CET PMC-512-A User Manual

Page 1
PMC-512-A
AC Multi-Circuit Power Monitor
User Manual
Version: V1.1
July 4, 2018
Page 2
1
CET Electric Technology
This manual may not be reproduced in whole or in part by any means without the express written permission from CET.
The information contained in this manual is believed to be accurate at the time of publication; however, CET assumes no responsibility for any errors which may appear here and reserves the right to make changes without notice. Please consult CET or your local representative for the latest product specifications.
DANGER
This symbol indicates the presence of danger that may result in severe injury or death and permanent equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
CAUTION
This symbol indicates the potential of personal injury or equipment damage if proper precautions are not taken during the installation, operation or maintenance of the device.
Page 3
2
CET Electric Technology
DANGER
Failure to observe the following instructions may result in severe injury or death and/or equipment damage.
Installation, operation and maintenance of the meter should only be performed by qualified, competent personnel that have the appropriate training and experience with high voltage and current devices. The meter
must be installed in accordance with all local and national electrical codes.
Ensure that all incoming AC power and other power sources are turned OFF
before performing any work on the meter.
Before connecting the meter to the power source, check the label on top of the meter to ensure that it is equipped with the appropriate power supply, and
the correct voltage and current input specifications for your application.
During normal operation of the meter, hazardous voltages are present on its terminal strips and throughout the connected potential transformers (PT) and current transformers (CT). PT and CT secondary circuits are capable of generating lethal voltages and currents with their primary circuits energized. Follow standard safety precautions while performing any installation or service
work (i.e. removing PT fuses, shorting CT secondaries…etc).
Do not use the meter for primary protection functions where failure of the
device can cause fire, injury or death. The meter should only be used for
shadow protection if needed.
Under no circumstances should the meter be connected to a power source if
it is damaged.
To prevent potential fire or shock hazard, do not expose the meter to rain or
moisture.
Setup procedures must be performed only by qualified personnel familiar with
the instrument and its associated electrical equipment.
DO NOT open the instrument under any circumstances.
Page 4
3
CET Electric Technology
Limited warranty
CET offers the customer a minimum of 12-month functional warranty on the meter for faulty parts or workmanship from the date of dispatch from the distributor.
This warranty is on a return to factory for repair basis.
CET does not accept liability for any damage caused by meter malfunctions. CET accepts no responsibility for the suitability of the meter to the application for
which it was purchased.
Failure to install, set up or operate the meter according to the instructions herein
will void the warranty.
Only CET’s duly authorized representative may open your meter. The unit should only be opened in a fully anti-static environment. Failure to do so may damage
the electronic components and will void the warranty.
Page 5
4
CET Electric Technology
Table of Contents
Glossary .................................................................................................................................................... 7
Chapter 1 Introduction ............................................................................................................................. 8
1.1 Overview .................................................................................................................................... 8
1.2 Features ...................................................................................................................................... 8
1.3 PMC-512-A’ application in Monitoring Management Systems ................................................ 10
1.4 Getting more information ........................................................................................................ 10
Chapter 2 Installation ............................................................................................................................. 11
2.1 Appearance .............................................................................................................................. 11
2.2 Unit Dimensions ....................................................................................................................... 12
2.2.1 Main Unit ...................................................................................................................... 12
2.2.1 HMI ............................................................................................................................... 12
2.3 Overall Setup ............................................................................................................................ 13
2.4 Mounting .................................................................................................................................. 13
2.4.1 Mounting PMC-512-A ................................................................................................... 13
2.4.2 Branch CTs and other Accessories................................................................................. 14
2.4.3 Mounting the HMI ........................................................................................................ 17
2.5 Wiring Connections .................................................................................................................. 18
2.5.1 Wiring Modes................................................................................................................ 18
2.5.2 Typical Application Wiring............................................................................................. 20
2.5.3 CT Wiring ....................................................................................................................... 20
2.5.4 Communications Wiring................................................................................................ 22
2.5.5 Digital Input Wiring ....................................................................................................... 22
2.5.6 Analog Input Wiring ...................................................................................................... 22
2.5.7 Digital Output Wiring .................................................................................................... 23
2.5.8 PMC-512-A Power Supply Wiring.................................................................................. 23
2.5.9 HMI Power Supply Wiring ............................................................................................. 23
Chapter 3 Front Panel ............................................................................................................................. 24
3.1 Front Panel LED Indicators........................................................................................................ 24
3.2 Using the Front Panel Buttons .................................................................................................. 24
3.3 Data Display .............................................................................................................................. 25
3.3.1 Auto-Scroll .................................................................................................................... 25
3.3.2 Metering ....................................................................................................................... 26
3.3.3 Alarm Status .................................................................................................................. 26
3.3.4 DI/DO Status ................................................................................................................. 26
3.3.5 SOE Log ......................................................................................................................... 26
3.3.6 Information ................................................................................................................... 27
3.4 Setup and Maintenance via the Front Panel ............................................................................ 27
3.4.1 Making Setup Changes .................................................................................................. 27
3.4.2 Setup Menu .................................................................................................................. 28
3.4.3 Configuration ................................................................................................................ 29
3.4.4 Maintenance ................................................................................................................. 31
Chapter 4 Applications ........................................................................................................................... 33
Page 6
5
CET Electric Technology
4.1 Inputs and Outputs .................................................................................................................. 33
4.1.1 Digital Inputs ................................................................................................................. 33
4.1.2 Analog Input .................................................................................................................. 33
4.1.3 Energy Pulse Outputs .................................................................................................... 33
4.2 Power, Energy and Demand ..................................................................................................... 34
4.2.1 Basic Measurements ..................................................................................................... 34
4.2.2 Energy Measurements .................................................................................................. 34
4.2.3 Interval Energy Measurements ..................................................................................... 34
4.2.4 Demands ....................................................................................................................... 35
4.3 Alarm Setpoints ........................................................................................................................ 35
4.3.1 Alarm Status .................................................................................................................. 35
4.3.2 Universal Hysteresis and Current ON/OFF Status ......................................................... 36
4.3.3 Current Alarms .............................................................................................................. 37
4.3.4 Voltage Alarm ................................................................................................................ 38
4.3.5 Frequency Alarm ........................................................................................................... 39
4.3.6 Unbalance Alarm .......................................................................................................... 40
4.3.7 Phase Reversal Alarm .................................................................................................... 41
4.3.8 Phase Loss Alarm .......................................................................................................... 41
4.3.9 AI Alarm ........................................................................................................................ 42
4.3.10 DI Alarm ...................................................................................................................... 43
4.4 Power Quality ........................................................................................................................... 43
4.4.1 Phase Angles ................................................................................................................. 43
4.4.2 Unbalance ..................................................................................................................... 43
4.4.3 Harmonics ..................................................................................................................... 44
4.5 Sub-Meters (SM) ...................................................................................................................... 44
4.6 Virtual Meters (VM) ................................................................................................................. 45
4.7 Data Logging ............................................................................................................................. 45
4.7.1 Peak Demand Log ......................................................................................................... 45
4.7.2 SOE Log ......................................................................................................................... 46
4.7.3 Daily Freeze Log ............................................................................................................ 46
4.7.4 Monthly Freeze Log ....................................................................................................... 46
4.7.5 Data Recorder Log (DR Log) .......................................................................................... 46
Chapter 5 Modbus Register Map ............................................................................................................ 48
5.1 Status Register .......................................................................................................................... 48
5.1.1 General Status ............................................................................................................... 48
5.1.2 Instantaneous Alarms ................................................................................................... 49
5.1.3 Latched Alarms ............................................................................................................. 50
5.2 Basic Measurements ................................................................................................................ 51
5.2.1 Measurements .............................................................................................................. 51
5.2.2 Measurements for HMI ................................................................................................. 53
5.2.3 Operating Time ............................................................................................................. 54
5.3 Energy Measurements ............................................................................................................. 54
5.3.1 Complete Energy Measurements based on kWh, kvarh and kVAh ............................... 54
5.3.2 Complete Energy Measurements based on SMs and VMs ........................................... 55
Page 7
6
CET Electric Technology
5.3.3 kWh and kvarh Energy Measurements for SMs and VMs ............................................. 56
5.3.4 Interval Energy Measurements ..................................................................................... 56
5.4 DI Pulse Counter ....................................................................................................................... 57
5.5 Demands .................................................................................................................................. 57
5.5.1 Present Demands .......................................................................................................... 57
5.5.2 Peak Demand Log of This Month (Since Last Reset) ..................................................... 58
5.5.3 Peak Demand Log of Last Month (Before Last Reset) ................................................... 59
5.6 Harmonics Measurements ....................................................................................................... 60
5.6.1 Voltage THD Measurements ......................................................................................... 60
5.6.2 Current THD Measurements ......................................................................................... 61
5.6.3 Individual Harmonics .................................................................................................... 61
5.7 Log Register .............................................................................................................................. 62
5.7.1 SOE Log ......................................................................................................................... 62
5.7.2 Daily Freeze Log ............................................................................................................ 62
5.7.3 Monthly Freeze Log ....................................................................................................... 64
5.7.4 Data Recorder Log ......................................................................................................... 65
5.8 Device Setup ............................................................................................................................. 65
5.8.1 Basic Setup Parameters ................................................................................................. 65
5.8.2 AI Setup ......................................................................................................................... 66
5.8.3 DI Setup ......................................................................................................................... 66
5.8.4 Communication Setup Parameters ............................................................................... 66
5.8.5 Alarm Setup .................................................................................................................. 67
5.8.6 1-Ø SMs Setup Parameters ........................................................................................... 69
5.8.7 VM Setup ...................................................................................................................... 70
5.8.8 Data Recorder Setup ..................................................................................................... 70
5.9 Time Registers .......................................................................................................................... 70
5.10 Clear/Reset Control ................................................................................................................ 71
5.11 Remote Control ...................................................................................................................... 71
5.12 Meter Information.................................................................................................................. 72
Appendix A - SOE Event Classification .................................................................................................... 74
Appendix B - Data Recorder Parameters ................................................................................................ 76
Appendix C - Data Recorder Default Settings ......................................................................................... 79
Appendix D - Mains Circuit CT ................................................................................................................ 81
Appendix E - Technical Specifications ..................................................................................................... 85
Appendix F - Accuracy Specifications ..................................................................................................... 86
Appendix G - Standards Compliance ...................................................................................................... 87
Appendix H - Ordering Guide ................................................................................................................. 88
Contact us ............................................................................................................................................... 89
Page 8
7
CET Electric Technology
Glossary
CET = Cet Electric Technology 1-Ø = Single Phase 3-Ø = Three Phase SM = Sub Meter VM = Virtual Meter LCD = Liquid Crystal Display DMD = Present Demand PQ = Power Quality Fund. = Fundamental THD = Total Harmonic Distortion TOHD = Total Odd Harmonic Distortion TEHD = Total Even Harmonic Distortion Hn = nth order Harmonic, integer multiple (n) of the Fundamental Frequency (50Hz or 60Hz) HDn = nth order Harmonic Distortion DR = Data Recorder SOE = Sequence Of Events DI = Digital Input DO = Digital Output SSR = Solid State Relay FIFO = First In First Out MB = Mega Byte RTC = Real Time Clock Ung = Neutral to Ground Voltage U1/2/3 = 3-phase Line to Neutral Voltage U12/23/31 = 3-phase Line to Line Voltage I1/2/3 = 3-phase Current
Page 9
8
CET Electric Technology
Chapter 1 Introduction
This manual explains how to use the PMC-512-A AC Multi-Circuit Power Monitor.
This chapter provides an overview of the PMC-512-A and summarizes many of its key features.
1.1 Overview
The PMC-512-A is CET’s latest offer for the economical multi-circuit monitoring of Data Centers, Telecom
Base Stations and Industrial & Commercial Buildings. Housed in a compact DIN Rail Mountable
enclosure, the PMC-512-A is perfectly suited for high-density metering applications. The PMC-512-A
features quality construction with multifunction and high-accuracy measurements with an optional
color touch-screen HMI that supports up to 16 devices simultaneously over a RS-485 network. The PMC-
512-A comes standard with 12xDIs for status monitoring or pulse counting, 1xDO for control or alarming
as well as 1xAI for temperature measurement or other analogue input applications. The standard SOE
Log records all setup changes, alarms and DI/DO operations in 1ms resolution. With dual RS-485 as
standard feature supporting Modbus RTU, the PMC-512-A can easily be deployed in a stand-alone
system with its Touch Screen HMI or simultaneously with a centralized monitoring and control system
for an AC power distribution network.
Typical Applications
Power/Energy Monitoring for Data Centers’ PDUs Utility Substation Multi-Circuit Monitoring Power Quality Monitoring Maximum Demand Indicator
The above are just a few of the many applications. Contact CET Technical Support should you require
further assistance with your application.
1.2 Features
Ease of use
Status LEDs - Run, Pulse and Comm. Activities Self-Diagnostic function Password-protected setup via the Front Panel Compact, DIN Rail Mount for easy installation
Measurements
Class 0.5S Accuracy for Energy measurements ULN & ULL per phase and average, ULN Phase Angles, Ung Frequency
Sub Meters (SM)
Support 1-Ø and 3-Ø Sub Meters without configuration 12x1-Ø SM
o Current Magnitude and Phase Angles o kW, kvar, kVA and PF o Current Loading Factor (%) and THD o kWh/kvarh Import/Export and kVAh o Current/kW/kvar/kVA Demand and Max. Demand with Timestamp
Page 10
9
CET Electric Technology
o Operating Time (Run Hour)
4x3-Ø SM
o I per phase, I average and In (Calculated) o I Unbalance o Frequency o kW/kvar/kVA Total and PF total o kWh/kvarh Import/Export/Total and kVAh Total o kW/kvar/kVA Total Demand and Max. Demand with Timestamp o Operating Time (Run Hour)
Virtual Meters (VM)
Up to 4 Virtual Meters for arbitrary aggregation of 1-Ø SMs kW/kvar/kVA Total (via communications only) kWh/kvarh Import/Export and kVAh Total kW/kvar/kVA Total Demand and Max. Demand with Timestamp (via communications only)
Power Quality Features
U and I THD/TOHD/TEHD U and I Individual Harmonics up to 31
st
(via communications only)
U and I Unbalance
Logs
Data Recording Log
4MB Log Memory Up to 60 parameters @ min. 1-min recording interval for 5,000 logs with timestamps
Daily Freeze Logs
1000 Daily Freeze Logs 1-Ø SM: Current, kW, kvar, kVA, kWh, kvarh Import/Export & kVAh 3-Ø SM and VM: kW, kvar, kVA Total, kWh, kvarh Import/Export & kVAh
Monthly Freeze Logs
24 Monthly Freeze Logs 1-Ø SM: kWh/kvarh Import, kWh/kvarh Export, kVAh 3-Ø SM and VM: kWh/kvarh Total Import, kWh/kvarh Total Export, kVAh Total
SOE Log
512 FIFO events time-stamped to ±1ms resolution Setup changes, Alarms, Setpoint events, Self-Diagnosis and I/O operations
Alarming
Support High-High, High, Low, Low-Low and OFF Alarms Configurable Threshold and Time Delay for each branch Support Current, Voltage, Frequency, Unbalance, Phase Reversal, Phase Loss, AI and DI Alarms All alarms are recorded in the SOE Log
Digital Inputs and Digital Outputs
12xDIs with external excitation @ 48VDC with programmable debounce 1xDO, mechanical relay @ 250VAC/5A or 30VDC/5A
Page 11
10
CET Electric Technology
1xAI, 0~20mA
Communications
2xRS-485, optically isolated Modbus RTU protocol Baud rate @ 1,200 to 57,600
System Integration
The PMC-512-A is supported by CET’s PecStar iEMS. In addition, it can be easily integrated into other
3rd party Automation, Energy Management or SCADA systems because of its support of multiple
communications ports and Modbus RTU protocol.
1.3 PMC-512-A’ application in Monitoring Management Systems
1.4 Getting more information
Additional information is available from CET via the following sources:
Visit www.cet-global.com Contact your local representative Contact CET directly via email or telephone
Page 12
11
CET Electric Technology
Chapter 2 Installation
2.1 Appearance
Figure 2-1 Appearance
Figure 2-2 Terminal Diagram
Caution
Installation of the PMC-512-A
should only be performed by qualified, competent personnel
that have the appropriate training and experience with high voltage and current devices.
The meter must be installed in accordance with all local and national electrical codes.
During the operation of the meter, hazardous voltages are present at the input terminals. Failure to observe precautions can result in serious or even fatal injury and equipment damage.
Page 13
12
CET Electric Technology
2.2 Unit Dimensions
2.2.1 Main Unit
Figure 2-3 Main Unit Dimension
2.2.1 HMI
Front View
Side View
Figure 2-4 HMI Dimensions
Page 14
13
CET Electric Technology
2.3 Overall Setup
Figure 2-5 Overall Setup
Figure 2-6 Overall Installation
2.4 Mounting
The PMC-512-A should be installed in a dry environment without dust and kept away from heat,
radiation and electrical noise sources. The PMC-512-A is usually installed inside the PDU cabinet. Please
reserve enough room for other accessories and make it convenient for future maintenance.
2.4.1 Mounting PMC-512-A
Installation steps:
Before installation, make sure that the DIN rail is already in place.
Page 15
14
CET Electric Technology
Move the installation clips at the back of the PMC-512-A downward to the “unlock” position. Align the top of the mounting channel at the back of the PMC-512-A at an angle against the top of
the DIN rail as shown in figure below.
Rotate the bottom of the PMC-512-A towards the back while applying a slight pressure to make
sure that the device is completely and securely fixed on to the DIN rail.
Push the installation clips upward to the “lock” position to secure the PMC-512-A on to the DIN
rail.
Figure 2-7 Mounting the Main Unit
2.4.2 Branch CTs and other Accessories
There are different types of Branch CTs available for the PMC-512-A. Please refer to Appendix D for their
complete specifications. Select the appropriate Branch CTs for your applications.
2.4.2.1 PMC-CT-100A-40mA-3P-A (Molded Case 3-Phase 100A CT)
Figure 2-8 PMC-CT-100A-40mA-3P-A Dimensions
Page 16
15
CET Electric Technology
2.4.2.2 PMC-CT-250A-40mA-A (Solid-Core 1-Phase 250A CT)
Figure 2-9 PMC-CT-250A-40mA-A Dimensions
2.4.2.3 PMC-CT-400A-40mA-A (Solid-Core 1-Phase 400A CT)
Figure 2-10 PMC-CT-400A-40mA-A Dimensions
2.4.2.4 PMC-CT-800A-40mA-A (Solid-Core 1-Phase 800A CT)
Figure 2-11 PMC-CT-800A-40mA-A Dimensions
Page 17
16
CET Electric Technology
2.4.2.5 PMC-SCCT-5A-1.667mA-10-A (Split-Core 1-Phase 5A CT)
Figure 2-12 PMC-SCCT-5A-1.667mA-10-A Dimensions
2.4.2.6 PMC-SCCT-100A-40mA-16-A (Split-Core 1-Phase 100A CT)
Figure 2-13 PMC-SCCT-100A-40mA-16-A Dimensions
2.4.2.7 PMC-SCCT-200A-40mA-24-A (Split-Core 1-Phase 200A CT)
Figure 2-14 PMC-SCCT-200A-40mA-24-A Dimensions
Page 18
17
CET Electric Technology
2.4.2.8 PMC-SCCT-400A-40mA-35-A (Split-Core 1-Phase 400A CT)
Figure 2-15 PMC-SCCT-400A-40mA-35-A Dimensions
2.4.2.9 PMC-SCCT-800A-40mA-A (Split-Core 1-Phase 800A CT)
Front View
Side View
Figure 2-16 PMC-SCCT-800A-40mA-A Dimensions
2.4.2.10 PMC-BCC-3CT (3-Phase Termination Connector)
P1 Side
Pin
CT
PMC-512-A
1
1# S1 (+)
I1 or I4 or I7 or I10
2
1# S2 (-)
3
2# S1 (+)
I2 or I5 or I8 or I11
4
2# S2 (-)
5
3# S1 (+)
I3 or I6 or I9 or I12
6
3# S2 (-)
Table 2-1 PMC-BCC-3CT
2.4.3 Mounting the HMI
The HMI should be mounted on the cabinet door with a minimum clearance of 105cm from the door to
the inside components.
1. Put the HMI through the cutout.
Page 19
18
CET Electric Technology
2. Install the installation clips as per the diagram below.
3. Affix the supplied screws through the hole of the installation clips.
4. Tighten the screws against the back of the panel until the HMI is mounted securely in place.
Figure 2-17 Mounting the HMI
2.5 Wiring Connections
The PMC-512-A provides 12 Current Inputs which can be configured as 12x1-Ø SM, 4x3-Ø SM or a
combination of 1-Ø SMs or 3-Ø SMs. Regardless of the Wiring Mode, the PMC-512-A always relies on
the relationship illustrated in Table 2-2 between Voltage Inputs (V1, V2, V3) and Current Inputs (I1 – I12)
for its Power and Energy calculations for the various 1-Ø and 3-Ø SMs. 2-Ø SM (or 1P3W Wiring Mode)
is not supported by the PMC-512-A. The SM assignment principle is not programmable. Therefore, it is
extremely important to allocate the 1-Ø and 3-Ø circuits during installation that meet this fixed
assignment principle.
3-Ø SM1
3-Ø SM2
3-Ø SM3
3-Ø SM4
1-Ø
SM1
1-Ø
SM2
1-Ø
SM3
1-Ø
SM4
1-Ø
SM5
1-Ø
SM6
1-Ø
SM7
1-Ø
SM8
1-Ø
SM9
1-Ø
SM10
1-Ø
SM11
1-Ø
SM12
V1
V2
V3
V1
V2
V3
V1
V2
V3
V1
V2
V3
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
Table 2-2 Relationship between Vx and Ix
2.5.1 Wiring Modes
The PMC-512-A supports the following Wiring Modes:
Single Phase (1P2W) Wiring with or without VG 3-Wire Delta (3P3W) Wiring with open N connection or with PTs
DANGER
Please make sure that the Voltage and Current circuits are not energized while connecting Voltage
inputs to the PMC-512-A.
Page 20
19
CET Electric Technology
4-Wire Wye (3P4W) Wiring with or without VG, 4-Wire Wye (3P4W) Wiring with VG and PTs
2.5.1.1 Single Phase (1P2W) Wiring
Figure 2-18 1P2W with VG Figure 2-19 1P2W without VG
2.5.1.2 3-Wire Delta (3P3W) Wiring
Figure 2-20 3P3W without PTs
Figure 2-21 3P3W with PTs
2.5.1.3 4-Wire Wye (3P4W) Wiring
Figure 2-22 3P4W without PTs & with VG
Figure 2-23 3P4W without PTs & VG
Figure 2-24 3P4W with VG and PTs
Page 21
20
CET Electric Technology
2.5.2 Typical Application Wiring
Figure 2-25 Typical 4x3-Ø Circuits Wiring
2.5.3 CT Wiring
2.5.3.1 Molded-Case 3-Ø 100A CT
1. The Molded-Case 3-Ø 100A CT comes standard with a 2m cable with a RJ12 connector.
2. Connect the RJ12 connector to the appropriate Current Inputs of the PMC-512-A.
3. Put the 3-phase primary conductors through the hole of the Solid-Core CT.
Figure 2-26 Molded-Case 3-Ø 100A CT Wiring
DANGER
Please make sure that the Voltage and Current circuits are not energized while installing the CTs
and connecting them to the PMC-512-A.
Page 22
21
CET Electric Technology
2.5.3.2 Solid-Core CT (250A/400A/800A)
1. Remove the CT’s output terminal cover, exposing the S1 and S2 terminals.
2. Connect S1 and S2 to Terminals 1 & 2, 3 & 4 or 5 & 6, respectively, of the PMC-BCC-3CT
Termination Adapter using a 0.5 to 1.0 mm2 wire (not included).
3. Connect the RJ12 connector to the appropriate Current Inputs of the PMC-512-A.
4. Re-install the CT’s output terminal cover.
5. Put the primary conductor through the hole of the Solid-Core CT.
Figure 2-27 Solid-Core CT Wiring
2.5.3.3 Split-Core CT (5A/100A/200A/400A)
1. Connect the SCCT’s output wires, white (S1) and black (S2) to Terminals 1 & 2, 3 & 4 or 5 & 6,
respectively, of the PMC-BCC-3CT Termination Adapter.
2. Connect the RJ12 connector to the appropriate Current Inputs of the PMC-512-A.
3. Open the Split-Core CT.
4. Put the primary conductor through the opening of the Split-Core CT, close it and then make
sure the locking clip is securely latched.
5. Secure the primary conductor to the Split-Core CT with a wire strap.
Figure 2-28 Split-Core CT Wiring
Page 23
22
CET Electric Technology
2.5.4 Communications Wiring
The PMC-512-A provides two standard RS485 ports and supports the Modbus RTU protocol. Up to 32
devices can be connected on each RS485 bus. The overall length of the RS485 cable connecting all
devices should not exceed 1200m.
If the master station does not have a RS485 communications port, a RS232/RS485 or USB/RS485
converter with optically isolated output and surge protection should be used.
If the RS485 bus is very long and approaches the 1200m limit as defined by the standard, it’s
recommended that a 120Ω termination resistor be added to the end of the RS485 cable (but only on
one end) to improve the communication reliability
The following figure illustrates the RS485 communications connections on the PMC-512-A:
Figure 2-29 Communications Wiring
2.5.5 Digital Input Wiring
The following figure illustrates the Digital Input connections on the PMC-512-A:
Figure 2-30 DI Wiring
2.5.6 Analog Input Wiring
The following figure illustrates the Analog Input connections on the PMC-512-A:
Figure 2-31 AI Wiring
Page 24
23
CET Electric Technology
2.5.7 Digital Output Wiring
The following figure illustrates the Digital Output connections on the PMC-512-A:
Figure 2-32 DO Wiring
2.5.8 PMC-512-A Power Supply Wiring
For AC supply, connect the live wire to the L/+ terminal and the neutral wire to the N/- terminal.
For DC supply, connect the positive wire to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-33 Power Supply Connections
2.5.9 HMI Power Supply Wiring
The optional Touch Screen HMI requires a 24VDC power supply to operate. Connect the positive wire
to the L/+ terminal and the negative wire to the N/- terminal.
Figure 2-34 HMI Power Supply Wiring
Page 25
24
CET Electric Technology
Chapter 3 Front Panel
The PMC-512-A has an easy to read LCD display and three buttons for both data display and setup
configuration purposes.
Figure 3-1 Front Panel
3.1 Front Panel LED Indicators
There are three LED indicators on the PMC-512-A’s front panel as described in the following table.
LED Indicator
Color
Status
Description
Run
Green
Blinking once per second
Device is running normally
Red
Blinking once per 0.5 second
Alarm Active
On
Abnormal Diagnostics
Comm.
Green
Blinking
Receiving or Transmitting data
Off
No Communication
Pulse
Red
Pulsing based on the rate of
Energy Consumption
Energy Pulse Output
Table 3-1 Front Panel LED Indicators
3.2 Using the Front Panel Buttons
Button
Auto-Scroll Mode
Main Menu
Setup Configuration Mode
< >
Pressing this button momentarily enters the Main Menu.
Pressing this button enters
the highlighted sub-menu.
Pressing this button at the
Setup menu enters the Setup Configuration Mode.
Holding this button for 2s
returns to the Auto-Scroll mode from the Main Menu or returns to the previous menu level from inside a sub-menu.
While inside the Setup
menu, pressing this button enters the sub-menu.
While inside a sub-menu,
pressing this button enters the next sub-menu or selects a parameter to modify.
After the parameter has
been modified, pressing this button saves the changes.
Holding this button for 2s
returns to the previous menu level.
< >
Pressing this button scrolls through the following Parameter Categories if the respective option has been enabled in the Auto Scroll setup under the Maintenance menu:
Pressing this button inside the
Metering sub-menu scrolls through the following Parameter Categories:
U 1-Ø SM1 to SM12 3-Ø SM1 to SM4 VM1 to VM4 AI
While inside the Setup
menu or a sub-menu, pressing this button scrolls to the previous menu item or setup parameter.
After a setup parameter has
been selected, pressing this button moves the cursor one position to the left if it
Page 26
25
CET Electric Technology
U 1-Ø SM1 to SM12 3-Ø SM1 to SM4 VM1 to VM4 AI
Pressing this button inside the
Alarm Status sub-menu scrolls through the following Alarm Categories:
U 1-Ø SM1 to SM12 3-Ø SM1 to SM4 AI DI1 to DI12
While inside other sub-
menus, pressing this button scrolls to the previous item.
is a numeric value. Once the cursor has reached the left most digit, pressing this button again will move the cursor to the right most digit. This button is ignored if the selected parameter is an enumerated value.
< >
Pressing this button scrolls to the next parameter in a certain Parameter Category.
Pressing this button scrolls to
the next sub-menu, the next parameter in a certain sub­menu, the next parameter in a certain Parameter Category inside the Metering sub­menu or the next alarm parameter in a certain Alarm
Category inside the Alarm status sub-menu.
While inside the Setup
menu or a sub-menu, pressing this button scrolls to the next menu item or setup parameter.
After a setup parameter has
been selected, pressing this button increments the selected digit if it is a numeric value or scrolls through the selection list if it is an enumerated value.
Table 3-2 Buttons Description
3.3 Data Display
The PMC-512-A’s LCD defaults to an Auto-Scroll display mode where measurements in each of the
selected Parameter Categories illustrated in Table 3-3 below are automatically scrolled through at a
fixed 5-second interval. If the user wishes to see all the available parameters, one can manually do so
by entering the Main Menu by pressing the < > button and then selecting one of the following sub-
menus for the desired information. The available sub-menus are: Metering, Alarm status, DI/DO Status,
Event Log, Setup, Maintenance, and Information. The following sections describe the available
information for each of the sub-menus in detail.
3.3.1 Auto-Scroll
The Parameter Categories and their measurements are listed in the table below, and all of them are
Enabled in Auto-Scroll Mode by default. Please refer to Auto-Scroll Setup in Section 3.4.4 Maintenance
about how to enable or disable the display of a certain SM or VM in Auto-Scroll.
Parameter Categories
Measurements
U
U11
U21
U31
Uln avg1
U12
U23
U31
Ull avg
Ung
U Unbal.
Freq.
U1 THD1
U2 THD1
U3 THD1
1-Ø SMx (x=1-12)
Current
kW
kvar
kVA
PF
%Loading
I THD
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
I Dmd
I Max. Dmd
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max. Dmd
kVA Dmd
kVA Max. Dmd
Operating Time
3-Ø SMx (x=1-4)
Ia
Ib
Ic
I avg
In
I Unbal.
kW Total
kvar Total
kVA Total
PF Total
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max. Dmd
kVA Dmd
kVA Max. Dmd
Operating Time
VM (1-4)
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
AI
AI Scaled
AI Raw
Table 3-3 Auto-Scroll Display Pages
Page 27
26
CET Electric Technology
Notes:
1) When the Wiring Mode is 3P3W a. U1/U2/U3 phase voltages are not available. b. U1/U2/U3 THD represent the THD values from U12/U23/U31
3.3.2 Metering
The following table illustrates the available measurements under the Metering sub-menu.
Menu
Parameter Categories
Measurements
Metering
U
U11
U21
U31
Uln avg1
U12
U23
U31
Ull avg
Ung
U Unbal.
Freq.
U1 THD1
U2 THD1
U3 THD1
1-Ø SMx (x=1-12)
I
kW
kvar
kVA
PF
%Loading
I THD
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
I Dmd
I Max. Dmd
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max Dmd
kVA Dmd
kVA Max Dmd
Operating Time
3-Ø SMx
(x=1-4)
Ia
Ib
Ic
I avg
In
I Unbal.
kW Total
kvar Total
kVA Total
PF Total
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max Dmd
kVA Dmd
kVA Max Dmd
Op. Time
VMx
(x=1-4)
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
AI
AI Scaled
AI Raw
Table 3-4 Metering Display Pages
Notes:
1) When the Wiring Mode is 3P3W a. U1/U2/U3 phase voltages are not available. b. U1/U2/U3 THD represent the THD values from U12/U23/U31
3.3.3 Alarm Status
Menu
Alarm Categories
Measurements
Alarm Status
U
U1
U2
U3
U12
U23
U31
Ung
Freq.
U Unbal.
Phase Rev.
Phase Loss
1-Ø SMx (x=1-12)
I Alarm
3-Ø SMx (x=1-4)
I Unbal.
I Reversal
AI
AI Alarm
DI (1-12)
DIx (x=1 to 12)
Table 3-5 Alarm Display Pages
3.3.4 DI/DO Status
Menu
Sub-Menu
Measurements
DI/DO Status
DI (1-12)
DIx (x=1 to 12)
DI (1-12) Counter
DIx (x=1 to 12)
DO
DO
Table 3-6 DI/DO Status Display Pages
3.3.5 SOE Log
The PMC-512-A supports the display of the SOE Log with its relevant parameter values and its
timestamp. The users can scroll through the SOE Log by pressing < > or < >.
Two examples of SOE Log Display:
Page 28
27
CET Electric Technology
Figure 3-2 Examples of Event Log Display
3.3.6 Information
Menu
Description
Parameters
Info
Meter Information
Firmware
Firmware Version
Modbus
Modbus Protocol Version
Ver. Date
Firmware Version Date
S/N
Serial Number
Diagnostics
AD
A/D Diagnostics
FRAM
FRAM Diagnostics
FLASH
FLASH Diagnostics
Setup Param.
Setup Parameters Diagnostics
Table 3-7 DI/DO Status Display Pages
3.4 Setup and Maintenance via the Front Panel
3.4.1 Making Setup Changes
1) Entering the Password:
Press < > to enter the Main Menu. Press < > to advance to the Setup menu.
A correct password must be entered before changes are allowed. The factory default password
is “0000”.
Press < > to shift the cursor to the left and < > to increment the numeric value for the
password.
When the password has been entered, pressing < > will enter the Setup sub-menu if the
password is correct.
2) Selecting a parameter to change:
Press < > to scroll to the desired sub-menu or parameter. Press < > to select the sub-menu or parameter for configuration. Hold < > for 2 seconds to return to the previous menu level. Repeat Step 2 until all the desired setup parameters have been selected.
3) Changing and saving a setup parameter:
For a numeric parameter, press < > to shift the cursor to the left by one position or < > to
increment the numeric value.
For an enumerated parameter, press < > or < > to scroll backward and forward in the
selection list.
After modification, press < > to save the change into memory or hold < > for 2 seconds to
exit the currently selected parameter without change.
Repeat steps 2) and 3) if necessary.
4) Exiting the Setup Configuration Mode Hold < > for 2 seconds to return to the Main Menu.
Page 29
28
CET Electric Technology
Also, the Setup Configuration Mode will be automatically exited if there is a period of inactivity
of 5 minutes or longer.
3.4.2 Setup Menu
Figure 3-3 Setup Menu
Page 30
29
CET Electric Technology
3.4.3 Configuration
The Setup Configuration Mode provides access to the following setup parameters:
Label
Description
Range
Default
Menu
1st
2nd
3rd
Setup
Basic
Nom. Freq.
Nominal Frequency
50Hz/60Hz
50Hz
Wiring Mode
Meter’s Wiring Connection
3P4W/3P3W/
1P2W/DEMO
3PH4W
U Primary
PT Primary
1 to 1,000,000V
380V
U Secondary
PT Secondary
1 to 450V
380V
PF Conv.
PF Convention
IEC/IEEE/-IEEE
IEC
kVA Calc.
kVA Calculation Method
Vector/Scalar
Vector
IE Period
Interval Energy Period
5 to 60 min
60
Dmd Period
Demand Interval
1 to 60 min
15
No. of Windows
Number of Sliding Windows
1 to 15
1
Dmd S.R. Time
Self-Read Time for Demand
See Note 1)
0
Dmd S.R. Mode
Self-Read Mode for Demand
Auto/Manual
Manual
Mthly Freeze Time
Self-Read Time for
Monthly Freeze Log
See Note 1) 0 R.C. Arm
Enable Arm before Execute
Remote Control
Enabled/Disabled
Disabled
DO Pulse
Specifies the duration for which
the relay output will be active
when a remote control command
is received to activate it. The DO
is in Latched mode if it’s set to
zero.
0.0 ~600.0s
0s
EN Pulse CNST
LED Energy Pulse Constant
1/10/100/400/
1000/3200 imp/kWh
400
LED EN Pulse
Specifies which kWh will be
enabled as the LED Energy Pulse
0 to 322
0 (Disabled)
Date Format
Set Date Format
YYYY/MM/DD
MM/DD/YYYYY
DD/MM/YYYY
YYYY/MM/DD
Language
System language
EN/SC/TC
EN
Comm.
COM1 Unit ID
COM1 Modbus Address
1 to 254
100
COM1 Baud Rate
COM1 Data rate in bits per COM1
second
1200/2400/4800/9600
19200/38400/57600
38400
COM1Config
COM1 Data Format
8N2/8O1/8E1/8N1
8E1
COM2 Unit ID
COM2 Modbus Address
1 to 254
100
COM2 Baud Rate
COM2 Data rate in bits per
second
1200/2400/4800/9600/
19200/38400/57600
9600
COM2 Config
COM2 Data Format
8N2/8O1/8E1/8N1
8E1
Alarm
Global Alarm
Uni. Hys.
Universal Hysteresis
0 to 10%
2%
ON/OFF Threshold
Current ON Threshold
0 to 10%
5%
ON Time
Current ON Delay
0 to 9999(s)
10s
OFF Time
Current OFF Delay
0 to 9999(s)
30s
Uln Alarm
Enable
Uln Alarm Enable
U1/U2/U3
None
HH Limit
Uln HH Alarm Threshold
0~300.0V
0
HH Delay
Uln HH Alarm Delay
0~9999s
0
H Limit
Uln H Alarm Threshold
0~300.0V
0
H Delay
Uln H Alarm Delay
0~9999s
0
L Limit
Uln L Alarm Threshold
0~300.0V
0
L Delay
Uln L Alarm Delay
0~9999s
0
LL Limit
Uln LL Alarm Threshold
0~300.0V
0
LL Delay
Uln LL Alarm Delay
0~9999s
0
Trigger
Uln Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
Ull Alarm
Page 31
30
CET Electric Technology
Enable
Ull Alarm Enable
U12/U23/U31
None
HH Limit
Ull HH Alarm Threshold
0~500.0 (V)
0
HH Delay
Ull HH Alarm Delay
0~9999 (s)
0
H Limit
Ull H Alarm Threshold
0~500.0 (V)
0
H Delay
Ull H Alarm Delay
0~9999 (s)
0
L Limit
Ull L Alarm Threshold
0~500.0 (V)
0
L Delay
Ull L Alarm Delay
0~9999 (s)
0
LL Limit
Ull LL Alarm Threshold
0~500.0 (V)
0
LL Delay
Ull LL Alarm Delay
0~9999 (s)
0
Trigger
Ull Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
Ung Alarm
HH Limit
Ung HH Alarm Threshold
0~100.0 (V) 0 HH Delay
Ung HH Alarm Delay
0~9999 (s) 0 H Limit
Ung H Alarm Threshold
0~100.0 (V) 0 H Delay
Ung H Alarm Delay
0~9999 (s)
0
Trigger
Ung Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
I Alarm
Enable
Current Alarm Enable
Off/On
Off
HH Limit
Current HH Alarm Threshold
0 to 100 (%)
0
HH Delay
Current HH Alarm Delay
0 to 9999 (s)
0
H Limit
Current H Alarm Threshold
0 to 100 (%)
0
H Delay
Current H Alarm Delay
0 to 9999 (s)
0
L Limit
Current L Alarm Threshold
0 to 100 (%)
0
L Delay
Current L Alarm Delay
0 to 9999 (s)
0
LL Limit
Current LL Alarm Threshold
0 to 100 (%)
0
LL Delay
Current LL Alarm Delay
0 to 9999 (s)
0
Trigger
Current Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
Freq. Alarm
H Limit
Freq. H Alarm Threshold
45.00~65.00 (Hz)
65.00
H Delay
Freq. H Alarm Delay
0~9999 (s)
10
L Limit
Freq. L Alarm Threshold
45.00~65.00 (Hz)
45.00
L Delay
Freq. L Alarm Delay
0~9999s
10
Trigger
Frequency Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
Unbal. Alarm
I Enable
3
I Unb. Alarm Enable
1 2 3 4
□□□□
Off
I Unbal. Limit
I Unbal. Alarm Threshold
0 to 100 (%)
0
I Unbal. Delay
I Unbal. Alarm Delay
0 to 9999 (s)
0
I Unbal. Trigger
I Unbal. Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
U Enable
U Unbal. Enable
Off/On
Off
U Unbal. Limit
U Unbal. Alarm Threshold
0 to 100 (%)
0
U Unbal. Delay
U Unbal. Alarm Delay
0 to 9999 (s)
0
U Unbal. Trigger
U Unbal. Alarm Trigger
Off
None
Phase Rev. Alarm
I Enable3
I Phase Reversal Alarm Enable
1 2 3 4
□□□□
None
U Enable
U Phase Reversal Alarm Enable
Off/On
Off/On
Trigger
Phase Reversal Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
Phase Loss. Alarm
Enable
Phase Loss. Alarm Enable
Off/On
Off
Alarm Delay
Phase Loss. Alarm Delay
0 to 9999 (s)
0s
Trigger
Phase Loss. Alarm Trigger
None/RO/Alarm
LED/RO & Alarm LED
None
1-Ø SM Setup (1-12)
Breaker Rating
Breaker Rating
1~30,000
32
CT Primary
CT Primary
1~60,000A
100
CT Secondary
CT Secondary
4
0~60,000 (x0.1) mA
See Note 4)
Polarity
Polarity
Normal/Reverse
Normal
U Phase
Voltage Phase
Not Used/U1/U2/U3
U12/U23/U31
U1
Page 32
31
CET Electric Technology
CT Type
CT Type
Solid/Split
Solid
VM Setup (1-6)
Enable 1-6
Select SM1-SM6 to be included
in a VM’s aggregation
1 2 3 4 5 6
□□□□□□
Enable 7-12
Select SM7-SM12 to be included
in a VM’s aggregation
7 8 9 10 11 12
□□□□□□
DI Setup (x=1-12)
DIx Excitation
Excitation Voltage
DC48V
DC48V
DIx Mode
DI or Pulse Counter
DI/Pulse
DI
DIx Debo.
Debounce Time
1 to 9999 (ms)
20 ms
DIx Pulse Weight
DI Pulse Weight
1 to 1,000,000
1
Analog Input
Type
Select between
0-20mA or 4-20mA input
4-20mA / 0-20 mA
4-20mA
Zero Scale
The value that corresponds to
the minimum Analog Input of 0
or 4 mA
-999,999 to 999,999
400
Full Scale
The value that corresponds to
the maximum Analog Input of 20
mA
-999,999 to 999,999
2000
Table 3-8 Setup Parameters
Notes:
1) The Dmd S.R. Time and Mthly Freeze Time support the following two options: a. A zero value means that the Self-Read will take place at 00:00 of the first day of each month. b. A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
2) The LED Energy Pulse Modes are listed in the table below:
Value
Parameter
Value
Parameter
Value
Parameter
0
Disabled
6
3-Ø SM3 kvarh Imp.
12
1-Ø SM2 kvarh Imp.
1
3-Ø SM1 kWh Imp.
7
3-Ø SM4 kWh Imp.
13
1-Ø SM3 kWh Imp.
2
3-Ø SM1 kvarh Imp.
8
3-Ø SM4 kvarh Imp.
14
1-Ø SM3 kvarh Imp.
3
3-Ø SM2 kWh Imp.
9
1-Ø SM1 kWh Imp.
4
3-Ø SM2 kvarh Imp.
10
1-Ø SM1 kvarh Imp.
31
1-Ø SM12 kWh Imp.
5
3-Ø SM3 kWh Imp.
11
1-Ø SM2 kWh Imp.
32
1-Ø SM12 kvarh Imp.
Table 3-9 LED Energy Pulse Modes
3) For Unbal. Alarm and Phase Rev. Alarm’s I Enable:
Bit 1 = 3-Ø SM1 Bit 2 = 3-Ø SM2 Bit 3 = 3-Ø SM3 Bit 4 = 3-Ø SM4
4) The default value of the SMx CT Secondary Current depends on the type of selected CT specification (see Appendix D
Mains Circuits CT):
CT Rating
CT Primary
Default CT Secondary
800A/40mA
800
400 (x0.1mA)
400A/40mA
400
400 (x0.1mA)
200A/40mA
200
400 (x0.1mA)
100A/40mA
100
400 (x0.1mA)
5A/1.667mA
Primary Rating of the External CT
50000 (x0.1mA)
Table 3-10 Default SM CT Secondary
3.4.4 Maintenance
Parameters
Descriptions
Range
Default
Clock Setup
Time and Date
YYYY/MM/DD
hh:mm:ss
-
Password Setup
Set New Password
-
-
BLTO
Backlight Time Out1
0 to 60 min.
5
Contrast
LCD Contrast
0 to 9
5
Auto-Scroll
Auto Scroll Setup2
See Note 2)
Clear Energy
Clear all Energy registers
Yes/No
No
Clear Max Demands
Clear Peak Demand Log of This Month
Yes/No
No
Page 33
32
CET Electric Technology
(Since Last Reset)
Clear All Demands
Clear all Demand Logs
Yes/No
No
Clear SOE
Clear SOE Logs
Yes/No
No
Clear DR Log
Clear DR Logs
Yes/No
No
Clear All Data
Clear All of the above
Yes/No
No
Factory Reset
Reset factory default settings
Yes/No
No
Table 3-11 Maintenance Parameters
Notes:
1) If the BLTO is set to 0, the Time Out is disabled, which means that the Backlight will always be on.
2) Auto-Scroll Setup allows users to select which 1-Ø SM, 3-Ø SM or VM would be displayed in Auto-Scroll Mode. For example,
if the PMC-512-A is used to monitor three 3-Ø circuits with I1 to I9, three 1-Ø circuits with I10 to I12 and without any virtual
metering, the 1-Ø SM1 to SM9, 3-Ø SM4 as well as VM1 to VM4 can be disabled in the Auto-Scroll Mode to prevent un-
necessary information from being displayed and thus simplifying the HMI access. The Parameter Categories and their
measurements are listed in the table below, and all of them are Enabled in Auto-Scroll Mode by default. The Parameter
Category U (Voltage) is always shown and cannot be disabled in Auto-Scroll mode.
Parameter Categories
Measurements
U
U11
U21
U31
Uln avg1
U12
U23
U31
Ull avg
Ung
U Unbal.
Freq.
U1 THD1
U2 THD1
U3 THD1
1-Ø SMx (x=1-12)
Current
kW
kvar
kVA
PF
%Loading
I THD
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
I Dmd
I Max. Dmd
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max. Dmd
kVA Dmd
kVA Max. Dmd
Operating Time
3-Ø SMx (x=1-4)
Ia
Ib
Ic
I avg
In
I Unbal.
kW Total
kvar Total
kVA Total
PF Total
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
kW Dmd
kW Max. Dmd
kvar Dmd
kvar Max. Dmd
kVA Dmd
kVA Max. Dmd
Operating Time
VM (1-4)
kWh Imp
kWh Exp
kvarh Imp
kvarh Exp
kVAh
AI
AI Scaled
AI Raw
Table 3-12 Auto-Scroll Parameter Categories
2) When the Wiring Mode is 3P3W a. U1/U2/U3 phase voltages are not available. b. U1/U2/U3 THD represent the THD values from U12/U23/U31
Page 34
33
CET Electric Technology
Chapter 4 Applications
4.1 Inputs and Outputs
4.1.1 Digital Inputs
The PMC-512-A is equipped with 12 wet contact Digital Inputs (DIs) that can be used for the status
monitoring which can help if a circuit is energized, detect breaker status or prevent misoperation to
equipment. The real-time statues of the Digital Inputs are available from the front panel or through
communications. Changes in Digital Input status are stored as events in the SOE Log in 1 ms resolution.
The following table describes the DI’s setup parameters:
Setup Parameter
Definition
Options/Default*
DIx Excitation
Specifies the voltage excitation level.
DC48V*
DIx Mode
Specifies the mode of the DI.
0 = Digital Input*
1 = Pulse Counter
DIx Debounce
Specifies the minimum duration the DI must remain in the Active or Inactive state before a DI state change is considered to be valid.
1 to 9999 (ms)
(Default = 20ms)
DIx Pulse Weight
Specifies pulse weight of the DI.
1* to 1,000,000
Table 4-1 DI Setup Parameters
4.1.2 Analog Input
The PMC-512-A comes standard with an Analog Input which can be programmed as 0mA to 20mA or
4mA to 20mA input. There are 3 setup parameters:
Setup Parameter
Definition
Options/Default*
AI Type
Select between 0-20mA or 4-20mA input.
0 = 4-20mA*
1 = 0-20mA
AI Zero
This value corresponds to the minimum Analog Input of 4 mA (for 4-20mA input) and has a range of ­999,999 to +999,999.
-999,999 to +999,999 Default=400
AI Full
This value corresponds to the maximum Analog Input of 20 mA and has a range of -999,999 to +999,999.
-999,999 to +999,999
Default=2000
Table 4-2 AI Setup Parameters
For example, to measure the oil temperature of a transformer, connect the outputs of the temperature
sensor to the AI terminals of the PMC-512-A. The temperature sensor outputs 4mA when the
temperature is -25°C and 20mA when the temperature is 100°C. As such, the Type parameter should be
programmed as 4-20mA. The AI FULL parameter should be programmed with the value 100, and the AI
ZERO parameter should be programmed with the value -25. Therefore, when the output of the sensor
is 20mA, the reading will be 100.00°C. When the output is 4mA, the reading will be -25.00°C. When the
output is 12mA, the reading will be (100°C - (-25°C)) x (12mA-4mA) / (20mA-4mA) + (-25°C) = 37.50°C.
4.1.3 Energy Pulse Outputs
The PMC-512-A comes standard with one front panel LED Pulse Output for kWh/kvarh pulsing. Energy
pulsing mode can be programmed from the Front Panel or through communications via the LED EN
Pulse setup parameter. Energy Pulse Outputs are typically used for accuracy testing. The pulse constant
can be configured as 1/10/100/400/1000/3200 imp/kxh (kWh/kvarh). However, it’s recommended that
the pulse constant should be set based on the CT specifications:
CT Specification
Recommended Pulse Constant
Energy Pulse Constant
Page 35
34
CET Electric Technology
5A1 3200 imp/kxh
0=1 imp/kxh
1=10 imp/kxh 2=100 imp/kxh 3=400 imp/kxh
4=1000 imp/kxh 5=3200 imp/kxh
100A
400 imp/kxh
200A
400 imp/kxh
250A
400 imp/kxh
400A
100 imp/kxh
800A
100 imp/kxh
Table 4-3 Recommended Pulse Constant
Notes:
1) For 5A CT, the recommended Energy Pulse Constant is 3200 imp/kxh if it is directly connected to the system. Otherwise,
the Energy Pulse Constant should be set based on the primary rating of the external CT. For example, if the primary rating of the external CT is 100A, then it is recommended to set the Energy Pulse Constant to 400 imp/kxh.
4.2 Power, Energy and Demand
4.2.1 Basic Measurements
The PMC-512-A provides the following basic measurements which can be accessed via the Front Panel
or through the communication:
Parameter
1-Ø SMs
3-Ø SMs
VMs
ULN
ULL
Ung
Current
Loading Factor
kW
kvar
kVA
PF
Frequency
Table 4-4 Basic Measurements
4.2.2 Energy Measurements
The PMC-512-A provides Energy parameters for active energy (kWh), reactive energy (kvarh) and
apparent energy (kVAh) with a resolution of 0.01 and a maximum value of 1,000,000.00. When the
maximum value is reached, the energy registers will automatically roll over to zero. The energy registers
can be reset manually through communications for all SMs.
The PMC-512-A provides the following energy measurements:
1-Ø SMs: kWh Import/Export, kvarh Import/Export, kVAh 3-Ø SMs: kWh Import/Export Total, kvarh Import/Export Total, kVAh Total VMs: kWh Import/Export, kvarh Import/Export, kVAh
4.2.3 Interval Energy Measurements
The PMC-512-A provides Interval Energy measurements of kWh Import/Export, kvarh Import/Export
and kVAh for 1-Ø SMs and VMs, kWh Import/Export total, kvarh Import/Export total and kVAh for 3-Ø
SMs. The Interval Energy registers can only be retrieved through communications.
The Interval Energy Period setup parameter can be programmed from the Front Panel or through
communications and allows the user to specify the latest interval for which real-time energy
consumption should be recorded. Please note that changing Interval Energy Period would clear the
present Interval Energy measurements.
Page 36
35
CET Electric Technology
4.2.4 Demands
Demand is defined as the average power consumption over a fixed interval (usually 15 minutes) based
on the sliding window method. The PMC-512-A provides Present Demand of Current for 1-Ø SMs and
Present Demand of kW, kvar and kVA for 1-Ø SMs, 3-Ø SMs as well as VMs.
The PMC-512-A provides the following Demand setup parameters:
Setup Parameter
Definition
Options
Demand Period
1 to 60 minutes. For example, if the # of Sliding Windows is set as 1 and the Demand Period is 15, the demand cycle will be 1×15=15min.
1 to 60 minutes
Default=15
# of Sliding Windows
Number of Sliding Windows.
1 to 15
Default=1
Self-Read Time
The Self-Read Time allows the user to specify the time and day of the month for the Peak Demand Self-Read operation. The Self-Read Time supports two options:
A zero value means that the Self-Read will take place at
00:00 of the first day of each month.
A non-zero value means that the Self-Read will take place
at a specific time and day based on the formula: Self-Read
Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
Default=0
Self-Read Mode
0=Auto 1=Manual
Default=1
(Manual)
Table 4-5 Demand Setup
4.3 Alarm Setpoints
The PMC-512-A provides powerful alarming functions for the 1-Ø SMs, 3-Ø SMs as well as for different
parameters. Each Alarm Type can be independently enabled, and a particular alarm within each Alarm
Type may also be disabled individually by setting its Alarm Threshold to 0.
4.3.1 Alarm Status
The PMC-512-A supports both Instantaneous Alarm and Latched Alarm, which are defined below.
Instantaneous Alarm
The status of an Instantaneous Alarm becomes active when the alarm condition is met and is
automatically reset to NORMAL when the alarm condition is no longer met. Instantaneous Alarm cannot
be reset manually.
Latched Alarm
On the other hand, the status of a Latched Alarm becomes Active when the alarm condition is met and
will remain in the Active state even after the alarm condition is no longer met. The Latched Alarm must
be reset manually. However, the Latched Alarm cannot be reset while the alarm condition remains
active.
Page 37
36
CET Electric Technology
Figure 4-1 Alarm Status
4.3.2 Universal Hysteresis and Current ON/OFF Status
The Universal Hysteresis, Current ON Threshold, Current ON Delay and Current OFF Delay are global
parameters that are valid for all relevant alarms.
Parameters
Description
Range
Default
Universal Hysteresis
The hysteresis rate for calculating the Return Threshold for all Alarms.
0 to 10%
2%
Current ON Threshold
The ON Threshold applies to all Current channels for switching from the OFF to ON state.
0 to 10%
5%
Current ON Delay
The minimum duration that the Current of a particular channel must exceed the ON Threshold before the Status would switch from OFF to ON.
0 to
9999(s)
10s
Current OFF Delay
The minimum duration that the Current of a particular channel must fall below the OFF Threshold before the Status would switch from ON to OFF.
0 to
9999(s)
30s
Table 4-6 Global Parameters
The Universal Hysteresis is a global parameter that is used to prevent measurement fluctuation around
the threshold point from causing an alarm to fluctuate between the Active and Inactive states.
It should be noted that the absolute value of the Alarm Threshold is calculated based on the Breaker
Rating parameters. Therefore, it’s critical to set the Breaker Rating correctly for each Current channel
for the Current Alarms to work properly.
| Channel Alarm Threshold | = Channel’s Breaker Rating x Alarm Threshold (%)
For Current On, High and High-High Alarms, which are conceptually similar to Over Setpoint:
Return Threshold = Alarm Threshold x (1 – Universal Hysteresis)
For Low and Low-Low Alarms, which are conceptually similar to Under Setpoint:
Return Threshold = Alarm Threshold x (1 + Universal Hysteresis)
The PMC-512-A provides the ON/OFF status for each Current channel to indicate whether the channel
is ON (Loaded) or OFF (No Load). If the Channel status is OFF, it means that the channel has no load and
would prevent the Low and Low-Low alarms from activating.
The following figures illustrate the logic diagram of the Current ON/OFF status, respectively.
Page 38
37
CET Electric Technology
Current ON = True Current OFF = True
Figure 4-2 Current ON Logic Diagram Figure 4-3 Current OFF Logic Diagram
Where
OFF Threshold = On Threshold x (1 – Universal Hysteresis)
Figure 4-4 Current ON/OFF Status
4.3.3 Current Alarms
PMC-512-A provides the Current On/OFF status as well as four Current Alarm Levels (High-High, High,
Low and Low-Low) for the 12x1-Ø SM. The Current Alarms will only be evaluated if it’s determined that
the Current ON status is true.
It should be noted that the absolute value of the Alarm Threshold is calculated based on the Breaker
Rating parameters. Therefore, it’s critical to set the Breaker Rating correctly for each Current channel
for the Current Alarms to work properly.
| Channel Alarm Threshold | = Channel’s Breaker Rating x Alarm Threshold (%)
The following table illustrates the Current Alarm parameters.
Parameters
Description
Range/Option
Default
Current Alarm Enable
Bit 0 = 1-Ø SM1 Bit 1 = 1-Ø SM2
Bit 11 = 1-Ø SM12
0 = Disabled
1 = Enabled
0
Current HH Alarm Threshold (%)
Current HH Alarm Limit
0 to 100%
0%
Current HH Alarm Time Delay
Current HH Alarm Time Delay
0 to 9999(s)
0s
Current H Alarm Threshold (%)
Current H Alarm Limit
0 to 100%
0%
Current H Alarm Time Delay
Current H Alarm Time Delay
0 to 9999(s)
0s
Current L Alarm Threshold (%)
Current L Alarm Limit
0 to 100%
0%
Current L Alarm Time Delay
Current L Alarm Time Delay
0 to 9999(s)
0s
Current LL Alarm Threshold (%)
Current LL Alarm Limit
0 to 100%
0%
Current LL Alarm Time Delay
Current LL Alarm Time Delay
0 to 9999(s)
0s
Current Alarm Trigger
Specifies what action would
trigger when the Current
Alarm becomes Active.
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0=None
Table 4-7 Current Alarm Parameters
Page 39
38
CET Electric Technology
The logic diagram of the Current HH Alarm is illustrated in Figure 4-5.
Figure 4-5 Current HH Alarm Logic Diagram
The logic diagram of the Current H Alarm is illustrated in Figure 4-6.
Figure 4-6 Current H Alarm Logic Diagram
The logic diagram of Current L Alarm is illustrated in Figure 4-7.
Figure 4-7 Current L Alarm Logic Diagram
The logic diagram of the Current LL Alarm is illustrated in Figure 4-8.
Figure 4-8 Current LL Alarm Logic Diagram
4.3.4 Voltage Alarm
The following table illustrates the Voltage Alarm parameters.
Parameters
Description
Range/Option
Default
ULN Alarm Enable
Bit 0 = U1, Bit 1 = U2
Bit 2= U3, Bits 3 - 15=Reserved
0 = Disabled
1 = Enabled
0
ULN HH Alarm Threshold
ULN HH Alarm Limit
0 to 300V
0
Page 40
39
CET Electric Technology
ULN HH Alarm Time Delay
ULN HH Alarm Time Delay
0 to 9999(s)
0
ULN H Alarm Threshold
ULN H Alarm Limit
0 to 300V
0
ULN H Alarm Time Delay
ULN H Alarm Time Delay
0 to 9999(s)
0
ULN L Alarm Threshold
ULN L Alarm Limit
0 to 300V
0
ULN L Alarm Time Delay
ULN L Alarm Time Delay
0 to 9999(s)
0
ULN LL Alarm Threshold
ULN LL Alarm Limit
0 to 300V
0
ULN LL Alarm Time Delay
ULN LL Alarm Time Delay
0 to 9999(s)
0
ULN Alarm Trigger
ULN Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0
ULL Alarm Enable
Bit 0 = U12 Bit 1 = U23
Bit 2= U31
Bits 3 - 15=Reserved
0 = Disabled
1 = Enabled
0
ULL HH Alarm Threshold
ULL HH Alarm Limit
0 to 500V
0
ULL HH Alarm Time Delay
ULL HH Alarm Time Delay
0 to 9999(s)
0
ULL H Alarm Threshold
ULL H Alarm Limit
0 to 500V
0
ULL H Alarm Time Delay
ULL H Alarm Time Delay
0 to 9999(s)
0
ULL L Alarm Threshold
ULL L Alarm Limit
0 to 500V
0
ULL L Alarm Time Delay
ULL L Alarm Time Delay
0 to 9999(s)
0
ULL LL Alarm Threshold
ULL LL Alarm Limit
0 to 500V
0
ULL LL Alarm Time Delay
ULL LL Alarm Time Delay
0 to 9999(s)
0
ULL Alarm Trigger
ULL Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0
Ung HH Alarm Threshold
Ung HH Alarm Limit
0 to 100V
0
Ung HH Alarm Time Delay
Ung HH Alarm Time Delay
0 to 9999(s)
0
Ung H Alarm Threshold
Ung H Alarm Limit
0 to 100V
0
Ung H Alarm Time Delay
Ung H Alarm Time Delay
0 to 9999(s)
0
Ung Alarm Trigger
Ung Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0
Table 4-8 Voltage Alarm Parameters
The logic diagram of Voltage HH/H Alarm is illustrated in Figure 4-9.
Figure 4-9 Voltage HH/H Alarm Logic Diagram
The logic diagram of Voltage L/LL Alarm is illustrated in Figure 4-10.
Figure 4-10 Voltage L/LL Alarm Logic Diagram
4.3.5 Frequency Alarm
PMC-512-A provides two Frequency Alarm levels (High, Low). Since PMC-512-A measures its frequency
Page 41
40
CET Electric Technology
based on Ua or Uab only, the Frequency Alarm is activated when Ua/Uab when the Voltage ON status
is true.
The FREQ H/L Alarm Return Thresholds are illustrated below:
FREQ H Alarm Return Threshold = FREQ H Alarm Threshold – 0.1Hz
FREQ L Alarm Return Threshold = FREQ L Alarm Threshold + 0.1Hz
The following table illustrates the Frequency Alarm parameters.
Parameters
Description
Range/Option
Default
FREQ H Alarm Threshold
FREQ H Alarm Limit
45.00 to 65.00Hz
65.00Hz
FREQ H Alarm D Time Delay
FREQ H Alarm Time Delay
0 to 9999(s)
10s
FREQ L Alarm Threshold
FREQ L Alarm Limit
45.00 to 65.00Hz
45.00Hz
FREQ L Alarm Time Delay
FREQ L Alarm Time Delay
0 to 9999(s)
10s
FREQ Alarm Trigger
FREQ Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
None
Table 4-9 Frequency Alarm Parameters
The logic diagram of FREQ H Alarm is illustrated in Figure 4-11.
Figure 4-11 FREQ H Alarm Logic Diagram
The logic diagram of FREQ L Alarm is illustrated in Figure 4-12.
Figure 4-12 FREQ L Alarm Logic Diagram
4.3.6 Unbalance Alarm
The PMC-512-A provides Current Unbalance Alarm for 4x3-Ø SMs. The following table illustrates the
Unbalance Alarm parameters.
Parameters
Description
Range/Option
Default
I Unb. Alarm Enable
Bit0=3-Ø SM1, Bit1=3-Ø SM2 Bit2=3-Ø SM3, Bit3=3-Ø SM4
Bits 4 - 15=Reserved
Where 0 = Disabled, 1 = Enabled
0 = Disabled
1 = Enabled
0
I Unb. Alarm Threshold (%)
Current Unb. Alarm Limit
0 to 100%
0
I Unb. Alarm Time Delay
Current Unb. Alarm Time Delay
0 to 9999(s)
0
I Unb. Alarm Trigger
I Unbalance Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0
Page 42
41
CET Electric Technology
U Unb. Alarm Enable
U Unbalance Alarm Enable
0 = Disabled
1 = Enabled
0
U Unb. Alarm Threshold (%)
Voltage Unb. Alarm Limit
0 to 100%
0
U Unb. Alarm Time Delay
Voltage Unb. Alarm Time Delay
0 to 9999(s)
0
U Unb. Alarm Trigger
U Unbalance Alarm Trigger
0=None, 1=RO,
2=Alarm LED,
3=RO & Alarm LED
0
Table 4-10 Unbalance Alarm Parameters
The logic diagram of Unbalance Alarm is illustrated in Figure 4-13.
Figure 4-13 Unbalance Alarm Logic Diagram
4.3.7 Phase Reversal Alarm
The PMC-512-A supports Phase Reversal Setpoint Alarms for 4x3-Ø SM. The following table illustrates
the Phase Reversal Alarm parameters and their respective default values.
Parameters
Range/Option
Default
Phase Reversal Alarm Enable
Bit0=3-Ø SM1, Bit1=3-Ø SM2 Bit2=3-Ø SM3, Bit3=3-Ø SM4
Bits 4 - 15=Reserved
Where 0 = Disabled, 1 = Enabled
0
Phase Reversal Alarm Time Delay
Fixed at 10s
10s
Phase Reversal Alarm Trigger
0=None, 1=RO, 2=Alarm LED, 3=RO & Alarm LED
0
Table 4-11 Phase Reversal Alarm Parameters
Please be informed that the Phase Reversal Alarm assumes that the phase sequencing is based on
Positive or Clockwise rotation (ABC).
The logic diagram of Phase Reversal Alarm is illustrated in Figure 4-14.
Figure 4-14 Phase Reversal Alarm Logic Diagram
4.3.8 Phase Loss Alarm
The PMC-512-A supports Phase Loss Alarm. The following table illustrates the Phase loss Alarm
parameters.
Parameters
Range/Option
Default
Phase Loss Alarm Enable
Bit0=3-Ø SM1, Bit1=3-Ø SM2 Bit2=3-Ø SM3, Bit3=3-Ø SM4
0
Page 43
42
CET Electric Technology
Bits 4 - 15=Reserved
Where 0 = Disabled, 1 = Enabled
Phase Loss Alarm Time Delay
0 to 9999(s)
0s
Phase Loss Alarm Trigger
0=None, 1=RO, 2=Alarm LED, 3=RO & Alarm LED
0
Table 4-12 Phase loss Sequence Alarm Parameters
The logic diagram of Phase Loss Alarm is illustrated in Figure 4-15.
Figure 4-15 Phase Loss Alarm Logic Diagram
4.3.9 AI Alarm
PMC-512-A provides four AI Alarm Levels (High-High, High, Low, Low-Low). The following table
illustrates the AI Alarm parameters.
Parameters
Range/Option
Default
AI Alarm Enable
Bit0=HH Alarm, Bit1=H Alarm
Bit2=L Alarm, Bit3=LL Alarm
Bits 4 - 15=Reserved
Where 0 = Disabled, 1 = Enabled
0
AI HH Alarm Threshold
-999999~999999
0
AI HH Alarm Time Delay
0 to 9999(s)
0
AI H Alarm Threshold
-999999~999999
0
AI H Alarm Time Delay
0 to 9999(s)
0
AI L Alarm Threshold
-999999~999999
0
AI L Alarm Time Delay
0 to 9999(s)
0
AI LL Alarm Threshold
-999999~999999
0
AI LL Alarm Time Delay
0 to 9999(s)
10
AI Alarm Trigger
0=None, 1=RO, 2=Alarm LED, 3=RO & Alarm LED
0
Table 4-13 AI Alarm Parameters
The logic diagram of AI H/HH Alarm is illustrated in Figure 4-16.
Figure 4-16 AI H/HH Alarm Logic Diagram
The logic diagram of AI L/LL Alarm is illustrated in Figure 4-17.
Page 44
43
CET Electric Technology
Figure 4-17 AI L/LL Alarm Logic Diagram
4.3.10 DI Alarm
The following table illustrates the DI Alarm parameters.
Parameters
Range/Option
Default
DIx Alarm Type
0=Disabled, 1=DIx Closed Trigger, 2=DIx Open Trigger
Disabled
DIx Alarm Time Delay
0 to 9999(s)
0
DIx Alarm Trigger
0=None, 1=RO, 2=Alarm LED, 3=RO & Alarm LED
0
x indicates 1 to 12
Table 4-14 DI Alarm Parameters
The logic diagram of DI Closed Alarm is illustrated in Figure 4-18.
Figure 4-18 DI Closed Alarm Logic Diagram
The logic diagram of DI Open Alarm is illustrated in Figure 4-19.
Figure 4-19 DI Open Alarm Logic Diagram
4.4 Power Quality
4.4.1 Phase Angles
The PMC-512-A provides Voltage and Current Phase Angle measurements for 1-Ø SMs and 3-Ø SMs.
Phase analysis is used to identify the angle relationship between voltages and currents.
For WYE connected systems, the per phase difference of the current and voltage angles should
correspond to the per phase PF. For example, if the power factor is 0.5 Lag and the voltage phase angles
are 0.0°, 240.0° and 120.0°, the current phase angles should have the values of -60.0°, 180.0° and 60.0°.
4.4.2 Unbalance
The PMC-512-A provides Voltage and Current Unbalance measurements for 3-Ø SMs. The calculation
method of Voltage and Current Unbalances are listed below:
Page 45
44
CET Electric Technology
Voltage Unbalance =
100%
V1
V2
Current Unbalance =
100%
I1
I2
where
V1, V2 are the Positive and Negative Sequence Components for Voltage, respectively.
and
I1, I2 are the Positive and Negative Sequence Components for Current, respectively.
4.4.3 Harmonics
The PMC-512-A provides harmonic analysis for THD, TOHD, TEHD and individual harmonics up to the
31st order. All harmonic parameters are available through communications except for THD, which is also
available from the front panel.
The following equations illustrate how to calculate the individual harmonic distortion:
Voltage Kth Harmonic Distortion=
100%
1
K
V
V
Current Kth Harmonic Distortion=
100%
I
I
1
k
Where
V1 / I1 are the Fundamental Voltage/Current RMS and
Vk / Ik is the kth Harmonic Voltage/Current RMS
The following table illustrates the available Voltage and Current Harmonics measurements on the PMC-
512-A.
Phase A
Phase B
Phase C
Harmonics-Voltage
THD
THD
THD
TEHD
TEHD
TEHD
TOHD
TOHD
TOHD
2
nd
Harmonic
2
nd
Harmonic
2
nd
Harmonic
31st Harmonic
31st Harmonic
31st Harmonic
Harmonics-Current (1-Ø SM1 to SM12)
THD
TEHD
TOHD
2
nd
Harmonic
31st Harmonic
Table 4-15 Harmonics Measurements
4.5 Sub-Meters (SM)
The PMC-512-A provides 12 Current Inputs which can be configured as 12x1-Ø SM, 4x3-Ø SM or a
combination of 1-Ø SMs or 3-Ø SMs. The SM assignment principle is illustrated in Tables 4-16.
The assignment principle is not programmable. Therefore, it is extremely important to allocate the 1-Ø
and 3-Ø circuits during installation that meet this fixed assignment principle.
Current Input
Voltage Input
1-Ø SMx
3-Ø SMx
I1
V1
1 1 I2
V2 2 I3
V3 3 I4
V1
4
2
I5
V2 5 I6
V3
6
Page 46
45
CET Electric Technology
I7
V1
7
3
I8
V2
8
I9
V3
9
I10
V1
10
4
I11
V2
11
I12
V3
12
Table 4-16 Sub-Meters Configuration
The PMC-512-A provides the following parameters for 1-Ø SMs and 3-Ø SMs:
1) Real-time Measurements: Voltage: Per phase ULN, ULL and Phase Angle, ULN and ULL average, Ung (Ground
Voltage), Unbalance, Frequency and per phase U THD
1-Ø SMs: Current and its Phase Angle, kW, kvar, kVA, PF, %Loading, I THD and Operating
Time
3-Ø SMs: Per-phase Current and Average, In (Calculated), I Unbalance, kW Total, kvar Total,
kVA Total, PF Total and Operating Time
2) Demands and Max Demands with Timestamp:
1-Ø SMs: Current, kW, kvar, kVA 3-Ø SMs: kW, kvar, kVA
3) Energy:
1-Ø SMs: kWh Import/Export, kvarh Import/Export, kVAh 3-Ø SMs: kWh Import/Export Total, kvarh Import/Export Total, kVAh Total
4.6 Virtual Meters (VM)
The PMC-512-A supports up to four Virtual Meters, VM1 to VM4, which can be used to perform arbitrary
aggregation from any of the 12 individual 1-Ø SMs, please refer to Section 5.8.7 VM Setup for more
information.
Each VM provides the following parameters kW Total, kvar Total, kVA Total, kWh Import/Export Total,
kvarh Import/Export Total and kVAh. VM’s energy measurements are separated from the SM’s energy
measurements so clearing the energy measurements of one SM would not affect the energy
measurements of the VM that consists of that particular SM.
4.7 Data Logging
4.7.1 Peak Demand Log
The PMC-512-A records the Peak Demand of This Month (Since Last Reset) and Last Month (Before
Last Reset) with timestamp for Current for 1-Ø SMs as well as kW, kvar and kVA for 1-Ø SMs, 3-Ø SMs
and VMs. All Demand and Peak Demand information except for VMs can be accessed via the front panel
or through communications. Please refer to Section 4.2.4 for a complete description of the Self-Read
Time and its operation. The Peak Demand Log of a certain SM or VM can be reset through the optional
HMI Display or via communications.
Peak Demand Logs of This Month (Since Last Reset) and Last Month (Before Last Reset)
Current for 1-Ø SM1-SM12
kW for 1-Ø SM1-SM12, 3-Ø SM1-SM4, VM1-VM4
kvar for 1-Ø SM1-SM12, 3-Ø SM1-SM4, VM1-VM4
kVA for 1-Ø SM1-SM12, 3-Ø SM1-SM4, VM1-VM4
Table 4-17 Peak Demand Log
Page 47
46
CET Electric Technology
4.7.2 SOE Log
The PMC-512-A’s SOE Log can store up to 512 events such as Power-On, Power-Off, Alarms, Relay
actions, Digital Input status changes, Diagnostics and Setup changes in its non-volatile memory. Each
event record includes the event classification, its relevant parameter values and a timestamp in ±1 ms
resolution. All events can be retrieved from the Front Panel or through communications. If there are
more than 512 events, the newest event will replace the oldest event on a First-In-First-Out basis. The
SOE Log can be reset through the Front Panel, the optional HMI Display or via communications.
4.7.3 Daily Freeze Log
The PMC-512-A provides a Daily Freeze Log of Current, Power and Energy parameters for 1-Ø SMs, 3-Ø
SMs and VMs for the last 1000 days. The Daily Freeze Log is stored in the meter’s non-volatile memory
and will not suffer any loss in the event of power failure, and they are stored on a First-In-First-Out (FIFO)
basis where the newest log will overwrite the oldest. The Daily Freeze Logs can only be accessed through
communications and contain the following parameters:
Circuits
Parameters
1-Ø SMs
Current, kW, kvar, kVA, kWh/kvarh Import, kWh/kvarh Export, kVAh Total
3-Ø SMs
kW Total, kvar Total, kVA Total, kWh/kvarh Import, kWh/kvarh Export, kVAh Total
VMs
kWh/kvarh Import, kWh/kvarh Export, kVAh Total
Table 4-18 Freeze Log
The Daily Freeze Log’s Self-Read operation will take place at 00:00 every day. If there are more than
1000 logs, the newest log will replace the oldest log on a FIFO basis.
4.7.4 Monthly Freeze Log
The PMC-512-A provides a Monthly Freeze Log of Energy parameters for 1-Ø SMs, 3-Ø SMs and VMs
for the last 24 months. The Monthly Freeze Log is stored in the meter’s non-volatile memory and will
not suffer any loss in the event of power failure, and they are stored on a FIFO basis where the newest
log will overwrite the oldest. The Monthly Freeze Logs can be reset manually via the front panel or
through communications.
The Monthly Freeze Log Self-read Time setup parameter allows the user to specify the time and day of
the month for the Self-read operation and supports two options:
A zero value means that the Self-Read will take place at 00:00 of the first day of each month. A non-zero value means that the Self-Read will take place at a specific time and day based on the
formula: Self-Read Time = Day x 100 + Hour where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example,
the value 1512 means that the Self-Read will take place at 12:00pm on the 15th day of each month.
The PMC-512-A’s Monthly Freeze Log can only accessed through communications and contains the
following parameters:
Circuits
Parameters
1-Ø SMs
kWh/kvarh Import, kWh/kvarh Export, kVAh
3-Ø SMs
kWh/kvarh Total Import, kWh/kvarh Total Export, kVAh Total
VMs
kWh/kvarh Total Import, kWh/kvarh Total Export, kVAh Total
Table 4-19 Monthly Freeze Log Parameters
4.7.5 Data Recorder Log (DR Log)
The PMC-512-A provides one DR capable of recording a maximum 60 parameters. The DR Log is stored
in the meter’s non-volatile memory and will not suffer any loss in the event of a power failure.
Page 48
47
CET Electric Technology
The programming of the DR is only supported over communications. The DR provides the following
setup parameters:
Setup Parameters
Value/Option
Default
Trigger Mode
0=Disabled / 1=Enabled
0
Recording Mode
0=Stop-When-Full / 1=First-In-First-Out
1
Recording Depth
1 to 5000 (entry)
5000
Recording Interval
60 to 345,600 seconds
900 s
Recording Offset
0 to 43,200 seconds, 0 indicates no offset.
0
Number of Parameters
0 to 60
55
Parameter 1 to 60
See Appendix B
Table 4-20 Setup Parameters for Data Recorder
Notes:
1) The DR Log is only operational when the values of Trigger Mode, Recording Depth, Recording Interval, and Number of
Parameters are all non-zero.
2) The Recording Offset parameter can be used to delay the recording by a fixed time from the Recording Interval. For
example, if the Recording Interval parameter is set to 3600 (hourly) and the Recording Offset parameter is set to 300 (5
minutes), the recording will take place at 5 minutes after the hour every hour, i.e. 00:05, 01:05, 02:05…etc. The value of
the Recording Offset parameter must be less than the Recording Interval parameter.
Page 49
48
CET Electric Technology
Chapter 5 Modbus Register Map
This chapter provides a complete description of the Modbus register map (Protocol Versions 2.1) for
the PMC-512-A to facilitate the development of 3rd party communications driver for accessing
information on the PMC-512-A. For a complete Modbus Protocol Specification, please visit
www.modbus.org.
The PMC-512-A supports the following Modbus functions:
1) Read Holding Registers (Function Code 0x03)
2) Force Single Coil (Function Code 0x05)
3) Preset Multiple Registers (Function Code 0x10)
4) Read Energy Files (Function Code 0x14)
The following table provides a description of the different data formats used for the Modbus registers.
The PMC-512-A uses the Big Endian byte ordering system.
Format
Description
UINT16/INT16
Unsigned/Signed 16-bit Integer
UINT32/INT32
Unsigned/Signed 32-bit Integer
Float
IEEE 754 32-bit
Single Precision Floating Point Number
5.1 Status Register
5.1.1 General Status
Register
Property
Description
Format
Note
0000
RO
DI Status1
UINT16
0001
RO
DO Status2
UINT16
0002
RO
Diagnostics3
Bitmap 0004
RO
SOE Pointer4
UINT32
0006
RO
Daily Freeze Log Pointer4
UINT32
0008
RO
DR Log Pointer4
UINT32
0010
RO
Monthly Freeze Log Pointer4
UINT32
0012
RO
Global Alarm Status
UINT16
0=Normal, 1=Alarm
Table 5-1 General Status
Notes:
1) For the DI Status register, the bit values of Bit 0 to Bit 11 represent the states of DI1 to DI12, respectively, with “1” meaning
Active (Closed) and “0” meaning Inactive (Open). The remaining bits are reserved.
2) For the DO Status register, the bit value of Bit 0 represents the state of the DO, with “1” meaning Active (Closed) and “0”
meaning Inactive (Open). The remaining bits are reserved.
3) The Diagnostics register indicates the various system statuses with a bit value of 0 meaning Normal and 1 meaning Abnormal.
The following table illustrates the details of the Diagnostics register.
Bit
Alarm Event
Bit 0
NVRAM Fault
Bit 1
Disk Fault
Bit 2
A/D Chips Fault
Bit 3
Internal Power Supply Fault
Bit 4
System Parameters Error
Bit 5
Internal Parameters Error
Bit 6-31
Reserved
Table 5-2 Diagnostics Register (Reg. # 0002)
4) The range of the SOE, Daily Freeze, DR, and Monthly Freeze Log Pointer is between 0 and 0xFFFFFFFFH. The pointer is
incremented by one for every new log generated and will roll over to 0 if its current value is 0xFFFFFFFFH. A value of zero
indicates that the specific Log does not contain any record. If a Clear Log is performed from the Front Panel or via
communications, its Log Pointer will be reset to zero. Use the following equation to determine the latest log location:
Latest Log Location = Modulo [SOE Pointer / Log Depth]
Page 50
49
CET Electric Technology
where Log Depth = 512 for SOE Log, 1000 for Daily Freeze Log, 24 for Monthly Freeze Log and DR’s Recording Depth
for the DR Log.
5.1.2 Instantaneous Alarms
Register
Property
Description
Format
Note
0030
RO
Instantaneous Alarm Status #1
Bitmap 0031
RO
Instantaneous Alarm Status #2
Bitmap 0032
RO
Instantaneous Alarm Status #3
Bitmap 0033
RO
Instantaneous Alarm Status #4
Bitmap 0034
RO
Instantaneous Alarm Status #5
Bitmap 0035
RO
Instantaneous Alarm Status #6
Bitmap 0036
RO
Instantaneous Alarm Status #7
Bitmap
0037~0045
RO
Reserved
Bitmap
Table 5-3 Instantaneous Alarm Status Registers
Notes:
1) For the Instantaneous Alarm Status #x register, the bit values of B0 to B15 represent different alarms, with “1” meaning
Active (Closed) and “0” meaning Inactive (Open).
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM1 I LL
1-Ø SM1 I HH
1-Ø SM1 I L
1-Ø SM1 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
1-Ø SM2 I LL
1-Ø SM2 I HH
1-Ø SM2 I L
1-Ø SM2 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM3 I LL
1-Ø SM3 I HH
1-Ø SM3 I L
1-Ø SM3 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM4 I LL
1-Ø SM4 I HH
1-Ø SM4 I L
1-Ø SM4 I H
Table 5-4 Instantaneous Alarm Status #1 (Register 0030)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM5 I LL
1-Ø SM5 I HH
1-Ø SM5 I L
1-Ø SM5 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
1-Ø SM6 I LL
1-Ø SM6 I HH
1-Ø SM6 I L
1-Ø SM6 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM7 I LL
1-Ø SM7 I HH
1-Ø SM7 I L
1-Ø SM7 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM8 I LL
1-Ø SM8 I HH
1-Ø SM8 I L
1-Ø SM8 I H
Table 5-5 Instantaneous Alarm Status #2 (Register 0031)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM9 I LL
1-Ø SM9 I HH
1-Ø SM9 I L
1-Ø SM9 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
1-Ø SM10 I LL
1-Ø SM10 I HH
1-Ø SM10 I L
1-Ø SM10 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM11 I LL
1-Ø SM11 I HH
1-Ø SM11 I L
1-Ø SM11 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM12 I LL
1-Ø SM12 I HH
1-Ø SM12 I L
1-Ø SM12 I H
Table 5-6 Instantaneous Alarm Status #3 (Register 0032)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
U1 LL
U1 HH
U1 L
U1 H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
U2 LL
U2 HH
U2 L
U2 H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
U3 LL
U3 HH
U3 L
U3 H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
U12 LL
U12 HH
U12 L
U12 H
Table 5-7 Instantaneous Alarm Status #4 (Register 0033)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
U23 LL
U23 HH
U23 L
U23 H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
U31 LL
U31 HH
U31 L
U31 H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
U Phase Reversal
U Unbalance
Freq. L
Freq. H
Page 51
50
CET Electric Technology
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Ung HH
Ung H
Phase Loss
Table 5-8 Instantaneous Alarm Status #5 (Register 0034)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
3-Ø SM2
I Phase Reversal
3-Ø SM2
I Unbal.
3-Ø SM1
I Phase Reversal
3-Ø SM1
I Unbal.
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
3-Ø SM4
I Phase Reversal
3-Ø SM4
I Unbal.
3-Ø SM3
I Phase Reversal
3-Ø SM3
I Unbal.
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
AI LL
AI HH
AI L
AI H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
Reserved
Table 5-9 Instantaneous Alarm Status #6 (Register 0035)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
DI4
DI3
DI2
DI1
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
DI8
DI7
DI6
DI5
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
DI12
DI11
DI10
DI9
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
Reserved
Table 5-10 Instantaneous Alarm Status #7 (Register 0036)
5.1.3 Latched Alarms
Register
Property
Description
Format
Note
0130
RO
Latched Alarm Status #1
Bitmap
0131
RO
Latched Alarm Status #2
Bitmap
0132
RO
Latched Alarm Status #3
Bitmap
0133
RO
Latched Alarm Status #4
Bitmap
0134
RO
Latched Alarm Status #5
Bitmap
0135
RO
Latched Alarm Status #6
Bitmap
0136
RO
Latched Alarm Status #7
Bitmap
0137~0145
RO
Reserved
Bitmap
Table 5-11 Latched Alarm Status Registers
Notes:
1) For the Latched Alarm Status #x register, the bit values of B0 to B15 represent different alarms, with “1” meaning Active
(Closed) and “0” meaning Inactive (Open).
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM1 I LL
1-Ø SM1 I HH
1-Ø SM1 I L
1-Ø SM1 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
1-Ø SM2 I LL
1-Ø SM2 I HH
1-Ø SM2 I L
1-Ø SM2 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM3 I LL
1-Ø SM3 I HH
1-Ø SM3 I L
1-Ø SM3 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM4 I LL
1-Ø SM4 I HH
1-Ø SM4 I L
1-Ø SM4 I H
Table 5-12 Latched Alarm Status #1 (Register 0130)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM5 I LL
1-Ø SM5 I HH
1-Ø SM5 I L
1-Ø SM5 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
1-Ø SM6 I LL
1-Ø SM6 I HH
1-Ø SM6 I L
1-Ø SM6 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM7 I LL
1-Ø SM7 I HH
1-Ø SM7 I L
1-Ø SM7 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM8 I LL
1-Ø SM8 I HH
1-Ø SM8 I L
1-Ø SM8 I H
Table 5-13 Latched Alarm Status #2 (Register 0131)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
1-Ø SM9 I LL
1-Ø SM9 I HH
1-Ø SM9 I L
1-Ø SM9 I H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Page 52
51
CET Electric Technology
Status
1-Ø SM10 I LL
1-Ø SM10 I HH
1-Ø SM10 I L
1-Ø SM10 I H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
1-Ø SM11 I LL
1-Ø SM11 I HH
1-Ø SM11 I L
1-Ø SM11 I H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
1-Ø SM12 I LL
1-Ø SM12 I HH
1-Ø SM12 I L
1-Ø SM12 I H
Table 5-14 Latched Alarm Status #3 (Register 0132)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
U1 LL
U1 HH
U1 L
U1 H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
U2 LL
U2 HH
U2 L
U2 H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
U3 LL
U3 HH
U3 L
U3 H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
U12 LL
U12 HH
U12 L
U12 H
Table 5-15 Latched Alarm Status #4 (Register 0133)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
U23 LL
U23 HH
U23 L
U23 H
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
U31 LL
U31 HH
U31 L
U31 H
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
U Phase Reversal
U Unbalance
Frequency L
Frequency H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Ung HH
Ung H
Phase Loss
Table 5-16 Latched Alarm Status #5 (Register 0134)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
3-Ø SM2
I Phase Reversal
3-Ø SM2
I Unbal.
3-Ø SM1
I Phase Reversal
3-Ø SM1
I Unbal.
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
3-Ø SM4
I Phase Reversal
3-Ø SM4
I Unbal.
3-Ø SM3
I Phase Reversal
3-Ø SM3
I Unbal.
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
AI LL
AI HH
AI L
AI H
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
Reserved
Table 5-17 Latched Alarm Status #6 (Register 0135)
Bit
Bit 3
Bit 2
Bit 1
Bit 0
Status
DI4
DI3
DI2
DI1
Bit
Bit 7
Bit 6
Bit 5
Bit 4
Status
DI8
DI7
DI6
DI5
Bit
Bit 11
Bit 10
Bit 9
Bit 8
Status
DI12
DI11
DI10
DI9
Bit
Bit 15
Bit 14
Bit 13
Bit 12
Status
Reserved
Reserved
Reserved
Reserved
Table 5-18 Latched Alarm Status #7 (Register 0136)
5.2 Basic Measurements
5.2.1 Measurements
Register
Property
Description
Format
Scale
Unit
0500
RO
U1
FP32
x1
V
0502
RO
U2
FP32
0504
RO
U3
FP32
0506
RO
Uln Average
FP32
0508
RO
U12
FP32
0510
RO
U23
FP32
0512
RO
U31
FP32
0514
RO
Ull Average
FP32
0516
RO
Ung
FP32
0518
RO
Voltage Unbalance
FP32
0520
RO
Frequency
FP32
Hz
Page 53
52
CET Electric Technology
0522
RO
U1 Angle
FP32
°
0524
RO
U2 Angle
FP32
0526
RO
U3 Angle
FP32
0528
RO
U12 Angle
FP32
0530
RO
U23 Angle
FP32
0532
RO
U31 Angle
FP32
0534
RO
1-Ø SM1 Current
FP32
A
0536
RO
1-Ø SM2 Current
FP32
… FP32
0556
RO
1-Ø SM12 Current
FP32
0558
RO
1-Ø SM1 kW
FP32
W
0560
RO
1-Ø SM2 kW
FP32
… FP32
0580
RO
1-Ø SM12 kW
FP32
0582
RO
1-Ø SM1 kvar
FP32
var
0584
RO
1-Ø SM2 kvar
FP32
… FP32
0604
RO
1-Ø SM12 kvar
FP32
0606
RO
1-Ø SM1 kVA
FP32
VA
0608
RO
1-Ø SM2 kVA
FP32
… FP32
0628
RO
1-Ø SM12 kVA
FP32
0630
RO
1-Ø SM1 PF
FP32
-
0632
RO
1-Ø SM2 PF
FP32
… FP32
0652
RO
1-Ø SM12 PF
FP32
0654
RO
1-Ø SM1 %Loading
FP32
-
0656
RO
1-Ø SM2 %Loading
FP32
… FP32
0676
RO
1-Ø SM12 %Loading
FP32
0678
RO
1-Ø SM1 Current Angle
FP32
°
0680
RO
1-Ø SM2 Current Angle
FP32
… FP32
0700
RO
1-Ø SM12 Current Angle
FP32
0702
RO
3-Ø SM1 kW Total
FP32
w
0704
RO
3-Ø SM2 kW Total
FP32
0706
RO
3-Ø SM3 kW Total
FP32
0708
RO
3-Ø SM4 kW Total
FP32
0710
RO
3-Ø SM1 kvar Total
FP32
var
0712
RO
3-Ø SM2 kvar Total
FP32
0714
RO
3-Ø SM3 kvar Total
FP32
0716
RO
3-Ø SM4 kvar Total
FP32
0718
RO
3-Ø SM1 kVA Total
FP32
VA
0720
RO
3-Ø SM2 kVA Total
FP32
0722
RO
3-Ø SM3 kVA Total
FP32
0724
RO
3-Ø SM4 kVA Total
FP32
0726
RO
3-Ø SM1 PF Total
FP32
-
0728
RO
3-Ø SM2 PF Total
FP32
0730
RO
3-Ø SM3 PF Total
FP32
0732
RO
3-Ø SM4 PF Total
FP32
0734
RO
3-Ø SM1 I Average
FP32
A
0736
RO
3-Ø SM2 I Average
FP32
0738
RO
3-Ø SM3 I Average
FP32
0740
RO
3-Ø SM4 I Average
FP32
0742
RO
3-Ø SM1 I Unbalance
FP32
-
0744
RO
3-Ø SM2 I Unbalance
FP32
0746
RO
3-Ø SM3 I Unbalance
FP32
0748
RO
3-Ø SM4 I Unbalance
FP32
0750
RO
VM1 kW
FP32
W
0752
RO
VM2 kW
FP32
0754
RO
VM3 kW
FP32
0756
RO
VM4 kW
FP32
0758
RO
VM1 kvar
FP32
var
0760
RO
VM2 kvar
FP32
0762
RO
VM3 kvar
FP32
0764
RO
VM4 kvar
FP32
Page 54
53
CET Electric Technology
0766
RO
VM1 kVA
FP32
VA
0768
RO
VM2 kVA
FP32
0770
RO
VM3 kVA
FP32
0772
RO
VM4 kVA
FP32
0774
RO
AI (Raw)
UINT16
x0.01
mA
0775
RO
AI (Scaled)
FP32
x1
Table 5-19 Real-time Measurements
5.2.2 Measurements for HMI
Register
Property
Description
Format
Scale
Unit
0800
RO
DI Status
UINT16 - -
0801
RO
DO Status
UINT16 - -
0802
RO
Diagnostic Status
UINT32 - -
0804
RO
AI (Scaled)
FP32 - -
0806~0809
RO
Reserved
UINT32 - -
0810
RO
1-Ø SM1 Current
FP32
x1 A 0812
RO
1-Ø SM1 %Loading
FP32 - %
0814
RO
1-Ø SM1 kW
FP32
x1 W 0816
RO
1-Ø SM1 PF
FP32
x1 - 0818
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
0820
RO
1-Ø SM1 Current THD
FP32 - -
0822
RO
1-Ø SM1 kvar
FP32
x1
var
0824
RO
1-Ø SM1 kVA
FP32
x1
VA
0826
RO
1-Ø SM1 Current Angle
FP32
x1 ° 0828
RO
Reserved
UINT32 - - … …
1030
RO
1-Ø SM12 Current
FP32
x1 A 1032
RO
1-Ø SM12 %Loading
FP32 - %
1034
RO
1-Ø SM12 kW
FP32
x1 W 1036
RO
1-Ø SM12 PF
FP32 - -
1038
RO
1-Ø SM12 kWh Import
INT32
x0.01
kWh
1040
RO
1-Ø SM12 Current THD
FP32 - -
1042
RO
1-Ø SM12 kvar
FP32
x1
var
1044
RO
1-Ø SM12 kVA
FP32
x1
VA
1046
RO
1-Ø SM12 Current Angle
FP32
x1 ° 1048
RO
Reserved
UINT32 - -
1050
RO
3-Ø SM1 kW Total
FP32
x1 W 1052
RO
3-Ø SM1 kvar Total
FP32
x1
var
1054
RO
3-Ø SM1 kVA Total
FP32
x1
VA
1056
RO
3-Ø SM1 PF Total
FP32
x1 - 1058
RO
3-Ø SM1 Current Average
FP32
x1 A 1060
RO
3-Ø SM1 Current Unbalance
FP32
x1 - 1062
RO
3-Ø SM1 kWh Import
INT32
x0.01
kWh … …
1092
RO
3-Ø SM4 kW Total
FP32
x1 W 1094
RO
3-Ø SM4 kvar Total
FP32
x1
var
1096
RO
3-Ø SM4 kVA Total
FP32
x1
VA
1098
RO
3-Ø SM4 PF Total
FP32
x1 - 1100
RO
3-Ø SM4 Current Average
FP32
x1 A 1102
RO
3-Ø SM4 Current Unbalance
FP32
x1 - 1104
RO
3-Ø SM4 kWh Import
INT32
x0.01
kWh
1106
RO
VM1 kW
FP32
x1 W 1108
RO
VM1 kvar
FP32
x1
var
1110
RO
VM1 kVA
FP32
x1
VA
1112
RO
VM2 kW
FP32
x1 W 1114
RO
VM2 kvar
FP32
x1
var
1116
RO
VM2 kVA
FP32
x1
VA
1118
RO
VM3 kW
FP32
x1 W 1120
RO
VM3 kvar
FP32
x1
var
1122
RO
VM3 kVA
FP32
x1
VA
1124
RO
VM4 kW
FP32
x1 W 1126
RO
VM4 kvar
FP32
x1
var
1128
RO
VM4 kVA
FP32
x1
VA
Table 5-20 Real-time Measurements for HMI
Page 55
54
CET Electric Technology
5.2.3 Operating Time
Register
Property
Description
Format
Scale
Unit
1500
RO
1-Ø SM1 Operating Time
UINT32
x0.1
Hour
1502
RO
1-Ø SM2 Operating Time
UINT32
...
RO
UINT32
1522
RO
1-Ø SM12 Operating Time
UINT32
1524
RO
3-Ø SM1 Operating Time
UINT32
1526
RO
3-Ø SM2 Operating Time
UINT32
1528
RO
3-Ø SM3 Operating Time
UINT32
1530
RO
3-Ø SM4 Operating Time
UINT32
Table 5-21 Operating Time
5.3 Energy Measurements
5.3.1 Complete Energy Measurements based on kWh, kvarh and kVAh
Register
Property
Description
Format
Scale
Unit
2000
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
2002
RO
1-Ø SM2 kWh Import
INT32
RO
INT32
2022
RO
1-Ø SM12 kWh Import
INT32
2024
RO
1-Ø SM1 kWh Export
INT32
2026
RO
1-Ø SM2 kWh Export
INT32
RO
INT32
2046
RO
1-Ø SM12 kWh Export
INT32
2048
RO
1-Ø SM1 kvarh Import
INT32
x0.01
kvarh
2050
RO
1-Ø SM2 kvarh Import
INT32 … RO
INT32
2070
RO
1-Ø SM12 kvarh Import
INT32
2072
RO
1-Ø SM1 kvarh Export
INT32
2074
RO
1-Ø SM2 kvarh Export
INT32 … RO
INT32
2094
RO
1-Ø SM12 kvarh Export
INT32
2096
RO
1-Ø SM1 kVAh
INT32
x0.01
kVAh
2098
RO
1-Ø SM2 kVAh
INT32 … RO
INT32
2118
RO
1-Ø SM12 kVAh
INT32
2120
RO
3-Ø SM1 kWh Total
INT32
x0.01
kWh
2122
RO
3-Ø SM2 kWh Total
INT32
2124
RO
3-Ø SM3 kWh Total
INT32
2126
RO
3-Ø SM4 kWh Total
INT32
2128
RO
3-Ø SM1 kvarh Total
INT32
x0.01
kvarh
2130
RO
3-Ø SM2 kvarh Total
INT32
2132
RO
3-Ø SM3 kvarh Total
INT32
2134
RO
3-Ø SM4 kvarh Total
INT32
2136
RO
3-Ø SM1 kWh Import Total
INT32
x0.01
kWh
2138
RO
3-Ø SM2 kWh Import Total
INT32
2140
RO
3-Ø SM3 kWh Import Total
INT32
2142
RO
3-Ø SM4 kWh Import Total
INT32
2144
RO
3-Ø SM1 kWh Export Total
INT32
2146
RO
3-Ø SM2 kWh Export Total
INT32
2148
RO
3-Ø SM3 kWh Export Total
INT32
2150
RO
3-Ø SM4 kWh Export Total
INT32
2152
RO
3-Ø SM1 kvarh Import Total
INT32
x0.01
kvarh
2154
RO
3-Ø SM2 kvarh Import Total
INT32
2156
RO
3-Ø SM3 kvarh Import Total
INT32
2158
RO
3-Ø SM4 kvarh Import Total
INT32
2160
RO
3-Ø SM1 kvarh Export Total
INT32
2162
RO
3-Ø SM2 kvarh Export Total
INT32
2164
RO
3-Ø SM3 kvarh Export Total
INT32
2166
RO
3-Ø SM4 kvarh Export Total
INT32
2168
RO
3-Ø SM1 kVAh Total
INT32
x0.01
kVAh
2170
RO
3-Ø SM2 kVAh Total
INT32
2172
RO
3-Ø SM3 kVAh Total
INT32
2174
RO
3-Ø SM4 kVAh Total
INT32
Page 56
55
CET Electric Technology
2176
RO
VM1 kWh Import
INT32
x0.01
kWh
2178
RO
VM2 kWh Import
INT32
2180
RO
VM3 kWh Import
INT32
2182
RO
VM4 kWh Import
INT32
2184
RO
VM1 kWh Export
INT32
2186
RO
VM2 kWh Export
INT32
2188
RO
VM3 kWh Export
INT32
2190
RO
VM4 kWh Export
INT32
2192
RO
VM1 kvarh Import
INT32
x0.01
kvarh
2194
RO
VM2 kvarh Import
INT32
2196
RO
VM3 kvarh Import
INT32
2198
RO
VM4 kvarh Import
INT32
2200
RO
VM1 kvarh Export
INT32
2202
RO
VM2 kvarh Export
INT32
2204
RO
VM3 kvarh Export
INT32
2206
RO
VM4 kvarh Export
INT32
2208
RO
VM1 kVAh
INT32
x0.01
kVAh
2210
RO
VM2 kVAh
INT32
2212
RO
VM3 kVAh
INT32
2214
RO
VM4 kVAh
INT32
Table 5-22 Complete Energy Measurement based on kWh, kvarh and kVAh
5.3.2 Complete Energy Measurements based on SMs and VMs
Register
Property
Description
Format
Scale
Unit
2300
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
2302
RO
1-Ø SM1 kWh Export
INT32
2304
RO
1-Ø SM1 kvarh Import
INT32
x0.01
kvarh
2306
RO
1-Ø SM1 kvarh Export
INT32
2308
RO
1-Ø SM1 kVAh
INT32
x0.01
kVAh … …
2410
RO
1-Ø SM12 kWh Import
INT32
x0.01
kWh
2412
RO
1-Ø SM12 kWh Export
INT32
2414
RO
1-Ø SM12 kvarh Import
INT32
x0.01
kvarh
2416
RO
1-Ø SM12 kvarh Export
INT32
2418
RO
1-Ø SM12 kVAh
INT32
x0.01
kVAh
2420
RO
3-Ø SM1 kWh Total
INT32
x0.01
kWh
2422
RO
3-Ø SM1 kvarh Total
INT32
x0.01
kvarh
2424
RO
3-Ø SM1 kWh Import Total
INT32
x0.01
kWh
2426
RO
3-Ø SM1 kWh Export Total
INT32
2428
RO
3-Ø SM1 kvarh Import Total
INT32
x0.01
kvarh
2430
RO
3-Ø SM1 kvarh Export Total
INT32
2432
RO
3-Ø SM1 kVAh Total
INT32
x0.01
kVAh … …
2462
RO
3-Ø SM4 kWh Total
INT32
x0.01
kWh
2464
RO
3-Ø SM4 kvarh Total
INT32
x0.01
kvarh
2466
RO
3-Ø SM4 kWh Import Total
INT32
x0.01
kWh
2468
RO
3-Ø SM4 kWh Export Total
INT32
2470
RO
3-Ø SM4 kvarh Import Total
INT32
x0.01
kvarh
2472
RO
3-Ø SM4 kvarh Export Total
INT32
2474
RO
3-Ø SM4 kVAh Total
INT32
x0.01
kVAh
2476
RO
VM1 kWh Import
INT32
x0.01
kWh
2478
RO
VM1 kWh Export
INT32
2480
RO
VM1 kvarh Import
INT32
x0.01
kvarh
2482
RO
VM1 kvarh Export
INT32
2484
RO
VM1 kVAh
INT32
x0.01
kVAh
2486
RO
VM2 kWh Import
INT32
x0.01
kWh
2488
RO
VM2 kWh Export
INT32
2490
RO
VM2 kvarh Import
INT32
x0.01
kvarh
2492
RO
VM2 kvarh Export
INT32
2494
RO
VM2 kVAh
INT32
x0.01
kVAh
2496
RO
VM3 kWh Import
INT32
x0.01
kWh
2498
RO
VM3 kWh Export
INT32
2500
RO
VM3 kvarh Import
INT32
x0.01
kvarh
2502
RO
VM3 kvarh Export
INT32
2504
RO
VM3 kVAh
INT32
x0.01
kVAh
Page 57
56
CET Electric Technology
2506
RO
VM4 kWh Import
INT32
x0.01
kWh
2508
RO
VM4 kWh Export
INT32
2510
RO
VM4 kvarh Import
INT32
x0.01
kvarh
2512
RO
VM4 kvarh Export
INT32
2514
RO
VM4 kVAh
INT32
x0.01
kVAh
Table 5-23 Complete Energy Measurement based on SMs and VMs
5.3.3 kWh and kvarh Energy Measurements for SMs and VMs
Register
Property
Description
Format
Scale
Unit
2600
RO
1-Ø SM1 kWh Total
INT32
x0.01
kWh
2602
RO
1-Ø SM1 kvarh Total
INT32
x0.01
kvarh
2604
RO
1-Ø SM2 kWh Total
INT32
x0.01
kWh
2606
RO
1-Ø SM2 kvarh Total
INT32
x0.01
kvarh
..
RO …
2644
RO
1-Ø SM12 kWh Total
INT32
x0.01
kWh
2646
RO
1-Ø SM12 kvarh Total
INT32
x0.01
kvarh
2648
RO
3-Ø SM1 kWh Total
INT32
x0.01
kWh
2650
RO
3-Ø SM1 kvarh Total
INT32
x0.01
kvarh
..
RO …
2660
RO
3-Ø SM4 kWh Total
INT32
x0.01
kWh
2662
RO
3-Ø SM4 kvarh Total
INT32
x0.01
kvarh
2664
RO
VM1 kWh Total
INT32
x0.01
kWh
2666
RO
VM1 kvarh Total
INT32
x0.01
kvarh … RO …
2676
RO
VM4 kWh Total
INT32
x0.01
kWh
2678
RO
VM4 kvarh Total
INT32
x0.01
kvarh
Table 5-24 SMs & VMs Energy Measurements for SMs and VMs
5.3.4 Interval Energy Measurements
Register
Property
Description
Format
Scale
Unit
3100
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
3102
RO
1-Ø SM1 kWh Export
INT32
3104
RO
1-Ø SM1 kvarh Import
INT32
x0.01
kvarh
3106
RO
1-Ø SM1 kvarh Export
INT32
3108
RO
1-Ø SM1 kVAh
INT32
x0.01
kVAh
...
RO
INT32
3210
RO
1-Ø SM12 kWh Import
INT32
x0.01
kWh
3212
RO
1-Ø SM12 kWh Export
INT32
3214
RO
1-Ø SM12 kvarh Import
INT32
x0.01
kvarh
3216
RO
1-Ø SM12 kvarh Export
INT32
3218
RO
1-Ø SM12 kVAh
INT32
x0.01
kVAh
3220
RO
3-Ø SM1 kWh Total
INT32
x0.01
kWh
3222
RO
3-Ø SM1 kvarh Total
INT32
x0.01
kvarh
3224
RO
3-Ø SM1 kWh Import Total
INT32
x0.01
kWh
3226
RO
3-Ø SM1 kWh Export Total
INT32
3228
RO
3-Ø SM1 kvarh Import Total
INT32
x0.01
kvarh
3230
RO
3-Ø SM1 kvarh Export Total
INT32
3232
RO
3-Ø SM1 kVAh
INT32
x0.01
kVAh
...
RO
INT32
3262
RO
3-Ø SM4 kWh Total
INT32
x0.01
kWh
3264
RO
3-Ø SM4 kvarh Total
INT32
x0.01
kvarh
3266
RO
3-Ø SM4 kWh Import Total
INT32
x0.01
kWh
3268
RO
3-Ø SM4 kWh Export Total
INT32
3270
RO
3-Ø SM4 kvarh Import Total
INT32
x0.01
kvarh
3272
RO
3-Ø SM4 kvarh Export Total
INT32
3274
RO
3-Ø SM4 kVAh
INT32
x0.01
kVAh
3276
RO
VM1 kWh Import
INT32
x0.01
kWh
3278
RO
VM1 kWh Export
INT32
3280
RO
VM1 kvarh Import
INT32
x0.01
kvarh
3282
RO
VM1 kvarh Export
INT32
3284
RO
VM1 kVAh
INT32
x0.01
kVAh
3286
RO
VM2 kWh Import
INT32
x0.01
kWh
3288
RO
VM2 kWh Export
INT32
3290
RO
VM2 kvarh Import
INT32
x0.01
kvarh
Page 58
57
CET Electric Technology
3292
RO
VM2 kvarh Export
INT32
3294
RO
VM2 kVAh
INT32
x0.01
kVAh
3296
RO
VM3 kWh Import
INT32
x0.01
kWh
3298
RO
VM3 kWh Export
INT32
3300
RO
VM3 kvarh Import
INT32
x0.01
kvarh
3302
RO
VM3 kvarh Export
INT32
3304
RO
VM3 kVAh
INT32
x0.01
kVAh
3306
RO
VM4 kWh Import
INT32
x0.01
kWh
3308
RO
VM4 kWh Export
INT32
3310
RO
VM4 kvarh Import
INT32
x0.01
kvarh
3312
RO
VM4 kvarh Export
INT32
3314
RO
VM4 kVAh
INT32
x0.01
kVAh
Table 5-25 Interval Energy Measurements
5.4 DI Pulse Counter
Register
Property
Description
Format
Scale
Unit
3400
RW
DI #1 Counter
UINT32
x1
-
3402
RW
DI #2 Counter
UINT32
3404
RW
DI #3 Counter
UINT32
3406
RW
DI #4 Counter
UINT32
3408
RW
DI #5 Counter
UINT32
3410
RW
DI #6 Counter
UINT32
3412
RW
DI #7 Counter
UINT32
3414
RW
DI #8 Counter
UINT32
3416
RW
DI #9 Counter
UINT32
3418
RW
DI #10 Counter
UINT32
3420
RW
DI #11 Counter
UINT32
3422
RW
DI #12 Counter
UINT32
Table 5-26 Pulse Counter
Notes:
1) DI Counter = Pulse Number x DI Pulse Weight
2) The Counter registers have a maximum value of 1,000,000,000 and will roll over to zero automatically when it is reached.
5.5 Demands
5.5.1 Present Demands
Register
Property
Description
Format
Scale
Unit
3500
RO
1-Ø SM1 Current
FP32
x1
A
3502
RO
1-Ø SM2 Current
FP32 … …
3522
RO
1-Ø SM12 Current
FP32
3524
RO
1-Ø SM1 kW
FP32
x1
W
3526
RO
1-Ø SM2 kW
FP32 … …
3546
RO
1-Ø SM12 kW
FP32
3548
RO
1-Ø SM1 kvar
FP32
x1
var
3550
RO
1-Ø SM2 kvar
FP32 … …
3570
RO
1-Ø SM12 kvar
FP32
3572
RO
1-Ø SM1 kVA
FP32
x1
VA
3574
RO
1-Ø SM2 kVA
FP32
3594
RO
1-Ø SM12 kVA
FP32
3596
RO
3-Ø SM1 kW
FP32
x1
W
3598
RO
3-Ø SM2 kW
FP32
3600
RO
3-Ø SM3 kW
FP32
3602
RO
3-Ø SM4 kW
FP32
3604
RO
3-Ø SM1 kvar
FP32
x1
var
3606
RO
3-Ø SM2 kvar
FP32
3608
RO
3-Ø SM3 kvar
FP32
3610
RO
3-Ø SM4 kvar
FP32
3612
RO
3-Ø SM1 kVA
FP32
x1
VA
Page 59
58
CET Electric Technology
3614
RO
3-Ø SM2 kVA
FP32
3616
RO
3-Ø SM3 kVA
FP32
3618
RO
3-Ø SM4 kVA
FP32
3620
RO
VM1 kW
FP32
x1
W
3622
RO
VM2 kW
FP32
3624
RO
VM3 kW
FP32
3626
RO
VM4 kW
FP32
3628
RO
VM1 kvar
FP32
x1
var
3630
RO
VM2 kvar
FP32
3632
RO
VM3 kvar
FP32
3634
RO
VM4 kvar
FP32
3636
RO
VM1 kVA
FP32
x1
VA
3638
RO
VM2 kVA
FP32
3640
RO
VM3 kVA
FP32
3642
RO
VM4 kVA
FP32
Table 5-27 Present Demand Measurements
5.5.2 Peak Demand Log of This Month (Since Last Reset)
Register
Property
Description
Format
Scale
Unit
4000
RO
1-Ø SM1 Current
FP32
x1 A 4002
RO
Timestamp
UINT32 s
4004
RO
1-Ø SM2 Current
FP32
x1 A 4006
RO
Timestamp
UINT32 s … …
4044
RO
1-Ø SM12 Current
FP32
x1 A 4046
RO
Timestamp
UINT32 s
4048
RO
1-Ø SM1 kW
FP32
x1 W 4050
RO
Timestamp
UINT32 s
4052
RO
1-Ø SM2 kW
FP32
x1 W 4054
RO
Timestamp
UINT32 s … …
4092
RO
1-Ø SM12 kW
FP32
x1 W 4094
RO
Timestamp
UINT32 s
4096
RO
1-Ø SM1 kvar
FP32
x1
var
4098
RO
Timestamp
UINT32 s
4100
RO
1-Ø SM2 kvar
FP32
x1
var
4102
RO
Timestamp
UINT32 s … …
4140
RO
1-Ø SM12 kvar
FP32
x1
var
4142
RO
Timestamp
UINT32 s
4144
RO
1-Ø SM1 kVA
FP32
x1
VA
4146
RO
Timestamp
UINT32 s
4148
RO
1-Ø SM2 kVA
FP32
x1
VA
4150
RO
Timestamp
UINT32 s … …
4188
RO
1-Ø SM12 kVA
FP32
x1
VA
4190
RO
Timestamp
UINT32 s
4192
RO
3-Ø SM1 kW
FP32
x1 W 4194
RO
Timestamp
UINT32 s
4196
RO
3-Ø SM2 kW
FP32
x1 W 4198
RO
Timestamp
UINT32 s
4200
RO
3-Ø SM3 kW
FP32
x1 W 4202
RO
Timestamp
UINT32 s
4204
RO
3-Ø SM4 kW
FP32
x1
W
4206
RO
Timestamp
UINT32 s
4208
RO
3-Ø SM1 kvar
FP32
x1
var
4210
RO
Timestamp
UINT32 s
4212
RO
3-Ø SM2 kvar
FP32
x1
var
4214
RO
Timestamp
UINT32 s
4216
RO
3-Ø SM3 kvar
FP32
x1
var
4218
RO
Timestamp
UINT32 s
4220
RO
3-Ø SM4 kvar
FP32
x1
var
4222
RO
Timestamp
UINT32 s
4224
RO
3-Ø SM1 kVA
FP32
x1
VA
4226
RO
Timestamp
UINT32 s
Page 60
59
CET Electric Technology
4228
RO
3-Ø SM2 kVA
FP32
x1
VA
4230
RO
Timestamp
UINT32 s
4232
RO
3-Ø SM3 kVA
FP32
x1
VA
4234
RO
Timestamp
UINT32 s
4236
RO
3-Ø SM4 kVA
FP32
x1
VA
4238
RO
Timestamp
UINT32 s
4240
RO
VM1 kW
FP32
x1
W
4242
RO
Timestamp
UINT32 s
4244
RO
VM2 kW
FP32
x1
W
4246
RO
Timestamp
UINT32 s
4248
RO
VM3 kW
FP32
x1
W
4250
RO
Timestamp
UINT32 s
4252
RO
VM4 kW
FP32
x1
W
4254
RO
Timestamp
UINT32 s
4256
RO
VM1 kvar
FP32
x1
var
4258
RO
Timestamp
UINT32 s
4260
RO
VM2 kvar
FP32
x1
var
4262
RO
Timestamp
UINT32 s
4264
RO
VM3 kvar
FP32
x1
var
4266
RO
Timestamp
UINT32 s
4268
RO
VM4 kvar
FP32
x1
var
4270
RO
Timestamp
UINT32 s
4272
RO
VM1 kVA
FP32
x1
VA
4274
RO
Timestamp
UINT32 s
4276
RO
VM2 kVA
FP32
x1
VA
4278
RO
Timestamp
UINT32 s
4280
RO
VM3 kVA
FP32
x1
VA
4282
RO
Timestamp
UINT32 s
4284
RO
VM4 kVA
FP32
x1
VA
4286
RO
Timestamp
UINT32 s
Table 5-28 Peak Demand Log of This Month (Since Last Reset)
5.5.3 Peak Demand Log of Last Month (Before Last Reset)
Register
Property
Description
Format
Scale
Unit
4288
RO
1-Ø SM1 Current
FP32
x1 A 4290
RO
Timestamp
UINT32 s
4294
RO
1-Ø SM2 Current
FP32
x1 A 4296
RO
Timestamp
UINT32 s … …
4332
RO
1-Ø SM12 Current
FP32
x1 A 4334
RO
Timestamp
UINT32 s
4336
RO
1-Ø SM1 kW
FP32
x1 W 4338
RO
Timestamp
UINT32 s
4340
RO
1-Ø SM2 kW
FP32
x1 W 4342
RO
Timestamp
UINT32 s … …
4380
RO
1-Ø SM12 kW
FP32
x1 W 4382
RO
Timestamp
UINT32 s
4384
RO
1-Ø SM1 kvar
FP32
x1
var
4386
RO
Timestamp
UINT32 s
4388
RO
1-Ø SM2 kvar
FP32
x1
var
4390
RO
Timestamp
UINT32 s … …
4428
RO
1-Ø SM12 kvar
FP32
x1
var
4430
RO
Timestamp
UINT32 s
4432
RO
1-Ø SM1 kVA
FP32
x1
VA
4434
RO
Timestamp
UINT32 s
4436
RO
1-Ø SM2 kVA
FP32
x1
VA
4438
RO
Timestamp
UINT32 s … …
4476
RO
1-Ø SM12 kVA
FP32
x1
VA
4478
RO
Timestamp
UINT32 s
4480
RO
3-Ø SM1 kW
FP32
x1 W 4482
RO
Timestamp
UINT32 s
4484
RO
3-Ø SM2 kW
FP32
x1
W
Page 61
60
CET Electric Technology
4486
RO
Timestamp
UINT32 s
4488
RO
3-Ø SM3 kW
FP32
x1
W
4490
RO
Timestamp
UINT32 s
4492
RO
3-Ø SM4 kW
FP32
x1
W
4494
RO
Timestamp
UINT32 s
4496
RO
3-Ø SM1 kvar
FP32
x1
var
4498
RO
Timestamp
UINT32 s
4500
RO
3-Ø SM2 kvar
FP32
x1
var
4502
RO
Timestamp
UINT32 s
4504
RO
3-Ø SM3 kvar
FP32
x1
var
4506
RO
Timestamp
UINT32 s
4508
RO
3-Ø SM4 kvar
FP32
x1
var
4510
RO
Timestamp
UINT32 s
4512
RO
3-Ø SM1 kVA
FP32
x1
VA
4514
RO
Timestamp
UINT32 s
4516
RO
3-Ø SM2 kVA
FP32
x1
VA
4518
RO
Timestamp
UINT32 s
4520
RO
3-Ø SM3 kVA
FP32
x1
VA
4522
RO
Timestamp
UINT32 s
4524
RO
3-Ø SM4 kVA
FP32
x1
VA
4526
RO
Timestamp
UINT32 s
4528
RO
VM1 kW
FP32
x1
W
4520
RO
Timestamp
UINT32 s
4532
RO
VM2 kW
FP32
x1
W
4534
RO
Timestamp
UINT32 s
4536
RO
VM3 kW
FP32
x1
W
4538
RO
Timestamp
UINT32 s
4540
RO
VM4 kW
FP32
x1
W
4542
RO
Timestamp
UINT32 s
4544
RO
VM1 kvar
FP32
x1
var
4546
RO
Timestamp
UINT32 s
4548
RO
VM2 kvar
FP32
x1
var
4550
RO
Timestamp
UINT32 s
4552
RO
VM3 kvar
FP32
x1
var
4554
RO
Timestamp
UINT32 s
4556
RO
VM4 kvar
FP32
x1
var
4558
RO
Timestamp
UINT32 s
4560
RO
VM1 kVA
FP32
x1
VA
4562
RO
Timestamp
UINT32 s
4564
RO
VM2 kVA
FP32
x1
VA
4566
RO
Timestamp
UINT32 s
4568
RO
VM3 kVA
FP32
x1
VA
4570
RO
Timestamp
UINT32 s
4572
RO
VM4 kVA
FP32
x1
VA
4574
RO
Timestamp
UINT32 s
Table 5-29 Peak Demand Log of Last Month (Before Last Reset)
5.6 Harmonics Measurements
5.6.1 Voltage THD Measurements
Register
Property
Description
Format
Scale
Unit
4700
RO
U1/U12 THD
FP32
x1
-
4702
RO
U1/U12 TOHD
FP32
4704
RO
U1/U12 TEHD
FP32
4706
RO
U2/U23 THD
FP32
4708
RO
U2/U23 TOHD
FP32
4710
RO
U2/U23 TEHD
FP32
4712
RO
U3/U31 THD
FP32
4714
RO
U3/U31 TOHD
FP32
4716
RO
U3/U31 TEHD
FP32
Table 5-30 Voltage Harmonic Measurements
Page 62
61
CET Electric Technology
5.6.2 Current THD Measurements
Register
Property
Description
Format
Scale
Unit
4718
RO
1-Ø SM1 THD
FP32
x1
-
4720
RO
1-Ø SM1 TOHD
FP32
4722
RO
1-Ø SM1 TEHD
FP32
4724
RO
1-Ø SM2 THD
FP32
4726
RO
1-Ø SM2 TOHD
FP32
4728
RO
1-Ø SM2 TEHD
FP32
4730
RO
1-Ø SM3 THD
FP32
4732
RO
1-Ø SM3 TOHD
FP32
4734
RO
1-Ø SM3 TEHD
FP32
4736
RO
1-Ø SM4 THD
FP32
4738
RO
1-Ø SM4 TOHD
FP32
4740
RO
1-Ø SM4 TEHD
FP32
4742
RO
1-Ø SM5 THD
FP32
4744
RO
1-Ø SM5 TOHD
FP32
4746
RO
1-Ø SM5 TEHD
FP32
4748
RO
1-Ø SM6 THD
FP32
4750
RO
1-Ø SM6 TOHD
FP32
4752
RO
1-Ø SM6 TEHD
FP32
4754
RO
1-Ø SM7 THD
FP32
4756
RO
1-Ø SM7 TOHD
FP32
4758
RO
1-Ø SM7 TEHD
FP32
4760
RO
1-Ø SM8 THD
FP32
4762
RO
1-Ø SM8 TOHD
FP32
4764
RO
1-Ø SM8 TEHD
FP32
4766
RO
1-Ø SM9 THD
FP32
4768
RO
1-Ø SM9 TOHD
FP32
4770
RO
1-Ø SM9 TEHD
FP32
4772
RO
1-Ø SM10 THD
FP32
7744
RO
1-Ø SM10 TOHD
FP32
4776
RO
1-Ø SM10 TEHD
FP32
4778
RO
1-Ø SM11 THD
FP32
4780
RO
1-Ø SM11 TOHD
FP32
4782
RO
1-Ø SM11 TEHD
FP32
4784
RO
1-Ø SM12 THD
FP32
4786
RO
1-Ø SM12 TOHD
FP32
4788
RO
1-Ø SM12 TEHD
FP32
Table 5-31 Current Harmonic Measurements
5.6.3 Individual Harmonics
Register
Property
Description
Format
4790~4849
RO
U1/U12
See Note 1)
4850~4909
RO
U2/U23
4910~4969
RO
U3/U31
4970~5029
RO
1-Ø SM1 Current
5030~5089
RO
1-Ø SM2 Current
5090~5149
RO
1-Ø SM3 Current
5150~5209
RO
1-Ø SM4 Current
5210~5269
RO
1-Ø SM5 Current
5270~5329
RO
1-Ø SM6 Current
5330~5389
RO
1-Ø SM7 Current
5390~5449
RO
1-Ø SM8 Current
5450~5509
RO
1-Ø SM9 Current
5510~5569
RO
1-Ø SM10 Current
5570~5629
RO
1-Ø SM11 Current
5630~5689
RO
1-Ø SM12 Current
Table 5-32 Individual Harmonic Measurements
Notes:
1) The following table illustrates the HD Data Structure for the Individual Harmonics measurements.
Offset
Property
Description
Format
Scale/Unit
+0
RO
HD02
FP32
x100, %
Page 63
62
CET Electric Technology
+2
RO
HD03
FP32
x100, %
+4
RO
HD04
FP32
x100, %
+6
RO
HD05
FP32
x100, %
… … FP32
+54
RO
HD29
FP32
x100, %
+56
RO
HD30
FP32
x100, %
+58
RO
HD31
FP32
x100, %
Table 5-33 HD Data Structure
5.7 Log Register
5.7.1 SOE Log
Register
Property
Description
Format
10000-10008
RO
Event 1
See Table 5-35
SOE Log Data
Structure
10009-10017
RO
Event 2
10018-10026
RO
Event 3
10027-10035
RO
Event 4
….
….
14599~14607
RO
Event 512
Table 5-34 SOE Log
Offset
Property
Description
Format
Range/Note
+0
RO
High-order Byte: Event Classification
UINT16
See Appendix A
Low-order Byte: Sub-Classification
See Appendix A
+1
RO
High-order Byte: Year
UINT16
0-99 (Year-2000)
Low-order Byte: Month
1 to 12
+2
RO
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
+3
RO
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
+4
RO
Millisecond
UINT16
+5
RO
Reserved
UINT8
Status
UINT8
1=Inactive (Open)
2=Active (Closed)
+6
RO
Event Value-High Word
INT16
-
+7
RO
Event Value-Low Word
+8
RO
Channel No.
UINT16
Table 5-35 SOE Log Data Structure
5.7.2 Daily Freeze Log
Register
Property
Description
Format
Scale
Unit
20000
RW
Index1
UINT32
1 to 1000
20002
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
-
20003
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
20004
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
20005
RO
Millisecond
UINT16
20006
RO
1-Ø SM1 Current
FP32
x1
A
20008
RO
1-Ø SM1 kW
FP32
x1
W
20010
RO
1-Ø SM1 kvar
FP32
x1
var
20012
RO
1-Ø SM1 kVA
FP32
x1
VA
20014
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
20016
RO
1-Ø SM1 kWh Export
INT32
x0.01
kWh
20018
RO
1-Ø SM1 kvarh Import
INT32
x0.01
kvarh
20020
RO
1-Ø SM1 kvarh Export
INT32
x0.01
kvarh
20022
RO
1-Ø SM1 kVAh
INT32
x0.01
kVAh
20204
RO
1-Ø SM12 Current
FP32
x1
A
20206
RO
1-Ø SM12 kW
FP32
x1
W
20208
RO
1-Ø SM12 kvar
FP32
x1
var
20210
RO
1-Ø SM12 kVA
FP32
x1
VA
20212
RO
1-Ø SM12 kWh Import
INT32
x0.01
kWh
Page 64
63
CET Electric Technology
20214
RO
1-Ø SM12 kWh Export
INT32
x0.01
kWh
20216
RO
1-Ø SM12 kvarh Import
INT32
x0.01
kvarh
20218
RO
1-Ø SM12 kvarh Export
INT32
x0.01
kvarh
20220
RO
1-Ø SM12 kVAh
INT32
x0.01
kVAh
20222
RO
3-Ø SM1 kW
FP32
x1
W
20224
RO
3-Ø SM1 kvar
FP32
x1
var
20226
RO
3-Ø SM1 kVA
FP32
x1
VA
20228
RO
3-Ø SM1 kWh Import
INT32
x0.01
kWh
20230
RO
3-Ø SM1 kWh Export
INT32
x0.01
kWh
20232
RO
3-Ø SM1 kvarh Import
INT32
x0.01
kvarh
20234
RO
3-Ø SM1 kvarh Export
INT32
x0.01
kvarh
20236
RO
3-Ø SM1 kVAh
INT32
x0.01
kVAh
20270
RO
3-Ø SM4 kW
FP32
x1
W
20272
RO
3-Ø SM4 kvar
FP32
x1
var
20274
RO
3-Ø SM4 kVA
FP32
x1
VA
20276
RO
3-Ø SM4 kWh Import
INT32
x0.01
kWh
20278
RO
3-Ø SM4 kWh Export
INT32
x0.01
kWh
20280
RO
3-Ø SM4 kvarh Import
INT32
x0.01
kvarh
20282
RO
3-Ø SM4 kvarh Export
INT32
x0.01
kvarh
20284
RO
3-Ø SM4 kVAh
INT32
x0.01
kVAh
20286
RO
VM1 kW
FP32
x1
W
20288
RO
VM1 kvar
FP32
x1
var
20290
RO
VM1 kVA
FP32
x1
VA
20292
RO
VM1 kWh Import
INT32
x0.01
kWh
20294
RO
VM1 kWh Export
INT32
x0.01
kWh
20296
RO
VM1 kvarh Import
INT32
x0.01
kvarh
20298
RO
VM1 kvarh Export
INT32
x0.01
kvarh
20300
RO
VM1 kVAh
INT32
x0.01
kVAh
20302
RO
VM2 kW
FP32
x1
W
20304
RO
VM2 kvar
FP32
x1
var
20306
RO
VM2 kVA
FP32
x1
VA
20308
RO
VM2 kWh Import
INT32
x0.01
kWh
20310
RO
VM2 kWh Export
INT32
x0.01
kWh
20312
RO
VM2 kvarh Import
INT32
x0.01
kvarh
20314
RO
VM12 kvarh Export
INT32
x0.01
kvarh
20316
RO
VM2 kVAh
INT32
x0.01
kVAh
20318
RO
VM3 kW
FP32
x1
W
20320
RO
VM3 kvar
FP32
x1
var
20322
RO
VM3 kVA
FP32
x1
VA
20324
RO
VM3 kWh Import
INT32
x0.01
kWh
20326
RO
VM3 kWh Export
INT32
x0.01
kWh
20328
RO
VM3 kvarh Import
INT32
x0.01
kvarh
20330
RO
VM3 kvarh Export
INT32
x0.01
kvarh
20332
RO
VM3 kVAh
INT32
x0.01
kVAh
20334
RO
VM4 kW
FP32
x1
W
20336
RO
VM4 kvar
FP32
x1
var
20338
RO
VM4 kVA
FP32
x1
VA
20340
RO
VM4 kWh Import
INT32
x0.01
kWh
20342
RO
VM4 kWh Export
INT32
x0.01
kWh
20344
RO
VM4 kvarh Import
INT32
x0.01
kvarh
20346
RO
VM4 kvarh Export
INT32
x0.01
kvarh
20348
RO
VM4 kVAh
INT32
x0.01
kVAh
Table 5-36 Daily Freeze Log
Notes:
1) There is no Log Pointer that indicates the current logging position. Writing a value between 1 and 1000 to the Index register
to retrieve the Daily Freeze Log of the Nth entry. For example, writing 1 to the Index register will retrieve the first day’s Daily
Freeze Log. If N = 0 or N > 1000, an exception response will be returned with the Illegal Data Value error code (0x03) as
defined by the Modbus protocol. If all the returned values of the N
th
Log Record (where 1 ≤ N ≤ 1000) are all 0 (including
the timestamp), this indicates that the returned Log Record is invalid and that the end of the Log has been reached. If the
software is reading the Log for the very first time, it should start with N
th
and stop when either N=1 or when the returned
Log Record is invalid. After that, all the software has to do is to read the Log on a daily basis with Nth.
Page 65
64
CET Electric Technology
5.7.3 Monthly Freeze Log
Register
Property
Description
Format
Scale
Unit
2700
RW
Index1
UINT16
0 to 24
2701
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
Time Stamp
(20YY/MM/DD
HH:MM:SS)
2702
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
2703
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16
2704
RO
Millisecond
UINT16
2705
RO
1-Ø SM1 kWh Import
INT32
x0.01
kWh
2707
RO
1-Ø SM1 kWh Export
INT32
2709
RO
1-Ø SM1 kvarh Import
INT32
x0.01
kvarh
2711
RO
1-Ø SM1 kvarh Export
INT32
2713
RO
1-Ø SM1 kVAh
INT32
x0.01
kVAh … RO
INT32
2815
RO
1-Ø SM12 kWh Import
INT32
x0.01
kWh
2817
RO
1-Ø SM12 kWh Export
INT32
2819
RO
1-Ø SM12 kvarh Import
INT32
x0.01
kvarh
2821
RO
1-Ø SM12 kvarh Export
INT32
2823
RO
1-Ø SM12 kVAh
INT32
x0.01
kVAh
2825
RO
3-Ø SM1 kWh Import Total
INT32
x0.01
kWh
2827
RO
3-Ø SM1 kWh Export Total
INT32
2829
RO
3-Ø SM1 kvarh Import Total
INT32
x0.01
kvarh
2831
RO
3-Ø SM1 kvarh Export Total
INT32
2833
RO
3-Ø SM1 kVAh Total
INT32
x0.01
kVAh … RO
INT32
2855
RO
3-Ø SM4 kWh Import Total
INT32
x0.01
kWh
2857
RO
3-Ø SM4 kWh Export Total
INT32
2859
RO
3-Ø SM4 kvarh Import Total
INT32
x0.01
kvarh
2861
RO
3-Ø SM4 kvarh Export Total
INT32
2863
RO
3-Ø SM4 kVAh Total
INT32
x0.01
kVAh
2865
RO
VM1 kWh Import
INT32
x0.01
kWh
2867
RO
VM1 kWh Export
INT32
2869
RO
VM1 kvarh Import
INT32
x0.01
kvarh
2871
RO
VM1 kvarh Export
INT32
2873
RO
VM1 kVAh
INT32
x0.01
kVAh
2875
RO
VM2 kWh Import
INT32
x0.01
kWh
2877
RO
VM2 kWh Export
INT32
2879
RO
VM2 kvarh Import
INT32
x0.01
kvarh
2881
RO
VM2 kvarh Export
INT32
2883
RO
VM2 kVAh
INT32
x0.01
kVAh
2885
RO
VM3 kWh Import
INT32
x0.01
kWh
2887
RO
VM3 kWh Export
INT32
2889
RO
VM3 kvarh Import
INT32
x0.01
kvarh
2891
RO
VM3 kvarh Export
INT32
2893
RO
VM3 kVAh
INT32
x0.01
kVAh
2895
RO
VM4 kWh Import
INT32
x0.01
kWh
2897
RO
VM4 kWh Export
INT32
2899
RO
VM4 kvarh Import
INT32
x0.01
kvarh
2901
RO
VM4 kvarh Export
INT32
2903
RO
VM4 kVAh
INT32
x0.01
kVAh
Table 5-37 Monthly Freeze Log
Notes:
1) There is no Log Pointer that indicates the current logging position. Writing a value between 1 and 24 to the Index register
to retrieve the Monthly Freeze Log of the Nth entry. For example, writing 1 to the Index register will retrieve the first month’s
Monthly Freeze Log. If N = 0 or N > 24, an exception response will be returned with the Illegal Data Value error code (0x03)
as defined by the Modbus protocol. If all the returned values of the N
th
Log Record (where 1 ≤ N ≤ 24) are all 0 (including
the timestamp), this indicates that the returned Log Record is invalid and that the end of the Log has been reached. If the
software is reading the Log for the very first time, it should start with N
th
and stop when either N=1 or when the returned
Log Record is invalid. After that, all the software has to do is to read the Log on a monthly basis with Nth.
Page 66
65
CET Electric Technology
5.7.4 Data Recorder Log
Register
Property
Description
Format
21000
RW
DR Log x Index
UINT32
21002
RO
High-order Byte: Year (0-99)
Low-order Byte: Month (1-12)
UINT16
21003
RO
High-order Byte: Day (1-31)
Low-order Byte: Hour (0-23)
UINT16
21004
RO
High-order Byte: Minute (0-59)
Low-order Byte: Second (0-59)
UINT16 21005
RO
Millisecond
UINT16
21006
RO
Parameter #1
FP32
21008
RO
Parameter #2
… 21124
RO
Parameter #60
Table 5-38 DR Log
Notes:
1) Writing n to the DR Log X Index register will load the Log Record at pointer position n into the DR Log X Buffer from the
device’s memory.
2) Writing an index value that points to a Log Record that is either already expired or has not been generated yet to the DR
Log X Index register will generate an exception response with the Illegal Data Value error code (0x03) as defined by the
Modbus protocol.
5.8 Device Setup
5.8.1 Basic Setup Parameters
Register
Property
Description
Format
Range, Default*
6000
RW
Nominal Frequency
UINT16
0=50Hz*, 1=60Hz
6001
RW
Wiring Mode
UINT16
0=3PH4W*, 1=3PH3W
2=1PH2W, 3=DEMO
6002
RW
U Primary1
UINT32
1 to 1,000,000V, 380*
6004
RW
U Secondary1
UINT16
1 to 450V, 380*
6005
RW
PF Convention
UINT16
0=IEC*, 1=IEEE, 2=-IEEE
6006
RW
kVA Calculation
UINT16
0=Vector*, 1=Scalar
6007
RW
SM/VM Energy Calculation
UINT16
0=Net*, 1=Total
6008
RW
Demand Period
UINT16
1 to 60 mins, 15*
6009
RW
Number of Sliding Windows
UINT16
1* to 15
6010
RW
Self-Read Time of
Peak Demand Log2
UINT16
0*
6011
RW
Self-Read Mode of
Peak Demand Log
UINT16
0=Auto, 1=Manual*
6012
RW
Self-Read Time of
Monthly Freeze Log2
UINT16
0*
6013
RW
kvarh Calculation Method
0=RMS*, 1=Fund
6014
RW
Arm before Execute
UINT16
0=Disabled*, 1=Enabled
6015
RW
RO Pulse Width
0* to 6000 (x0.1s)
6016
RW
Energy Pulse Constant
UINT16
0=1 imp/kxh
1=10 imp/kxh
2=100 imp/kxh 3=400 imp/kxh* 4=1000 imp/kxh 5=3200 imp/kxh
6017
RW
LED EN Pulse Mode
3
UINT16
0* to 32
6018
RW
Language
UINT16
0=Simple Chinese
1=English*
2=Traditional Chinese
6019
RW
Date Format
UINT16
0=YYYY/MM/DD*
1=MM/DD/YYYY 2=DD/MM/YYYY
6020
RW
RO EN Pulse3
UINT16
0* to 32
6021
RW
Interval Energy Period
4
UINT16
5 to 60* mins
6022
RW
External CT Secondary
(Primary 5A)
UINT16
0=None*
1=2.5mA (Reserved now)
2=1.667mA
Table 5-39 Basic Setup
Page 67
66
CET Electric Technology
Notes:
1) The value of [PT Primary/PT Secondary] cannot exceed 10000.
2) The Self-Read Time applies to both the Peak Demand Log as well as the Monthly Freeze Log and supports the following
two options:
a) A zero value means that the Self-Read will take place at 00:00 of the first day of each month. b) A non-zero value means that the Self-Read will take place at a specific time and day based on the formula: Self-Read
Time = (Day x 100 + Hour) where 0 ≤ Hour ≤ 23 and 1 ≤ Day ≤ 28. For example, the value 1512 means that the Self-
Read will take place at 12:00pm on the 15th day of each month.
3) LED Energy Pulse modes are listed in the table below:
Value
Parameter
Value
Parameter
Value
Parameter
0
Disabled
6
3-Ø SM3 kvarh Imp.
12
1-Ø SM2 kvarh Imp.
1
3-Ø SM1 kWh Imp.
7
3-Ø SM4 kWh Imp.
13
1-Ø SM3 kWh Imp.
2
3-Ø SM1 kvarh Imp.
8
3-Ø SM4 kvarh Imp.
14
1-Ø SM3 kvarh Imp.
3
3-Ø SM2 kWh Imp.
9
1-Ø SM1 kWh Imp.
4
3-Ø SM2 kvarh Imp.
10
1-Ø SM1 kvarh Imp.
31
1-Ø SM12 kWh Imp.
5
3-Ø SM3 kWh Imp.
11
1-Ø SM2 kWh Imp.
32
1-Ø SM12 kvarh Imp.
Table 5-40 LED Energy Pulse Modes
4) Changing Interval Energy Period would clear present Interval Energy measurements.
5.8.2 AI Setup
Register
Property
Description
Format
Range, Default*
6050
RW
AI Type
UINT16
0=4~20mA*, 1=0~20mA
6051
RW
AI Zero Scale
INT32
-999,999 to +999,999 400*
6053
RW
AI Full Scale
INT32
-999,999 to +999,999
2000*
Table 5-41 AI Setup
5.8.3 DI Setup
Register
Property
Description
Format
Range, Default*
6100
RW
DI Mode
UINT16
DC48V*
6101
RW
DI1 Debounce
UINT16
1 to 9999 ms, 20*
6102
RW
DI2 Debounce
UINT16
6103
RW
DI3 Debounce
UINT16
RW
UINT16
6112
RW
DI12 Debounce
UINT16
6113
RW
DI1 Function
UINT32
0=Status Input*
1=Pulse Counter
6114
RW
DI2 Function
UINT32
6115
RW
DI3 Function
UINT32 … RW
UINT32
6124
RW
DI12 Function
UINT32
6125
RW
DI1 Pulse Weight
UINT32
1* to 1,000,000
6127
RW
DI2 Pulse Weight
UINT32
6129
RW
DI3 Pulse Weight
UINT32 … RW
UINT32
6147
RW
DI12 Pulse Weight
UINT32
Table 5-42 DI Setup
5.8.4 Communication Setup Parameters
Register
Property
Description
Format
Range, Default*
6200
RW
COM1 Unit ID
UINT16
1 to 254, 100*
6201
RW
COM1 Baud Rate
UINT16
0=1200, 1=2400, 2=4800,
3=9600, 4=19200, 5=38400*
6=57600
6202
RW
COM1 Comm. Config.
UINT16
1=8O1, 2=8E1*, 3=8N1
6203
RW
COM2 Unit ID
UINT16
1 to 247, 100*
6204
RW
COM2 Baud Rate
UINT16
0=1200, 1=2400, 2=4800,
3=9600*, 4=19200, 5=38400
6205
RW
COM2 Comm. Config.
UINT16
1=8O1, 2=8E1*, 3=8N1
Table 5-43 Communication Setup
Page 68
67
CET Electric Technology
5.8.5 Alarm Setup
Register
Property
Description
Format
Range, Default*
6400
RW
Universal Hysteresis1
UINT16
0 to 100 (x0.1%), 20*
6401
RW
Current ON Threshold
UINT16
0 to 100 (x0.1%), 50*
6402
RW
Current ON Time Delay
UINT16
0 to 9999 (s), 10s*
6403
RW
Current OFF Time Delay
UINT16
0 to 9999 (s), 30s*
6404
RW
Current Alarm Enable2
Bitmap
0*~0x0FFF
6405
RW
Current HH Alarm Threshold
UINT16
0* to 1000 (x0.1%)
6406
RW
Current HH Alarm Time Delay
UINT16
0* to 9999 (s)
6407
RW
Current H Alarm Threshold
UINT16
0* to 1000 (x0.1%)
6408
RW
Current H Alarm Time Delay
UINT16
0* to 9999 (s)
6409
RW
Current L Alarm Threshold
UINT16
0* to 1000 (x0.1%)
6410
RW
Current L Alarm Time Delay
UINT16
0* to 9999 (s)
6411
RW
Current LL Alarm Threshold
UINT16
0* to 1000 (x0.1%)
6412
RW
Current LL Alarm Time Delay
UINT16
0* to 9999 (s)
6413
RW
Current Alarm Trigger
3
UINT16
0*~0x0003
6414
RW
Uln Alarm Enable
4
UINT16
0*~0x0007
See Notes 4)
6415
RW
Uln HH Alarm Threshold
UINT16
0* to 3000 (x0.1)
6416
RW
Uln HH Alarm Time Delay
UINT16
0* to 9999 (s)
6417
RW
Uln H Alarm Threshold
UINT16
0* to 3000 (x0.1)
6418
RW
Uln H Alarm Time Delay
UINT16
0* to 9999 (s)
6419
RW
Uln L Alarm Threshold
UINT16
0* to 3000 (x0.1)
6420
RW
Uln L Alarm Time Delay
UINT16
0* to 9999 (s)
6421
RW
Uln LL Alarm Threshold
UINT16
0* to 3000 (x0.1)
6422
RW
Uln LL Alarm Time Delay
UINT16
0* to 9999 (s)
6423 Uln Alarm Trigger3
UINT16
0*~0x0003
6424
RW
Ull Alarm Enable
Bitmap
0*~0x0007
See Notes 5)
6425
RW
Ull HH Alarm Threshold
UINT16
0* to 5000 (x0.1)
6426
RW
Ull HH Alarm Time Delay
UINT16
0* to 9999 (s)
6427
RW
Ull H Alarm Threshold
UINT16
0* to 5000 (x0.1)
6428
RW
Ull H Alarm Time Delay
UINT16
0* to 9999 (s)
6429
RW
Ull L Alarm Threshold
UINT16
0* to 5000 (x0.1)
6430
RW
Ull L Alarm Time Delay
UINT16
0* to 9999 (s)
6431
RW
Ull LL Alarm Threshold
UINT16
0* to 5000 (x0.1)
6432
RW
Ull LL Alarm Time Delay
UINT16
0* to 9999 (s)
6433
RW
Ull Alarm Trigger3
UINT16
0*~0x0003
6434
RW
Ung HH Alarm Threshold
UINT16
0* to 100 (x0.1)
6435
RW
Ung HH Alarm Time Delay
UINT16
0* to 9999 (s)
6436
RW
Ung H Alarm Threshold
UINT16
0* to 100 (x0.1)
6437
RW
Ung H Alarm Time Delay
UINT16
0* to 9999 (s)
6438
RW
Ung Alarm Trigger3
UINT16
0*~0x0003
6439
RW
Frequency H Alarm Threshold
UINT16
4500 to 6500* (x0.01Hz)
6440
RW
Frequency H Time Delay
UINT16
0 to 9999 (s), 10*
6441
RW
Frequency L Threshold
UINT16
4500* to 6500 (x0.01Hz)
6442
RW
Frequency L Time Delay
UINT16
0 to 9999 (s), 10*
6443
RW
Frequency Alarm Trigger3
UINT16
0*~0x0003
6444
RW
I Unbalance Alarm Enable
6
Bitmap
0*
6445
RW
I Unbalance Alarm Threshold
UINT16
0* to 1000 (x0.1)
6446
RW
I Unbalance Alarm Time Delay
UINT16
0* to 9999 (s)
6447
RW
I Unbalance Alarm Trigger3
UINT16
0*~0x0003
6448
RW
U Unbalance Alarm Enable
UINT16
0 = Disabled*
1 = Enabled
6449
RW
U Unbalance Alarm Threshold
UINT16
0* to 1000 (x0.1)
6450
RW
U Unbalance Alarm Time Delay
UINT16
0* to 9999 (s)
6451
RW
U Unbalance Alarm Trigger
3
UINT16
0*~0x0003
6452
RW
Phase Reversal Enable7
UINT16
0=Disabled*
6453
RW
Phase Reversal Trigger3
UINT16
0*~0x0003
6454
RW
Phase Loss Enable
UINT16
0 = Disabled*
1 = Enabled
6455
RW
Phase Loss Time Delay
UINT16
0* to 9999 (s)
6456
RW
Phase Loss Trigger3
Bitmap
0*~0x0003
6457
RW
DI1 Alarm Configuration
UINT16
0 = Disabled*
1 = DI1 Closed Trigger
Page 69
68
CET Electric Technology
2 = DI1 Open Trigger
6458
RW
DI1 Alarm Time Delay
UINT16
0* to 9999 (s)
6459
RW
DI1 Alarm Trigger3
Bitmap
0*~0x0003
6490
RW
DI12 Alarm Configuration
UINT16
0 = Disabled*
1 = DI12 Closed Trigger
2 = DI12 Open Trigger
6491
RW
DI12 Alarm Time Delay
UINT16
0* to 9999 (s)
6492
RW
DI12 Alarm Trigger3
UINT16
0*~0x0003
6493
RW
AI Alarm Enable
UINT16
0x00*~0x0F
See Notes 8)
6494
RW
AI HH Alarm Threshold
INT32
-999,999 to 999,999, 0*
6496
RW
AI HH Alarm Time Delay
UINT16
0* to 9999 (s)
6497
RW
AI H Alarm Threshold
INT32
-999,999 to 999,999, 0*
6499
RW
AI H Alarm Time Delay
UINT16
0* to 9999 (s)
6500
RW
AI L Alarm Threshold
INT32
-999,999 to 999,999, 0*
6502
RW
AI L Alarm Time Delay
UINT16
0* to 9999 (s)
6503
RW
AI LL Alarm Threshold
INT32
-999,999 to 999,999, 0*
6505
RW
AI LL Alarm Time Delay
UINT16
0* to 9999 (s)
6506
RW
AI Alarm Trigger3
UINT16
0*~0x0003
Table 5-44 Alarm Setup Parameters
Notes:
1) The calculation method Universal Hysteresis is listed below:
100%
Threshold Alarm
Threshold Return Alarm- Threshold Alarm
Hysteresis Universal
2) The following table illustrates the details of the Current Alarm Enable register with a bit value of 1 meaning enabled and
0 meaning disabled. For example, if enable SM1~SM8 Current Alarm and disable SM9~SM12 Current Alarm, then write
0x00FF (0000000011111111) to the register.
Bits 4
Bit 3
Bit 2
Bit 1
Bit 0
Current
Alarm Enable
1-Ø SM5
1-Ø SM4
1-Ø SM3
1-Ø SM2
1-Ø SM1
Bits9
Bit 8
Bit 7
Bit 6
Bit 5
1-Ø SM10
1-Ø SM9
1-Ø SM8
1-Ø SM7
1-Ø SM6
Bits 14~15
Bit 13
Bit 12
Bit 11
Bit 10
Reserved
Reserved
Reserved
1-Ø SM12
1-Ø SM11
Table 5-45 Current Alarm Enabled Register
3) The following table illustrates the details of the xx Alarm Trigger register with a bit value of 1 meaning enabled and 0
meaning disabled. Therefore, each alarm has three types of trigger if it is enabled: RO, Alarm LED and RO & Alarm LED.
Bits 2-15
Bit 1
Bit 0
xx Alarm Trigger
Reserved
Alarm LED
RO
Table 5-46 xx Alarm Trigger Register
4) The following table illustrates the details of the Uln Alarm Enable register with a bit value of 1 meaning enabled and 0
meaning disabled.
Bits 3-15
Bit 2
Bit 1
Bit 0
Uln Alarm Enable
Reserved
U3
U2
U1
Table 5-47 Uln Alarm Enable Register
5) The following table illustrates the details of the Ull Alarm Enable register with a bit value of 1 meaning enabled and 0
meaning disabled.
Bits 3-15
Bit 2
Bit 1
Bit 0
Uln Alarm Enable
Reserved
U31
U23
U12
Table 5-48 Ull Alarm Enable Register
6) The following table illustrates the details of the I Unbalance Alarm Enable register with a bit value of 1 meaning enabled
and 0 meaning disabled.
Bit 2
Bit 1
Bit 0
I Unbalance Alarm
Enable
3-Ø SM3
3-Ø SM2
3-Ø SM1
Bits 4-15
Bit 3
Page 70
69
CET Electric Technology
Reserved
3-Ø SM4
Table 5-49 I Unbalance Alarm Enabled Register
7) The following table illustrates the details of the Phase Reversal Alarm Enable register with a bit value of 1 meaning enabled
and 0 meaning disabled.
Bit 2
Bit 1
Bit 0
Phase Reversal Alarm
Enable
3-Ø SM3
3-Ø SM2
3-Ø SM1
Bits 4-15
Bit 3
Reserved
3-Ø SM4
Table 5-50 Phase Reversal Alarm Enabled Register
8) The following table illustrates the details of the AI Alarm Enable register with a bit value of 1 meaning enabled and 0
meaning disabled.
Bit 2
Bit 1
Bit 0
AI Alarm Enable
L Alarm
H Alarm
HH Alarm
Bits 4-15
Bit 3
Reserved
LL Alarm
Table 5-51 AI Alarm Enabled Register
5.8.6 1-Ø SMs Setup Parameters
Register
Property
Description
Format
Range, Default*
6600
RW
SM1 Breaker Rating
UINT16
1 to 30,000 (A), 32*
6601
RW
SM1 CT Primary Current
UINT16
1 to 60000 (A), 100*
6602
RW
SM1 CT Secondary Current
1
UINT16
0 to 60000 mA (x0.1)
6603
RW
SM1 Polarity
UINT16
0=Normal*, 1=Reverse
6604
RW
SM1 Voltage Phase
UINT16
0=Not Use,
1=VA*, 2=VB, 3=VC,
4=VAB, 5=VBC, 6=VCA
6605
RW
SM1 CT Type
UINT16
0=Solid-Core CT*
1=Split-Core CT
6606
RW
SM2 Breaker Rating
UINT16
1 to 30,000 (A), 32*
6607
RW
SM2 CT Primary Current
UINT16
1 to 60000 (A), 100*
6608
RW
SM2 CT Secondary Current1
UINT16
0 to 60000 mA (x0.1)
6609
RW
SM2 Polarity
UINT16
0=Normal*, 1=Reverse
6610
RW
SM2 Voltage Phase
UINT16
0=Not Use,
1=VA*, 2=VB, 3=VC,
4=VAB, 5=VBC, 6=VCA
6611
RW
SM2 CT Type
UINT16
0=Solid-Core CT*
1=Split-Core CT
6612
RW
SM3 Breaker Rating
UINT16
1 to 30,000 (A), 32*
RW
UINT16
6618
RW
SM4 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6624
RW
SM5 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6630
RW
SM6 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6636
RW
SM7 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6642
RW
SM8 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6648
RW
SM9 Breaker Rating
UINT16
1 to 30,000 (A), 32*
6654
RW
SM10 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6660
RW
SM11 Breaker Rating
UINT16
1 to 30,000 (A), 32*
… 6666
RW
SM12 Breaker Rating
UINT16
1 to 30,000 (A), 32*
6667
RW
SM12 CT Primary Current
UINT16
1 to 60000 (A), 100*
6668
RW
SM12 CT Secondary Current
1
UINT16
0 to 60000 mA (x0.1)
6669
RW
SM12 Polarity
UINT16
0=Normal*, 1=Reverse
6670
RW
SM12 Voltage Phase
UINT16
0=Not Use,
1=VA*, 2=VB, 3=VC,
4=VAB, 5=VBC, 6=VCA
Page 71
70
CET Electric Technology
6671
RW
SM12 CT Type
UINT16
0=Solid-Core CT*
1=Split-Core CT
Table 5-52 1-Ø SMs Parameters Setup
Notes:
1) The default value of the SMx CT Secondary Current depends on the type of selected CT Specification. (see Appendix D
Mains Circuits CT):
CT Rating
CT Primary
Default CT Secondary
800A/40mA
800
400 (x0.1mA)
400A/40mA
400
400 (x0.1mA)
200A/40mA
200
400 (x0.1mA)
100A/40mA
100
400 (x0.1mA)
5A/1.667mA
Primary Rating of the External CT
50000 (x0.1mA)
Table 5-53 Default CT Secondary
5.8.7 VM Setup
Register
Property
Description
Format
Range, Default*
6800
RW
VM1 Configuration
UINT16
See Notes 1)
6801
RW
VM2 Configuration
UINT16
6802
RW
VM3 Configuration
UINT16
6803
RW
VM4 Configuration
UINT16
Table 5-54 Total VM Configuration Group
Notes:
1) Each Bit indicates if a particular SM is included in a VM’s aggregation. Setting a particular bit to 1 includes a SM or 0
excludes it from the VM’s aggregation. The Virtual Meter configuration is supported via the Front Panel or through
communications.
Bit
Bits 12~15
Bit 11
Bit 10
Bit 2
Bit 1
Bit 0
SMs
Reserved
SM12
SM11
SM3
SM2
SM1
Table 5-55 VMs Configuration
5.8.8 Data Recorder Setup
Register
Property
Description
Format
Range, Default*
6900
RW
Trigger Mode
UINT16
0=Disabled, 1=Enabled
6901
RW
Recording Mode
UINT16
0=Stop-When-Full
1=First-In-First-Out
6902
RW
Recording Depth
UINT16
0 to 5000
6903
RW
Recording Interval
UINT32
60 to 345600s, 900
6905
RW
Recording Offset
UINT16
0* to 43200s
6906
RW
Parameters Number
UINT16
0 to 60, 55
6907
RW
Parameter1
UINT16
Please refer to Appendices B and C for a complete list of the Data Recorder Parameters and
the default configuration for
each DR, respectively.
6908
RW
Parameter2
UINT16
6909
RW
Parameter3
UINT16
… UINT16
6966
RW
Parameter60
UINT16
Table 5-56 DR Parameter Setup
5.9 Time Registers
There are two sets of Time registers supported by the PMC-PMC-512-A – Year / Month / Day / Hour /
Minute / Second (Registers # 60000 to 60002) and UNIX Time (Register # 60004). When sending time to
the PMC-512-A over Modbus communications, care should be taken to only write one of the two Time
register sets. All registers within a Time register set must be written in a single transaction. If registers
60000 to 60004 are being written to at the same time, both Time register sets will be updated to reflect
the new time specified in the UNIX Time register set (60004) and the time specified in registers 60000-
60002 will be ignored. Writing to the Millisecond register (60003) is optional during a Time Set operation.
When broadcasting time, the function code must be set to 0x10 (Pre-set Multiple Registers). Incorrect
date or time values will be rejected by the meter. In addition, attempting to write a Time value less than
Page 72
71
CET Electric Technology
Jan 1, 2000 00:00:00 will be rejected.
Register
Property
Description
Format
Note
60000
9000
RW
High-order Byte: Year
UINT16
0-37 (Year-2000)
Low-order Byte: Month
1 to 12
60001
9001
RW
High-order Byte: Day
UINT16
1 to 31
Low-order Byte: Hour
0 to 23
60002
9002
RW
High-order Byte: Minute
UINT16
0 to 59
Low-order Byte: Second
0 to 59
60003
9003
RW
Millisecond
UINT16
0 to 999
60004
~
60005
9004
~
9005
RW
UNIX Time
UINT32
0x386D4380 to 0x 7FE8177F
The corresponding time is
2000.01.01 00:00:00 to
2037.12.31 23:59:59
(GMT 0:00 Time Zone)
Table 5-57 Time Registers
5.10 Clear/Reset Control
Register
Property
Description
Format
Note
9600
WO
Clear All Latched Alarms
UINT16
Writing “0xFF00” to the
register executes the
described action
9601
WO
Clear SOE Log
UINT16
9602
WO
Clear Energy1
UINT16
9603
WO
Clear Peak Demand of This
Month (Since Last Reset) 1
UINT16
9604
WO
Clear DR Log
UINT16
Writing “0xFF00” to the
register executes the
described action
9605
WO
Cleary Daily Freeze Log
UINT16
9606
WO
Clear Monthly Freeze Log
UINT16
9607
WO
Clear All2
UINT16
9608
WO
Reset to Default
UINT16
Table 5-58 Clear/Reset Control Setup
Notes:
1) The following table provides a detailed description of the different values that can be written to the Clear Energy and Clear
Peak Demand of This Month (Since Last Reset) registers to clear the different Energy and Peak Demand registers for SMx
and VMx.
Key
Clear Energy & Demand
Description
High Order
Low Order
1
0x00
(1-Ø SMx)
0x00
Clear 1-Ø SM1 (0x0000)
0x01
Clear 1-Ø SM2 (0x0001)
0x11
Clear 1-Ø SM12 (0x0011)
2
0x01
(3-Ø SMx)
0x00
Clear 3-Ø SM1 Energy (0x0100)
0x01
Clear 3-Ø SM2 Energy (0x0101)
0x02
Clear 3-Ø SM3 Energy (0x0102)
0x03
Clear 3-Ø SM4 Energy (0x0103)
3
0x02
(Total VMx)
0x00
Clear VM1 Energy (0x0200)
0x01
Clear VM2 Energy (0x0201)
0x02
Clear VM3 Energy (0x0202)
0x03
Clear VM4 Energy (0x0203)
4
0xFF
Clear 1-Ø SMs, 3-Ø SMs and VMs Energy (0xFF)
Table 5-59 Clear Energy Register Values
2) Writing “0xFFFF” to the register clears Energy Measurements that are listed in Section 5.3.1 to 5.3.4, Peak Demand Log of
This Month (Since Last Rest), Peak Demand Log of Last Month (Before Last Reset), SOE Log, Daily and Monthly Freeze Logs
and DR Log.
5.11 Remote Control
The DO Control registers are implemented as both “Write-Only” Modbus Coil Registers (0XXXXX) and
Modbus Holding Registers (4XXXXX), which can be controlled with the Force Single Coil command
(Function Code 0x05) or the Preset Multiple Hold Registers (Function Code 0x10). The PMC-512-A does
Page 73
72
CET Electric Technology
not support the Read Coils command (Function Code 0x01) because DO Control registers are “Write-
Only”.
The PMC-512-A adopts the ARM before EXECUTE operation for the remote control of its Digital Outputs
if this function is enabled through the Arm Before Execute Enable Setup register (6014), which is
disabled by default. Before executing an OPEN or CLOSE command on a Digital Output, it must be
“Armed” first. This is achieved by writing the value 0xFF00 to the appropriate register to “Arm” a
particular DO operation. The DO will be “Disarmed” automatically if an “Execute” command is not
received within 15 seconds after it has been “Armed”. If an “Execute” command is received without first
having received an “Arm” command, the meter ignores the “Execute” command and returns the 0x04
exception code.
Register
Property
Description
Format
Note
9100
WO
Arm DO Close
UINT16
Writing “0xFF00”
to the register to
perform the
described action.
9101
WO
Execute DO Close
UINT16
9102
WO
Arm DO Open
UINT16
9103
WO
Execute DO Open
UINT16
Table 5-60 DO Control
5.12 Meter Information
Register
Property
Description
Format
Note
60200
~
60219
9800
~
9819
RO
Meter model
UINT16
See Note 1)
60220
9820
RO
Firmware Version
UINT16
e.g. 10000 shows
the version is
V1.00.00
60221
9821
RO
Modbus Version
UINT16
e.g. 10 shows the
version is V1.0
60222
9822
RO
Firmware Update Date: Year-2000
UINT16
e.g. 160110 means
January 10, 2016
60223
9823
RO
Firmware Update Date: Month
UINT16
60224
9824
RO
Firmware Update Date: Day
UINT16
60225
9825
RO
Serial Number: High-Order Byte
UINT16
e.g. 1701030100
means it is the
100th device that
are produced in January 3, 2017
60026
9826
RO
Serial Number: Low-Order Byte
UINT16
60227
9827
RO
Reserved
UINT16
60228
9828
RO
Reserved
UINT16
60229
9829
RO
Feature Code
UINT32
Bit0 ~Bit1: 00=Standard 01=Reserved
Bit2: 0=Intelligent Meter 1= Reserved
Bit3~Bit4: 00=100A/40mA CT 01=5A/1.667mA CT
60231
9831
RO
Hardware Version
UINT16
e.g. 10 shows the
version is V1.0
Table 5-61 Meter Information
Notes:
1) The Meter Model appears in registers 9800 to 9819 (60200 to60219) and contains the ASCII encoding of the string “PMC-
512-A” as shown in the following table.
Register
Value (Hex)
ASCII
60200
9800
0x50
P
60201
9801
0x4D
M
60202
9802
0x43
C
60203
9803
0x2D
-
60204
9804
0x35
5
Page 74
73
CET Electric Technology
60205
9805
0x31
1
60206
9806
0x32
2
60207
9807
0x2D
-
60208
9808
0x41
A
60209-60219
9809-9819
0x20
<Null>
Table 5-62 ASCII Encoding of “PMC-512-A”
Page 75
74
CET Electric Technology
Appendix A - SOE Event Classification
Event
Classification
Sub-
Classification
Channel
Event Value
DPI
Description
0
1 - -
2/1
DI1 Close/DI1 Open
2 - -
2/1
DI2 Close/DI2 Open
3 - -
2/1
DI3 Close/DI3 Open
4 - -
2/1
DI4 Close/DI4 Open
5 - -
2/1
DI5 Close/DI5 Open
6 - -
2/1
DI6 Close/DI6 Open
7 - -
2/1
DI7 Close/DI7 Open
8 - -
2/1
DI8 Close/DI8 Open
9 - -
2/1
DI9 Close/DI9 Open
10 - -
2/1
DI10 Close/DI10 Open
11 - -
2/1
DI11 Close/DI11 Open
12 - -
2/1
DI12 Close/DI12 Open
1 1 - -
2/1
DO Close/Open by Remote Control
2 - -
2/1
DO Close/Open by Setpoint
2
1
Alarm
Channel¹
Trigger Value
(x1000)
Active
/
Return
Current HH Alarm
2
Current H Alarm
3
Current L Alarm
4
Current LL Alarm
5
Trigger Value
(x100)
Voltage HH Alarm
6
Voltage H Alarm
7
Voltage L Alarm
8
Voltage LL Alarm
9
Trigger Value
(x100)
Frequency H Alarm
10
Frequency L Alarm
11
Trigger Value
(x1000)
AI HH Alarm
12
AI H Alarm
13
AI L Alarm
14
AI LL Alarm
15
Trigger Value
(x10000)
U Unbalance Alarm
16
Current Unbalance Alarm
17 - Phase Reversal Alarm
18 - Phase Loss Alarm
19
DI Status
DI Alarm
20
Ung Value
(x100)
Ung H Alarm
21
Ung HH Alarm
3
1
-
Method
0: Front Panel
1:Modbus 2: Reserved 3: Reserved
4: Calibration
5: Power On
-
Power On
2 - -
Power Off
3 - -
Set Time
4 - -
Set Password
5 - -
Set System Parameters
6 - -
Set Communication Parameters
7 - -
Set AI Parameters
8 - -
Set DI Parameters
9 - -
Set Alarm Parameters
10
- - Set SMs Parameters
11
- - Set Total VM Parameters
12
- - Set DR Parameters
13
- - Set Calibration Parameters
14
-
-
Reset Alarm
15
-
-
Clear Energy
16
- - Clear Present Max Demand Logs
17
- - Clear All Demand Logs
18
-
-
Clear SOE
19
-
-
Clear DR Logs
20
- - Clear Daily Freeze Logs
21
- - Clear Monthly Energy Logs
22
- - Clear All Recorder
23
- - Reset to Factory Default Configuration
24
-
-
Reserved
25
-
-
Preset Energy
26
- - Set First Power On
27
- - Reset to Communication Default
Page 76
75
CET Electric Technology
Configuration
4
1 - -
2/1
First Power On
2 - -
A/D Fault
3 - -
Internal Power Fault
4 - -
FRAM Fault
5 - -
FLASH Fault
6 - -
System Parameters Fault
7 - -
Internal Parameters Fault
Notes:
1) The following table provides a detailed description of the Channel Number.
Channel Number
Description
Channel Number
Description
1
I1
23
3-Ø SM3 2 I2
24
3-Ø SM4 … …
25
DI1
11
I11
26
DI2
12
I12
27
DI3
13
U1
28
DI4
14
U2
29
DI5
15
U3
30
DI6
16
U12
31
DI7
17
U23
32
DI8
18
U31
33
DI9
19
Frequency
34
DI10
20
AI
35
DI11
21
3-Ø SM1
36
DI12
22
3-Ø SM2
37
Voltage Circuit
Page 77
76
CET Electric Technology
Appendix B - Data Recorder Parameters
1) 1-Ø SMs Real-time and Demand Measurements
Key
Description
Key
Description
1~10
1-Ø SM 1
61~70
1-Ø SM 7
11~20
1-Ø SM 2
71~80
1-Ø SM 8
21~30
1-Ø SM 3
81~90
1-Ø SM 9
31~40
1-Ø SM 4
91~100
1-Ø SM 10
41~50
1-Ø SM 5
101~110
1-Ø SM 11
51~60
1-Ø SM 6
111~120
1-Ø SM 12
1-Ø SM Group Structure
Offset
Description
+0
Current
+1
kW
+2
kvar
+3
kVA
+4
PF
+5
Loading Factor
+6
Current Demand
+7
kW Demand
+8
kvar Demand
+9
kVA Demand
2) Voltage Measurements
Key
Description
150
U1
151
U2
152
U3
153
U12
154
U23
155
U31
156
Frequency
157
AI (Scaled)
3) 3-Ø SMs Real-time and Demand Measurements
Key
Description
200~206
3-Ø SM1
207~213
3-Ø SM2
214~220
3-Ø SM3
221~227
3-Ø SM4
3-Ø SM Group Structure
Offset
Description
+0
kW Total
+1
kvar Total
+2
kVA Total
+3
kW Total Demand
+4
kvar Total Demand
+5
kVA Total Demand
+6
kWh Total
4) VMs Real-time and Demand Measurements
Key
Description
300~305
VM1
306~311
VM2
312~317
VM3
318~323
VM4
Page 78
77
CET Electric Technology
VM Group Structure
Offset
Description
+0
kW Total
+1
kvar Total
+2
kVA Total
+3
kW Total Demand
+4
kvar Total Demand
+5
kVA Total Demand
5) Harmonic Measurements
U Harmonic Measurements
Key
Description
Key
Description
350
U1 THD
369
U2 TEHD
351
U1 TOHD
370~383
U2 HD2~ HD15
352
U1 TEHD
384
U3 THD
353~366
U1 HD2~ HD15
385
U3 TOHD
367
U2 THD
386
U3 TEHD
368
U2 TOHD
387~400
U3 HD2~ HD15
1-Ø SM Harmonic Measurements
Key
Description
Key
Description
450~466
1-Ø SM1
552~568
1-Ø SM7
467~483
1-Ø SM2
569~585
1-Ø SM8
484~500
1-Ø SM3
586~602
1-Ø SM9
501~517
1-Ø SM4
603~619
1-Ø SM10
518~534
1-Ø SM5
620~636
1-Ø SM11
535~551
1-Ø SM6
637~653
1-Ø SM12
1-Ø SM Harmonic Group Structure
Offset
Description
+0
I THD
+1
I TOHD
+2
I TEHD
+3
I HD2
+4
I HD3
+5
I HD4 … …
+16
I HD15
6) Energy Measurements
1-Ø SM Energy Measurements
Key
Description
Key
Description
654~658
1-Ø SM1
684~688
1-Ø SM7
659~663
1-Ø SM2
689~693
1-Ø SM8
664~668
1-Ø SM3
694~698
1-Ø SM9
669~673
1-Ø SM4
699~703
1-Ø SM10
674~678
1-Ø SM5
704~708
1-Ø SM11
679~683
1-Ø SM6
709~713
1-Ø SM12
1-Ø SM Energy Group Structure
Offset
Description
+0
kWh Import
+1
kWh Export
+2
kvarh Import
+3
kvarh Export
+4
kVAh
Page 79
78
CET Electric Technology
3-Ø SM Energy Measurements
Key
Description
Key
Description
714~719
3-Ø SM1
726~731
3-Ø SM3
720~725
3-Ø SM2
732~737
3-Ø SM4
3-Ø SM Energy Group Structure
Offset
Description
+0
kvarh Total
+1
kWh Import Total
+2
kWh Export Total
+3
kvarh Import Total
+4
kvarh Export Total
+5
kVAh Total
7) VM Energy Measurements
Key
Description
Key
Description
738~742
VM1
748~752
VM3
743~747
VM2
753~757
VM4
VM Energy Group Structure
Offset
Description
+0
kWh Import
+1
kWh Export
+2
kvarh Import
+3
kvarh Export
+4
kVAh
Page 80
79
CET Electric Technology
Appendix C - Data Recorder Default Settings
Register
Property
Description
Format
Range/Options
Default
6900
RW
Trigger Mode
UINT16
0=Disabled,
1=Enabled
0
6901
RW
Recording Mode
UINT16
0=Stop-When-Full
1=First In First Out
1=First In First Out
6902
RW
Recording Depth
UINT16
0 to 5000
5000
6903
RW
Recording Interval
UINT32
60 to 345600s
900
6905
RW
Recording Offset
UINT16
0 to 43200s
0
6906
RW
Parameters Number
UINT16
0 to 60
55
Register
Property
Description
Format
Range/Options
Key
Description
6907
RW
Parameter 1
UINT16
150
U1
6908
RW
Parameter 2
UINT16
151
U2
6909
RW
Parameter 3
UINT16
152
U3
6910
RW
Parameter 4
UINT16
153
U12
6911
RW
Parameter 5
UINT16
154
U23
6912
RW
Parameter 6
UINT16
155
U31
6913
RW
Parameter 7
UINT16
156
Frequency
6914
RW
Parameter 8
UINT16
200
3-Ø SM1 kW Total
6915
RW
Parameter 9
UINT16
201
3-Ø SM1 kvar Total
6916
RW
Parameter 10
UINT16
202
3-Ø SM1 kVA Total
6917
RW
Parameter 11
UINT16
207
3-Ø SM2 kW Total
6918
RW
Parameter 12
UINT16
208
3-Ø SM2 kvar Total
6919
RW
Parameter 13
UINT16
209
3-Ø SM2 kVA Total
6920
RW
Parameter 14
UINT16
214
3-Ø SM3 kW Total
6921
RW
Parameter 15
UINT16
215
3-Ø SM3 kvar Total
6922
RW
Parameter 16
UINT16
216
3-Ø SM3 kVA Total
6923
RW
Parameter 17
UINT16
221
3-Ø SM4 kW Total
6924
RW
Parameter 18
UINT16
222
3-Ø SM4 kvar Total
6925
RW
Parameter 19
UINT16
223
3-Ø SM4 kVA Total
6926
RW
Parameter 20
UINT16
206
3-Ø SM1 kWh Total
6927
RW
Parameter 21
UINT16
714
3-Ø SM1 kvarh Total
6928
RW
Parameter 22
UINT16
719
3-Ø SM1 kVAh Total
6929
RW
Parameter 23
UINT16
213
3-Ø SM2 kWh Total
6930
RW
Parameter 24
UINT16
720
3-Ø SM2 kvarh Total
6931
RW
Parameter 25
UINT16
725
3-Ø SM2 kVAh Total
6932
RW
Parameter 26
UINT16
220
3-Ø SM3 kWh Total
6933
RW
Parameter 27
UINT16
726
3-Ø SM3 kvarh Total
6934
RW
Parameter 28
UINT16
731
3-Ø SM3 kVAh Total
6935
RW
Parameter 29
UINT16
227
3-Ø SM4 kWh Total
6936
RW
Parameter 30
UINT16
732
3-Ø SM4 kvarh Total
6937
RW
Parameter 31
UINT16
737
3-Ø SM4 kVAh Total
6938
RW
Parameter 32
UINT16
203
1-Ø SM 1 kW Demand
6939
RW
Parameter 33
UINT16
204
1-Ø SM 2 kW Demand
6940
RW
Parameter 34
UINT16
205
1-Ø SM 3 kW Demand
6941
RW
Parameter 35
UINT16
210
1-Ø SM 4 kW Demand
6942
RW
Parameter 36
UINT16
211
1-Ø SM 5 kW Demand
6943
RW
Parameter 37
UINT16
212
1-Ø SM 6 kW Demand
6944
RW
Parameter 38
UINT16
217
1-Ø SM 7 kW Demand
6945
RW
Parameter 39
UINT16
218
1-Ø SM 8 kW Demand
6946
RW
Parameter 40
UINT16
219
1-Ø SM 9 kW Demand
6947
RW
Parameter 41
UINT16
224
1-Ø SM 10 kW Demand
6948
RW
Parameter 42
UINT16
225
1-Ø SM 11 kW Demand
6949
RW
Parameter 43
UINT16
226
1-Ø SM 12 kW Demand
6950
RW
Parameter 44
UINT16 7
1-Ø SM 1 Current Demand
6951
RW
Parameter 45
UINT16 17
1-Ø SM 2 Current Demand
6952
RW
Parameter 46
UINT16 27
1-Ø SM 3 Current Demand
6953
RW
Parameter 47
UINT16 37
1-Ø SM 4 Current Demand
6954
RW
Parameter 48
UINT16 47
1-Ø SM 5 Current Demand
6955
RW
Parameter 49
UINT16 57
1-Ø SM 6 Current Demand
6956
RW
Parameter 50
UINT16 67
1-Ø SM 7 Current Demand
6957
RW
Parameter 51
UINT16 77
1-Ø SM 8 Current Demand
6958
RW
Parameter 52
UINT16 87
1-Ø SM 9 Current Demand
6959
RW
Parameter 53
UINT16 97
1-Ø SM 10 Current Demand
6960
RW
Parameter 54
UINT16
107
1-Ø SM 11 Current Demand
Page 81
80
CET Electric Technology
6961
RW
Parameter 55
UINT16
117
1-Ø SM 12 Current Demand
6962
RW
Parameter 56
UINT16 0
None
6963
RW
Parameter 57
UINT16 0
None
6964
RW
Parameter 58
UINT16 0
None
6965
RW
Parameter 59
UINT16 0
None
6966
RW
Parameter 60
UINT16 0
None
Page 82
81
CET Electric Technology
Appendix D - Mains Circuit CT
Ordering Guide
Specification
PMC-CT-100A-40mA-3P-A
Environment
Operating Temperature
-40°C~+85°C
Storage Temperature
-40°C to +85°C
Humidity
≤95%
Atmospheric Pressure
80-110kpa
Technical
Specification
Primary Current (In)
10A
Magnitude Nonlinearity
≤0.1%
Secondary Current
4mA
Phase Nonlinearity
≤10'
Linearity Range
1%In-10xIn
Internal DC Resistance
160±15Ω
Max. Overload
200A/1s
Max. Load Resistance
≤20Ω
Withstand Voltage
(Core to Coil)
4000V/min,1mA
Insulation Resistance
1000MΩ/500VDC,
1min
Frequency
50-400Hz
Temperature Drift
10ppm/
Open-Circuit Protection
Transient Voltage Suppressor: TVS-P6KE6.8CA
RJ12 Pins Description
Pins 1 & 2 for L1 (A), Pins 3 & 4 for L2 (B), Pins 5 & 6 for L3 (C)
Mechanical
Structure
Primary Input
1 turn
Enclosure
ABS Flame Retardant
L1/L2/L3
RoHS
Compliance
Internal Insulation
Epoxy Resin Sealing
Installation
35mm DIN-Rail
Secondary
Output Cable
6P6C Dark Red Flat wire, pressure connecting with RJ12
Cable Length
2000±20mm (includes RJ12)
Page 83
82
CET Electric Technology
PMC-CT-250A-40mA-A
Environment
Operating Temperature
-40°C~+85°C
Storage Temperature
-40°C to +85°C
Humidity
≤95%
Atmospheric Pressure
80-110kpa
Technical
Specification
Primary Current (In)
250A
Magnitude Nonlinearity
≤0.2%
Secondary Current
40mA
Phase Nonlinearity
≤15'
Linearity Range
5%In-120xIn
Internal DC Resistance
365±40Ω (20°C)
Dotted Terminals
P1 and S1
Max. Load Resistance
≤20Ω
Withstand Voltage
(Core to Coil)
4000V/min,1mA
Insulation Resistance
1000MΩ/500VDC,
1min
Frequency
50-400Hz
Temperature Drift
30ppm/
Open-Circuit Protection
Transient Voltage Suppressor: TVS-P6KE6.8CA
Mechanical
Structure
Primary Input
P1, P2
Enclosure
ABS Flame Retardant
Secondary Output
S1, S2
RoHS
Compliance
Internal Insulation
Epoxy Resin Sealing
Installation
Mounting Bolt
PMC-CT-400A-40mA-A
Environment
Operating Temperature
-40°C~+85°C
Storage Temperature
-40°C to +85°C
Humidity
≤95%
Atmospheric Pressure
80-110kpa
Technical
Specification
Primary Current (In)
400A
Magnitude Nonlinearity
≤0.2%
Secondary Current
40mA
Phase Nonlinearity
≤15'
Linearity Range
5%In-120xIn
Internal DC Resistance
600±70Ω (20°C)
Dotted Terminals
P1 and S1
Max. Load Resistance
≤20Ω
Withstand Voltage
(Core to Coil)
4000V/min,1mA
Insulation Resistance
1000MΩ/500VDC,
1min
Frequency
50-400Hz
Temperature Drift
30ppm/
Open-Circuit Protection
Transient Voltage Suppressor: TVS-P6KE6.8CA
Mechanical
Structure
Primary Input
P1, P2
Enclosure
ABS Flame Retardant
Secondary Output
S1, S2
RoHS
Compliance
Internal Insulation
Epoxy Resin Sealing
Installation
Mounting Bolt
PMC-CT-800A-40mA-A
Environment
Operating Temperature
-40°C~+85°C
Storage Temperature
-40°C to +85°C
Humidity
≤95%
Atmospheric Pressure
80-110kpa
Technical
Specification
Primary Current (In)
800A
Magnitude Nonlinearity
≤0.2%
Secondary Current
40mA
Phase Nonlinearity
≤30'
Linearity Range
5%In-120xIn
Withstand Voltage
(Core to Coil)
4000V/min,1mA
Dotted Terminals
P1 and S1
Max. Load Resistance
≤20Ω
Frequency
50-400Hz
Insulation Resistance
1000MΩ/500VDC,
1min
Mechanical
Structure
Primary Input
P1, P2
Enclosure
ABS Flame Retardant
Secondary Output
S1, S2
RoHS
Compliance
Internal Insulation
Epoxy Resin Sealing
Installation
Mounting Bolt
Page 84
83
CET Electric Technology
PMC-SCCT-5A-1.667mA-10-A
Environment
Operating Temperature
-20°C~+50°C
Storage Temperature
-40°C to +85°C
Humidity
≤85%
Atmospheric Pressure
70-106kpa
Technical
Specification
Primary Current (In)
5A
Magnitude Error
±0.8%
Secondary Current
1.667mA
Phase Error
90±15'
Max. Current (Imax)
10A, continuous
Rated Load
200Ω
Withstand Voltage
(Core to Coil)
4000V/10s, 1mA
Frequency
50-400Hz
Open-Circuit Protection
Voltage
6-8V
Insulation Resistance
100MΩ/500VDC
Linearity
1.0L (5%In-120%In)
Mechanical
Structure
Dotted Terminals
P1 and white leads
RoHS
Compliance
Enclosure
White, Flame Rating 94-V0
Secondary
Output Cable
AWM1015, 22AWG Black and White Stranded Wire, 2.0±0.05m, Tin plating
at the end for 8-10mm
PMC-SCCT-100A-40mA-16-A
Environment
Operating Temperature
-20°C~+50°C
Storage Temperature
-40°C to +85°C
Humidity
≤85%
Atmospheric Pressure
70-106kpa
Technical
Specification
Primary Current (In)
10A
Magnitude Error
±0.5%
Secondary Current
4mA
Phase Error
30±15'
Max. Current (Imax)
120A, continuous
Rated Load
20Ω
Withstand Voltage
(Core to Coil)
4000V/10s, 1mA
Frequency
50-400Hz
Open-Circuit Protection
Voltage
6-8V
Insulation Resistance
100MΩ/500VDC
Accuracy
Class 1.0 (IEC61869-2)
Linearity
0.5L (5A-120A)
Mechanical
Structure
Dotted Terminals
P1 and white leads
RoHS
Compliance
Enclosure
Black, Flame Rating 94-V0
Secondary
Output Cable
AWM1015, 22AWG Black and White Stranded Wire, 2.0±0.05m, Tin plating
at the end for 8-10mm
PMC-SCCT-200A-40mA-24-A
Environment
Operating Temperature
-20°C~+50°C
Storage Temperature
-40°C to +85°C
Humidity
≤85%
Atmospheric Pressure
70-106kpa
Technical
Specification
Primary Current (In)
200A
Magnitude Error
±0.5%
Secondary Current
40mA
Phase Error
20±10'
Max. Current (Imax)
240A, continuous
Rated Load
10Ω
Withstand Voltage
(Core to Coil)
4000V/10s, 1mA
Frequency
50-400Hz
Open-Circuit Protection
Voltage
6-8V
Insulation Resistance
100MΩ/500VDC
Accuracy
Class 1.0 (IEC 61869-2)
Linearity
0.5L (5%In-120%In)
Mechanical
Structure
Dotted Terminals
P1 and white leads
RoHS
Compliance
Enclosure
White, Flame Rating 94-V0
Secondary
Output Cable
AWM1015, 22AWG Black and White Stranded Wire, 2.0±0.05m, Tin plating
at the end for 8-10mm
Page 85
84
CET Electric Technology
PMC-SCCT-400A-40mA-35-A
Environment
Operating Temperature
-20°C~+50°C
Storage Temperature
-40°C to +85°C
Humidity
≤85%
Atmospheric Pressure
70-106kpa
Technical
Specification
Primary Current (In)
400A
Magnitude Error
±0.5%
Secondary Current
40mA
Phase Angle
10±10'
Max. Current (Imax)
480A, continuous
Rated Load
10Ω
Withstand Voltage
(Core to Coil)
4000V/10s, 1mA
Frequency
50-400Hz
Open-Circuit Protection
Voltage
6-8V
Insulation Resistance
100MΩ/500VDC
Accuracy
Class 0.5 (IEC 61869-2)
Linearity
0.5L (5%In-100%In)
Mechanical
Structure
Dotted Terminals
P1 and white leads
RoHS
Compliance
Enclosure
White, Flame Rating 94-V0
Secondary
Output Cable
AWM1015, 22AWG Black and White Stranded Wire, 2.0±0.05m, Tin plating
at the end for 8-10mm
PMC-SCCT-800A-40mA-A
Environment
Operating Temperature
-15°C ~+50°C
Storage Temperature
-25°C to +75°C
Humidity
≤85%
Atmospheric Pressure
80-110kpa
Technical
Specification
Primary Current (In)
800A
Magnitude Nonlinearity
≤0.5%
Secondary Current
40mA
Phase Nonlinearity
≤30'
Rated Steady Current
2.5Ith
Rated Load
10Ω
Rated Short-time Thermal
Current (Ith)
20In
Frequency
50-60Hz
Withstand Voltage
(Core to Coil)
3000V/min, 1mA
Insulation Resistance
100MΩ/500VDC,
1min
Open-Circuit Protection
Transient Voltage Suppressor: TVS-P6KE6.8CA
Accuracy
Class 0.5 (IEC61869-2)
Linearity
5%In-120%In
Mechanical
Structure
Dotted Terminals
P1 and S1
RoHS
Compliance
Primary Input
P1, P2
Enclosure
Flame Retardant
Secondary Output
S1, S2
Installation
Mounting Bolt
Page 86
85
CET Electric Technology
Appendix E - Technical Specifications
Voltage Inputs (V1, V2, V3, VN)
ULN
Un Range Start Voltage Overload Burden
Ung
Range
240VLN/415VLL 10V to 1.2Un 10V
1.2xUn continuous, 2xUn for 10s <0.05VA per phase
0~5V
Frequency
45-65Hz
Current Inputs (I11, I12, I21, I22, I31, I32)
In Primary In Secondary
Range Starting Current Solid Core CT Range
100A Molded Case CT (3-Ø) 250A Solid Core CT (1-Ø) 400A Solid Core CT (1-Ø) 800A Solid Core CT (1-Ø)
Split Core CT Range
5A SCCT (1-phase) 100A SCCT (1-phase) 200A SCCT (1-phase) 400A SCCT (1-phase)
800A SCCT (1-phase) Burden Overload
5A/100A/200A/250A/400A/800A
1.667mA for 5A 40mA for 100A/200A/250A/400A/800A
0.4% to 100% In Primary
0.004In Primary
0.4~100A 1~250A
1.6~400A
3.2~800A
0.02~5A
0.4~100A
0.8~200A
1.4~400A
3.2~800A <0.3VA per phase @ In
1.0xIn Primary (continuous)
Power Supply (L+, N-, GND)
Standard Optional Burden
95-250VAC/DC, 47-440Hz 20-60VDC 2W
Digital Inputs
Type
48VDC External Excitation
Digital Outputs
Type Loading
Form A Mechanical Relay 5A @ 250VAC or 30VDC
Analog Input
Type Overload
0-20 mA/4mA-20mA 24 mA maximum
Installation Torque
Power Supply / Voltage Input
0.8 N.m
AI / RS485
0.2 N.m
DO / DI
0.4 N.m
Environmental Conditions
Operating Temp. Storage Temp. Humidity Atmospheric Pressure Altitude
-25°C to 70°C
-40°C to 85°C 5% to 95% non-condensing 70 kPa to 106 kPa ≤3,000m
Mechanical Characteristics
Unit Dimensions IP Rating
126x90x65 mm IP50
Page 87
86
CET Electric Technology
Appendix F - Accuracy Specifications
Parameters
Accuracy
Resolution
Voltage
±0.5%
0.01V
Current
±0.5%
0.001A
Phase Angle
±1°
0.1°
kW, kvar, kVA
±1.0%
0.001kX
kWh
IEC 62053-21: 2003 Class 1
0.01kWh
kvarh
IEC 62053-22: 2003 Class 2
0.001kvar
AI
±1.0%
-
P.F.
±0.5%
0.001
Frequency
±0.02 Hz
0.01Hz
THD
IEC 61000-4-7 Class B
0.1%
Voltage Unbalance
±0.2%
0.01%
Current Unbalance
±1.0%
0.01%
Page 88
87
CET Electric Technology
Appendix G - Standards Compliance
Safety Requirements
CE LVD 2014 / 35 / EU
EN 61010-1: 2010, EN 61010-2-030: 2010
Electrical safety in low voltage distribution systems up to 1000Vac and 1500 Vdc
IEC 61557-12: 2008
Insulation
Dielectric test: Insulation resistance: Impulse voltage:
2kV @ 1 minute >100MΩ 6kV, 1.2/50µs
IEC 60255-5-2000
Electromagnetic Compatibility
CE EMC Directive 2014 / 30 / EU (EN 61326: 2013)
Immunity Tests
Electrostatic Discharge
EN 61000-4-2: 2009
Radiated Fields
EN 61000-4-3: 2006+A1: 2008+A2: 2010
Fast Transients
EN 61000-4-4: 2012
Surges
EN 61000-4-5: 2006
Conducted Disturbances
EN 61000-4-6: 2009
Magnetic Fields
EN 61000-4-8: 2010
Oscillatory Waves
EN 61000-4-12: 2006
Emission Tests
Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment
EN 55011: 2009 + A1: 2010 (CISPR 11)
Limits and methods of measurement of radio disturbance characteristics of information technology equipment
EN 55022: 2010+AC: 2011 (CISPR 22)
Limits for harmonic current emissions for equipment with rated current ≤16 A
EN 61000-3-2: 2014
Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current ≤16 A
EN 61000-3-3: 2013
Emission standard for residential, commercial and light-industrial environments
EN 61000-6-4: 2007+A1: 2011
Electromagnetic Emission Tests for Measuring Relays and Protection Equipment
EN 61000-4-12: 2006
Mechanical Tests
Vibration Test
Response
IEC 62052-11: 2003 Level I
Endurance
IEC 62052-11: 2003 Level I
Shock Test Response
IEC 62052-11: 2003 Level I
Endurance
IEC 62052-11: 2003 Level I
Bump Test
IEC 62052-11: 2003 Level I
Page 89
88
CET Electric Technology
Appendix H - Ordering Guide
Page 90
Contact us
CET Inc.
8/F, Westside, Building 201, Terra Industrial & Trade park, Che Gong Miao, Shenzhen, Guangdong,
P.R.China 518040
Tel: +86.755.8341.5187
Fax: +86.755.8341.0291
Email: sales@cet-global.com
Web: www.cet-global.com
Loading...