
CEDF634/CEUF634
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
250V, 6.7A, R
Super high dense cell design for extremely low R
= 450mΩ @VGS = 10V.
DS(ON)
DS(ON)
.
High power and current handing capability.
Lead free product is acquired.
TO-251 & TO-252 package.
D
G
S
CEU SERIES
TO-252(D-PAK)
G
CED SERIES
TO-251(I-PAK)
ABSOLUTE MAXIMUM RATINGS T
Parameter
Drain-Source Voltage
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
Maximum Power Dissipation @ TC = 25 C
a
- Derate above 25 C
D
S
= 25 C unless otherwise noted
c
Symbol
V
DS
V
GS
I
D
I
DM
P
D
G
Limit
±30
0.37
Operating and Store Temperature Range TJ,Tstg -55 to 150
250
6.7
26
46
D
S
Units
V
V
A
A
W
W/ C
C
Thermal Characteristics
Parameter Symbol Limit Units
Thermal Resistance, Junction-to-Case
Thermal Resistance, Junction-to-Ambient
RθJA
2.7RθJC
50
2005.January http://www.cetsemi.com
6 - 138
C/W
C/W

CEDF634/CEUF634
Electrical Characteristics T
= 25 C unless otherwise noted
c
Parameter Symbol Min Units
Off Characteristics
Drain-Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
On Characteristics
b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Forward Transconductance
Dynamic Characteristics
c
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Switching Characteristics
c
Turn-On Delay Time
Turn-On Rise Time
Turn-Off Delay Time
Turn-Off Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
V
R
BV
C
C
C
t
d(on)
t
d(off)
Q
Q
DSS
I
DSS
I
GSSF
IGSSR
GS(th)
DS(on)
g
FS
iss
oss
rss
t
r
t
f
Q
g
gs
gd
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
Drain-Source Diode Forward Voltage
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
b
I
S
V
SD
Test Condition
VGS = 0V, ID = 250µA
VDS = 250V, VGS = 0V
VGS = 30V, VDS = 0V
VGS = -30V, VDS = 0V
VGS = VDS, ID = 250µA
VGS = 10V, ID = 5.1A
VDS = 50V, ID = 5.1A
VDS = 25V, VGS = 0V,
f = 1.0 MHz
VDD = 125V, ID = 5.6A,
VGS = 10V, R
GEN
= 12Ω
VDS = 200V, ID =5.6A,
VGS = 10V
VGS = 0V, IS = 8.1A
Typ Max
250
22 4
4.4
630
100
40
19
11
46
10
26
5
11
25
100
-100
450
40
30
90
30
33
8.1
1.50.9
V
µA
nA
nA
V
mΩ
S
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
A
V
6
6 - 139

12
VGS=10,9,8,7V
10
8
6
4
ID, Drain Current (A)
2
0
0 1 2 43 5 6
VDS, Drain-to-Source Voltage (V)
CEDF634/CEUF634
1
10
V
=6V
GS
V
=5V
GS
V
=4V
GS
TJ=150 C
0
10
ID, Drain Current (A)
25 C
-1
10
2 4 6 8
VGS, Gate-to-Source Voltage (V)
-55 C
1.VDS=40V
2.Pulse Test
10
Figure 1. Output Characteristics
1200
1000
800
600
400
C, Capacitance (pF)
200
0
0 10 20 30 40 50
C
iss
C
oss
C
rss
VDS, Drain-to-Source Voltage (V)
Figure 3. Capacitance
1.3
VDS=V
GS
ID=250µA
1.2
1.1
1.0
0.9
0.8
VTH, Normalized
0.7
Gate-Source Threshold Voltage
0.6
-50 -25 0 25 50 75 100 125 150
TJ, Junction Temperature( C)
Figure 2. Transfer Characteristics
3.0
ID=5.1A
VGS=10V
2.5
2.0
1.5
1.0
RDS(ON), Normalized
0.5
RDS(ON), On-Resistance(Ohms)
0.0
-100 -50 0 50 100 150 200
TJ, Junction Temperature( C)
Figure 4. On-Resistance Variation
with Temperature
V
=0
V
GS
1
10
0
10
IS, Source-drain current (A)
-1
10
0.4 0.6 0.8 1.0
VSD, Body Diode Forward Voltage (V)
1.2 1.4
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
6 - 140

10
VDS=200V
ID=5.6A
8
6
4
2
VGS, Gate to Source Voltage (V)
0
0 8 16 24 28
4 12 20
Qg, Total Gate Charge (nC)
CEDF634/CEUF634
2
10
R
Limit
DS(ON)
1
10
0
10
ID, Drain Current (A)
-1
10
TC=25 C
TJ=150 C
Single Pulse
0
10
10
VDS, Drain-Source Voltage (V)
100ms
1ms
10ms
DC
1
2
10
3
10
6
Figure 7. Gate Charge
IN
V
D
V
GS
GEN
R
G
S
Figure 9. Switching Test Circuit
0
10
D=0.5
0.2
-1
0.1
10
0.05
0.02
10
-2
-5
10
0.01
Single Pulse
-4
10
r(t),Normalized Effective
Transient Thermal Impedance
DD
V
R
L
OUT
V
-3
10
Square Wave Pulse Duration (sec)
Figure 8. Maximum Safe
on
t
r
t
90%
10% 10%
INVERTED
50% 50%
V
V
t
d(on)
OUT
IN
10%
PULSE WIDTH
Figure 10. Switching Waveforms
PDM
-2
10
-1
10
Operating Area
t
off
d(off)
t
90%
90%
t1
t2
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
0
10
f
t
1
10
Figure 11. Normalized Thermal Transient Impedance Curve
6 - 141