C.E. Niehoff & Co.
Troubleshooting Guide
for N1450 Alternators
Hazard Defi nitions
These terms are used to bring attention to presence of hazards
of various risk levels or to important information concerning
product life.
Indicates presence of hazards that
CAUTION
will or can cause minor personal
injury or property damage.
Indicates special instructions on
installation, operation or mainte-
NOTICE
nance that are important but not
related to personal injury hazards.
Table of Contents
Section A: Wiring Diagram ......................................2
Section B: Basic Troubleshooting ............................3
Section C: Advanced Troubleshooting ................ 4 – 5
Battery Conditions
Until temperatures of electrical
NOTICE
system components stabilize, these
conditions may be observed during
cold-start voltage tests.
• Maintenance/Low Maintenance Battery
— Immediately after engine starts, system volts are
lower than regulator setpoint, amps are medium.
— 3–5 minutes into charge cycle, system volts
increase, amps decrease.
— 5–10 minutes into charge cycle, system volts
increase to, or near, regulator setpoint and amps
decrease to a minimum.
— Low maintenance battery has same characteristics
with slightly longer recharge times.
• Maintenance-free Battery
— Immediately after engine starts, system volts are
lower than regulator setpoint, low charging amps.
— Once charge cycle begins, low volts and low amps
are still present.
— After alternator energizes, voltage will increase
several tenths. Amps will increase gradually, then
quickly, to medium to high amps.
— F i n a l l y , v o l t s w i l l i n c r e a s e t o s e t p o i n t a n d a m p s w i l l
decrease.
The time it takes to reach optimum voltage and amperage will vary with engine speed, load, and ambient
temperature.
• High-cycle Maintenance-free Battery
These batteries respond better than standard maintenance-free. Charge acceptance of these batteries may
display characteristics similar to maintenance batteries.
• AGM (Absorbed Glass Mat) Maintenance-free Battery
These dry-cell batteries respond better than standard
maintenance-free. If battery state of charge drops to
75% or less, batteries should be recharged to 95% or
higher separately from the engine’s charging system to
avoid damaging charging system components and to
provide best overall performance. Charge acceptance of
these batteries may display
maintenance batteries.
characteristics similar to
Battery Charge Volt and Amp Values
Volt and amp levels fluctuate depending on the battery state
of charge. If batteries are in a state of discharge—as after
extended cranking time to start the engine—system volts
will measure lower than the regulator setpoint after the
engine is restarted and system amps will measure higher.
This is a normal condition for the charging system; the
greater the battery discharge level, the lower the system
volts and the higher the system amps. The volt and amp
readings will change as batteries recover and become fully
charged: system volts will increase to regulator setpoint
and system amps will decrease to low level (depending on
other loads).
• Low Amps: Minimum or lowest charging system amp
value required to maintain battery state of charge,
obtained when testing the charging system with a fully
charged battery and no other loads applied. This value
will vary with battery type.
• Medium Amps: System amps value which can cause
the battery temperature to rise above adequate charging
temperature within 4-8 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery
manufacturer’s recommendations for proper charge
amp rates.
• High Amps: System amps value which can cause
the battery temperature to rise above adequate charging
temperature within 2-3 hours of charge time. To prevent battery damage, the charge amps should be reduced when battery temperature rises. Check battery
manufacturer’s recommendations for proper charge
amp rates.
• Battery Voltage: Steady-state voltage value as mea-
sured with battery in open circuit with no battery load.
This value relates to battery state of charge.
• Charge Voltage: Voltage value obtained when the
charging system is operating. This value will be higher
than battery voltage and must never exceed the regulator voltage setpoint.
• B+ Voltage: Voltage value obtained when measuring
voltage at battery positive terminal or alternator B+
terminal.
• Surface Charge: Higher than normal battery voltage
occurring when the battery is disconnected from
battery charger. The surface charge must be removed
to determine true battery voltage and state of charge.
• Significant Magnetism: Change in strength or inten-
sity of a magnetic field present in alternator rotor shaft
when the field coil is energized. The magnetic field
strength when the field coil is energized should feel
stronger than when the field is not energized.
• Voltage Droop or Sag: Normal condition occurring
when the load demand on alternator is greater than
rated alternator output at given rotor shaft RPM.
TG57B
Page 1
Section A: Wiring Diagram
CEN N1450 Alternator
Description and Operation
N1450 28 V (400 A) alternator is internally rectified.
There are no brushes or slip rings to wear out.
Energize switch activates regulator. Exciter stator
is then energized.
After engine is running, the regulator receives energize
signal. Regulator monitors alternator rotation and provides field current only when it detects alternator shaft
rotating at suitable speed.
N3227 or N3250 regulator used with some units:
• is negative temperature compensated.
• maintains alternator output voltage at regulated
settings as vehicle electrical loads are switched
on and off.
• provides overvoltage cutout (OVCO). Regulator will
trip OVCO when system voltage rises above 32 V for
longer than 3 seconds. OVCO feature detects high
voltage and reacts by disconnecting field and turning
off alternator. Restarting engine or waiting until
system voltage drops below 24 V will reset OVCO
circuit.
B– terminal
B+2 secondary
(low load)
output
terminal
B+1 primary
(high load)
output
terminal.
Battery must
be connected
to this terminal
for unit to be
energized.
Figure 1 — N1450 Alternator Terminals
Page 2
Figure 2 — N1450 Wiring Diagram
TG57B