Particulate contamination can build up on the probe face and tips during probing. In some cases, particulate contamination
may go unnoticed by the user, while in others it can cause persistent open channels. Large, hard particles can crush probe
tips and are a leading cause of premature, catastrophic probe card failure. This application note describes the recommended
online cleaning methods for Pyramid Probes with a steel plunger stack, for example the P800-S (see Figure 1), when probing
solder balls.
This application note starts with some general information regarding contaminants that may be found in probing
environments. It then describes Cascade Microtech’s recommendations for online cleaning methods and a proposed
cleaning recipe. Finally, a procedure for determining the optimum value of online cleaning parameters is described.
N
OTE
For details on cleaning Pyramid Probes with a plastic plungers, see the application note titled
“Online Cleaning Methods for Pyramid Probe Cards”.
Contaminants
Contaminants on Pyramid Probes can be divided into two general classes:
• Particulate contaminants
• Resistive-buildup contaminants
Particulate Contaminants
Particulate contamination can build up on the probe face and tips during probing. In some cases, particulate contamination
may go unnoticed by the user, while in others it can cause persistent open channels. Though unlikely in solder ball probing
applications, large, hard particles can crush probe tips and are a leading cause of premature, catastrophic probe card
failure.
Once particles have been transferred to the membrane, they are best removed by using the offline cleaning brush supplied
with your core. This procedure is described in the application note titled Pyramid Probe Cores Off-line Cleaning With Brush.
The best solution for particulate contamination, however, is removal of the particles at their source. A few simple
precautions can protect Pyramid Probes from particulate damage. To avoid accidental damage to the probe core:
• Probe in a cleanroom environment.
• Use extreme caution when probing correlation wafers.
• Do not load or unload probe cards with the wafer on the chuck.
• Do not share brushes between Pyramid Probes and other probe card technologies.
• Do not touch the membrane, even with gloved hands.
• Do regular preventative maintenance to clean the wafer area of the prober.
Resistive buildup contaminants such as organics and oxides can accumulate on the probe tips during probing (see Figure 2,
Figure 3). To maintain high yield, these contaminants must be removed by abrasive cleaning. For best results, this
contamination should be removed preventively. Resistive buildup contaminants do not usually damage probe tips directly.
However, in response to the increasing contact resistance caused by this buildup, users may choose to increase overtravel
— which stresses the probe tips and can cause premature probe failure.
Probe tips for solder-ball probing are much more susceptible to accumulation of resistive-buildup contaminants. Under
normal probing, the soft solder material sticks to the probe tip surface. This buildup typically appears as a dark-colored
mass that covers the entire tip surface and occurs with all types of solder alloys. Often, the mass will include areas that are
green, blue, brown, or black. Yield will suffer if this buildup is not removed preemptively with aggressive online cleaning.
Online Cleaning Materials
C
AUTION
!
Excessive use of abrasive substrates may cause premature failure of Pyramid Probes.
The most effective method for controlling contact resistance (Rc) and cleaning resistive buildup from Pyramid Probe tips is
online cleaning by touching down on an abrasive. Abrasive cleaning media can be divided into four categories:
• Abrasive coated foams
• Abrasive loaded elastomers
• Lapping films
• Soft-backed lapping films
The only recommended media for cleaning the P800-S is an abrasive coated foam.
The results of a cleaning study performed at Cascade Microtech were presented at the at the 18th Annual IEEE
Semiconductor Wafer Test Workshop in June 2008 in a paper by Eric Hill and Josh Smith, Probe Card Cleaning Media Survey. The presentation can be viewed at: http://www.swtest.org/swtw_library/2008proc/PDF/
Table 1. Recommended, acceptable and unacceptable online cleaning materials and methods.
(Drawing courtesy of MIPOX)
Thickness approx.
450 µm
Resin
Abrasive
PET Film
Polyurethane
Adhesive
Online Cleaning Instructions
RecommendedAbrasive
Coated
Foams
The most common source for abrasive coated foams is MIPOX International. Abrasivecoated foams consist of a layer of abrasive particles in a resin binder. Instead of being
bonded to a polyester film carrier like a lapping film, the particles are coated onto a soft,
open-celled foam. These films are typically 450-500 µm thick. Abrasive-coated foams are
the only recommended cleaning media for P800-S type Pyramid Probes.
Figure 4. Abrasive coated foam architecture.
MIPOX International Corporation offers probe card cleaning sheets with foam backing
materials in a variety of abrasives and grit sizes. Contact MIPOX directly for applicationspecific recommendations and product support (http://www.mipox.co.jp/en/contact/
index.html).
MIPOX International’s WA6000-SWE is used in the factory for cleaning P800-S Pyramid
Probes. Sheets of 9 x 11 inch MIPOW WA6000-SWE are available directly from MIPOX (p/
n WA6000-SWE FWX w/PSA).
AcceptableAbrasive
Loaded
Elastomers
Abrasive-loaded elastomer media consist of a relatively thick layer of elastomer [such as
silicone, polyurethane, or rubber) with abrasive particles mixed evenly throughout the
polymer. This gel-like film is generally mounted to a polyester backing film or a cleaning
wafer. The most common source of this type of cleaning film is International Test Solutions
(ITS). Abrasive-loaded elastomers are expected to be safe for use.
The traditional method used for cleaning cantilever probe cards. Lapping film contains
abrasive particles that have been bonded to the backing film with a relatively hard resin
binder. These films are typically 75-125 µm thick.
The preferred method for cleaning Pyramid Probes with a plastic plunger uses Allied High
Tech Products’ 3 µm Diamond Lapping Film, after removing some of the binder. However,
lapping film should NOT be used with the P800-S type Pyramid Probes, as too much
overtravel (force) is required to make contact with all the probe tips.
SoftBacked
Lapping
Films
OtherA number of probe cleaning methods common within the industry can cause irreversible
Using soft backed lapping films applies uneven pressure on the probe tips causing uneven
wear, reducing coplanarity, especially at the edges or corners of an array of tips, and
increasing the overtravel requirement over time. In addition, too much overtravel is
required to make contact with all the probe tips. This type of cleaning material should not
be used to clean Pyramid Probes.
Examples of soft-backed lapping films include:
• MIPOX PF3 types, for example, GC6000-PF3 and GC8000-PF3, SI10000-PF3
• 3M Type CL (cushion layer)
• Stacked layers of cleaning films to create the equivalent of a soft-backed lapping film
damage to Pyramid Probe cards. These methods must not be used with Pyramid Probe
cards under any circumstances:
• Tungsten Carbide, Silicon Carbide, Alumina or other Ceramic Plates - even if they are
similar to the Allied 3 µm diamond lapping film in grit size, probing on these surfaces will
quickly grind away Pyramid Probe tips.
• Non-qualified chemicals - many chemicals are incompatible with the materials used in
Pyramid Probe cores. Refer to the Cascade Microtech application note, Pyramid Probe Core Off-line Cleaning With Brush for a list of qualified chemicals.
• Lapping Films with the abrasive contained in ceramic beads - the large ceramic beads
can damage the probe tips. The beads are also brittle and can shatter, causing contamination on the face of the probe. This type of cleaning material should not be used to
clean Pyramid Probes. Examples of lapping films with ceramic beads containing abrasive include:
— Allied High Tech Products, Type B lapping films
— 3M Type B lapping films
Online Cleaning Parameters
General Precautions
When using a prober or cleaning station, never clean Pyramid Probe cards by moving the cleaning chuck back-and-forth in
the XY-plane when it is in contact with the probe tips. Instead, clean the probe tips contacting the cleaning substrate using
only a Z-axis motion. Many probers and probe card analyzers default to a scrubbing X-Y motion, which must be disabled.
CAUTION
!
When cleaning Pyramid Probe cards, never move the cleaning substrate in the XY-plane
when the substrate and the probe tips are in contact.
When stepping Pyramid Probe cards down on a cleaning substrate, do not exceed 250 µm in overtravel. Overtravel
between 35 and 75 µm is optimal for most cleaning applications. Higher overtravel is more likely to generate particles from
the cleaning film.
Step the cleaning chuck at least 2x the tip diameter in the X and Y directions between touchdowns to ensure the probe tips
always contact fresh material and an even distribution of abrasive particles.
Cleaning Pyramid Probe cards by contacting a cleaning substrate takes multiple touchdowns to achieve good results. A
Online Cleaning Instructions
ratio of 2.5 probing cycles to the number of cleaning cycles is expected. Experiment to find the cleaning count that works
best in your environment. Eighty cleaning contacts for 200 touchdowns is a good number to start.
Online Cleaning Frequency – Yield vs. Wear
Each time a probe card is cleaned abrasively, a small amount of probe tip material may be removed in addition to the
contaminant. When developing a cleaning strategy for probe cards, a trade-off is made between the lifetime of the probe
card and the test yield. Yield suffers if the probing-to-cleaning ratio is set too high. Alternatively, probe card lifetime and test
equipment utilization suffer if the probing-to-cleaning ratio is set too low. When developing the cleaning strategy, the
objective is to determine a probing-to-cleaning ratio low enough to minimize probe tip wear, but high enough to maximize
yield.
Figure 5. Probing-to-cleaning touchdown ratio.
Overtravel
If all the tips are in contact, increasing cleaning overtravel on Pyramid Probe tips does not increase the foreign material
removal rate. In fact, higher cleaning overtravel may accelerate the accumulation of particles from the cleaning substrate.
The tips on a Pyramid Probe range from 20-55 µm tall. The foam on abrasive coated foams is soft, enabling the probe tips
to push into it relatively easily. Therefore, increasing overtravel values far beyond the tip length does not increase the
cleaning action because the tips are buried and the probe face is simply compressing the foam.
It is best to set the overtravel high enough to ensure that all tips contact the film, but low enough to minimize particle
generation from the film. Typical cleaning overtravel used in the Cascade Microtech factory environment is 35 to 75 μm.
Cleaning Recipe, Initial Settings
Experiments were performed in the factory on solder covered wafers to establish a cleaning recipe to use as a starting
point for customers probing solder balls with P800-S Pyramid Probes. Contact resistance was monitored while the number
of cleaning touches was varied. Cleaning cycles were made after every 200 contact resistance measurements. A ratio of
probing contacts to cleaning contacts was calculated for each recipe. The tested ratios were 1:1, 2.5:1, 5:1, and 10:1. The
results showed that the highest ratio of probing to cleaning that maintained less than 0.5 ohms increase in contact
resistance was 2.5:1; or 80 cleaning cycles for every 200 measurements. A cleaning recipe can be created using the
process described in this document, or by starting with these values and refining them based on yield.
Cleaning parameters quoted here are guidelines only. Optimized cleaning parameters for
the best yield and lifetime must be developed in your unique probing environment.
Use the following procedure to determine cleaning parameters (cleaning interval, touchdowns per clean, and cleaning
overtravel).
1. Ensure that the proper cleaning medium is installed on the cleaning chuck or wafer.
2. Verify that the prober is set for the correct height offset or will detect the height of the cleaning surface optically. MIPOX
International’s WA6000-SWE film thickness varies from 470 to 500 µm.
3. Before installing the card in the prober, examine the probe tips under a microscope. Magnification levels of 500 to 1000x
and bright-field lighting are optimal. Typical probe-tip dimensions are:
• 18 µm nominal for fine-pitch solder balls
• 25 µm nominal for wide-pitch solder balls
4. Verify the prober cleaning settings.
• Cleaning Type set to Z-only
• The XY increment between cleaning touchdowns is at least 2 times the tip diameter
5. Choose initial cleaning overtravel in the range of 35 to 75 µm. 50 µm is the recommended.
CAUTION
!
Difficulty auto-focusing on the probe tips can cause actual and programmed overtravel to be
different. This can lead to poor cleaning performance.
6. Determine the cleaning interval.
a. Probe until a yield drop occurs.
b. Clean the probe tips very well with 150-200 cleaning cycles.
c. Repeat steps a and b enough times until you can predict the number of die probed before a yield drop.
d. Set the cleaning interval to be about 75 or 80% of the average number of touchdowns before yield drops.
7. Determine the number of touchdowns per cleaning cycle.
a. Choose an initial value. Traditionally, this has been a small number like 10 to 20. Recent experiments show that
more cleaning touchdowns may increase the number of die between cleaning. Consider starting with 150 to 200
cleaning touchdowns, especially for solder ball probing.
b. Probe several cleaning cycles to validate a stable process.
c. Reduce the number of cleaning touchdowns by about 20%.
d. Repeat steps b and c until the yield can not be maintained for the entire probing cycle.
e. Increase the number of cleaning touchdowns to the previous, larger, number.
8. Remove the probe card and examine the probe tips under a microscope for signs of contamination buildup. See
Contaminants on page 1for information on contamination type, if any, building up on the probe tips.
9. Determine the optimum overtravel using the same strategy. Start with a larger value and decrease until yield suffers.
Figure 7. Repeating particle indent, near miss.
Figure 6. Lapping film abrasion on membrane.
Online Cleaning Instructions
Troubleshooting
Troubleshooting your cleaning process depends on the device yield, and the type and amount of contamination found.
Refer to Tab le 2 for a summary of the actions to take based on the results.
After setting the initial parameters, allow the system to run for a period, perhaps 10 probing/cleaning cycles. When you
have collected enough data to spot trends, review the device yield.
• If the yield decreases over time, varies cyclically with the cleaning interval, or is lower than expected, refer to Tab le 2
to increase the cleaning efficiency.
• If the yield is stable and acceptable, consider reducing the cleaning touchdowns per cycle or increasing the interval
between cleanings to verify the settings and optimize the process. See Tab le 2 below for guidance.
Table 2. Troubleshooting.
IssuePossible Actions
Contamination on tips:
• Metal
•Organic
•Oxide
• Or yield does not recover after cleaning
Yield drops off between cleanings• Decrease cleaning interval
Particles around the tips• Brush clean
Abrasion on membrane (see Figure 6)• Reduce cleaning overtravel
• Run cleaning cycle 1 or 2 times (100-200 touchdowns)
• Check probe tip height
• Check cleaning media height and planarity
• Check XY step between cleaning touchdowns
• Visually inspect probe marks on cleaning media
• Increase cleaning overtravel if contamination limited to some areas of probe
Repeating indents on probe face (see Figure 7)• Clean cleaning media
• Change cleaning media
None• Return to service
• Increase cleaning interval
• Reduce touchdowns per cleaning
Recommended Offline Cleaning Methods and Materials
Brush Cleaning
Refer to the Cascade Microtech Application Note, Pyramid Probe Core Off-line Cleaning With a Brush for a complete
brush-cleaning procedure.
Abrasive Cleaning
CAUTION
!
Offline abrasive cleaning can reduce the lifetime of your Pyramid Probe card. Use this procedure only after other possibilities have been exhausted.
Extreme resistive-buildup contamination can be removed by abrasively cleaning the probe tips. This cleaning process is
identical to the online process described above, except that the number of touchdowns is higher.
In most cases resistive tips can be cleaned up with only 150-200 touchdowns on the cleaning film. However, sometimes
more aggressive cleaning is required. In these instances, up to 1000 touchdowns may be necessary to remove the
contamination. Accumulation of contamination this tenacious usually indicates other problems in the probing environment.
High current, residue on bond pads, insufficient online cleaning, and hot probing (making or breaking contact with power
applied) can all contribute to abnormal accumulation of resistive films on Pyramid Probe tips.
Service
To remove the most severe contamination, return the probe card to Cascade Microtech for cleaning. Before shipping a part
to Cascade Microtech, obtain a Return Material Authorization number (RMA #). Contact Cascade Microtech customer
service at (800) 550-3279 or (503) 601-1000.