SOE Log ........................................................................................................................ 50
5.6.2 Data Recorder Log ........................................................................................................ 51
5.7 Device Setup ............................................................................................................................ 51
5.7.1 Basic Setup Parameters ............................................................................................... 51
5.7.2 AI Setup ........................................................................................................................ 52
5.7.3 DI Setup ........................................................................................................................ 52
Page 7
6
CET Inc.
5.7.4 Communication Setup Parameters .............................................................................. 52
5.7.5 Alarm Setup ................................................................................................................. 53
5.7.6 SM Setup Parameters .................................................................................................. 54
5.7.7 Data Recorder Setup .................................................................................................... 55
5.8 Time Registers.......................................................................................................................... 55
5.9 Clear/Reset Control ................................................................................................................. 55
5.10 Remote Control...................................................................................................................... 56
5.11 Meter Information ................................................................................................................. 56
Appendix A - SOE Event Classification .................................................................................................... 58
Appendix B - Data Recorder Parameters ................................................................................................ 60
Appendix C - Technical Specifications .................................................................................................... 61
Appendix D - Accuracy Specifications..................................................................................................... 62
Appendix E - Standards Compliance ....................................................................................................... 63
Appendix F - Ordering Guide .................................................................................................................. 64
Contact us ............................................................................................................................................... 65
Page 8
7
CET Inc.
Glossary
CET = CET Electric Technology AI = Analog Input DI = Digital Input DMD = Demand DO = Digital Output FIFO = First In First Out LED = Light Emitting Diode MB = Mega Byte PDU = Power Distribution Unit RTC = Real Time Clock SM = Sub Meter SOE = Sequence of Events
Page 9
8
CET Inc.
Chapter 1 Introduction
This manual explains how to use the PMC-512-D DC Multi-Circuit Power Monitor.
This chapter provides an overview of the PMC-512-D and summarizes many of its key features.
1.1 Overview
The PMC-512-D Multi-Circuit Power Monitor is CET’s latest offer for Data Center, Telecom Base Station,
Renewable Energy, Commercial Building and Industrial Automation applications that require Direct
Current (DC) multi-circuit monitoring. Housed in compact DIN Rail Mountable enclosure, the PMC-512-
D is perfectly suited for applications that have high density metering requirements. The PMC-512-D
features quality construction with multifunction and high-accuracy measurements, one Mains Input and
up to 12 Branch Circuit Inputs. The PMC-512-D comes standard with 13 Digital Inputs for status
monitoring, one Relay Output for control or alarming as well as one Analogue Input for temperature
measurement or other analogue input applications. The standard SOE Log records all setup changes,
alarms and DI/DO operations in 1ms resolution. With dual RS-485 as standard feature supporting
Modbus RTU, the PMC-512-D can easily be deployed in a centralized monitoring and control system such
as CET’s PecStar® iEMS, for a DC Power Distribution Network.
Typical Applications
Data Center DC Power Monitoring
Photovoltaic DC Distribution Boards
Telecom Base Station DC PDUs
Other DC Power Distribution Applications
The above are just a few of the many applications. Contact CET Technical Support should you require
further assistance with your application.
1.2 Features
Ease of use
Status LEDs - Run, Pulse and Comm. Activities
Self-Diagnostic function
Password-protected setup via the Front Panel (Future)
Compact, DIN Rail Mount for easy installation
Measurements
Mains Measurements
Option A (Mains Current Type = Incomer Current):
Voltage
Current, %Loading, Power and Energy
Present Demand, Peak Demand for This Month and Last Month,
Option B (Mains Current Type = Residual Current):
Voltage
Residual Current
Page 10
9
CET Inc.
SM 1-12 Measurements (12 Branch Circuits Inputs)
Current, %Loading, Power, and Energy
Present Demand, Peak Demand for This Month and Last Month
Logs
Data Recording
4MB Log Memory
Up to 60 parameters @ min. 1-min recording interval for a max. 5,000 logs with timestamps
24 Monthly Energy Logs – kWh for Mains and each SM
SOE Log
512 FIFO events time-stamped to ±1ms resolution
DI/DO changes, Alarms, Setup changes, Self-Diagnosis
Alarming
4 Alarm Levels for Current and AI
2 Alarm Levels for Voltage and Residual Current
Status Input Alarm
Programmable Digital Output Trigger
Facilitate the comprehensive monitoring and alarming for Mains & 12 Sub-Meters.
Inputs and Outputs
13xDI, external excitation @ 48VDC or 240VDC
1xDO, mechanical relay output @ 250VAC/5A or 30VDC/5A
1xAI (0-20mA or 4-20mA)
LED Energy Pulse Output
Communications
2xRS-485, Modbus RTU protocol
Baud rate @ 1,200 to 57,600bps
Page 11
10
CET Inc.
System Integration
The PMC-512-D is supported by CET’s PecStar iEMS. In addition, it can be easily integrated into
other 3rd party Automation, Energy Management or SCADA systems because of its support of
multiple communication ports and the Modbus RTU protocol.
1.3 PMC-512-D’ application in Monitoring Management Systems
1.4 Getting more information
Additional information is available from CET via the following sources:
Visit www.cet-global.com
Contact your local representative
Contact CET directly via email @ support@cet-global.com
Page 12
11
CET Inc.
Chapter 2 Installation
2.1 Appearance
2.1.1 Main Unit
Figure 2-1 Main Unit
F
igure 2-2 Main Unit Terminal Diagram
Caution
Installation of the PMC-512-D should only be performed by qualified, competent personnel that
have the appropriate training and experience with high voltage and current devices. The device must
be installed in accordance with all local and national electrical codes.
During the operation of the device, hazardous voltages are present at the input terminals. Failure to
observe precautions can result in serious or even fatal injury and equipment damage.
Page 13
12
CET Inc.
2.1.2 CTs
Category Model Appearance
Branch Circuit
Hall Effect Solid-Core CT
(with Current Output)
PMC-DCT-50A-25mA-A
PMC-DCT-100A-50mA-A
PMC-DCT-200A-100mA-A
Mains Circuit
Hall Effect Split-Core CT
(with Voltage Output)
PMC-DCT-200A-4V-A
PMC-DCT-400A-4V-A PMC-DCT-600A-4V-A
PMC-DCT-800A-4V-A PMC-DCT-1000A-4V-A PMC-DCT-2000A-4V-A
Mains Hall Effect
DC Residual CT
(with Voltage Output)
PMC-DCT-50mA-5V-A
Table 2-1 CTs’ Appearances
2.1.3 Switching Power Supplies
Model Output Appearance
PMC-DP-240V
±12V
PMC-DP-48V ±12V
Table 2-2 Switching Power Supplies’ Appearance
2.2 Unit Dimensions
Figure 2-3 Main Unit Dimensions
Page 14
13
CET Inc.
2.3 Overall Setup
Figure 2-4 Overall Setup
Figure 2-5 Overall Installation
2.4 Mounting
The PMC-512-D should be installed in a dry environment without dust and kept away from heat,
radiation and electrical noise sources. The PMC-512-D is usually installed inside the PDU cabinet.
Please reserve enough room for other accessories and make it convenient for future maintenance.
2.4.1 Mounting PMC-512-D with 35mm DIN Rail
Installation steps:
Pre-drill the mounting holes for the DIN rail and ensure it is already in place before installation.
Move the installation clips at the back of the PMC-512-D downward to the “unlock” position.
Align the top of the mounting channel at the back of the PMC-512-D at an angle against the top of
the DIN rail as shown in figure below.
Rotate the bottom of the PMC-512-D towards the back while applying a slight pressure to ensure
that the device is completely and securely fixed on to the DIN rail.
Push the installation clips upward to the “lock” position to secure the PMC-512-D on to the DIN rail.
Page 15
14
CET Inc.
Figure 2-6 Mounting Main Unit
2.4.2 CTs Dimensions and Terminal Definitions
There are multiple types of CTs available for the Mains Input, or DC Residual Current Input and Branch
Inputs. It’s extremely important for the users to understand that the Hall Effect Split-Core CTs and DC
Residual CT for the Mains Input have a Voltage Output while the Hall Effect CTs for the Branch Circuits
have a Current Output. Caution should be exercised during the installation of the Hall Effect CTs for the
Mains and Branch Inputs. Using incorrect CTs for the Mains and Branch Inputs may cause permanent
damage to the PMC-512-D. Please refer to Appendix C for their complete specifications and select the
appropriate CTs for your applications.
The following figures describe the dimensions for the various CTs and the definitions for their terminals.
2.4.2.1 200A Mains Hall Effect Split-Core CT (PMC-DCT-200A-4V-A)
Model
A B C D E F G
PMC-DCT-200A-4V-A
Ø58
Ø35
84
78
66
16
4.5
Unit: mm
Figure 2-7 PMC-DCT-200A-4V-A Dimensions
Page 16
15
CET Inc.
2.4.2.2 400A/600A Mains Hall Effect Split-Core CTs (PMC-DCT-400A-4V-A & PMC-DCT-600A-4V-A)
Model
A B C D E F G H I
PMC-DCT-400A-4V-A
48.5
13
15
42
92
31.5
21.5
16
15
PMC-DCT-600A-4V-A
48.5
13
15
42
92
31.5
21.5
16
15
Unit: mm
Figure 2-8 PMC-DCT-400A-4V-A & PMC-DCT-600A-4V-A CTs Dimensions
2.4.2.3 800A Mains Hall Effect Split-Core CT (PMC-DCT-800A-4V-A)
Model
A B C D E F G
H
PMC-DCT-800A-4V-A
108
64
120
16
62
110
Ø5.5
10
Model
I J K L M N O
PMC-DCT-800A-4V-A
44
15.5
4-Ø2.2
8
20
25
46
Unit: mm
Figure 2-9 PMC-DCT-800A-4V-A Dimension
Page 17
16
CET Inc.
2.4.2.4 1000A/2000A Mains Hall Effect Split-Core CTs (PMC-DCT-1000A-4V-A & PMC-DCT-2000A-4V-A)
Model
A B C D E F G
PMC-DCT-1000A-4V-A
99.5
155
169
42
86
M4.5
30
PMC-DCT-2000A-4V-A
99.5
155
169
42
86
M4.5
30
Model
H I J K L M N
PMC-DCT-1000A-4V-A
84.5
105
5.5 8 20
25
46.5
PMC-DCT-2000A-4V-A
84.5
105
5.5 8 20
25
46.5
Unit: mm
Figure 2-10 PMC-DCT-1000A-4V-A & PMC-DCT-2000A-4V-A Dimensions
2.4.2.5 50mA Mains Hall Effect DC Residual CT (PMC-DCT-50mA-5V-A)
Model
A B C D E F G
PMC-DCT-50mA-5V-A
225
182
38
135
140
50
74
Unit: mm
Figure 2-11 PMC-DCT-50mA-5V-A Dimensions
Page 18
17
CET Inc.
2.4.2.6 50A/100A/200A Branch Hall Effect Solid-Core CTs
Model
A B C D E
F
PMC-DCT-50A-25mA-A
Ø20
58
68
58
4.0
20
PMC-DCT-100A-50mA-A
Ø20
58
68
58
4.0
20
PMC-DCT-200A-100mA-A
Ø25
69.5
80
68
5.0
22
Unit: mm
Figure 2-12 Branch Circuit Hall Effect CT Dimensions
2.4.3 Switching Power Supply
Figure 2-13 Switching Power Supply Dimensions
2.5 Wiring Connections
2.5.1 PMC-512-D Wiring
Figure 2-14 illustrates how to wire the PMC-512-D with multiple Hall Effect CTs to the Mains and Branch
Inputs. Following are some tips before pre-installation.
a) Ensure that all incoming DC power and other power sources are turned OFF before performing any
work on the meter.
b) Before connecting the meter to the power source, check the Serial Number label on the meter to
ensure that it is equipped with the appropriate power supply as well as the correct Voltage and
Current Input specifications for your application.
c) Confirm that the CT’s Primary and Secondary ratings are correct before installation.
d) Please keep in mind that:
i. The Hall Effect Split-Core CTs and DC Residual CT for the Mains Circuit have a Voltage Output.
Page 19
18
CET Inc.
ii. The Hall Effect CTs for the Branch Circuits have a Current Output.
iii. Caution should be exercised during the installation of Hall Effect CTs for the Mains and Branch
Inputs. Using incorrect CTs for the Mains and Branch Inputs may cause permanent damage to
the PMC-512-D.
e) Please refer to Sections 2.5.2-2.5.5 to wire the Hall Effect CTs and their power supply to work with
the PCM-512-D for monitoring the Mains & Branch Circuits and the Residual Current.
Fig
ure 2-14 Typical Application
Page 20
19
CET Inc.
Notes:
a) The Mains Input can be used to measure the Mains Current or the Mains Residual Current by using
the appropriate CT. The wiring connections for the Mains CT and Residual CT are the same.
b) It is important to determine the total load requirement from all the CTs to ensure that the capacity
of the power supply is sufficient.
Fi
gure 2-15 Terminal Connection
2.5.2 Mains Hall Effect CT Wiring
Fi
gure 2-16 Wiring for Mains Hall Effect CT
Note:
1. It is important to wire the G terminal on the CT to the COM Terminal on the Power Supply and the
I- Terminal on the PMC-512-D.
Page 21
20
CET Inc.
2.5.3 Residual Current Hall Effect CT Wiring
Fi
gure 2-17 Wiring for Residual Current Hall Effect CT
Note:
1. It is important to wire the G terminal on the CT to the COM Terminal on the Power Supply and the
I- Terminal on the PMC-512-D.
2.5
.4 Branch Circuits Hall Effect CT Wiring
Fi
gure 2-18 Wiring for Branch Circuits Hall Effect CT
Note:
1. It is important to wire the COM Terminal on the Power Supply and the counterpart on the PMC-
512-D.
Page 22
21
CET Inc.
2.5.5 Mains & Branch Circuits Hall Effect CT wiring (sharing the same PMC-DP)
Figure 2-19 Mains & Branch Circuits Hall Effect CT wiring (sharing the same PMC-DP)
Note:
1. It is important to wire the G Terminal on the Hall Effect CT for the Mains Input, the COM Terminal
on the Power Supply, the I- Terminal and the COM Terminal on the PMC-512-D.
2.5.6 Co
mmunications Wiring
The PMC-512-D provides two RS485 ports that support the Modbus RTU protocol. Up to 32 devices can
be connected on a RS485 bus. The overall length of the RS485 cable connecting all devices should not
exceed 1200m.
If the master station does not have a RS485 communications port, a RS232/RS485 or USB/RS485
converter with optical isolation and surge protection should be used.
The following figure illustrates the RS485 wiring for the PMC-512-D:
Fi
gure 2-20 RS485 Connections on PMC-512-D
Page 23
22
CET Inc.
2.5.7 Digital Input Wiring
The following figure illustrates the Digital Input connections on the PMC-512-D. Please be informed
that there are two versions of the PMC-512-D with different voltage ratings for its Voltage Inputs,
Power Supply and Digital Inputs. Please refer to the Ordering Guide in Appendix F for more details.
a) PMC-512-DX43AE is designed for 48VDC system.
b) PMC-512-DX52BE is designed for 240/336VDC system.
Figure 2-21 DI Connections
2.5.8 Analog Input Wiring
The following figure illustrates the Analog Input connections on the PMC-512-D:
Figure 2-22 AI Connections
2.5.9 Digital Output Wiring
The following figure illustrates the Digital Output connections on the PMC-512-D:
Figure 2-23 DO Connections
2.5.10 Power Supply Wiring
For AC supply, connect the live wire to the L/+ terminal and the neutral wire to the N/- terminal.
For DC supply, connect the positive wire to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-24 Power Supply Wiring
Page 24
23
CET Inc.
Chapter 3 User Interface
The following figures illustrate the two versions of the PMC-512-D. The Transducer Version provides
three LED indicators and one Reset button. The LCD Version (available in the future) has an easy to read
LCD display and three buttons for both data display and setup configuration purposes.
Figure 3-1 Front Panel of PMC-512-D Transducer Version
F
igure 3-2 Front Panel of PMC-512-D LCD Version
3.1 Front Panel LED Indicators
There are three LED indicators on the PMC-512-D’s Front Panel as described in the following table.
LED Indicator
Color
Status
Description
Run
Green
Blinking once per second
System is running normally
Red
Blinking once per 0.5s
Alarm Active
Solid On
Abnormal Diagnostics
Comm. Green
Blinking
Receiving data or Transmitting
data
Off
No Communication
Pulse Red
Pulsing based on the rate of
Energy Consumption
Energy Pulse Output
Table 3-1 Front Panel LED Indicators
Page 25
24
CET Inc.
3.2 Front Panel Buttons
3.2.1 PMC-512-D Transducer Version
There is a button on the Front Panel of the PMC-512-D Transducer Version (No LCD), such as PMC­512-DX43AE, for resetting the Communication parameters or all Setup parameters to factory default.
Button
Reset Comm. Parameters
Reset All Setup Parameters
i. Press this button for 5 seconds
when the device is running.
ii. All the LED indicators will blink
for 5 times.
i. Power off the PMC-512-D.
ii. Holding down this button for 5 seconds after
the device has been powered up.
iii. All the LED indicators will blink for 10 times.
Table 3-2 Reset Mechanism for the PMC-512-D’s Transducer Version
3.2.2 Buttons on LCD PMC-512-D (Future)
There are three buttons on the right-hand side of the PMC-512-D LCD Version, <O>, < > and < >. Their
functions are described below.
Button
Auto-Scroll Mode
Main Menu
Setup Configuration Mode
<O>
Pressing this button momentarily enters the Main Menu
Pressing this button enters the
highlighted sub-menu.
• Pressing this button at the
Setup menu enters the Setup Configuration Mode.
• Holding this button for 2s
returns to the Auto-Scroll mode from the Main Menu or returns to the previous menu level from inside a sub-menu.
While inside the Setup menu,
pressing this button enters the sub-menu.
While inside a sub-menu,
pressing this button enters the next sub-
menu or selects a
parameter to modify.
• After the parameter has been
modified, pressing this button
saves the changes.
Holding this button for 2s returns
to the previous menu level.
< >
Pressing this button
scrolls through the
following Parameter Categories if the
respective option
has been enabled in the Auto Scroll
setup under the
Maintenance menu:
SM1-12 AI
Pressing this button inside the
Metering sub-
menu scrolls
through the following
Parameter Categories:
I1-I12 for 12 SMs AI
Pressing this button inside the
Alarm Status sub-menu scrolls through the following Alarm Categories:
U/I for Mains Circuit I1-I12 for 12 SMs AI DI1 to DI13
While inside other sub-menus,
pressing this button scrolls to
the previous item.
While inside the Setup menu or a
sub-menu, pressing this button scrolls to the previous menu item or setup parameter.
After a setup parameter has been
selected, pressing this button
moves the cursor one position to the left if it is a numeric value. Once the cursor has reached the
left most digit, pressing this
button again will move the cursor
to the right most digit. This
button is ignored if the selected
parameter is an enumerated
value.
< >
Pressing this button
scrolls to the next parameter in a
certain Parameter Category.
• Pressing this button scrolls to
the next sub-
menu, the next
parameter in a certain sub­menu, the next parameter in a certain Parameter Category inside the Metering sub-menu or the next alarm parameter in a certain Alarm Category inside the Alarm status sub-menu.
While inside the Setup menu or a
sub-menu, pressing this button scrolls to the next menu item or setup parameter.
After a setup parameter has been
selected,
pressing this button
increments the selected digit if it
is a numeric value or scrolls
through the selection list if it is an
enumerated value.
Table 3-3 Button Descriptions on LCD PMC-512D
Page 26
25
CET Inc.
3.3 Data Display (Optional with the Future LCD Version)
The PMC-512-D’s LCD display defaults to the Auto-Scroll display mode where measurements in each of
the selected Parameter Categories illustrated in Table 3-4 below are automatically scrolled through at
a fixed 5-second interval. If the user wishes to see all the available parameters, one can manually do so
by pressing the <O> button to enter the Main Menu and then selecting one of the following sub-menus
for the desired information. The available sub-menus are: Metering, Alarm status, DI/DO Status, Event
Log, Setup, Maintenance, and Information. The following sections describe the available information
for each of the sub-menus in detail.
3.3.1 Auto-Scroll
The Parameter Categories and their measurements are listed in the table below, and all of them are
Enabled in Auto-Scroll Mode by default. Please refer to Auto-Scroll Setup in Section 3.4.4 Maintenance
about how to enable or disable the display of a certain of SMs or AI in Auto-Scroll.
Parameter Categories
Measurements
Mains Circuit
U
I*/Ir~
%Loading1
P1
kWh1
SMx (x=1-12)
I
%Loading
P
kWh
AI
AI Scaled
AI Raw
*I stands for the Mains Current when working with the Mains Circuit Hall Effect CT. ~Ir stands for the Residual Current when working with the DC Residual Hall Effect CT.
Note:
1) When the Mains Current Type is Residual Current, the %Loading, P, and kWh are not available.
Table 3-4 Auto-Scroll Display Pages
3.3.2 Metering
The following table illustrates the available measurements under the Metering sub-menu.
Parameter Categories
Measurements
Mains Circuit
U
I*/Ir~
%Loading1
P1
kWh1
SMx (x=1-12)
I
%Loading
P
kWh
AI
AI Scaled
AI Raw
*I stands for the Mains Current when working with the Mains Circuit Hall Effect CT. ~Ir stands for the Residual Current when working with the DC Residual Hall Effect CT.
Note:
1) When the Mains Current Type is Residual Current, %Loading, P, and kWh are not available.
Table 3-5 Metering Display Pages
3.3.3 Alarm Status
Menu
Alarm Categories
Measurements
Alarm Status
Mains Circuit
U Alarm
I*/Ir~ Alarm
SMx (x=1-12)
I Alarm
AI
AI Alarm
DIx (x=1-13)
DIx (x=1 to 13) Open/Closed Alarm
*I stands for the Mains Current when working with the Mains Circuit Hall Effect CT. ~Ir stands for the Residual Current when working with the DC Residual Hall Effect CT.
Table 3-6 Alarm Status Pages
Page 27
26
CET Inc.
3.3.4 DI/DO Status
Menu
Sub-Menu
Measurements
DI/DO Status
DI (1-13)
DIx (x=1 to 13)
DO
DO
Table 3-7 DI/DO Status Display Pages
3.3.5 SOE Log
The PMC-512-D supports the display of the SOE Log with its relevant parameter values and its
timestamp. The users can scroll through the SOE Log by pressing < > or < >.
Two examples of SOE Log Display:
Figure 3-3 Examples of Event Log Display
3.3.6 Information
Menu
Description
Parameters
Info
Meter Information
Firmware
Firmware Version
Modbus
Modbus Protocol Version
Ver. Date
Firmware Version Date
S/N
Serial Number
Diagnostics
AD
A/D Diagnostics
FRAM
FRAM Diagnostics
FLASH
FLASH Diagnostics
Setup Param.
Setup Parameters Diagnostics
Table 3-8 Information Display Pages
3.4 Setup and Maintenance via the Front Panel (Optional with the future LCD Version)
3.4.1 Making Setup Changes
1) Entering the Password:
Press <O> to enter the Main Menu.
Press < > to advance to the Setup menu.
A correct password must be entered before changes are allowed. The factory default password
is “0000” (four zeros).
Press < > to shift the cursor to the left and < > to increment the numeric value for the
password.
When the password has been entered, pressing <O> will enter the Setup sub-menu if the
password is correct (otherwise, the device will respond “Incorrect Password”).
2) Selecting a parameter to change:
Press < > to scroll to the desired sub-menu or parameter.
Press <O> to select the sub-menu or parameter for configuration.
Hold <O> for 2 seconds to return to the previous menu level.
Repeat Step 2 until all the desired setup parameters have been selected.
Page 28
27
CET Inc.
3) Changing and saving a setup parameter:
For a numeric parameter, press < > to shift the cursor to the left by one position or < > to
increment the numeric value.
For an enumerated parameter, press < > or < > to scroll backward and forward in the selection
list.
After modification, press <O> to save the change into memory or hold <O> for 2 seconds to exit
the currently selected parameter without change.
Repeat steps 2) and 3) if necessary.
4) Exiting the Setup Configuration Mode
Hold <O> for 2 seconds to return to the Main Menu.
Also, the Setup Configuration Mode will be automatically exited if there is a period of inactivity
of 5 minutes or longer.
Page 29
28
CET Inc.
3.4.2 Setup Menu
Figure 3-4 Setup Menu
Page 30
29
CET Inc.
3.4.3 Configuration
The Setup Configuration Mode provides access to the following setup parameters:
Label
Description Range Default
Menu
1st
2nd
3rd
Setup
Basic
Nom. Voltage
Nominal Voltage
48 V/240 V/336 V
240 V
Mains Current Type
Mains Current Type
Incomer/Residual
Incomer
Mains CT Primary
Mains CT Primary
1
1 to 3,000 A/mA1
400 A/mA1
Mains CT Secondary
Mains CT Secondary
0.1-5.0 V
4 V
Mains Breaker Rating
Mains Breaker Rating
1 to 3,000 A
250 A
Dmd Period
Demand Interval
1 to 60 min
15
No. of Windows
Number of Sliding Windows
1 to 15
1
Dmd S.R. Time
Self-Read Time for Demand
See Note 2)
0
Dmd S.R. Mode
Self-Read Mode for Demand
Auto/Manual
Auto
Mthly Energy Log S.R. Time
Self-Read Time for
Monthly Energy Log
See Note 2) 0
R.C. Arm
Enable Arm before Execute
Remote Control
Enabled/Disabled Enabled
DO Pulse Width
Specifies the Pulse Width for
which the relay output will be active when a remote control
command is received to activate
it. The DO is in Latched mode if
it’s set to zero.
0.0 ~600.0 s 0 s
EN Pulse CNST LED Energy Pulse Constant
1/10/100/400/
1000/3200 imp/kWh
400
LED EN Pulse
Specifies which kWh will be
enabled as the LED Energy Pulse
0 to 143 0 (Disabled)
Date Format Set Date Format
YYYY/MM/DD
MM/DD/YYYYY
DD/MM/YYYY
YYYY/MM/DD
Language
System language
EN/SC/TC
EN
SM Config.
CT Primary
SMx (x=1-12) CT Primary
1 to 3000 A
100 A
CT Secondary
SMx (x=1-12) CT Secondary
1 to 100 mA
50 mA
Breaker Rating
SMx (x=1-12) Breaker Rating
1 to 3,000 A
250 A
Comm.
COM1 Unit ID
COM1 Modbus Address
1 to 254
100
COM1 Baud Rate
COM1 Data rate in bits per COM1
second
1200/2400/4800/9600
19200/38400/57600
38400
COM1 Config
COM1 Data Format
8N2/8O1/8E1/8N1
8E1
COM2 Unit ID
COM2 Modbus Address
1 to 254
100
COM2 Baud Rate COM2 Data rate in bps
1200/2400/4800/9600/
19200/38400/57600
9600
COM2 Config
COM2 Data Format
8N2/8O1/8E1/8N1
8E1
Alarm Global Alarm
Uni. Hys.
Universal Hysteresis
0 to 10%
2%
ON/OFF Threshold
Current ON Threshold
0 to 10%
5%
ON Time
Current ON Delay
0 to 9999(s)
10s
OFF Time
Current OFF Delay
0 to 9999(s)
30s
Voltage Alarm
H Limit
U H Alarm Limit
0~300.0V 0 H Delay
U H Alarm Delay
0~9999s
0
L Limit
U L Alarm Limit
0~300.0V
0
L Delay
U L Alarm Delay
0~9999s
0
Trigger U Alarm Trigger
None/DO/Alarm
LED/DO & Alarm LED
None
Mains Current Alarm4
HH Threshold
Current HH Alarm Threshold
0 to 100 (%)5
80%
HH Delay
Current HH Alarm Delay
0 to 9999 (s)
10s
H Threshold
Current H Alarm Threshold
0 to 100 (%)5
60%
Page 31
30
CET Inc.
H Delay
Current H Alarm Delay
0 to 9999 (s)
10S
L Threshold
Current L Alarm Threshold
0 to 100 (%)
5
0
L Delay
Current L Alarm Delay
0 to 9999 (s)
0
LL Threshold
Current LL Alarm Threshold
0 to 100 (%)
5
0
LL Delay
Current LL Alarm Delay
0 to 9999 (s)
0
Trigger Current Alarm Trigger
None/DO/Alarm
LED/DO & Alarm LED
None
DC Residual Current Alarm
4
HH Threshold
Current HH Alarm Threshold
0 to 1000 (mA)0HH Delay
Current HH Alarm Delay
0 to 9999 (s)0H Threshold
Current H Alarm Threshold
0 to 1000 (mA)0H Delay
Current H Alarm Delay
0 to 9999 (S)
0
Trigger Current Alarm Trigger
None/DO/Alarm
LED/RO & Alarm LED
None
SM Current Alarm
Enable 1-6
Select SMs 1-6 to be included in
Current Alarm
1-6
□□□□□□
Off
Enable 7-12
Select SMs 7-12 to be included in
Current Alarm
7-12
□□□□□□
Off
HH Threshold (%)
SM Current HH Alarm Threshold
0 to 100%
80%
HH Delay
SM Current HH Alarm Time Delay
0 to 9999 (s)
10 s
H Threshold (%)
SM Current H Alarm Threshold
0 to 100%, 0%
60%
H Delay
SM Current H Alarm Time Delay
0 to 9999(s), 0s
10 s
L Threshold (%)
SM Current L Alarm Limit
0 to 100%
0
L Delay
SM Current L Alarm Time Delay
0 to 9999(s)
0 s
LL Threshold (%)
SM Current LL Alarm Threshold
0 to 100%0LL Delay
SM Current LL Alarm Time Delay
0 to 9999(s)
0 s
Trigger SM Current Alarm Trigger
None/DO/Alarm
LED/RO & Alarm LED
None
DIx Alarm(X=1-13)
Active Mode
Decide whether & when the
alarm should active
Disabled/ Close/ Open Disabled
Active Delay
Active Delay
0~9999 (s)
0
Trigger DI Alarm Trigger
None/DO/Alarm
LED/DO & Alarm LED
None
AI Alarm
Alarm Mode Set/Enable Alarm Level(s)
HH H L LL
□□□□
Off
HH Limit
AI HH Alarm Threshold
-999999 to 999999
0
HH Delay
AI HH Alarm Delay
0 to 9999 (s)
10 s
H Limit
AI H Alarm Threshold
-999999 to 999999
0
H Delay
AI H Alarm Delay
0 to 9999 (s)
10 s
L Limit
AI L Alarm Threshold
-999999 to 999999
0
L Delay
AI L Alarm Delay
0 to 9999 (s)
10 s
LL Limit
AI LL Alarm Threshold
-999999 to 999999
0
Trigger AI Alarm Trigger
None/DO/Alarm
LED/DO & Alarm LED
None
DI Setup (x=1-13)
DIx Excitation5 Excitation Voltage
0=220VDC*
1=220VAC, 2=110VDC
3=110VAC, 4=48VDC
5=-48VDC
DC220V
DIx Debo.
Debounce Time
1 to 9999 (ms)
40 ms
Analog Input
Type
Select between
0-20mA or 4-20mA input
4-20 mA / 0-20 mA 4-20 mA
Zero Scale
The value that corresponds to the
minimum Analog Input of 0 or 4
mA
-999,999 to 999,999 400
Full Scale
The value that corresponds to the
maximum Analog Input of 20 mA
-999,999 to 999,999 2000
Table 3-9 Setup Parameters
Page 32
31
CET Inc.
Notes:
1) The unit of Mains CT Primary is variable, which is A or mA, and depends on whether the Mains Current Type is Incomer or Residual.
2) The Dmd S.R. Time and Mthly Energy Log S.R Time support the following two options:
a. A zero value means that the Self-Read will take place at 00:00 of the first day of each month. b. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self­Read will take place at 12:00pm on the 15th day of each month.
3) The LED Energy Pulse Modes are listed in the table below:
Value
Parameter
Value
Parameter
Value
Parameter
0
Disabled
5
SM4 kWh
10
SM9 kWh
1
Mains kWh
6
SM5 kWh
11
SM10 kWh
2
SM1 kWh
7
SM6 kWh
12
SM11 kWh
3
SM2 kWh
8
SM7 kWh
13
SM12 kWh
4
SM3 kWh
9
SM8 kWh
Table 3-10 LED Energy Pulse Modes
4) Since the Mains Current Type can be configured as Incomer or Residual, the Current Alarm settings should be configured accordingly. When Incomer is selected as the Mains Current Type, the Mains Current Alarm settings would be used for alarming, and vice versa.
5) The available options for DIx Excitation would depend on the PMC-512-D Model. The 48VDC and -48VDC options are only available for the hardware that is only equipped with 48VDC DI while the 220VDC, 220VDC, 110VDC and 110VAC options are available for the 240VDC (max.336VDC) DI.
3.4.4 Maintenance
Parameters
Descriptions
Range
Default
Clock Setup Time and Date
YYYY/MM/DD
hh:mm:ss
-
Password Setup
Set New Password
-
-
BLTO
Backlight Time Out1
0 to 60 min.
5
Contrast
LCD Contrast
0 to 9
5
Auto-Scroll
Auto Scroll Setup2
See Note 2)
Clear Energy
Clear all Energy registers
Yes/No
No
Clear Max Demands
Clear Peak Demand Log of This Month
(Since Last Reset)
Yes/No No
Clear All Demands
Clear all Demand Logs
Yes/No
No
Clear SOE
Clear SOE Logs
Yes/No
No
Clear DR Log
Clear DR Logs
Yes/No
No
Clear All Data
Clear All of the above
Yes/No
No
Factory Reset
Reset factory default settings
Yes/No
No
Table 3-11 Maintenance Parameters
Notes:
1) If BLTO is set to 0, the Backlight Time Out is disabled, which means that the Backlight will always be on.
2) Auto-Scroll Setup allows users to select which SM and whether Analog Input would be displayed in Auto-Scroll Mode. For Example, if the PMC-512-D is used for monitoring 9 branch circuits with SM1 to SM9, the remaining three SMs can be disabled in the Auto-Scroll Mode to prevent unnecessary information from being displayed. The Parameter Categories and their measurements are listed in the table below, and all of them are Enabled in Auto-Scroll Mode by default. The Parameter
Category Mains Circuit is always shown and cannot be disabled in Auto-Scroll mode.
Parameter Categories
Measurements
Mains Circuit
U
I*/Ir~
%Loading1
P1
kWh1 SMx (x=1-12)
Ix
%Loadingx
Px
kWhx
AI
AI Scaled
AI Raw
*I stands for the Mains Current when working with Mains Circuit Hall Effect CT. ~Ir stands for the Residual Current when working with DC Residual Hall Effect CT.
Note:
1) When the Mains Current Type is Residual Current, %Loading, P, and kWh are not available.
Table 3-12 Auto-Scroll Display Pages
Page 33
32
CET Inc.
Chapter 4 Applications
4.1 Inputs and Outputs
4.1.1 Digital Inputs
The PMC-512-D is equipped with 13 Wet Contact Digital Inputs (DIs) that are used for breaker status
monitoring. Changes in Digital Input status are stored as events in the SOE Log at 1 ms resolution. Each
DI has the following setup parameters:
Setup Parameter
Definition
Options/Default*
DIx Excitation1
(Reg. # 6100)
Specifies the voltage excitation level.
0 = 220VDC*
1= 220VAC, 2 = 110VDC
3= 110VAC, 4= 48VDC
5= -48VDC
DIx Debounce
(Reg. # 6101~6113)
Specifies the minimum duration the DI must
remain in the Active or Inactive state before a
DI state change is considered to be valid.
1 to 9999 (ms)
40ms*
Table 4-1 Definition for DI Parameters
Note:
1. The available options for DI Excitation would depend on the PMC-512-D model. The 48VDC and -48VDC options are only available for the hardware that are equipped with 48VDC DI while the 220VDC, 220VAC, 110VDC and 110VAC options are available for the 240VDC (max. 336VDC) DI.
4.1.2 Analog Input
The PMC-512-D comes standard with an Analog Input which can be programmed as 0mA to 20mA or
4mA to 20mA input. There are 3 setup parameters:
Setup Parameter
Definition
Options/Default*
AI Type
(Reg. # 6050)
Select between 0-20mA or 4-20mA input.
0 = 4 -20 mA*
1 = 0 -20 mA
AI Zero
(Reg. # 6051)
This value corresponds to the minimum Analog
Input of 4 mA (for 4-20mA input) and has a range of
-999,999 to +999,999.
-999,999 to +999,999 400*
AI Full
(Reg. # 6053)
This value corresponds to the maximum Analog
Input of 20 mA and has a range of -999,999 to
+999,999.
-999,999 to +999,999
2000*
Table 4-2 AI Setup Parameters
For example, to measure the oil temperature of a transformer, connect the outputs of the temperature
sensor to the AI terminals of the PMC-512-D. The temperature sensor outputs 4mA when the
temperature is -25°C and 20mA when the temperature is 100°C. As such, the Type parameter should be
programmed as 4-20mA. The AI FULL parameter should be programmed with the value 100, and the AI
ZERO parameter should be programmed with the value -25. Therefore, when the output of the sensor is
20mA, the reading will be 100.00°C. When the output is 4mA, the reading will be -25.00°C. When the
output is 12mA, the reading will be (100°C - (-25°C)) x (12mA-4mA) / (20mA-4mA) + (-25°C) = 37.50°C.
4.1.3 Energy Pulse Outputs
The PMC-512-D comes standard with one Front Panel LED Pulse Output for kWh pulsing. Energy pulsing
mode can be programmed from the Front Panel or through communications via the LED EN Pulse setup
parameter. Energy Pulse Outputs are typically used for accuracy testing. The pulse constant can be
configured as 1/10/100/400/1000/3200 imp/kWh.
Page 34
33
CET Inc.
4.2 Power, Energy and Demand
4.2.1 Basic Measurements
The PMC-512-D provides the following basic measurements that can be accessed via the communication:
Parameter
Description
Mains Current Type = Incomer
Mains Current Type = Residual
U
Mains Voltage ● ●
I
Mains Current ● ○
Ir
Residual Current ○ ●
%Loading
Mains Loading rate
P
Mains Power ● ○
kWh
Mains Energy ● ○
I1-I12
SM1-12 Current ● ●
%Loading1-12
SM1-12 %Loading ● ●
P1-P12
SM1-12 Power ● ●
kWh1-12
SM1-12 Energy ● ●
AI
Analog Input ● ●
Table 4-4 Basic Measurements
4.2.2 Energy Measurements
The PMC-512-D's Energy measurements include Mains Energy (if the Mains Current Type = Incomer)
and SM 1-12 Energy at a resolution of 0.01kWh and a maximum value of 999,999.99kWh. When the
maximum value is reached, it will automatically roll over to zero.
The energy can be reset manually via the Front Panel or through communications.
4.2.3 Demands
Demand is defined as the average power consumption over a fixed interval (usually 15 minutes) based
on the sliding window method. The PMC-512-D provides the Current and kW Total Present Demand of
Mains and Branch Circuits as well as the Current and kW total Peak Demand of Mains and Branch Circuits
for This Month (Since Last Reset) and Last Month (Before Last Reset). Please note that the kW total
Present and Peak Demand for the Mains Circuit are not available if the Mains Current Type is Residual
Current. The Present Demand and Peak Demand data can be retrieved via Communications and, its Setup
Parameters are available via the Front Panel and through communications.
The PMC-512-D provides the following Demand setup parameters:
Parameter
Definition
Options
Demand Period
(Reg. # 6006)
1 to 60 minutes. For example, if the # of Sliding Windows is
set as 1 and the Demand Period is 15, the demand cycle will
be 1×15=15min.
1 to 60 minutes Default=15
# of Sliding
Windows
(Reg. # 6007)
Number of Sliding Windows.
1 to 15 Default=1
Self-Read Time
(Reg. # 6008)
The Self-Read Time allows the user to specify the time and
day of the month for the Peak Demand Self-
Read operation.
The Self-Read Time supports three options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
A 0xFFFF value will disable the Self-Read operation and replace it with manual operation. A manual reset will
cause the Max. Demand of This Month to be transferred to
Default=0xFFFF
Page 35
34
CET Inc.
the Max. Demand of Last Month and then reset. The
terms This Month and Last Month will become Since Last
Reset and Before Last Reset.
Self-Read Mode
(Reg. # 6009)
0=Auto
1=Manual
Default = 0
Table 4-5 Demand Setup
4.3 Alarm Setpoints
The PMC-512-D provides powerful alarming functions for the Mains Meter, 12 Sub-Meters as well as
different parameters. Each Alarm Type has an independent enable switch, which allows the alarms for
Mains Meter, SM and other parameters to be enabled individually as needed. The alarms may also be
disabled by setting their respective alarm thresholds to 0.
4.3.1 Alarm Status
The PMC-512-D supports both the Instantaneous Alarm and Latched Alarm, which are defined below.
Instantaneous Alarm
The status of an Instantaneous Alarm becomes ALARM when the alarm condition is met and is
automatically reset to NORMAL when the alarm condition is no longer met. Instantaneous Alarm cannot
be reset manually.
Latched Alarm
On the other hand, the status of a Latched Alarm becomes ALARM when the alarm condition is met and
will remain in the ALARM state even after the alarm condition is no longer met. The Latched Alarm must
be reset manually. However, the Latched Alarm cannot be reset while the alarm condition remains.
Figure 4-1 Alarm Status
4.3.2 Universal Hysteresis and Current ON/OFF Status
The Universal Hysteresis, Current ON Threshold, Current ON Delay and Current OFF Delay are global
parameters that are valid for all relevant alarms.
Parameters Description Range
Default
Value
Universal Hysteresis
The hysteresis rate for calculating the Return Threshold for all Alarms.
0 to 10% 2%
Current ON Threshold
The ON Threshold that applies to all Current
channels for switching from the OFF to ON
state.
0 to 10% 5%
Current ON Delay
The minimum duration that the Current of
a particular channel must exceed the ON Threshold before the Status would switch
from OFF to ON.
0 to 9999 (s) 10 s
Page 36
35
CET Inc.
Current OFF Delay
The minimum duration that the Current of
a particular channel must fall below the OFF Threshold before the Status would
switch from ON to OFF.
0 to 9999 (s) 30 s
Table 4-6 Global Parameters
The Universal Hysteresis is a global parameter that is used to prevent measurement fluctuation around
the threshold point from causing an alarm to fluctuate between the Active and Inactive states.
The PMC-512-D provides the ON/OFF status for each Current channel to indicate whether the channel is
ON (Loaded) or OFF (No Load). If the channel status is OFF, it means that the channel has no load which
would prevent the Low and Low-Low alarms from activating.
The following figures illustrate the logic diagram of the Current ON/OFF status, respectively.
Where
Current ON Limit = Breaker Rating
×
Current ON Threshold
Current OFF Threshold = Current ON Threshold × (1 – Universal Hysteresis)
Current OFF Limit = Breaker Rating
×
Current OFF Threshold
It should be noted that the absolute value of the Current ON/OFF Limit is calculated based on the
Breaker Rating parameters. Therefore, it’s critical to set the Breaker Rating correctly for the Mains and
each Branch Circuit for the Current Alarms to work properly.
Figure 4-2 Current ON Logic Diagram Figure 4-3 Current OFF Logic Diagram
Figure 4-4 Current ON/OFF Status
4.3.3 Voltage Alarms and ON/OFF Status
PMC-512-D provides the Voltage ON/OFF status as well as two Voltage Alarm levels (High and Low) for
the Mains Circuit. The Voltage H/L Alarms will only be evaluated if it’s determined that the Voltage
status is ON.
Page 37
36
CET Inc.
It should be noted that the absolute value of the Voltage ON/OFF Threshold is calculated based on the
Nominal Voltage parameter. Therefore, it’s critical to set the Nominal Voltage correctly for the
Voltage ON/OFF to work properly.
Voltage Alarm ON Limit = Nominal Voltage x 5.0%
Voltage Alarm OFF Limit = Voltage ON Limit x (1 – Universal Hysteresis)
The following figures illustrate the logic diagram of the Voltage Alarm ON/OFF status, respectively.
Fi
gure 4-5 Voltage ON Logic Diagram Figure 4-6 Volta ge OFF Logic Diagram
The following table illustrates the Voltage Alarm parameters.
Parameters
Description
Range/Default
Voltage H Alarm Limit
Voltage H Alarm Limit
0*1 to 300V
Voltage H Alarm Time Delay
Voltage H Alarm Time Delay
0* to 9999(s)
Voltage L Alarm Limit
VLN H Alarm Limit
0* to 300V
Voltage L Alarm Time Delay
VLN H Alarm Time Delay
0* to 9999(s)
Voltage Alarm Trigger VLN Alarm Trigger
0*2 = Disabled
Bit 0 = RO
Bit 1= Alarm Indicator
Bits 2-15=Reserved
Table 4-7 Voltage Alarm Parameters
Notes:
1) 0 means this Alarm Channel is disabled.
2) 0 means the Alarm Trigger is disabled.
The logic diagram of Voltage H Alarm is illustrated in Figure 4-7.
Figure 4-7 Voltage H Alarm Logic Diagram
The logic diagram of Voltage L Alarm is illustrated in Figure 4-8.
Figure 4-8 Voltage L Alarm Logic Diagram
Page 38
37
CET Inc.
4.3.4 Mains Current Alarms
PMC-512-D provides four Current alarm levels (High-High, High, Low, Low-Low) for the Mains Current.
The Current Alarms will only be evaluated if it’s determined that the Current ON status is true for the
Mains Meter. The Mains Current Alarms will only be evaluated if the Mains Current Type is Incomer.
The following table illustrates the Mains Current Alarms parameters.
Parameters
Description
Range/Default
Current HH Alarm Threshold (%)
Mains Current HH Alarm Threshold
0* to 100%
Current HH Alarm Time Delay
Mains Current HH Alarm Time Delay
0 to 9999(s), 10s*
Current H Alarm Threshold (%)
Mains Current H Alarm Threshold
0 to 100%, 0%*
Current H Alarm Time Delay
Mains Current H Alarm Time Delay
0 to 9999(s), 0s*
Current L Alarm Threshold (%)
Mains Current L Alarm Threshold
0* to 100%
Current L Alarm Time Delay
Mains Current L Alarm Time Delay
0* to 9999(s)
Current LL Alarm Threshold (%)
Mains Current LL Alarm Threshold
0* to 100%
Current LL Alarm Time Delay
Mains Current LL Alarm Time Delay
0* to 9999(s)
Current Alarm Trigger Mains Current Alarm Trigger
0*=Disabled, Bit 0=DO
Bit 1=Alarm LED
Bits 2-15=Reserved
Table 4-8 Current Alarm Parameters
For High and High-High Alarms, which are conceptually similar to Over Setpoint:
Return Threshold = Alarm Threshold x (1 – Universal Hysteresis)
For Low and Low-Low Alarms, which are conceptually similar to Under Setpoint:
Return Threshold = Alarm Threshold x (1 + Universal Hysteresis)
The following logic diagrams illustrates the different levels of Current Alarms.
Where
Current Alarm Limit = Mains’ Breaker Rating x Alarm Threshold (%)
Current Return Limit = Mains’ Breaker Rating × Return Threshold (%)
It should be noted that the absolute value of the Current Alarm Limit is calculated based on the
Breaker Rating parameters. Therefore, it’s critical to set the Breaker Rating correctly for the Current
Alarms to work properly.
Current HH Alarm:
F
igure 4-9 Current HH Alarm Logic Diagram
Page 39
38
CET Inc.
Current H Alarm:
Figure 4-10 Current H Alarm Logic Diagram
Cur
rent L Alarm:
Figure 4-11 Current L Alarm Logic Diagram
Current LL Alarm
Fig
ure 4-12 Current LL Alarm Logic Diagram
4.3.5 DC Residual Current Alarm
When the Mains Current Type is Residual, the PMC-512-D provides 2 alarm levels (High-High, High) for
the Residual Current Alarm. If the Mains Current Type is Incomer, the Residual Current Alarm is
disabled.
The following table illustrates the Residual Current Alarm parameters.
Parameters
Description
Range/Default
Current H Alarm Limit
Residual Current HH Alarm Limit
0*1 to 1000 mA
Current H Alarm Time Delay
Residual Current HH Alarm Time Delay
0* to 9999 (s)
Current HH Alarm Limit
Residual Current H Alarm Limit
0*1 to 1000 mA
Current HH Alarm Time Delay
Residual Current H Alarm Time Delay
0*1 to 9999 (s)
Current Alarm Trigger Residual Current Alarm Trigger
0*2=Disabled, Bit 0=DO
Bit 1=Alarm LED
Bits 2-15=Reserved
Table 4-9 Current Alarm Parameters
Notes:
1) 0 means this Alarm Channel is disabled.
2) 0 means the Alarm Trigger is disabled.
Page 40
39
CET Inc.
For High and High-High Alarms, which are conceptually similar to Over Setpoint:
Return Limit = Alarm Limit x (1 – Universal Hysteresis)
Residual Current H Alarm:
Figure 4-13 Current H Alarm Logic Diagram
Residual Current HH Alarm:
Figure 4-14 Current HH Alarm Logic Diagram
4.3.6 SM Current Alarm
PMC-512-D also provides four Current alarm levels (High-High, High, Low, Low-Low) for each SM Current.
The SM Current Alarms will only be evaluated if it’s determined that the respective SM Current ON status
is true. The SM Current Alarm Enable register provides
the ability to individually enable the Current
Alarm for each SM. The Alarm Threshold and Time Delay settings would apply to all SMs that are enabled
for SM Current Alarm.
The following table illustrates the SM Current Alarm setup parameters.
Parameters
Description
Range/Default
Current Alarm Enable
Enable SM1-12 to for Current Alarm
0*-0x0FFF
1
Current HH Alarm Threshold (%)
SM Current HH Alarm Threshold
02 to 100%, 80%*
Current HH Alarm Time Delay
SM Current HH Alarm Time Delay
0 to 9999 (s), 10s*
Current H Alarm Threshold (%)
SM Current H Alarm Threshold
02 to 100%, 60%*
Current H Alarm Time Delay
SM Current H Alarm Time Delay
0 to 9999(s), 10s*
Current L Alarm Threshold (%)
SM Current L Alarm Limit
0*2 to 100%
Current L Alarm Time Delay
SM Current L Alarm Time Delay
0* to 9999(s)
Current LL Alarm Threshold (%)
SM Current LL Alarm Threshold
0*2 to 100%
Current LL Alarm Time Delay
SM Current LL Alarm Time Delay
0* to 9999(s)
Current Alarm Trigger SM Current Alarm Trigger
0*3=Disabled, Bit 0=DO
Bit 1=Alarm LED
Bits 2-15=Reserved
Table 4-10 Current Alarm Parameters
Page 41
40
CET Inc.
Notes:
1) Bits 0 to 11 represent the SM Current Alarm Enable for SM1 to 12 respectively, with the bit value “0” meaning Disabled and “1” meaning Enabled. For example, 0x003F means SM1 to 6 are enabled for Current Alarm and SM7 to 12 are disabled.
2) 0 means this Alarm Channel is disabled.
3) 0 means the Current Alarm Trigger is disabled.
For High and High-High Alarms, which are conceptually similar to Over Setpoint:
Return Threshold = Alarm Threshold x (1 – Universal Hysteresis)
For Low and Low-Low Alarms, which are conceptually similar to Under Setpoint:
Return Threshold = Alarm Threshold x (1 + Universal Hysteresis)
The following logic diagrams illustrates the different levels of Current Alarms.
Where
SMx Current Alarm Limit = SMx’s Breaker Rating x Alarm Threshold (%)
It should be noted that the absolute value of the Current Alarm Limit is calculated based on the Breaker
Rating parameters. Therefore, it’s critical to set the Breaker Rating correctly for each SM Current for
the Current Alarms to work properly.
Current HH Alarm:
F
igure 4-15 Current HH Alarm Logic Diagram
Current H Alarm:
F
igure 4-16 Current H Alarm Logic Diagram
Page 42
41
CET Inc.
Current L Alarm:
F
igure 4-17 Current L Alarm Logic Diagram
Current LL Alarm
Figure 4-18 Current LL Alarm Logic Diagram
4.3.7 AI Alarm
PMC-512-D provides four AI Alarm Levels (High-High, High, Low, Low-Low). The following table illustrates
the AI Alarm parameters.
Parameters
Range
Default
AI Alarm Enable (Reg. # 6484)
0* = Disable
Bit0=HH Bit1=H Bit2=L Bit3=LL
0
AI HH Alarm Threshold (Reg. # 6485)
-999999 to 999999 0
AI HH Alarm Time Delay (Reg. # 6487)
0 to 9999 (s) 10 s
AI H Alarm Threshold (Reg. # 6488)
-999999 to 999999 0
AI H Alarm Time Delay (Reg. # 6490)
0 to 9999(s) 10 s
AI L Alarm Threshold (Reg. # 6491)
-999999 to 999999 0
AI L Alarm Time Delay (Reg. # 6493)
0 to 9999(s) 10 s
AI LL Alarm Threshold (Reg. # 6494)
-999999 to 999999 0
AI LL Alarm Time Delay (Reg. # 6496)
0 to 9999(s) 10s
AI Alarm Trigger (Reg. # 6497)
0*=Disabled
Bit 0=DO, Bit 1=Alarm LED
Bits 2-15=Reserved
0
Table 4-11 AI Alarm Parameters
Page 43
42
CET Inc.
The logic diagram of AI H/HH Alarm is illustrated in Figure 4-19.
Fi
gure 4-19 AI H Alarm Logic Diagram
The logic diagram of AI L/LL Alarm is illustrated in Figure 4-20.
Fi
gure 4-20 AI L Alarm Logic Diagram
4.3.8 DI Alarm
The following table illustrates the DI Alarm parameters.
Parameters
Description
Default
DIx Alarm Type
0=Disabled
1=DI1 Closed Trigger; 2=DI1 Open Trigger
0
DIx Alarm Time Delay
0 to 9999 (s)
0 s
DIx Alarm Trigger
0* = Disabled
Bit 0 = DO, Bit 1 = Alarm LED
Bit 2-15=Reserved
0
x indicates 1 to 13
Table 4-12 DI Alarm Parameters
The logic diagram of DI Closed Alarm is illustrated in Figure 4-21.
Figure 4-21 DI Closed Alarm Logic Diagram
The logic diagram of DI Open Alarm is illustrated in Figure 4-22.
Fi
gure 4-22 DI Open Alarm Logic Diagram
Page 44
43
CET Inc.
4.4 Data Logging
4.4.1 Peak Demand Log
The PMC-512-D records the Peak Demand of This Month (Since Last Reset) and Last Month (Before Last
Reset) with timestamp for Current, kW Total for Mains Meter and SMs. All Peak Demand information
can be accessed through communications. Please refer to Section 4.2.3 for a complete description of the
Self-Read Time and its operation. The Peak Demand Log of This Month (Since Last Reset) and all the
Peak Demand can be reset individually through the Front Panel or via communications.
4.4.2 Monthly Energy Log
The PMC-512-D stores monthly energy data of the Mains Meter and SMs for the present month and the
last 24 months. The Monthly Energy Log Self-Read Time setup parameter allows the user to specify the
time and day of the month for the Recorder’s Self-Read operation via communications. The Monthly
Energy Log is stored in the meter’s non-volatile memory and will not suffer any loss in the event of power
failure, and they are stored on a First-In-First-Out basis where the newest log will overwrite the oldest.
The Monthly Energy Log Self-Read Time supports two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place at a specific time and day based on the
formula: Energy Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example,
the value 1512 means that the Self-Read will take place at 12:00pm on the 15th
day of each month.
The Monthly Energy Log can be reset manually through the Front Panel or via communications.
4.4.3 SOE Recorder
The PMC-512-D’s SOE Log can store up to 512 events such as Power-On, Power-Off, Alarms, Relay actions,
Digital Input status changes, Diagnostics and Setup changes in non-volatile memory. Each event includes
a cause, its relevant parameter values and a timestamp in 1ms resolution.
All events can be retrieved through the Front Panel or via communications. If there are more than 512
events, the newest event will replace the oldest event on a FIFO basis. The SOE Log can be reset through
the Front Panel or via communications.
4.4.4 Data Recorder Log
The PMC-512-D provides one Data Recorder capable of recording a maximum of 60 parameters. Up to
5,000 Data Recorder Logs can be stored in the device’s non-volatile memory and will not suffer any loss
in the event of a power failure.
The programming of the Data Recorder is only supported over communication. The Data Recorder
provides the following setup parameters:
Setup Parameters
Value/Option
Default
Trigger Mode
0=Disabled / 1=Triggered by Timer
0
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
0
Recording Depth
1 to 5000 (entry)
5000
Recording Interval
60 to 345,600 seconds
60 s
Offset Time
0 to 43,200 seconds, 0 indicates no offset.
0
Number of Parameters
0 to 60
0
Parameter 1 to 60
See Appendix B
0
Table 4-13 Setup Parameters for Data Recorder
Page 45
44
CET Inc.
The Data Recorder Log is only operational when the values of Trigger Mode, Recording Mode, Recording
Depth, Recording Interval, and Number of Parameters are all non-zero.
The Recording Offset parameter can be used to delay the recording by a fixed time from the Recording
Interval. For example, if the Recording Interval parameter is set to 3600 (hourly) and the Recording
Offset parameter is set to 300 (5 minutes), the recording will take place at 5 minutes after the hour every
hour, i.e. 00:05, 01:05, 02:05…etc. The value of the Recording Offset parameter should be less than the
Recording Interval parameter.
Page 46
45
CET Inc.
Chapter 5 Modbus Register Map
This chapter provides a complete description of the Modbus register map (Protocol Version 2.0) for
the PMC-512-D to facilitate the development of 3
rd
party Modbus RTU communications driver for
accessing information on the PMC-512-D.
The PMC-512-D supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
4) Read Energy Files (Function Code 0x14)
For a complete Modbus Protocol Specification, please visit http://www.modbus.org
.
5.1 Status Register
5.1.1 General Status
Register
Property
Description
Format
Note
0000
RO
DI Status1
Bitmap
0001
RO
DO Status2
Bitmap
0002
RO
Diagnostics3
Bitmap
0004
RO
SOE Pointer4
UINT32
0006~0007
RO
Reserved
UINT32
0008
RO
DR Log Pointer5
UINT32
0010
RO
Monthly Energy Log Pointer5
UINT32
0012
RO
General Alarm Status
UINT16
0=Normal, 1=Alarm
Table 5-1 General Status
Notes:
1) For the DI Status register, the bit values of Bit0 to Bit12 represent the state of DI1 to DI13, respectively, with “1” meaning active (closed) and “0” meaning inactive (open).
2) For the DO Status register, the bit value of Bit0 represent the states of DO, with “1” meaning active (closed) and “0” m eaning inactive (open). The remaining bits are reserved.
3) The Diagnostics register indicates the various system statuses with a bit value of 0 meaning normal and 1 meaning fault. The following table illustrates the details of the Diagnostics register.
Bit
Alarm Event
Bit 0
NVRAM Fault
Bit 1
Flash Fault
Bit 2
A/D Chips Fault
Bit 3
Internal Power Supply Fault
Bit 4
System Parameters Error
Bit 5
Internal Parameters Error
Bit 6-31
Reserved
Table 5-2 Diagnostics Register (Reg. # 0002)
4) The range of the SOE Pointer is between 0 and 0xFFFFFFFFH. The SOE Pointer is incremented by one for every event generated and will roll over to 0 if its current value is 0xFFFFFFFFH. The SOE Log capacity is relatively small with only 512 events in the PMC-512-D, and it can be reset to zero and then immediately incremented by one with a new “Clear SOE via Communications” event. When the number of events is larger than 512, only the latest 512 events will be stored.
5) The range of the DR Log/Monthly Log Pointer is between 0 and 0xFFFFFFFFH. The pointers point to the current logging position and are incremented by one for every new record generated and will ro ll over to 0 if its current value is 0xFFF FFFFFH. Use the following equation to determine the latest log location:
Latest Log Location = Modulo [SOE Pointer/Log Depth]
Where Log Depth = 512 for SOE Log and DR’s Recording Depth for the DR Log
.
Page 47
46
CET Inc.
5.1.2 Instantaneous Alarm
Register
Property
Description
Format
Note
0030
RO
Alarm#1 Status
Bitmap 0031
RO
Alarm#2 Status
Bitmap 0032
RO
Alarm#3 Status
Bitmap 0033
RO
Alarm#4 Status
Bitmap 0034
RO
Alarm#5 Status
Bitmap
Table 5-3 Instantaneous Alarm
Note:
1. For the Alarm #x Status register, each bit values of B0 to B11 represent different alarms, with “1” meaning active (Alarm) and “0” meaning inactive (Normal).
Bit
Bit 2
Bit 1
Bit 0
Status
Mains Current HH Alarm
Mains Current L Alarm
Mains Current H Alarm
Bit
Bit 5
Bit 4
Bit 3
Status
Residual Current HH Alarm
Residual Current H Alarm
Mains Current LL Alarm
Bit
Bit 8
Bit 7
Bit 6
Status
AI H Alarm
Voltage L Alarm
Voltage H Alarm
Bit
Bit 11
Bit 10
Bit 9
Status
AI LL Alarm
AI HH Alarm
AI L Alarm
Table 5-4 Alarm#1 Status (Register 0030)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM1 I-LL Alarm
SM1 I-HH Alarm
SM1 I-L Alarm
SM1 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM2 I-LL Alarm
SM2 I-HH Alarm
SM2 I-L Alarm
SM2 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM3 I-LL Alarm
SM3 I-HH Alarm
SM3 I-L Alarm
SM3 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM4 I-LL Alarm
SM4 I-HH Alarm
SM4 I-L Alarm
SM4 I-H Alarm
Table 5-5 Alarm#2 Status (Register 0031)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM5 I-LL Alarm
SM5 I-HH Alarm
SM5 I-L Alarm
SM5 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM6 I-LL Alarm
SM6 I-HH Alarm
SM6 I-L Alarm
SM6 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM7 I-LL Alarm
SM7 I-HH Alarm
SM7 I-L Alarm
SM7 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM8 I-LL Alarm
SM8 I-HH Alarm
SM8 I-L Alarm
SM8 I-H Alarm
Table 5-6 Alarm#3 Status (Register 0032)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM9 I-LL Alarm
SM9 I-HH Alarm
SM9 I-L Alarm
SM9 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM10 I-LL Alarm
SM10 I-HH Alarm
SM10 I-L Alarm
SM10 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM11 I-LL Alarm
SM11 I-HH Alarm
SM11 I-L Alarm
SM11 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM12 I-LL Alarm
SM12 I-HH Alarm
SM12 I-L Alarm
SM12 I-H Alarm
Table 5-7 Alarm#4 Status (Register 0033)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
DI4 Alarm
DI3 Alarm
DI2 Alarm
DI1 Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
DI8 Alarm
DI7 Alarm
DI5 Alarm
DI5 Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
DI12 Alarm
DI11 Alarm
DI10 Alarm
DI9 Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
DI13 Alarm
Table 5-8 Alarm#5 Status (Register 0034)
Page 48
47
CET Inc.
5.1.3 Latched Alarm
Register
Property
Description
Format
Note
0130
RO
Alarm#1 Status
Bitmap
0131
RO
Alarm#2 Status
Bitmap
0132
RO
Alarm#3 Status
Bitmap
0133
RO
Alarm#4 Status
Bitmap
0134
RO
Alarm#5 Status
Bitmap
0134~0145
RO
Reserved
Bitmap
Table 5-9 Latch Alarm
Note:
1. For the Alarm #x Status register, each bit values of B0 to B15 represent different alarms, with “1” meaning active (closed) and “0” meaning inactive (open).
Bit
Bit 2
Bit 1
Bit 0
Status
Mains Current HH Alarm
Mains Current L Alarm
Mains Current H Alarm
Bit
Bit 5
Bit 4
Bit 3
Status
Residual Current HH Alarm
Residual Current H Alarm
Mains Current LL Alarm
Bit
Bit 8
Bit 7
Bit 6
Status
AI H Alarm
Voltage L Alarm
Voltage H Alarm
Bit
Bit 11
Bit 10
Bit 9
Status
AI LL Alarm
AI HH Alarm
AI L Alarm
Table 5-10 Alarm#1 Status (Register 0130)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM1 I-LL Alarm
SM1 I-HH Alarm
SM1 I-L Alarm
SM1 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM2 I-LL Alarm
SM2 I-HH Alarm
SM2 I-L Alarm
SM2 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM3 I-LL Alarm
SM3 I-HH Alarm
SM3 I-L Alarm
SM3 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM4 I-LL Alarm
SM4 I-HH Alarm
SM4 I-L Alarm
SM4 I-H Alarm
Table 5-11 Alarm#2 Status (Register 0131)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM5 I-LL Alarm
SM5 I-HH Alarm
SM5 I-L Alarm
SM5 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM6 I-LL Alarm
SM6 I-HH Alarm
SM6 I-L Alarm
SM6 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM7 I-LL Alarm
SM7 I-HH Alarm
SM7 I-L Alarm
SM7 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM8 I-LL Alarm
SM8 I-HH Alarm
SM8 I-L Alarm
SM8 I-H Alarm
Table 5-12 Alarm#3 Status (Register 0132)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
SM9 I-LL Alarm
SM9 I-HH Alarm
SM9 I-L Alarm
SM9 I-H Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
SM10 I-LL Alarm
SM10 I-HH Alarm
SM10 I-L Alarm
SM10 I-H Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
SM11 I-LL Alarm
SM11 I-HH Alarm
SM11 I-L Alarm
SM11 I-H Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
SM12 I-LL Alarm
SM12 I-HH Alarm
SM12 I-L Alarm
SM12 I-H Alarm
Table 5-13 Alarm#4 Status (Register 0133)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
DI4 Alarm
DI3 Alarm
DI2 Alarm
DI1 Alarm
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
DI8 Alarm
DI7 Alarm
DI5 Alarm
DI5 Alarm
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
DI12 Alarm
DI11 Alarm
DI10 Alarm
DI9 Alarm
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
DI13 Alarm
Table 5-14 Alarm#5 Status (Register 0134)
Page 49
48
CET Inc.
5.2 Basic Measurements
Register
Property
Description
Format
Scale
Unit
0500 RO Channel Polarity UINT32
x1
Bit 0: Voltage
Bit 1: Mains I
Bit 2: SM1 I
Bit 13: SM12 I
Others: Reserved
0=Normal
1=Reverse
0502~0503
RO
Reserved
FP32 0504
RO
U
FP32 V 0506
RO
Mains Current1
FP32 A 0508
RO
Residual Current2
FP32
mA
0510~0511
RO
Reserved
FP32
0512
RO
SM1 Current
FP32
A
0514
RO
SM2 Current
FP32 … … FP32
0532
RO
SM11 Current
FP32
0534
RO
SM12 Current
FP32
0536~0539
RO
Reserved
FP32 0540 Mains kW
FP32 W 0542
RO
SM1 kW
FP32 W 0544
RO
SM2 kW
FP32
0546
RO
SM3 kW
FP32 … … FP32
0564
RO
SM12 kW
FP32
0566~0569
RO
Reserved
0570
RO
Mains %Loading3
FP32 - 0572
RO
SM1 %Loading3
FP32
0574
RO
SM 2 %Loading3
FP32 … … FP32
0594
RO
SM12 %Loading3
FP32
0596~0601
RO
Reserved
FP32 0602
RO
AI Raw
UINT16
x0.01
mA
0603
RO
AI Scaled
FP32
Table 5-15 Real-time Measurements
Notes:
1) When Mains Current Type is Residual, this register is invalid.
2) When Mains Current Type is Incomer, this register is invalid.
3) For example, the return value 0.001 means the %Loading = 0.1%.
5.3 Energy Measurements
Register
Property
Description
Format
Scale
Unit
2000
RO
Mains kWh
INT32
x0.01 kWh
2002
RO
SM1 kWh
INT32
2004
RO
SM2 kWh
INT32
2006
RO
SM3 kWh
INT32
2008
RO
SM4 kWh
INT32
2010
RO
SM5 kWh
INT32
2012
RO
SM6 kWh
INT32
2014
RO
SM7 kWh
INT32
2016
RO
SM8 kWh
INT32
2018
RO
SM9 kWh
INT32
2020
RO
SM10 kWh
INT32
2022
RO
SM11 kWh
INT32
2024
RO
SM12 kWh
INT32
Table 5-16 Energy Measurements
5.4 Monthly Energy Log
Register
Property
Description
Format
Scale
Unit
2700
RW
Month1
UINT16
0* to 24
Page 50
49
CET Inc.
2701 RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
Time Stamp
(20YY/MM/DD
HH:MM:SS)
2702 RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
2703 RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
2704
RO
Millisecond
UINT16
2705
RO
Mains kWh
INT32
x0.01 kWh
2707
RO
SM1 kWh
INT32
2709
RO
SM2 kWh
INT32
2711
RO
SM3 kWh
INT32
2713
RO
SM4 kWh
INT32
2715
RO
SM5 kWh
INT32
2717
RO
SM6 kWh
INT32
2719
RO
SM7 kWh
INT32
2721
RO
SM8 kWh
INT32
2723
RO
SM9 kWh
INT32
2725
RO
SM10 kWh
INT32
2727
RO
SM11 kWh
INT32
2729
RO
SM12 kWh
INT32
Table 5-17 Monthly Energy Log
Notes:
1. This Register represents the Month when it is read. To read the Monthly Energy Log, this register must be first written to indicate the PMC-512-D which log to load from memory. The range of this register is from 0 to 24, which represents the Present Month and the Last 24 Months.
2. For each Monthly Energy Log, the time stamp shows the exact Self-Read time (20YY/MM/DD/HH:MM:SS) when the log was recorded. For the monthly Energy Log of the Present Month, the time stamp shows the current time of the meter because the present month is not yet over.
3. The Monthly Energy Log for this Month can be modified, but the Monthly Energy Log for the last 24 months are Read Only.
5.5 Demands
5.5.1 Present Demands
Register
Property
Description
Format
Scale
Unit
3500
RO
Mains Current Demand*
FP32
x1
A
3502
RO
SM1 Current Demand
FP32
3504
RO
SM2 Current Demand
FP32
3506
RO
SM3 Current Demand
FP32
3508
RO
SM4 Current Demand
FP32
3510
RO
SM5 Current Demand
FP32
3512
RO
SM6 Current Demand
FP32
3514
RO
SM7 Current Demand
FP32
3516
RO
SM8 Current Demand
FP32
3518
RO
SM9 Current Demand
FP32
3520
RO
SM10 Current Demand
FP32
3522
RO
SM11 Current Demand
FP32
3524
RO
SM12 Current Demand
FP32
3526
RO
Mains kW Demand*
FP32
W
3528
RO
SM1 kW Demand
FP32
3530
RO
SM2 kW Demand
FP32
3532
RO
SM3 kW Demand
FP32
3534
RO
SM4 kW Demand
FP32
3536
RO
SM5 kW Demand
FP32
3538
RO
SM6 kW Demand
FP32
3540
RO
SM7 kW Demand
FP32
3542
RO
SM8 kW Demand
FP32
3544
RO
SM9 kW Demand
FP32
3546
RO
SM10 kW Demand
FP32
3548
RO
SM11 kW Demand
FP32
3550
RO
SM12 kW Demand
FP32
*When Mains Current Type is Residual, this register is invalid
Table 5-18 Present Demand Measurements
Page 51
50
CET Inc.
5.5.2 Peak Demand Log of This Month (Since Last Reset)
Register
Property
Description
Format
Scale
Unit
4000
RO
Mains Current Demand*
FP32
x1
A
4002
RO
Timestamp
UINT32 s
4004
RO
SM1 Current Demand
FP32
x1
A
4006
RO
Timestamp
UINT32 s
4008
RO
SM2 Current Demand
FP32
x1
A
4010
RO
Timestamp
UINT32 s
4048
RO
SM12 Current Demand
FP32
x1
A
4050
RO
Timestamp
UINT32 s
4052
RO
Mains kW Demand*
FP32
x1
A
4054
RO
Timestamp
UINT32 s
4056
RO
SM1 kW Demand
FP32
x1
W
4058
RO
Timestamp
UINT32 s
4060
RO
SM2 kW Demand
FP32
x1
W
4062
RO
Timestamp
UINT32 s
4100
RO
SM12 kW Demand
FP32
x1
W
4102
RO
Timestamp
UINT32 s
*When Mains Current Type is Residual, this register is invalid
Table 5-19 Peak Demand Log of This Month (Since Last Reset)
5.5.3 Peak Demand Log of Last Month (Before Last Reset)
Register
Property
Description
Format
Scale
Unit
4104
RO
Mains Current Demand*
FP32
x1
A
4106
RO
Timestamp
UINT32 s
4108
RO
SM1 Current Demand
FP32
x1
A
4110
RO
Timestamp
UINT32 s
4112
RO
SM2 Current Demand
FP32
x1
A
4114
RO
Timestamp
UINT32 s
4152
RO
SM12 Current Demand
FP32
x1
A
4154
RO
Timestamp
UINT32 s
4156
RO
Mains kW Demand*
FP32
x1
A
4158
RO
Timestamp
UINT32 s
4160
RO
SM1 kW Demand
FP32
x1
W
4162
RO
Timestamp
UINT32 s
4164
RO
SM2 kW Demand
FP32
x1
W
4166
RO
Timestamp
UINT32 s
4204
RO
SM12 kW Demand
FP32
x1
W
4206
RO
Timestamp
UINT32 s
*When Mains Current Type is Residual, this register is invalid
Table 5-20 Peak Demand Log of Last Month (Before Last Reset)
5.6 Log Register
5.6.1 SOE Log
Register
Property
Description
Format
10000-10008
RO
Event 1
See Appendix A
SOE Log Data
Structure
10009-10017
RO
Event 2
10018-10026
RO
Event 3
10027-10035
RO
Event 4
….
….
14599~14607
RO
Event 512
Table 5-21 SOE Log
Page 52
51
CET Inc.
Offset
Property
Description
Format
Range/Note
+0 RO
High-order Byte: Event Classification
UINT16
See Appendix A
Low-order Byte: Sub-Classification
See Appendix A
+1 RO
High-order Byte: Year
UINT16
0-99 (Year-
2000)
Low-order Byte: Month
1 to 12
+2 RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+3
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+4
RO
Millisecond
UINT16
0 to 999
+5
RO High-order Byte: Reserved
UINT16
RO Low-order Byte: Status
UINT16
+6
RO
Event Value High Word
INT16
+7
RO
Event Value Low Word
INT16
+8
RO
Channel No.
UINT16
Table 5-22 SOE Log Data Structure
5.6.2 Data Recorder Log
Register
Property
Description
Format
21000
RW
DR Log x Index
UINT32
21002 RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
21003 RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
21004 RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
21005
RO
Millisecond
UINT16
21006
RO
Parameter #1
FP32
21008
RO
Parameter #2
… 21124
RO
Parameter #60
Table 5-23 DR Log
Notes:
1) Writing “n” to the DR Log X Index register will load the Log Record at pointer position “n” into the DR Log X Buffer from the device’s memory.
2) Writing an index value that points to a Log Record that is either already expired or has not been generated yet to the DR Log X Index register will generate an exception response with the Illegal Data Value error code (0x03) as defined by the Modbus protocol.
5.7 Device Setup
5.7.1 Basic Setup Parameters
Register
Property
Description
Format
Range, Default*
6000
RW
Nominal Voltage
UINT16
1 to 400 V, 240*
6001 RW Mains Current Type
UINT16
0*= Incomer
1= Residual
6002
RW
Mains CT Primary
1
UINT16
1 to 3000A/mA, 400*
6003
RW
Mains CT Secondary
UINT16
1 to 50V (x0.1), 40*
6004
RW
Mains Breaker Rating
UINT16
1 to 3000A, 250*
6005
RW
Reserved
UINT16
6006
RW
Demand Period
UINT16
1 to 60 mins, 15*
6007
RW
Number of Sliding Windows
UINT16
1* to 15
6008
RW
Demand Log Self-Read Time
2
UINT16
0*
6009
RW
Demand Log Self-Read Mode
UINT16
0=Auto*, 1=Manual
6010 RW
Monthly Energy Log
Self-Read Time2
UINT16 0*
6011
RW
Reserved
6012
RW
Arm before Execute
UINT16
0=Disabled*, 1=Enabled
6013
RW
DO Pulse Width
0* to 6000 (x0.1s)
6014 RW Energy Pulse Constant UINT16
0=1 imp/kWh, 1=10 imp/kWh
2=100imp/kWh,3=400imp/kW*
Page 53
52
CET Inc.
4=1000 imp/kWh 5=3200 imp/kWh
6015
RW
LED EN Pulse Mode3
UINT16
0* to 13
6016 RW Date Format UINT16
0=YYYY/MM/DD*
1=MM/DD/YYYY
2=DD/MM/YYYY
6017
RW
Demo
UINT16
0=Disabled*, 1=Enabled
Table 5-24 Basic Setup
Notes:
1. The unit of Mains CT Primary is A for Mains Current or mA for Residual Current.
2. The Demand Log’s and Monthly Energy Log’s Self-Read Time support the following two options: a) A zero value means that the Self-Read will take place at 00:00 of the first day of each month. b) A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self­Read will take place at 12:00pm on the 15th day of each month.
3. The LED Energy Pulse Modes are listed in the table below:
Value
Parameter
Value
Parameter
Value
Parameter
0
Disabled
5
SM4 kWh
10
SM9 kWh
1
Mains kWh
6
SM5 kWh
11
SM10 kWh
2
SM1 kWh
7
SM6 kWh
12
SM11 kWh
3
SM2 kWh
8
SM7 kWh
13
SM12 kWh
4
SM3 kWh
9
SM8 kWh
Table 5-25 LED Energy Pulse Modes
5.7.2 AI Setup
Register
Property
Description
Format
Range, Default*
6050
RW
AI Type
UINT16
0=4~20mA*, 1=0~20mA
6051 RW AI Zero Scale INT32
-999,999 to +999,999 400*
6053 RW AI Full Scale INT32
-999,999 to +999,999
2000*
Table 5-26 AI Setup
5.7.3 DI Setup
Register
Property
Description
Format
Range, Default*
6100 RW DI Excitation1 UINT16
0 = 220VDC*
1=220VAC, 2 =110VDC
3=110VAC, 4=48VDC
5=-48VDC
6101
RW
DI1 Debounce2
UINT16
1 to 9999 ms, 40*
6102
RW
DI2 Debounce2
UINT16
6103
RW
DI3 Debounce2
UINT16
RW
UINT16
6112
RW
DI12 Debounce2
UINT16
6113
RW
DI13 Debounce2
UINT16
Table 5-27 AI Setup
Notes:
1) For the model that supports 48VDC for DI, the DI Excitation can only be ±48V (such as PMC-512-DX43AE). For the model that supports 240VDC for DI, the DI Excitation option are 110VAC, 110VDC, 220VAC or 220VDC (such as PMC-512-DX43BE).
2) The DI Excitation must be set correctly for the DI Debounce to work.
5.7.4 Communication Setup Parameters
Register
Property
Description
Format
Range, Default*
6200
RW
COM1 Unit ID
UINT16
1 to 254, 100*
6201 RW COM1 Baud Rate UINT16
0=1200, 1=2400, 2=4800, 3=9600,
4=19200, 5=38400*, 6=57600
6202
RW
COM1 Comm. Config.
UINT16
1=8O1, 2=8E1*, 3=8N1
6203
RW
COM2 Unit ID
UINT16
1 to 254, 100*
6204 RW COM2 Baud Rate UINT16
0=1200, 1=2400, 2=4800, 3=9600*,
4=19200, 5=38400, 6=57600
6205
RW
COM2 Comm. Config.
UINT16
1=8O1, 2=8E1*, 3=8N1
Table 5-28 Communication Setup
Page 54
53
CET Inc.
5.7.5 Alarm Setup
Register
Property
Description
Format
Range/Default*
6400
RW
Universal Hysteresis1
UINT16
0 to 100 (x0.1%), 20*
6401
RW
Current ON Threshold2
UINT16
0 to 100 (x0.1%), 50*
6402
RW
Current ON Time Delay
UINT16
0 to 9999 (s), 10s*
6403
RW
Current OFF Time Delay
UINT16
0 to 9999 (s), 30s*
6404~
6409
RW Reserved
6410
RW
Voltage H Alarm Limit2
UINT16
0* to 5000V (x0.1)
6411
RW
Voltage H Alarm Time Delay
UINT16
0* to 9999 (s)
6412
RW
Voltage L Alarm Limit2
UINT16
0* to 5000V (x0.1)
6413
RW
Voltage L Alarm Time Delay
UINT16
0* to 9999 (s)
6414
RW
Voltage Alarm Trigger
UINT16
0* to 0x0003
6415
RW
Mains Current H Alarm Threshold (%)
2, 3
UINT16
0 to 1000 (x0.1), 600*
6416
RW
Mains Current H Alarm Time Delay
UINT16
0 to 9999 (s), 10*
6417
RW
Mains Current HH Alarm Threshold (%)
2, 3
UINT16
0 to 1000 (x0.1), 800*
6418
RW
Mains Current HH Alarm Time Delay
UINT16
0* to 9999 (s), 10
6419
RW
Mains Current L Alarm Threshold (%)
2, 3
UINT16
0* to 1000 (x0.1)
6420
RW
Mains Current L Alarm Time Delay
UINT16
0* to 9999 (s)
6421
RW
Mains Current LL Alarm Threshold (%)2
UINT16
0* to 1000 (x0.1)
6422
RW
Mains Current LL Alarm Time Delay
UINT16
0* to 9999 (s)
6423
RW
Mains Current H Alarm Trigger
UINT16
0* to 0x0003
6424
RW
Residual Current H Alarm Threshold24
Bitmap
0* to 10000mA (x0.1)
6425
RW
Residual Current H Alarm Time Delay
UINT16
0* to 9999 (s)
6426
RW
Residual Current HH Alarm Threshold24
Bitmap
0* to 10000mA (x0.1)
6427
RW
Residual Current HH Alarm Time Delay
UINT16
0* to 9999 (s)
6428
RW
Residual Current H Alarm Trigger
UINT16
0* to 0x0003
6429~
6433
Reserved
6434 RW SM Current Alarm Channel Enable UINT16
0* to 0x0FFF5
0 = Disabled
1 = Enabled
6435
RW
SM I-H Alarm Threshold2
UINT16
0 to 1000 (x0.1), 600*
6436
RW
SM I-H Alarm Time Delay
UINT16
0 to 9999 (s), 10*
6437
RW
SM I-HH Alarm Threshold2
UINT16
0 to 1000 (x0.1), 800*
6438
RW
SM I-HH Alarm Time Delay
UINT16
0 to 9999 (s), 10*
6439
RW
SM I-L Alarm Threshold2
UINT16
0* to 1000 (x0.1)
6440
RW
SM I-L Alarm Time Delay
UINT16
0* to 9999 (s)
6441
RW
SM I-LL Alarm Threshold2
UINT16
0* to 1000 (x0.1)
6442
RW
SM I-LL Alarm Time Delay
UINT16
0* to 9999 (s)
6443
RW
Circuit I Alarm Trigger
UINT16
0* to 0x0003
6444
RW
Reserved
Bitmap
6445 RW DI1 Alarm Configuration UINT16
0 = Disabled*
1 = DI1 Closed Trigger
2 = DI1 Open Trigger
6446
RW
DI1 Alarm Time Delay
UINT16
0* to 9999 (s)
6447
RW
DI1 Alarm Trigger
UNIT16
0* to 0x0003
RW
UINT16
6481 RW DI13 Alarm Configuration UINT16
0 = Disabled*
1 = DI12 Closed Trigger
2 = DI12 Open Trigger
6482
RW
DI123 Alarm Time Delay
UINT16
0* to 9999 (s)
6483
RW
DI13 Alarm Trigger
UINT16
0* to 0x0003
6484 RW AI Alarm Enable UINT16
0x00* to 0x0F
See Notes 6)
6485 RW AI HH Alarm Threshold2 INT32
-999,999 to 999,999, 0*
6487
RW
AI HH Alarm Time Delay
UINT16
0 to 9999 (s), 10*
6488 RW AI H Alarm Threshold2 INT32
-999,999 to 999,999, 0*
6490
RW
AI H Alarm Time Delay
UINT16
0* to 9999 (s)
6491 RW AI L Alarm Threshold2 INT32
-999,999 to 999,999,
10*
6493
RW
AI L Alarm Time Delay
UINT16
0* to 9999 (s)
6494
RW
AI LL Alarm Threshold2
INT32
-999,999 to 999,999,
Page 55
54
CET Inc.
0*
6496RWAI LL Alarm Time Delay
UINT16
0 to 9999 (s), 10*
6497
RW
AI Alarm Trigger
UINT16
0* to 0x0003
Table 5-29 Alarm Setup Parameters
Notes:
1) The calculation method for the Universal Hysteresis is listed below:
Universal Hysteresis=
Alarm Threshold-Alarm Return Threshold
Alarm Threshold
×%
2) If the Threshold/Limit is set to 0, the corresponding channel alarm is disabled.
3) The Incomer Current Alarm is invalid when the Mains Current Type is Residual.
4) The Residual Current Alarm is invalid when the Mains Current Type is Incomer.
5) Bits 0 to 11 represent the SM Current Alarm Enable for SM1 to 12 respectively, with the bit value “0” meaning Disabled and “1” meaning Enabled. For example, 0x003F means SM1 to 6 are enabled for Current Alarm and SM7 to 12 are disabled.
6) 0x03 stands for 2 bits (BIN). Bit 0 and 1 represents RO trigger enable and Alarm LED enable respectively. For every bit, 0=Alarm Disabled and 1=Alarm Enabled. For example, 0x03 means that both RO trigger and Alarm LED are enabled for AI
Alarm.
5.7.6 SM Setup Parameters
Register
Property
Description
Format
Range, Default*
6600WOSM CT Primary (Bulk)
UINT16
1 to 3000A
6601WOSM CT Secondary (Bulk)
UINT16
1 to 100mA
6602WOSM Breaker Rating (Bulk)
UINT16
1 to 3000A
6603
RW
SM1 CT Primary
UINT16
1 to 3000 (A), 100*
6604
RW
SM1 CT Secondary
UINT16
1 to 100 (mA), 50*
6605
RW
SM1 Breaker Rating
UINT16
0 to 3000A, 63*
6606
RW
SM2 CT Primary
UINT16
1 to 3000 (A), 100*
6607
RW
SM2 CT Secondary
UINT16
1 to 100 (mA), 50*
6608
RW
SM2 Breaker Rating
UINT16
0 to 3000A, 63*
6609
RW
SM3 CT Primary
UINT16
1 to 3000 (A), 100*
6610
RW
SM3 CT Secondary
UINT16
1 to 100 (mA), 50*
6611
RW
SM3 Breaker Rating
UINT16
0 to 3000A, 63*
6612
RW
SM4 CT Primary
UINT16
1 to 3000 (A), 100*
6613
RW
SM4 CT Secondary
UINT16
1 to 100 (mA), 50*
6614
RW
SM4 Breaker Rating
UINT16
0 to 3000A, 63*
6615
RW
SM5 CT Primary
UINT16
1 to 3000 (A), 100*
6616
RW
SM5 CT Secondary
UINT16
1 to 100 (mA), 50*
6617
RW
SM5 Breaker Rating
UINT16
0 to 3000A, 63*
6618
RW
SM6 CT Primary
UINT16
1 to 3000 (A), 100*
6619
RW
SM6 CT Secondary
UINT16
1 to 100 (mA), 50*
6620
RW
SM6 Breaker Rating
UINT16
0 to 3000A, 63*
6621
RW
SM7 CT Primary
UINT16
1 to 3000 (A), 100*
6622
RW
SM7 CT Secondary
UINT16
1 to 100 (mA), 50*
6623
RW
SM7 Breaker Rating
UINT16
0 to 3000A, 63*
6624
RW
SM8 CT Primary
UINT16
1 to 3000 (A), 100*
6625
RW
SM8 CT Secondary
UINT16
1 to 100 (mA), 50*
6626
RW
SM8 Breaker Rating
UINT16
0 to 3000A, 63*
6627
RW
SM9 CT Primary
UINT16
1 to 3000 (A), 100*
6628
RW
SM9 CT Secondary
UINT16
1 to 100 (mA), 50*
6629
RW
SM9 Breaker Rating
UINT16
0 to 3000A, 63*
6630
RW
SM10 CT Primary
UINT16
1 to 3000 (A), 100*
6631
RW
SM10 CT Secondary
UINT16
1 to 100 (mA), 50*
6632RWSM10 Breaker Rating
UINT16
0 to 3000A, 63*
6633
RW
SM11 CT Primary
UINT16
1 to 3000 (A), 100*
6634
RW
SM11 CT Secondary
UINT16
1 to 100 (mA), 50*
6635RWSM11 Breaker Rating
UINT16
0 to 3000A, 63*
6636
RW
SM12 CT Primary
UINT16
1 to 3000 (A), 100*
6637
RW
SM12 CT Secondary
UINT16
1 to 100 (mA), 50*
6638RWSM12 Breaker Rating
UINT16
0 to 3000A, 63*
Table 5-30 SM Setup Parameters
Page 56
55
CET Inc.
5.7.7 Data Recorder Setup
Register
Property
Description
Format
Range, Default*
6900RWTrigger Mode
UINT16
0=Disabled, 1=Enabled
6901 RW Recording Mode UINT16
0*=Stop-When-Full 1=First-In-First-Out
6902RWRecording Depth
UINT16
0 to 5000
6903RWRecording Interval
UINT32
60 to 345600s, 600*
6905RWRecording Offset
1
UINT16
0* to 43200s
6906RWParameters Number
UINT16
0* to 60
6907RWParameter1
UINT16
Please refer to Appendix B for a
complete list of the Data
Recorder Parameters.
6908RWParameter2
UINT16
6909RWParameter3
UINT16
……UINT16
6966RWParameter60
UINT16
Table 5-31 DR Parameter Setup
Note:
1. Recording Offset < Recording Interval.
5.8 Time Registers
There are two sets of Time registers supported by the PMC-PMC-512-D – Year / Month / Day / Hour /
Minute / Second (Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to
the PMC-512-D over Modbus communications, care should be taken to only write one of the two Time
register sets. All registers within a Time register set must be written in a single transaction. If registers
60000 to 60004 are being written to at the same time, both Time register sets will be updated to reflect
the new time specified in the UNIX Time register set (60004) and the time specified in registers 60000-
60002 will be ignored. Writing to the Millisecond register (60003) is optional during a Time Set operation.
When broadcasting time, the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect
date or time values will be rejected by the meter. In addition, attempting to write a Time value less than
Jan 1, 2000 00:00:00 will be rejected.
Register
Property
Description
Format
Note
60000 9000 RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
60001 9001 RW
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002 9002 RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003RWMillisecond
UINT16
0 to 999
60004
~
60005
9004
~
9005
RW UNIX Time UINT32
0x386D4380 to 0x 7FE8177F
The corresponding time is
2000.01.01 00:00:00 to
2037.12.31 23:59:59
(GMT 0:00 Time Zone)
Table 5-32 Time Registers
5.9 Clear/Reset Control
Register
Property
Description
Format
Note
9600WOClear All Latched Alarms
UINT16
Writing “0xFF00” to the
register executes the
described action
9601 WO Clear SOE Log UINT16
9602WOClear Energy
1
UINT16
9603 WO
Clear Peak Demand of This
Month (Since Last Reset) 1
UINT16
9604WOClear DR Log
UINT16
Writing “0xFF00” to the
register executes the
described action
9605WOClear All
2
UINT16
9606WOReset to Default
UINT16
9607WOClear Monthly Energy Log
UINT16
Page 57
56
CET Inc.
9608WOHall Zero Setting
UINT16
9609WOReset Hall Zero Parameters
UINT16
Table 5-33 Clear/Reset Control Setup
Notes:
1) The following table provides a detailed description of the different values that can be written to the Clear Energy and Clear
Peak Demand of This Month (Since Last Reset) registers to clear the different Energy and Peak Demand registers for Mains
Meter and SMs. Writing “0xAAFF” to clear all the Energy and Peak Demand of This Month (Since Last Reset) log for all
channels.
Key
Clear Register Values
Description
High Order Low Order
1
0xAA
(Mains and
SMs)
0x00
Clear Mains (0x0000)
0x01
Clear SM1(0x0001)
0x11
Clear SM11 (0x0011)
0x12
Clear SM12 (0x0012)
Table 5-34 Clear Energy and Peak Demand Register Values
2) Writing “0xFFFF” to the register clears Energy Measurements, Peak Demand Log of This Month (Since Last Rest), Peak
Demand Log of Last Month (Before Last Reset), SOE Log and DR Log that are listed in Section 5.3 to 5.6.
5.10 Remote Control
The DO Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and
Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command
(Function Code 0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-512-D does
not support the Read Coils command (Function Code 0x01) because DO Control registers are “Write-
Only”.
The PMC-512-D adopts the ARM before EXECUTE operation for the remote control of its Digital
Outputs if this function is enabled through the Arm Before Execute Enable Setup register (6014), which
is disabled by default. Before executing an OPEN or CLOSE command on a Digital Output, it must be
“Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm” a
particular DO operation. The DO will be “Disarmed” automatically if an “Execute” command is not
received within 15 seconds after it has been “Armed”. If an “Execute” command is received without
first having received an “Arm” command, the meter ignores the “Execute” command and returns the
0x04 exception code.
Register
Property
Description
Format
Note
9100
WO
Arm DO Close
UINT16
Writing “0xFF00”
to the register to
perform the
described action.
9101WOExecute DO Close
UINT16
9102
WO
Arm DO Open
UINT16
9103WOExecute DO Open
UINT16
Table 5-35 DO Control
5.11 Meter Information
Register
Property
Description
Format
Note
60200
~
60219
9800
~
9819
RO Meter model UINT16 See Note 1)
60220 9820 RO Firmware Version UINT16
e.g. 10000 shows
the version is
V1.00.00
60221 9821 RO Modbus Version UINT16
e.g. 10 shows the
version is V1.0
Page 58
57
CET Inc.
60222
9822
RO
Firmware Update Date: Year-2000
UINT16
e.g. 160110 means
January 10, 2016
60223
9823
RO
Firmware Update Date: Month
UINT16
60224
9824
RO
Firmware Update Date: Day
UINT16
60225 9825 RO Serial Number: High-Order Byte UINT16
e.g. 1701030100
means it is the
100th device that
are produced in
January 3, 2017
60026 9826 RO Serial Number: Low-Order Byte UINT16
60227
9827
RO
Reserved
UINT16
60228
9828
RO
Reserved
UINT16
60229 9829 RO
Bit0: Input Voltage
UINT32
0=-48V
1=240/336VDC
Bit1: Power Supply
0=20 to 60VDC
1=88 to 370VDC
Bit2: DI Excitation
0=48VDC
1=240VDC
60231 9831 RO Hardware Version UINT16
e.g. 10 shows the
version is V1.0
Table 5-36 Meter Information
Note:
1. The Meter Model appears in registers 9800 to 9819 (60200 to60219) and contains the ASCII encoding of the string “PMC-
512-D” as shown in the following table.
Register
Value (Hex)
ASCII
60200
9800
0x50
P
60201
9801
0x4D
M
60202
9802
0x43
C
60203
9803
0x2D
-
60204
9804
0x35
5
60205
9805
0x31
1
60206
9806
0x32
2
60207
9807
0x2D
-
60208
9808
0x44
D
60209-60219
9809-9819
0x20
<Null>
Table 5-37 ASCII Encoding of “PMC-512-D”
Page 59
58
CET Inc.
Appendix A - SOE Event Classification
Event
Classification
Sub-
Classification
Channel
Event
Value
DPI Description
0
1
--
--
2/1
DI1 Close/DI1 Open
2
--
--
2/1
DI2 Close/DI2 Open
3
--
--
2/1
DI3 Close/DI3 Open
4
--
--
2/1
DI4 Close/DI4 Open
5
--
--
2/1
DI5 Close/DI5 Open
6
--
--
2/1
DI6 Close/DI6 Open
7
--
--
2/1
DI7 Close/DI7 Open
8
--
--
2/1
DI8 Close/DI8 Open
9
--
--
2/1
DI9 Close/DI9 Open
10
--
--
2/1
DI10 Close/DI10 Open
11
--
--
2/1
DI11 Close/DI11 Open
12
--
--
2/1
DI12 Close/DI12 Open
13
--
--
2/1
DI13 Close/DI13 Open
1
1 -- -- 2/1
DO Operated/Released by Remote Control
2
--
--
2/1
DO Operated/Released by Setpoint
2
1
Alarm
Channel¹
Trigger
Value
(x1000)
Current HH Alarm Active
2
Current H Alarm Active
3
Current L Alarm Active
4
Current LL Alarm Active
5
Trigger
Value
(x100)
Voltage H Alarm Active
6
Voltage L Alarm Active
7
Mains Current HH Alarm Active
8
Mains Current LL Alarm Active
9
Mains Current H Alarm Active
10
Mains Current L Alarm Active
11
Trigger
Value
(x1000)
Residual Current HH Alarm Active
12 Residual Current H Alarm Active
13-14
Reserved
15
Alarm
Channel¹
Trigger
Value
(x1000)
AI HH Alarm Active
16
AI H Alarm Active
17
AI L Alarm Active
18
AI LL Alarm Active
19
DI Status
DI Alarm Active
3
1
Method:
Front Panel
Power On
2
Power Off
3
Set Time
4
Set System Parameters
5
Set Communication Parameters
6
Set AI Parameters
7
Set DI Parameters
8
Set Alarm Parameters
9
Set SM Parameters
10
Set DR Parameters
11
Set Calibration Parameters
12
Reset Alarm
13
Clear Energy
14
Clear Historic Energy
15
Clear Present Max Demand Logs
16
Clear All Demand Logs
17
Clear SOE
18
Clear DR Logs
19
Clear All Recorder
20
Load Factory Default Configuration
21
Load Communication Default Configuration
22
Preset Energy
23
Set First Power On
24
Hall Calibration
25
Recover Hall Calibration
Page 60
59
CET Inc.
4
1
First Power On
2
A/D Fault
3
Internal Power Fault
4
FRAM Fault
5
FLASH Fault
6
System Parameters Fault
7
Internal Parameters Fault
Note:
The following table provides a detailed description of the Channel Number.
Channel Number
Description
0
Invalid
1
I1
2
I2
11
I11
12
I12
13
DI1
14
DI2
24
DI12
25
DI13
Page 61
60
CET Inc.
Appendix B - Data Recorder Parameters
1) SMs Group Structure
Offset
Description
+0
Current
+1
kW
+2
%Loading
+3
Current Demand
+4
kW total Demand
+5
kWh
SMs Real-time and Demand Measurement
Key
Description
Key
Description
1~6
SM1
37~42
SM7
7~12
SM2
43~48
SM8
13~18
SM3
49~54
SM9
19~24
SM4
55~60
SM10
25~30
SM5
61~66
SM11
31~36
SM6
67~72
SM12
2) Mains Current and Voltage Real-time Measurement
Key
Description
73
Voltage
74
Mains Current
75
Residual Current
76
Reserved
77
kW
78
%Loading
79
Current Demand
80
kW Total Demand
81
kWh
3) AI Measurement
Key
Description
82
AI
Page 62
61
CET Inc.
Appendix C - Technical Specifications
Voltage Inputs
Standard
Optional Range
240V 48VDC
Burden
Overload
240V
48VDC
0-400VDC (RMS), 0.05xUn-Umax 0-60VDC (RMS), 0.05xUn-Umax <0.05VA @240VDC
1.2xUn continuous, 2xUn for 10s
Current Inputs
Mains Circuit Hall Effect Split-Core CTs
In
Range Overload Starting Current
Nominal Output
200A/400A/600A/800A/1000A/2000A
0.5% to 120% In
1.2xIn continuous, 2xIn for 10s
0.15%In
±4VDC
Mains Hall Effect Solid-Core DC Residual CT
In
Range Overload Starting Current
Nominal Output
50mA
0.5% to 100% In
1.2xIn continuous, 2xIn for 10s
0.15%In
±5VDC
Branch Circuit Hall Effect Solid-Core CTs
In
Range Overload Starting Current Burden Output In=50A In=100A
In=200A
50A/100A/200A
0.5% to 100% In
1.2xIn continuous, 2xIn for 10s
0.15%In <0.15W
0 to 25mA 0 to 50mA
0 to 100mA
Power Supply (L+, N-, GND)
Standard (240V)
Optional (48VDC)
Burden
85-264VAC, 88-370VDC, 47-440Hz
20-60VDC
<0.1W
Digital Inputs (13xDI)
Type
48VDC or 240VDC External Excitation
Digital Outputs
Type Loading
Normally Open 5A @ 250VAC or 30VDC
Analog Inputs
Type Overload
0-20 mA or 4-20 mA 500Ω
Installation Torque
Current Input, AI
0.2 N.m
Others
0.4 N.m
Environmental Conditions
Operating Temp.
Storage Temp. Humidity Atmospheric Pressure
Altitude
-25°C to 70°C
-40°C to 85°C 5% to 98% non-condensing 70 kPa to 106 kPa
3,000m
Mechanical Characteristics
Unit Dimensions
126x90x65 mm
Page 63
62
CET Inc.
Appendix D - Accuracy Specifications
Parameters
Accuracy
Resolution
Voltage
±0.5%
0.01V
Current
±0.5%
0.001A
Residual Current
±1.0%
0.01mA
kW
±0.5%
0.001kW
kWh
Class 0.5 (Main Unit)
Class 1.0 (including Hall Effect CT)
0.01kWh
Analog Input
±0.5%
-
Page 64
63
CET Inc.
Appendix E - Standards Compliance
Safety Requirements
CE LVD 2014 / 35 / EU
EN 61010-1: 2010, EN 61010-2-030: 2010
Electrical safety in low voltage distribution systems up to 1000VAC and 1500 VDC
IEC 61557-12: 2008
Insulation
Dielectric test:
Insulation resistance:
Impulse voltage:
2kV @ 1 minute
>100MΩ
6kV, 1.2/50µs
IEC 60255-5-2000
Electromagnetic Compatibility
CE EMC Directive 2014 / 30 / EU (EN 61326: 2013)
Immunity Tests
Electrostatic Discharge
EN 61000-4-2: 2009
Radiated Fields
EN 61000-4-3: 2006+A1: 2008+A2: 2010
Fast Transients
EN 61000-4-4: 2012
Surges
EN 61000-4-5: 2006
Conducted Disturbances
EN 61000-4-6: 2009
Magnetic Fields
EN 61000-4-8: 2010
Oscillatory Waves
EN 61000-4-12: 2006
Emission Tests
Limits and methods of measurement of
electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-
frequency equipment
EN 55011: 2009 + A1: 2010 (CISPR 11)
Limits and methods of measurement of radio
disturbance characteristics of information technology
equipment
EN 55022: 2010+AC: 2011
(CISPR 22)
Limits for harmonic current emissions for equipment with rated current ≤16 A
EN 61000-3-2: 2014
Limitation of voltage fluctuations and flicker in low-
voltage supply systems for equipment with rated
current ≤16 A
EN 61000-3-3: 2013
Emission standard for residential, commercial and light-industrial environments
EN 61000-6-4: 2007+A1: 2011
Electromagnetic Emission Tests for Measuring Relays and Protection Equipment
EN 61000-4-12: 2006
Mechanical Tests
Vibration Test
Response
IEC 62052-11: 1988 Level I
Endurance
IEC 62052-11: 1988Level I
Shock Test
Response
IEC 62052-11: 1988 Level I
Endurance
IEC 62052-11: 1988 Level I
Bump Test
IEC 62052-11: 1988 Level I
Page 65
Appendix F - Ordering Guide
Page 66
65
CET Inc.
Contact us
CET Electric Technology Headquarters
8/F, Westside, Building 201, Terra Industrial & Tradepark, Che Gong Miao, Shenzhen, Guangdong,
P.R.China 518040
Tel: +86.755.8341.5187
Fax: +86.755.8341.0291
Email: support@cet-global.com
Web: www.cet-global.com
Loading...