Carotron EPN020-000, EPN075-000, EPN060-000, EPR060-000, EPR075-000 Instruction Manual

...
Instruction Manual
Models EPN020-000 EPR020-000 EPN040-000 EPR040-000 EPN060-000 EPR060-000 EPN075-000 EPR075-000 EPN100-000 EPR100-000 EPN125-000 EPR125-000 EPN150-000 EPR150-000 EPN200-000 EPR200-000 EPN250-000 EPR250-000 EPN300-000 EPR300-000 EPN400-000 EPR400-000 EPN500-000 EPR500-000 EPN600-000 EPR600-000
Table of Contents
1. General Description .......................................................................................................................................... 4
2. Specifications ....................................................................................................................................................4
2.1 Electrical.............................................................................................................................................4
2.2 Physical..............................................................................................................................................5
3. Installation .........................................................................................................................................................6
3.1 Control Installation .............................................................................................................................6
3.2 Wiring Guidelines ............................................................................................................................... 6
4. Terminal Connections & Functions ................................................................................................................... 7
4.1 AC Power Connections & Fusing.......................................................................................................7
4.2 Motor Connections ............................................................................................................................. 8
4.3 Signal Connections ............................................................................................................................ 9
5. Human Machine Interface (HMI) ..................................................................................................................... 11
5.1 Description of Interface .................................................................................................................... 11
6. Start Up Procedure ......................................................................................................................................... 14
6.1 Pretest..............................................................................................................................................14
6.2 Adjustment Procedure: Velocity Regulator ...................................................................................... 14
6.3 Adjustment Procedure: Constant Horsepower................................................................................. 16
6.4 Adjustment Procedure: Torque Regulator .......................................................................................16
6.5 Adjustment Procedure: CTCW (Constant Tension Center Winder) ................................................16
6.6 Calibration & Fine Tuning.................................................................................................................18
6.7 Password Protection ........................................................................................................................ 19
7. Programming & Adjustments .......................................................................................................................... 19
7.1 Accel/Decel Block ............................................................................................................................20
7.2 Setpoints Block ................................................................................................................................21
7.3 Setpoint Sum Block..........................................................................................................................22
7.4 Start/Stop Logic Block......................................................................................................................22
7.5 Zero Speed Logic Block ................................................................................................................... 24
7.6 Velocity Loop Block..........................................................................................................................25
7.7 Current Loop Block ..........................................................................................................................27
7.8 Field Loop Block...............................................................................................................................30
7.9 Field Crossover Block ...................................................................................................................... 31
7.10 Digital Inputs Block.........................................................................................................................32
7.11 Analog Inputs Block .......................................................................................................................33
7.12 Frequency Input Block ...................................................................................................................35
7.13 Relay Outputs Block.......................................................................................................................38
7.14 Analog Outputs Block.....................................................................................................................39
7.15 Frequency/Digital Output Block......................................................................................................41
7.16 Calibration Block ............................................................................................................................ 43
7.17 Diagnostics Block...........................................................................................................................44
7.18 Miscellaneous Block - Internal Links .............................................................................................. 45
7.19 Miscellaneous Block - Communications ........................................................................................46
7.20 Miscellaneous Block - MOP ........................................................................................................... 47
7.21 Miscellaneous Block - System Parameters.................................................................................... 48
7.22 Miscellaneous Block - Thresholds .................................................................................................49
7.23 Miscellaneous Block - Timer .......................................................................................................... 50
7.24 Miscellaneous Block - Min Max......................................................................................................52
7.25 Miscellaneous Block - Auxiliary Parameters .................................................................................. 52
7.26 Miscellaneous Block - General Parameters ................................................................................... 53
7.27 Miscellaneous Block - Set Time & Date ......................................................................................... 53
7.28 Fault Logic Block............................................................................................................................54
7.29 Fault Log Block ..............................................................................................................................55
7.30 Applications Block - Auxiliary PI Loop............................................................................................ 56
7.31 Applications Block - Winder Speed Calculator...............................................................................57
7.32 Applications Block - CTCW (Constant Tension Center Winder) ................................................... 58
7.33 Parameter Tables ..........................................................................................................................60
8. Serial Network Communications .....................................................................................................................76
9. Spare Parts ..................................................................................................................................................... 77
9.1 Printed Circuit Assemblies ............................................................................................................... 77
2
9.2 Fuses................................................................................................................................................77
9.3 Power Components..........................................................................................................................79
10. Prints .............................................................................................................................................................80
D12278 Assembly Drawing, 20-60HP Models .......................................................................................80
D12602 Assembly Drawing, 75-150HP Models .....................................................................................81
D12797 Assembly Drawing, 200-400HP Models ...................................................................................82
D12887 Assembly Drawing, 500-600HP Models ...................................................................................83
C12309 Assembly, Heatsink Chassis, 20-60HP Non-Regen Models ....................................................84
C12277 Assembly, Heatsink Chassis, 20-60HP Regen Models............................................................85
C12583 Assembly, Heatsink Chassis, 75-150HP Non-Regen Models ..................................................86
C12584 Assembly, Heatsink Chassis, 75-150HP Regen Models..........................................................87
D12874 Assembly, Heatsink Chassis, 200-300HP Non-Regen Models ................................................88
D12798 Assembly, Heatsink Chassis, 400HP Non-Regen Models .......................................................89
D12877 Assembly, Heatsink Chassis, 200-300HP Regen Models........................................................90
D12878 Assembly, Heatsink Chassis, 400HP Regen Models ...............................................................91
D12886 Assembly, Heatsink Chassis, 500-600HP Non-Regen Models ................................................92
D12885 Assembly, Heatsink Chassis, 500-600HP Regen Models........................................................93
D12323 Wiring Diagram, 20-60HP Non-Regen Models ........................................................................94
D12324 Wiring Diagram, 20-60HP Regen Models ................................................................................ 95
D12606 Wiring Diagram, 75-150HP Non-Regen Models ......................................................................96
D12607 Wiring Diagram, 75-150HP Regen Models .............................................................................. 97
D12778 Wiring Diagram, 200-400HP Non-Regen Models ....................................................................98
D12809 Wiring Diagram, 200-400HP Regen Models ............................................................................ 99
D12789 Wiring Diagram, 500-600HP Non-Regen Models ..................................................................100
D12788 Wiring Diagram, 500-600HP Regen Models .......................................................................... 101
C12272 General Connections..............................................................................................................102
D12236 Example Connections.............................................................................................................103
D12586 Network Connections .............................................................................................................104
D12229 Software Block Diagram .........................................................................................................106
C12671 Sonic Transducer Option Connections...................................................................................108
11. Standard Terms & Conditions of Sale .........................................................................................................109
List of Tables
Table 1: Model Rating Data...................................................................................................................................7
Table 2: Navigation Softkey Functions................................................................................................................11
Table 3: Roll & Shift Functions ............................................................................................................................11
Table 4: Elite Pro Abbreviated Programming Chart ............................................................................................12
Table 5: Drive Monitor & Quick Programming Presets .......................................................................................14
Table 6: Reference Selection ..............................................................................................................................21
Table 7: Drive Status...........................................................................................................................................24
Table 8: Velocity Gain Selection..........................................................................................................................26
Table 9: Drive Modes ..........................................................................................................................................28
Table 10: Analog Input Status Readings.............................................................................................................34
Table 11: Analog Output Readings .....................................................................................................................39
Table 12: Encoder Lines .....................................................................................................................................43
Table 13: System Status .....................................................................................................................................45
Table 14: Watchdog Status.................................................................................................................................45
Table 15: Fault Codes .........................................................................................................................................55
Table 16: Parameters by Tag..............................................................................................................................61
Table 17: Parameters by Name ..........................................................................................................................68
Table 18: SW4 DIP Switch Settings ....................................................................................................................76
Table 19: Trigger Board Fuses ...........................................................................................................................77
Table 20: Power Supply Board Fuses.................................................................................................................78
Table 21: Recommended Line Fuses .................................................................................................................78
Table 22: Armature Bridge Modules ...................................................................................................................79
Table 23: Field Supply Modules ..........................................................................................................................79
3
General Description
The Elite Pro Series of D.C. motor controls provide microprocessor control of speed and torque control of 5-600HP D.C. motors rated for NEMA type "C" power supplies. The EPN series for non­regenerative applications and the EPR regenerative series are offered in compact panel mounted assemblies.
Specifications
2.1 Electrical
A.C. Input Voltage Range - 3 Phase Supply
230-460 VAC ± 10%, 50/60 Hz ± 2 Hz
Armature Output
0-240VDC @ 230 VAC input
0-415VDC @ 380 VAC input
0-500VDC @ 460 VAC input
External A.C. Line Field Supply - 1 Phase Supply (Optional)
230-460 VAC ± 10%, 50/60 Hz ± 2 Hz
Field Output
Voltage
0-200VDC @ 230 VAC input 0-330VDC @ 380 VAC input 0-400VDC @ 460 VAC input
Current
EPx020-000 thru EPx060-000: 8A max EPx075-000 thru EPx150-000: 10A max EPx200-000 thru EPx600-000: 12A max
Power Supplies
+24V Unregulated Digital Input Supply: 50mA
+12V Unregulated Encoder/Freq. Input Supply: 100mA
+10V Regulated Reference Supply: 50mA
-10V Regulated Reference Supply: 50mA
Digital Inputs (7 Total)
Sink Mode
Vil=20.0 VDC max Vih=0.0 VDC min to 17.0 VDC max
Source Mode
Vil=5.0 VDC max
Analog Inputs
Max Input: ±20 mADC
Vih=8.0 VDC min to 30.0 VDC max
Voltage inputs (5 Total)
Max Input:±10 VDC Input Impedance, Inputs 1-4: 1M Input Impedance, Input 5: 20k
Current inputs (4 Total)
Input Impedance: 270
Tachometer input
Max Input: ±200 V (AC or DC)
Encoder Input
Frequency: 200kHz max, quadrature square wave (single ended or differential)
Voltage: 12 VDC max
Frequency Input
Frequency: 40kHz max, square wave
Voltage: 12 VDC max
Vil=0.0 VDC to 2.0 VDC max Vih=3.0 VDC min to 12.0 VDC max
Relay Outputs (3 Total) Form-C contact:
2 A @ 115 VAC
2 A @ 60 VDC
Armature Pilot Relay Output
30 A @ 120 VAC
30 A @ 28 VDC
Analog Outputs (2 Total)
±10 VDC max, 20mADC max
Frequency/Digital Output
Frequency: 2kHz max, square wave
Output current: 20mA max
Output voltage: 16VDC max
Speed Regulation
Armature Feedback: ±1%
Tachometer Feedback: ±0.01%
Encoder Feedback (1024 min.): ±0.01%
Torque Regulation
±1% of Range Selected
Speed Range
100:1 typical when using tachometer or encoder feedback. May be less depending upon motor characteristics
Temperature Range
Chassis: 0-55C
Enclosed: 0-40C
4
2.2 Physical
PRO
EPx020-000 thru EPx060-000
PRO
EPx075-000 thru EPx150-000
PRO
5
PRO
Figure 1
Installation
3.1 Control Installation
Elite Pro motor controls require mounting in an upright position in an area that will permit adequate airflow for cooling and ready access for making connections and for servicing. Because cooler air is drawn in from the bottom and exhausted from the top, these areas should be kept clear for about a six inch distance. Stacking of controls with one mounted above the other should be minimized so that the upper control is not ventilated with hot exhaust air from the lower control.
Enclosures should be sized to provide adequate surface area for dissipating heat or provided with forced ventilation with outside air from a duct system or enclosure fan. They should be mounted to a cool surface not exposed to heat generated by nearby equipment.
Excess ambient temperatures within enclosures can reduce the life expectancy of electronic components and cause heatsink Over-Temperature fault on the Elite Pro control. Contact Carotron for assistance in sizing enclosures for particular horsepower ratings.
3.2 Wiring Guidelines
To prevent electrical interference and to minimize start-up problems, adhere to the following guidelines.
Make no connections to ground other than the designated terminal strip location.
Use fully insulated and shielded cable for all signal wiring. The shield should be connected at one end only to circuit common. The other end of the shield should be clipped and insulated to prevent
6
the possibility of accidental grounding.
Signal level wiring such as listed above should be routed separately from high level wiring such as armature, field, operator control and relay control wiring. When these two types of wire must cross, they should cross at right angles to each other.
Any relays, contactors, starters, solenoids or electro-mechanical devices located in close proximity to or on the same line supply as the motor control should have a transient suppression device such as an MOV or R-C snubber connected in parallel with its coil. The suppressor should have short leads and should be connected as close to the coil as possible.
Terminal Connections & Functions
4.1 AC Power Connections & Fusing
Terminals L1, L2, and L3 are the AC line inputs for the armature power bridge. High speed semiconductor fuses must be provided externally. Refer to Figure 3 on the next page and Table 21 in the Spare Parts Section on page 78 for common manufacturers and part numbers.
Table 1: Model Rating Data
Drive
Model
EPx020-000
EPx040-000
EPx060-000
EPx075-000
EPx100-000
EPx125-000
EPx150-000
EPx200-000
EPx250-000
EPx300-000
EPx400-000
EPx500-000
EPx600-000
Arm
Volts
240
500
240
500
240
500
240 500 240 500 240 500 240 500 240 500 240 500 240 500 240 200 555 220 688 500 400 555 440 688 240 250 694 275 850 500 500 694 550 850 240 300 832 330 1020 Consult 500 600 832 660 1020 Factory
Motor
HP
5 18 7.5 18 10, 300W
7.5 26 11 28.1 5, 600W 10 34 14 36
5 9 7.5 8.5 40, 375W
7.5 14 11 13.2 20, 750W 10 18 14 17.2 20, 750W 15 25 20 25.2 14, 1000W 20 34 27 36 15 50 20 55 3, 1000W 20 65 27 71 25 40 34 43 7, 2000W 30 47 40 51 6, 2000W 40 63 51 71 25 84 34 91.1 30 98 40 107 50 78 63 83.7 60 93 75 107 40 118 51 140 75 106 93 140 50 148 63 174
100 141 118 174
60 174 75 206
125 177 145 206
75 212 93 256
150 213 175 256 260 Amps 1.24, 4464W 100 282 118 340 360 Amps 0.47, 4700W 200 283 220 340 360 Amps 1.02, 6500W 125 354 145 425 535 Amps 0.37, 5300W 250 353 275 425 535 Amps 0.82, 11000W 150 426 175 510 535 Amps 0.31, 7000W 300 423 330 510 535 Amps 0.65, 14600W
Approx. Full Load
Line Amps
3 Phase DIT
KVA Rating
Arm
Amps
Contactor
Rating
40 Amps
40 Amps
75 Amps
75 Amps
110 Amps
110 Amps
180 Amps 180 Amps 180 Amps 180 Amps 260 Amps 260 Amps 260 Amps
Consult Factory
Consult Factory
D.B. Resistor
Rating
4.4, 750W
10, 1500W
2.2, 1500W
5, 3000W
1.7, 2000W
3.4, 4000W
1.3, 2080W
2.6, 4160W
0.62, 2232W
1.24, 4464W
0.62, 2232W
1.24, 4464W
0.62, 2232W
Consult
Factory
Consult
Factory
Consult
Factory
7
Carotron recommends the use of three phase DIT, drive isolation type transformers. While Elite Pro controls do not require these transformers for proper operation, they can be helpful in reducing the effects of line transients on this control and generated by this control on other products and can provide fault current limiting in the event of severe motor or control failure. Refer to Table 1 as a general guide in sizing line supply transformers and wiring.
4.2 Motor Connections
Field
Most motor fields consist of two windings that are connected in parallel for 150 VDC operation and in series for 300 VDC operation. Refer to Figure 2. The winding leads are individually marked and have a polarity that must be observed for proper and safe operation. Since direction of rotation is controlled by field polarity as well as armature polarity, it is sometimes more convenient to use the smaller field leads when making corrections to the direction of rotation during initial installation. An energized field should never be switched by relay, contactor, switch or any other manual or electro
-mechanical device.
Figure 2
8
In some cases, the field voltage required by a motor exceeds the maximum obtainable field voltage that can be derived with the required AC line voltage for the motor armature. In these cases, an external single phase AC supply for the field bridge must be used. The supply connects to FL1 and FL2 and must be in phase with the armature supplies L1 and L2. Refer to Figure 3. Jumpers J8 and J9 on the trigger board need to be moved from internal to external.
For example, if a motor has a 240VDC armature rating, 230VAC lines must be connected to L1, L2, and L3. The maximum field voltage attainable from the field bridge with 230VAC input is 200VDC. In order to obtain the required 240VDC field, a single phase 460VAC supply can be connected to FL1 and FL2.
Figure 3
Armature
The armature leads are usually the highest current wires associated with the drive and warrant special attention to sizing based on current rating as well as length of run. Extra care should be used where terminations and splices are made. Refer to Table 1 for typical armature voltage, current, contactor and dynamic braking resistor ratings.
Note : When present, the S1 and S2 for the SERIES field winding is placed in series with the armature leads on the non-regenerative models. It should not be used with the EPR Series regenerative models and the leads should not be connected and should be individually insulated. On non-regenerative models the series field winding polarity must be kept at the same polarity as the shunt field winding, i.e. F1 and S1 the same, F2 or F4 and S2 the same.
Motor Thermostat
Most motors include "J" or "P" leads that connect to an internal normally closed thermostat. Connecting the thermostat to TB1-38 & 39 as shown in Figure 4 will allow a motor over-temperature condition to shut down the control as in an Emergency Stop condition.
4.3 Signal Connections
Figure 4 shows the typical signal connections to an Elite Pro drive. When operated, the Emergency Stop contacts at terminals 6 and 7 will immediately clamp all control signals. The armature contactor will also de-energize to disconnect the armature from the bridge output. Motor stopping time is determined by inertia and friction characteristics of the load and can be decreased by use of a brake resistor. Refer to Table 1 for recommended resistor values. If a maintained Emergency Stop push­button is used, the E-Stop Reset contacts at TB1-8 & 9 can be jumpered. Otherwise, a momentary push-button E-Stop can be reset by closing the E-Stop Reset contacts.
9
10
Figure 4
Human Machine Interface (HMI)
5.1 Description of Interface
The Human Machine Interface (HMI) is the primary method for accessing the drive parameters. It allows custom user configuration, monitoring, and troubleshooting. The HMI consists of a 4 line by 20 characters display. Five softkeys are used to navigate and select parameters within the menu. The function of each softkey is defined by the text displayed directly above the button. Listed below are the navigational softkey functions and their descriptions:
Softkey Direction Description
SEL
ESC
UP
DOWN
ENT
Table 2: Navigation Softkey Functions
Parameters can be changed or adjusted by two different methods via the keypad interface. When adjusting a numerical value, the Roll & Shift method is used. The keys in Table 3 are used to change the parameter value.
Softkey Name Description
+ Increment Increments the digit currently highlighted by the cursor.
- Decrement Decrements the digit currently highlighted by the cursor.
> Shift Shifts the cursor one digit to the right.
ENT Enter Accepts the current value and returns to previous screen.
⇑ ⇓
Enters deeper into the menu. Returns to the previous menu. Scrolls up through the menu. Scrolls down through the menu. Change parameter value
Table 3: Roll & Shift Functions
Some parameters (mainly Source & Destination) can be changed by the Roll & Shift Method or by using the Parameter Guide. In these cases, the softkey options will have ENT and SEL as choices. Choosing ENT will allow the Source or Destination parameter to be selected by directly entering its Tag value via the Roll & Shift method described above. Note this method requires the user to know before hand the Tag value of the desired parameter. If the user does not know the Tag value and does not wish to look it up via the manual, the SEL softkey can be chosen to enter into the Parameter Guide. This utility allows the user to scroll through an organized list of parameters by using the navigation softkeys (refer to Table 2) and select one by its Name instead of its Tag number.
Note: When parameters are altered, the changes must be saved, otherwise changes will be lost after a drive reset or power loss. Whenever the user exits the Programming section, the drive will prompt you to save parameters. The Save command is also accessible in the Setup|Programming|Misc Parameters|System section and the Quick Programming Menu 15 (QP15).
When power is applied to the drive, the display shows the current firmware version. After a 5 second timeout or the DWN softkey is pressed, the display changes to a user selectable menu screen. In the factory preset configuration, this is the Display Monitoring Screen 1 (DM1) showing the drive model and status. The menu is divided into two basic sections, Operation and Setup as shown in Table 4.
11
Table 4: Elite Pro Abbreviated Programming Chart
* Level 1 password is required when entering this section (if password protection is enabled). ** Level 2 password is required when entering this section (if password protection is enabled).
12
Operation Menu
The Operation section contains the Drive Monitor (DM), Quick Programming (QP), and Fault Log menu screens.
Drive Monitor Display Screens & Quick Programming Menus
The DM and QP sections contain menus for frequently used parameters, and can be customized to display different parameters. The QP menu screens require a level 1 password (if enabled) while the DM screens do not. If a parameter being displayed in a DM or QP screen can be edited and the Adjust Permission for that screen is set to Allow, a softkey will be labeled P1 or P2 on the bottom line. Pressing the P1 and/or P2 softkey allows parameter adjustment. P1 corresponds to the first parameter (line 2) and P2 to the second parameter (line 3).
Fault Log
The Fault Log section displays the Present Fault Status and the Latched Fault Status screens. The CLR softkey can be used to clear any latched faults only when there are no present faults active. The SEL softkey enters the Fault History where the last 5 faults along with the date and time are recorded. Fault #1 is the most recent while #5 is the oldest.
Setup Menu
The Setup menu section contains 5 submenus that allow the function and operation of the Elite Pro drive to be modified.
Drive Monitor Menu Setup
This section allows customization to screens DM1-DM5 along with the power up DM screen designation. Each of the 5 Drive Monitoring Screens can be configured to display any of the Elite Pro's parameter settings under the Setup section. Each screen has 3 lines that can be configured. The last line is reserved for the softkey functions. Line 1 (top line of the display) can display up to 16 alphanumeric text characters. Lines 2 and 3 can be configured to display text (20 alphanumeric), a parameter tag value, text (10 alphanumeric) and a parameter tag value, or drive status. The Visibility setting controls if the screen is displayed. The Adjust Permission controls whether or not the writable parameter values can be edited by using the P1 and/or P2 softkeys. Note that if two parameters are shown on one screen, the Adjust Permission option affects both parameters. Table 5 shows the factory presets for the DM and QP screens.
Quick Programming Menu Setup
The QP menu screen setup is identical to the DM screens described above.
View Parameters Changed from Default
This section is a troubleshooting aid that displays parameters that are not set to the factory presets. The PRV (previous) and NXT (next) softkeys allow you to scroll through the list. The DFT (default) softkey displays the default value while the RST (reset) softkey will reset the currently displayed parameter to its factory preset value.
Programming
The Programming section contains all of the drive's operating parameters. Refer to the
Programming & Adjustments Section on page 19 for a detailed explanation of each parameter.
Security
The Elite Pro provides three security levels for access to drive parameters. Level 0 does not require a password, while levels 1 and 2 each have a unique password. The Security section contains the level 1 and level 2 passwords. In the factory preset configuration, the level 1 and level 2 passwords are not enabled and all drive parameters are fully accessible. If and when the passwords are set, the following applies:
The Drive Monitor Display Screens (DM1-5) and the Fault Log require no password (Level 0). The Quick Programming Menus (QP1-15) require a level 1 password to be entered for access. All other menus require a level 2 password.
13
DM/QP Screen Line 1 Line 2 Line 3 Visibility Adjust Permission DM1 ELITE PRO TT: MODEL NUM (411) STATUS: SHOW ALLOW DM2 MOTOR SPEED TT: REFERENCE (217) TT: ACTUAL (200) SHOW DENY DM3 ARMATURE TT: VOLTS (417) TT: CURRENT (114) SHOW ALLOW DM4 FIELD TT: VOLTS (335) TT: CURRENT (338) SHOW ALLOW DM5 LOOPS TT: VELOC OUT (205) TT: CURR OUT (106) SHOW ALLOW QP1 SETPOINT REF1&2 TT: REF1 (218) TT: REF2 (219) SHOW ALLOW QP2 SETPOINT REF3&J TT: REF3 (220) TT: JOG REF (221) SHOW ALLOW QP3 SETUP SCREEN 1 TT: FWD ACCEL (226) TT: FWD DECEL (227) SHOW ALLOW QP4 SETUP SCREEN 2 TT: REV ACCEL (228) TT: REV DECEL (229) SHOW ALLOW QP5 SETUP SCREEN 3 TT: FWD MAX (190) TT: REV MAX (191) SHOW ALLOW QP6 SETUP SCREEN 4 TT: POS CURLIM (99) TT: NEG CURLIM (100) SHOW ALLOW QP7 SETUP SCREEN 5 TT: MIN SPEED (236) TT: LOGIC SEL (245) SHOW ALLOW QP8 SETUP SCREEN 6 TT: MAX MTRCUR (123) TT: MAX VOLTS (128) SHOW ALLOW QP9 SETUP SCREEN 7 TT: TACH TYPE (127) TT: TACH INVRT (126) SHOW ALLOW QP10 SETUP SCREEN 8 TT: IR COMP (131) TEXT: - SHOW ALLOW QP11 SETUP SCREEN 9 TT: FIELD SET (330) TT: FIELD VLTS (335) SHOW ALLOW QP12 SETUP SCREEN 10 TT: NETWK ADDR (434) TEXT: - SHOW ALLOW QP13 - TEXT: - TEXT: - SHOW ALLOW QP14 - TEXT: - TEXT: - SHOW ALLOW QP15 LOAD/SAVE TT: P1 TO LOAD (407) TT: P2 TO SAVE (406) SHOW ALLOW TT=TEXT & TAG, - = BLANK TEXT
Table 5: Drive Monitor & Quick Programming Presets
Start Up Procedure
The Elite Pro comes from the factory preset to run a 240VDC armature motor in Velocity Mode with Armature Feedback. The drive is scaled to provide 100% armature current of the drive model.
6.1 Pretest
6.1.1 Verify each leg of the 3 phase power supply. Input voltage should be checked ahead of the supplying circuit breaker, disconnect switch, etc. before it is switched on.
6.1.2 Connections should be visually inspected and checked for tightness. An ohmmeter can be used to check for ground faults. Ground faults in un-isolated circuits for the armature and field can cause fuse blowing and damage to the motor and control. To check for grounds with an ohmmeter, select a high resistance scale such as R x 100K ohms or greater. Test from each connection terminal (including shields) to chassis ground and be suspicious of any resistance reading less than 500K ohms. NOTE: An exception to this test would be made where the A.C. line supply is connected to a grounded "Y" type transformer secondary.
6.1.3 Proceed to Sections 6.2, 6.3, or 6.4 depending on type of setup desired.
6.2 Adjustment Procedure: Velocity Regulator
6.2.1 Adjust external speed reference (Analog Input 1) at terminal 10 to 0 volts.
6.2.2 Apply A.C. power to the control.
6.2.3 Using the HMI, go to the Setup|Programming|Calibration section and set the following parameters to match the nameplate values:
Nameplate Motor Armature Current (123) Nameplate Motor Armature Voltage (128)
6.2.4 If other than Armature Feedback is desired, also set the following per the feedback device in the Setup|Programming|Calibration section:
Encoder Feedback
a. Set Encoder Lines (124) to encoder resolution. b. Set 100% Encoder RPM (125) to the full speed RPM level.
Tachometer Feedback
a. Select the base speed tachometer voltage with jumpers J6 (Hundreds), J5
(Tens), & J7 (Ones). For example, if the maximum tachometer voltage is
87.5 VDC, set J6=0, J5=80, and J7=8.
14
b. Set Tachometer Type (127) to AC or DC.
8
10
12
6.2.5 The field supply can operate in either closed loop current control or open loop voltage control. Setup the field supply as follows depending on the desired mode of operation. Note that the field setup parameters are under the Setup|Programming|Field Loop section.
Closed Loop Current Control
a. Set Field I Demand(339) as follows:
EPx020-000 thru EPx060-000 Models
(339) Demand I Field
AmpsField Nameplate
×=
100
A
EPx075-000 thru EPx150-000 Models:
(339) Demand I Field
AmpsField Nameplate
×=
100
A
EPx200-000 thru EPx600-000 Models:
(339) Demand I Field
AmpsField Nameplate
×=
100
A
b. Set Open Loop Field Select (329) to False.
Open Loop Voltage Control
a. Set Field Economy Enable (332) to False. b. Adjust Open Loop Field Setpoint (330) until Field Voltage (335) equals
the motor nameplate rating.
c. Set Field Economy Enable (332) to True.
6.2.6 If parameters were not saved when exiting the programming section, navigate to QP15 screen and select P2 to Save.
6.2.7 During the following steps the motor will be rotated. If excessive speed or wrong direction of rotation could damage the load, it may be wise to de-couple the load until proper control is verified. All parameters in this section are located in the Setup|Programming|Velocity Loop section unless specified otherwise.
1. Momentarily close the Run pushbutton (Digital Input 1) at terminal 31. The armature contactor should close. Slowly increase the external speed reference to approximately 20%. Observe the direction of rotation and if wrong, correct by removing control power and reversing the motor armature or field wires. If used, observe proper polarization of the series field winding per the instructions in Section 4.2.
2. Proper tachometer or encoder operation can be checked while running in Armature Feedback (AFB). As above, run the drive at 20% speed. Monitor Armature Feedback
(AFB, 194) and compare this level with Tachometer Feedback (TFB, 195) or Encoder Feedback (EFB, 196). If the levels are approximately equal, then TFB or
EFB can be selected with Feedback Select (197) when the drive is stopped. (The following feedback parameters in this step are located in Setup|Programming|Calibration Section.) If the TFB or EFB signals are the wrong polarity, set Invert FB (126) to True. If the TFB level is not correct, verify proper scaling per jumpers J5, J6, and J7. If an AC tachometer is used, set Tachometer
Type (127) to AC. If the EFB level is not correct, verify the Encoder Lines (124) and 100% Encoder RPM (125) are set correctly.
3. If the drive is a regenerative model and the application requires reverse direction, close the Reference Invert contact (Digital Input 4). Verify that the motor reverses direction.
4. The Stop and Emergency Stop functions should be tested initially from a low operating speed. Refer to Section 4.3 for descriptions of these stopping methods.
5. Run drive and increase the reference to maximum. Use the Forward Max Speed Scale (190) and Reverse Max Speed Scale (191) to adjust for rated armature
15
voltage or desired maximum motor speed. Stop the drive.
6. Test the Jog function (Digital Input 3) and adjust Jog Reference (221) (located in Setup|Programming|Setpoints Section) for desired speed.
7. If parameters were not saved when exiting the programming section, navigate to QP15 screen and select P2 to Save.
6.3 Adjustment Procedure: Constant Horsepower
6.3.1 Initially setup Elite Pro as a Velocity Regulator via Section 6.2 to run at the motor's base speed via tachometer or encoder feedback with closed loop field control.
6.3.2 In the Setup|Programming|Field Crossover Section, set the following:
a. Field Crossover Enable (423) to True b. Min Field Current Demand (424) to nameplate top speed field current.
6.3.3 Go to the Setup|Programming|Velocity Loop section and set 100% RPM Level (199) to the new top speed motor RPM. Go to the Setup|Programming|Fault Logic section and set Velocity Feedback Loss Inhibit (248) to True.
6.3.4 If using a tachometer for feedback, rescale the tach voltage feedback to the top speed voltage via jumpers J5,6 & 7 on control board. Otherwise, rescale the encoder feedback by changing Setup|Programming|Calibration|100% Encoder RPM (125) to the new top speed motor RPM.
6.3.5 If parameters were not saved when exiting the programming section, navigate to QP15 screen and select P2 to Save.
6.3.6 Start drive and slowly increase the external speed reference. Field Current should slowly begin decreasing when the Armature Feedback (194) reaches the Field Crossover Setpoint (425) which is typically set to 85%. Continue increasing external speed reference to maximum and verify rated armature voltage and top speed field current levels.
6.4 Adjustment Procedure: Torque Regulator
6.4.1 Adjust external torque reference (Analog Input 1) at terminal 10 to 0 volts.
6.4.2 Apply A.C. power to the control.
6.4.3 Using the HMI, go to the Setup|Programming|Calibration section and set the following parameters to match the nameplate values:
Nameplate Motor Armature Current (123) Nameplate Motor Armature Voltage (128)
6.4.4 Setup Field output via Section 6.2.5.
6.4.5 Go to the Setup|Programming|Current Loop section, and set Drive Mode (109,110) to Torque.
6.4.6 If desired, go to the Setup|Programming|Accel/Decel section, and set desired accel/decel settings. Overspeed protection can be tailored by adjusting the Overspeed Level (223) in the Setup|Programming|Fault Logic section.
6.4.7 If parameters were not saved when exiting the programming section, navigate to QP15 screen and select P2 to Save.
6.4.8 Drive setup is now complete. Momentarily pressing the Run pushbutton will start the drive and provide torque commanded by the external reference.
6.5 Adjustment Procedure: CTCW (Constant Tension Center Winder)
6.5.1 Verify proper connection and operation of the Elite Pro by setting up the drive as a velocity regulator (refer to section 6.1 and 6.2).
6.5.2 In the Setup|Programming|Applications|CTCW Section, set the following:
a. Diameter Select (442) depending upon the desired diameter calculation
method. b. Diameter Memory Reset (447) to True. c. Tension Setpoint (441) to 0.00%. d. Core (446) to the ratio of the core diameter to that of the max diameter:
16
diameter
maximum
(446) Core ×=
6.5.3 (Note: This step can be skipped if Diameter Select (442) is set to External Diameter Ratio). With an empty core loaded on the winder, start the line and run at full line speed. Use a hand tachometer to measure the surface speed of the line. While monitoring the surface speed of the empty core with the hand tachometer, increase the speed reference to the Elite Pro (Analog Input 1 by default) until it matches the surface speed of the line. Make note of the value of Velocity Feedback Filtered (198) parameter in the Setup|Programming|Velocity Loop Section. Enter this value into the 100% Winder Speed (444) in the Setup|Programming|Applications|CTCW Section. Decrease the reference to the Elite Pro and stop the line.
6.5.4 (Note: This step can be skipped if Diameter Select is set to Line/Winder. The following assumes that the external diameter sensor is connected to Analog Input #2. If other than this input is used, make changes to the following setup accordingly.) Typically, the external diameter sensor should be configured to provide minimum signal with an empty core and maximum signal with a full roll. In the Setup|Programming|Inputs|Analog|Analog 2 Section, set Analog Input 2 Destination (24) to DiaRatio (445). With an empty core on the winder, perform the 0% calibration under Calibrate Analog Input. Load or simulate a full roll and perform the 100% calibration.
6.5.5 A signal proportional to line speed should be connected to one of the analog or frequency inputs. (The following assumes that the line speed signal is connected to the Frequency Input. If an input other than this is used, make changes to the following setup accordingly.) In the Setup|Programming|Inputs|Frequency Section set the Frequency Input Destination (63) to Line Speed (443). With the line stopped, perform the 0% calibration under Calibrate Frequency Input. Next, run the line up to full speed and perform the 100% calibration. The Bias and Gain parameter for the analog or frequency input should be 0.00% and 100.00% respectively (default).
6.5.6 With the drive stopped, select torque mode by changing Setup|Programming|Current Loop|Drive Mode (109,110) from Velocity to Torque. In the Setup|Programming|Misc Parameters|Internal Links Section, modify Internal Link 3 Source (370) from Ramp Output (225) to Total Torque (455). (The above assumes that the factory preset configuration is loaded.)
6.5.7 Navigate to the Setup|Programming|Applications|CTCW Section. Start the Elite Pro drive with 0% line speed reference. Slowly increase the Static Friction Torque (462) parameter until the winder just begins to turn. Decrease slightly until the winder stops turning. Increase the line speed to 100%. Slowly increase Friction Compensation (448) until Winder Speed (452) is equal to or slightly above 100%. Use care to supply only enough compensation to reach 100%.
6.5.8 The Inertia Compensation (449) adjustment is made to match the acceleration rate of the winder to the acceleration rate of the line by compensating for inertia. This can easily be done by using a dual trace oscilloscope (preferably storage type) to compare the line and winder speed signals during acceleration. Otherwise, material can be loaded and observed during acceleration. Slackening of the material indicates too little compensation while tightening indicates too much compensation.
6.5.9 Material should now be loaded. The Tension Setpoint (441) should be adjusted to provide the desired tension level on the material. Verify proper tension through acceleration up to and at full line speed.
6.5.10 In many applications, the best rolls are "built" when tension is highest at the core and mid-diameter and decreases or tapers off during the remaining diameter increase. Taper Diameter (456) sets the diameter level where tapering begins. The amount of tapering is controlled by the Taper Percentage (457) parameter. These settings are usually adjusted by winding material and observing the roll to determine the point at which constant tension problems begin to occur. Most likely, any problem noticed at a
diameter core
%100
17
particular diameter actually started earlier in the roll. Set Taper Diameter (456) to the diameter level at which tapering is required. Start a new roll of material and wind until tapering is required. As material is wound further, adjust Taper Percentage (457) to control the level of taper.
6.5.11 In most applications, the diameter memory function is not needed and Diameter Memory Reset (447) can remain set to True. However, in cases where restarting partially completed rolls is a problem, a digital input should be configured to control the Diameter Memory Reset parameter. This will allow the memory function to be active as rolls are built. WARNING! THIS REQUIRES RESETTING THE DIAMETER MEMORY BEFORE RESTARTING A NEW ROLL!
6.5.12 If parameters were not saved when exiting the programming section, navigate to QP15 screen and select P2 to Save.
6.6 Calibration & Fine Tuning
1. If using AFB, the IR Compensation (131) parameter can be adjusted to improve the
speed regulation with load changes. Adjustment is best done when the motor or machine can be loaded normally. If the motor is normally operated at a particular speed, adjust IR Compensation while running at that speed. If the motor operates under load over a wide speed range, pick a speed near mid-range to make the adjustment. Adjust as follows:
Operate the unloaded motor at the normal or mid-range speed and note the exact speed. While still monitoring speed, apply normal load. The reduction in speed of a fully loaded motor will usually fall between 2 and 13% of rated or "Base" speed. Slowly increase the IR Compensation (131) parameter until the loaded speed equals the unloaded speed measured in the previous step. Making this adjustment may now cause the unloaded speed to be slightly higher. Repeat this procedure until there is no difference between loaded and unloaded speed levels. Use care not to set the adjustment too high or speed increase with load and instability may result. NOTE: For this adjustment, do not use AFB to measure speed. Armature voltage is not an exact indication of loaded motor speed!
2. The Current Proportional Gain (107), Current Integral Time (108), Velocity
Proportional Gain (201), and Velocity Integral Time (202) parameters are preset by Carotron to provide stable and responsive performance under most load conditions. When required, the drive performance can be optimized for a particular application or to correct undesirable operation by use of these adjustments. The adjustments are complex though and can adversely affect operation if not properly set. In general, the settings that give the most stable operation do not always give the fastest response.
Current Loop
The current loop can be manually tuned by directly applying a stepped reference and monitoring the current feedback. In order to adjust properly, connect an oscilloscope between common and the Armature IFB testpoint on CN11. Using the HMI, temporarily set Ramp Bypass (305) to True. The rotor shaft must not rotate during this procedure. Therefore, set Field Enable (331) to False to remove voltage from the shunt field. Set the drive to torque mode by setting Drive Mode (109,110) to Torque. Run the drive and apply a step change to the external reference and monitor the current feedback. The signal should respond quickly with minimum overshoot. Adjust the Current Proportional Gain (107) and Current Integral Time (108) parameters to obtain a critically damped waveform as seen in Figure 5. Increasing the proportional gain improves the response but increases the overshoot. Reducing the integral time improves the response but can cause instability if set too low. Return Ramp Bypass, Field Enable, & Drive Mode to their previous settings when complete.
18
Figure 5
Velocity Loop
In order to adjust properly, connect an oscilloscope to Analog Output 1 Terminal 21 (Velocity Feedback). Using the HMI, temporarily set the Ramp Bypass (305) parameter to True. Run the drive and apply a step change to the external speed reference. Observe the response to the drive. The motor speed should respond quickly with minimum overshoot. Adjust the Velocity Proportional Gain (201) and Velocity Integral Time (202) parameters to obtain a critically damped waveform as seen in Figure 6. Increasing the proportional gain improves the response but increases the overshoot. Reducing the integral time improves the response but can cause instability if set too low. Once complete, return Ramp Bypass (305) to False.
Figure 6
6.7 Password Protection
If password protection is required, set the appropriate passwords under the Setup|Security section.
Programming & Adjustments
Programming and adjustment of the Elite Pro is accomplished by changing parameter settings. Each parameter has a descriptive name and a tag (or number) identifier. Parameters are grouped together in blocks according to their function. The following sections contain each software block diagram and descriptions of each parameter function. Refer to Figure 7 for key conventions that are used in the block diagrams. Each parameter is one of three types: Read-Only (RO), Inhibit Change while Running (ICR), or Read-Write (RW). ICR parameters can be changed only when the drive is in the Stop mode.
Note: When parameters are altered, the changes must be saved,
Figure 7
19
otherwise changes will be lost after a drive reset or power loss. Whenever the user exits the Programming section, the drive will prompt you to save parameters. The Save command is also accessible in the Setup|Programming|Misc Parameters|System section and the Quick Programming Menu 15 (QP15).
7.1 Accel/Decel Block
The Accel/Decel block controls the rate at which a reference changes.
Figure 8
Ramp Bypass (305) Ramp Bypass disables the Accel/Decel rates and simply passes the Ramp Input through to the Ramp Output.
Ramp Select (306) Ramp Select selects between two independently adjustable ramp blocks. This parameter is preset to use Block A in the RUN mode and Block B in the Jog mode.
Forward/Reverse Accel/Decel A/B (226-229, 307-310) The accel and decel adjustments control the amount of time that it takes for the reference to make a 100% change.
Ramp Input (224, Read-Only) Input level from the Setpoints block.
Ramp Output (225, Read-Only) Output level. The factory preset configuration links this parameter to Torque Reference, & Open Loop Arm Set.
Ramping Status (231, Read-Only) The Ramping Status parameter signals when Ramp Output is changing.
Ramp Threshold (230) Ramp Threshold adjusts the level at which the Ramping Status parameter is active.
20
7.2 Setpoints Block
The Setpoints block selects between multiple references.
Figure 9
Reference n (217-220) Internal references 0-3 are 4 independently adjustable references that can be used in the Run mode. Analog Input 1 is factory preset to Reference 0.
Jog Reference (221) Internal reference that is used in the Jog mode.
Reference Select (215, 216) The Reference Select parameters select between the 4 internal references. Parameter 215 in the Most Significant Bit (MSB) and parameter 216 is the Least Significant Bit (LSB). In the factory preset configuration, Digital Inputs 5 and 6 control the Reference Select parameters and ignore input from the keypad. If no external input is controlling the parameters, the Toggle softkey on the keypad scrolls through each of the selections.
MSB LSB Reference 0 0 Ref 0 0 1 Ref 1 1 0 Ref 2 1 1 Ref 3
Table 6: Reference Selection
Reference Invert (222) The Reference Invert parameter inverts the polarity of the selected reference.
21
7.3 Setpoint Sum Block
The Setpoint Sum Block sums 4 different references to obtain the Velocity Demand.
Figure 10
Setpoint A Ratio (498) Allows scaling of the Ramp Output signal before being summed with Setpoints B & C.
Setpoing D (499) This parameter differs from Setpoints B & C in that it is not clampded when the drive is in the Stop or Ramp Stop modes. An application block's output is typically linked here when it uses the the Ramp Output parameter. Use this parameter with caution! This signal must be clamped external to this block or the drive will not stop when commanded.
7.4 Start/Stop Logic Block
The Start/Stop Logic block controls the starting and stopping of the Elite Pro. If the drive is running when Drive Ready becomes False, the contactor will open and the motor will coast to a stop. The drive cannot enter the Run or Jog modes while Drive Ready is False.
22
Figure 11
Logic Select (245) The Logic Select allows the customer to choose between 3 wire (momentary) or 2 wire (maintained) run control inputs. The Jog input is always a maintained input regardless of this selection. The Factory preset is 3 wire. Warning, when in 2 wire (maintained) mode, the Stop control input is not functional. Starting and stopping of the drive is controlled by Run control input.
Jog Delay (246) This adjustment serves to extend the mechanical life of the armature contactor by reducing the number of mechanical operations in an application where a high rate of repeat "jogging" is performed. When the Jog button is pressed and then released, the reference is immediately clamped to stop the motor but the contactor is held energized for up to ten seconds. Pressing the Jog button again within this "delay" period will cause the motor to immediately jog and will reset the delay.
Run (239) The Run control input is used to put the drive into the run mode. Depending on the Logic Select parameter, this input can be either momentary or maintained. Digital input 1 writes to this parameter in the factory preset configuration. Drive Ready must be True for this input to operate.
Stop (240) The Stop control input is used to stop the drive when Logic Select is set for 3 Wire (momentary) mode. The manner in which the drive is stopped is controlled by the Stop Mode parameter. Digital input 2 writes to this parameter in the factory preset configuration.
Stop Mode (232) The Stop Mode parameter selects between 3 type of stopping methods. The Ramp Stop selection will stop the drive using the Accel/Decel rates. Quick Stop provides a rapid current­limit stop. The Coast Stop selection clamps all the loops, and allows the motor to coast to stop. Stopping time will be determined by the inertia, friction, and loading characteristics.
Jog (241) The Jog control input is used to run the drive while the Jog button is pressed. The Jog Reference is selected instead of References 0-3 in the Setpoints block. Digital input 3 writes to this parameter in the factory preset configuration. Drive Ready must be True for this input to operate.
Run Status (242, Read-Only) The Run Status is a status output that becomes True when the drive is in the Run mode. In the factory preset configuration, this parameter controls Relay Output 2.
Jog Status (243, Read-Only) The Jog Status is a status output that becomes True when the drive is in the Jog mode. In the factory preset configuration, this parameter writes to Ramp Select in the Accel/Decel block.
Armature Pilot (244, Read-Only) The Armature Pilot is a status output that becomes True when the drive is in the Run or Jog modes. This output is used to control the armature contactor.
Drive Ready (303, Read-Only) The Drive Ready parameter indicates the status of the drive. If there are no latched faults and the Run Permit input is True, Drive Ready is True and the drive can be started. If at any time there is a fault or the Run Permit becomes False, Drive Ready is forced to the False state and the drive is shutdown. In the factory preset configuration, this parameter controls Relay Output 3.
Drive Status (422, Read-Only) The Drive Status parameter indicates the state of the Elite Pro drive. Refer to Table 7. Note this parameter is not directly accessible from the keypad.
23
Drive Status Elite Pro Mode
7.5 Zero Speed Logic Block
0 Stop 1 Run 2 Ramping to Stop (from Run) 3 Jog 4 Ramping to Stop (from Jog) 5 Jog Delay 6 Quick Stop 7 Coast Stop 8 Emergency Stop
Table 7: Drive Status
Figure 12
Zero Speed Setpoint (207) The Zero Speed Setpoint parameter sets the Zero Speed threshold. This level determines the speed at which the control loops are clamped and the armature contactor is de-energized after a Stop command has been given to the drive.
At Zero Set (209, Read-Only) When in velocity mode, At Zero Set is True when the Final Velocity Demand is below the
Zero Speed Setpoint. Likewise, when in torque mode, At Zero Set is True when the Final Current Demand is below the Zero Speed Setpoint.
At Zero Speed (210, Read-Only) At Zero Speed is True when the Velocity Feedback is below the Zero Speed Setpoint.
At Standstill (211, Read-Only) At Standstill is True when the when At Zero Set and At Zero Speed are True.
Standstill Logic (208) In applications where the drive is in the Run mode with zero velocity reference, motor creepage may be apparent under some load conditions. Setting Standstill Logic to True will cause the Velocity Loop and Current Loops to be disabled when At Standstill is True, eliminating motor creepage. Note that Standstill Logic should not be used in applications where the drive is required to produce holding torque or tension at Zero Speed. Standstill Logic can also cause delays when the armature bridge switches direction in regenerative models under certain loading conditions.
24
Loop Enable (212, Read-Only) The Loop Enable parameter determines if the Velocity and Control Loops are active. Loop Enable is controlled by the Standstill Logic and Ramp Enable.
7.6 Velocity Loop Block
The Velocity Loop uses a closed loop Proportional-Integral (PI) loop to maintain desired speed. The Loop Enable output from the Zero Speed Logic Block determines when the PI loop is active.
Figure 13
Velocity Demand (189, Read-Only) The Velocity Demand is the main input to the velocity loop.
Independent Speed Scales (494) When this parameter is True, the max speed scaling is set by two separate parameters, Forward Max Speed and Reverse Max Speed. When False, both the forward and reverse speed levels are adjusted by the Forward Max Speed.
Forward Max Speed (190) The Forward Max Speed parameter scales the Velocity Demand signal for the forward direction. Thus, this parameter sets the maximum allowable speed of the drive in the forward direction. When Independent Speed Scales is False, this parameter sets the maximum speed for the reverse direction as well.
Reverse Max Speed (191) When Independent Speed Scales is True, the Reverse Max Speed parameter scales the Velocity Demand signal for the reverse direction. Thus, this parameter sets the maximum allowable speed of the drive in the reverse direction.
Final Velocity Demand (129, Read-Only) The Final Velocity Demand equates to the Velocity Demand after it has been scaled by the
Forward Max Speed Scale or Reverse Max Speed Scale adjustments. The Final Velocity Demand level is the desired speed reference for the PI loop.
Armature Feedback (AFB, 194, Read-Only) Armature Feedback uses the motor voltage as a velocity feedback. AFB must be selected if
25
no other feedback device such as a tachometer or encoder is used. Even if another feedback device is used, Feedback Select should be set to AFB initially to verify proper operation of the external feedback device. The IR Comp signal sums with the AFB signal to become the Velocity Feedback.
Tachometer Feedback (TFB, 195, Read-Only) Tachometer Feedback displays the level of feedback from an externally connected D.C. or A.C. tachometer. This level is dependent on parameters AC Tach, Invert Feedback, and the jumpers J5, J6, and J7 on the control board.
Encoder Feedback (EFB, 196, Read-Only) Encoder Feedback displays the level of feedback from an externally connected quadrature encoder. This level is dependent on parameters Invert Feedback, Encoder Lines, and 100% Encoder RPM.
Feedback Select (197, ICR) Feedback Select chooses one of the three feedback signals: AFB, TFB, or EFB.
Velocity Feedback (193, Read-Only) The feedback signal designated by Feedback Select and the Velocity Feedback (VFB) Offset parameters are summed together to produce the Velocity Feedback. This parameter value is also filtered to produce an averaged reading.
IR Compensation (131) Internal Resistance losses in the motor armature can cause decreased speed regulation on loaded motors when using armature voltage as the velocity feedback. The IR Comp adjustment can be used to increase the speed regulation by summing a small amount of negative Current Feedback with the Armature Voltage Feedback. Refer to Section 6.4 for detailed adjustment procedure.
VFB (Velocity Feedback) Offset (130) This adjustment allows any offset in the velocity feedback circuit to be nulled. Proper adjustment should yield 0.00% at the Velocity Feedback parameter when the drive is not turning.
Velocity Error (192, Read-Only) The Final Velocity Demand and the Velocity Feedback signals are summed together to produce the Velocity Error for the PI loop.
Velocity Gain Select (203) The Velocity PI loop uses three adjustments (Proportional Gain, Integral Time, & Velocity Overshoot Gain) to fine-tune the response of the drive. As the application process is running, external conditions or variables may change (diameter of a roll for example). In some cases, it may be desirable to switch to an alternate set of loop adjustments so that the drive can better respond to the new operating conditions. The Velocity Gain Select parameter selects between two sets of Velocity Loop parameters, sets A and B.
Velocity Gain Select Set Selected
0 A 1 B
26
Table 8: Velocity Gain Selection
Velocity Proportional Gain (201, 325) The Velocity Proportional Gain scales the output based upon the Velocity Error. Increasing the gain improves the response of the drive but can also increase overshoot.
Velocity Integral Time (202, 326) The Velocity Integral Time adjustment eliminates steady-state error. Decreasing the integral time improves the response of the drive. However, setting it too low can cause oscillation. The adjustment is in seconds and corresponds to the amount of time that the signal would take to integrate from 0 to maximum with 100% Velocity Error.
Velocity Overshoot Gain (204, 213) The Setpoint Weight parameter can be used to control the amount of overshoot. Adjustment of the Velocity Integral Gain and Velocity Integral Time parameters should be done with the Setpoint Weight set to 100%. This in effect gives standard PI loop operation. If needed, the Setpoint Weight can then be reduced.
Integral Clamp (214) When Integral Clamp is True, the integral signal is clamped to zero in the PI loop, yielding proportional control only.
Velocity Loop Output (205, Read-Only) The output of the Velocity PI loop. This is the input to the Current PI loop when in velocity mode.
Armature Voltage (417, Read-Only) The AFB signal along with the Nameplate Motor Voltage is used to calculate the actual Armature Voltage.
100% RPM Level (199) The 100% RPM Level is used to scale the Filtered Velocity Feedback, which is in percentage, to RPM. Enter the corresponding RPM level that the drive runs when at 100% speed.
Motor RPM (200, Read-Only) This is the actual speed of the motor as calculated by the 100% RPM Level and the Filtered Velocity Feedback measurement.
7.7 Current Loop Block
The Current Loop uses a closed loop Proportional-Integral (PI) loop to maintain desired armature current or motor torque. The Loop Enable output from the Zero Speed Logic Block determines when the PI loop is active.
Figure 14
27
Drive Mode (109, 110)
100
×
×
The two mode select parameters determine the operating mode of the drive. Parameter 109 in the Most Significant Bit (MSB) and parameter 110 is the Least Significant Bit (LSB). The Toggle softkey on the keypad scrolls through each of the selections.
MSB LSB Mode 0 0 Velocity 0 1 Torque 1 0 Undefined (1) 1 1 Undefined (2)
Table 9: Drive Modes
Torque Reference (97) When in Torque mode, the Current Demand is equal to the Torque Reference. The Velocity Loop Output is ignored. The Ramp Output writes to this parameter in the factory preset configuration.
Current Demand (111, Read-Only) When in Velocity mode, the Current Demand is equal to the Velocity Loop Output. Torque Reference is ignored.
Auxiliary Current Demand (98) The Auxiliary Current Demand serves as a bias that is summed with the Current Demand signal.
Independent Current Limits (493) When this parameter is True, the current limit levels are set by the two separate adjustments, Positive Current Limit and Negative Current Limit. When False, both the positive and negative current limit levels are adjusted by the Positive Current Limit.
Positive Current Limit (99) This adjustment sets the maximum level of positive current that can be demanded by the current loop. Positive current is used when the drive is motoring in the forward direction or regenerating in the reverse direction. When Independent Current Limits is False, this parameter also sets negative current limit level.
Negative Current Limit (100) When Independent Current Limits is False, this adjustment sets the maximum level of negative current that can be demanded by the current loop. Negative current is used when the drive is motoring in the reverse direction or regenerating in the forward direction.
Slew Rate Limit (500) This parameter limits the rate of change of the Current Demand. The setting is as follows:
p[500]6p[123]
(Amps/sec) RateSlew
=
f
where p[123] is parameter 123 Nameplate Motor Current, f is line frequency (typically 50 or 60 Hz), and p[500] is parameter 500 Slew Rate Limit. Note: setting this adjustment to zero disables the slew rate limit function.
Final Current Demand (101, filtered-113, Read-Only) The Current Demand and Auxiliary Current Demand signals sum together and are limited by the Positive Current Limit and Negative Current Limit parameters to form the Final Current Demand. This signal can also be limited by the Foldback logic to 107%. A filtered
28
version of this signal is also provided (113).
Current Feedback (IFB, 102, filtered-112, Read-Only) The Current Feedback is derived from two of the three incoming AC lines and is used by the PI loop to regulate the amount of armature current in the motor. The signal is also used to provide IR Compensation to the AFB signal in the Velocity Loop. A filtered version of this signal is also provided (112).
Current Error (103, Read-Only) The Final Current Demand and the Current Feedback sum together to form the Current Error signal for the PI loop.
Current Proportional Gain (107) The Current Proportional Gain scales the output based upon the Current Error. Increasing the gain improves the response of the drive but can also increase overshoot.
Current Integral Time (108) The Current Integral Time adjustment eliminates steady-state error. Decreasing the integral time improves the response of the drive. However, setting it too low can cause oscillation. The adjustment is in seconds and corresponds to the amount of time that the signal would take to integrate from 0 to maximum with 100% Current Error.
Regen Mode (206, ICR) When set to False, the Regen Mode parameter allows Elite Pro Regenerative models to emulate a non-regen drive by clamping the negative portions of the Velocity Integral and Current Integral signals. On non-regen drives, this parameter is ignored.
Open Loop Armature Select (104, ICR) When set to True, the conduction angle sent to the trigger board can be manually controlled by Open Loop Armature Setpoint. This diagnostic tool can be used to eliminate the Velocity and Current Loops from the control. Care must be taken when using this mode because there is no current limit protection. Remember to set this parameter back to False once diagnosis is complete.
Open Loop Armature Setpoint (105) When Open Loop Armature Select is True, Open Loop Armature Setpoint sets the Conduction Angle directly. The Ramp Output parameter writes to this parameter in the factory preset configuration.
Conduction Angle (106, Read-Only) Normally the Conduction Angle is the output of the Current Loop. However, if Open Loop Armature Select is True, the Conduction Angle equals Open Loop Armature Setpoint. This signal controls the SCRs in the armature bridge circuit.
Armature Amps (114, Read-Only) Armature Amps displays the actual motor current from the Filtered Current Feedback signal and the Nameplate Motor Current parameters.
29
7.8 Field Loop Block
8
10
12
Field Enable (331, ICR) Field Enable must be set to True in order for the Elite Pro to produce any field output.
Field Current Demand (339) The Field Current Demand is an input that sets the desired level of field current.
EPx020-000 thru EPx060-000 models:
EPx075-000 thru EPx150-000 models:
EPx200-000 thru EPx600-000 models:
Final Field Current Demand (427) The Field Crossover Output is subtracted from Field Current Demand to produce the Final Field Current Demand signal. Note that this signal can be scaled down if the drive enters the Field Economy mode.
Field Current Feedback (336, Read-Only) The Field Current Feedback is used by the Field PI loop to regulate the field current in the closed loop mode. This signal sums with the Field Current Demand to produce an error signal that is the input to the PI loop.
Field Proportional Gain (340) The Field Proportional Gain scales the output based upon the error. Increasing the gain improves the response of the field but can also increase overshoot.
Field Integral Time (341) The Field Integral Time adjustment eliminates steady-state error. Decreasing the integral time improves the response. However, setting it too low can cause oscillation. The adjustment is in seconds and corresponds to the amount of time that the signal would take to integrate from 0 to maximum with 100% error.
Open Loop Field Select (329) When set to True, the field supply operates in manual or open loop voltage control. The Open Loop Field Setpoint is used as the Field Conduction Angle for the field SCRs. This produces a voltage output on the field. When set to False, the field operates in the automatic
Figure 15
(339) Demand I Field
(339) Demand I Field
(339) Demand I Field
AmpsField Nameplate
%100
×=
A
AmpsField Nameplate
%100
×=
A
AmpsField Nameplate
%100
×=
A
30
or closed loop current control. The field current is regulated by the Field PI loop.
Open Loop Field Setpoint (330) When Open Loop Field Select is True, this parameter controls the Field Conduction Angle. Note that this signal can be scaled down if the drive enters the Field Economy mode.
Field Conduction Angle (328, Read-Only) This parameter shows the level of field conduction. In open loop operation, this parameter is equal to the Open Loop Field Setpoint. In closed loop control, this is the output of the Field PI Loop.
Field Economy Enable (332) The Elite Pro Field Economy feature can help extend the life of a motor by reducing motor heating due to the field. The field voltage or current can automatically be reduced when the drive is in the Stop mode after a 3 minute delay. The field will automatically return to its normal level when the Run or Jog mode is entered. This feature can be enabled by setting this parameter to True. In open loop mode, the field is reduced by about 56%. In closed loop control, the field current is reduced by 50%. If the Min Field I Demand (Field Crossover block) parameter is set to a value other than 0.00%, the field is reduced to this value.
Field IFB (Current Feedback) Offset (342) This adjustment allows any offset in the Field IFB circuit to be nulled. Proper adjustment should yield 0.00% at the Field Current Feedback parameter when no field current is present.
Field Voltage Feedback Offset (343) This adjustment allows any offset in the Field VFB circuit to be nulled. Proper adjustment should yield 0.00% at the Field Voltage Feedback parameter when no field current is present.
Field Amps (338, Read-Only) This parameter contains the actual field current in amps. This value is scaled by the 100% Field Amps only when the Field Current Feedback Select is set to external.
Field Voltage (335, Read-Only) This parameter contains the actual field voltage in volts.
Field Current Feedback Select (487) Set this parameter to external when interfacing to an external field current regulator.
External Field Current Feedback (488) This parameter is used when interfacing to an external field current regulator. Typically, an analog input is used to provide the current feedback signal.
100% Field Current (489) Scales the Field Amps display only when Field Current Feedback is external.
7.9 Field Crossover Block
Field Crossover (also called field weakening or constant horsepower) control allows motor operation above base speed by reducing the field current. Stable operation is achieved by allowing the armature voltage to control the field current. An external tachometer or encoder feedback signal is necessary for proper operation (i.e. armature feedback cannot be used).
Figure 16
31
Field Crossover Enable (423, ICR)
8
10
12
Field Crossover control is enabled when set to True.
Field Crossover Setpoint (425) The Armature Feedback level at which Field Crossover operation begins. Typically, this parameter is set to 85%. As the Armature Feedback increases beyond this threshold, the field current is reduced. When rated armature voltage is reached (at 100%), the field current will have been reduced to the Minimum Field Current Demand level.
Minimum Field Current Demand (424) The minimum level to which the field current can be reduced. The motor nameplate and/or databook will commonly list this value as the rated field current for top speed. This parameter should be set accordingly:
EPx020-000 thru EPx060-000 models:
(424) Demand Current Field Minimum
A
EPx075-000 thru EPx150-000 models:
(424) Demand Current Field Minimum
A
EPx200-000 thru EPx600-000 models:
(424) Demand Current Field Minimum
A
Field Crossover Output (426, Read-Only) The output of the Field Crossover block is used to subtract from the Field Current Demand setpoint in the Field Loop.
7.10 Digital Inputs Block
The Elite Pro has 7 customer configurable digital inputs. Each digital input can write a value to any writable parameter. An additional digital input is the Run Permit.
Destination (1-7, ICR) The tag number of the parameter where the digital input information is to be sent.
Open Value (8-14)* When the pushbutton on the digital input is open, the value in this parameter is sent to the destination parameter.
Closed Value (15-21)* When the pushbutton on the digital input is closed, the value in this parameter is sent to the destination parameter.
Status (132-138, Read-Only) Each digital input state can be viewed for diagnostic purposes.
Run Enable (22, Read-Only) Typically, an Emergency Stop button and motor thermostat are connected in series to the Run Enable digital input. This input signals the drive to immediately de-energize the armature contactor pilot relay and clamp all loops.
Figure 17
* Note that the units and number of decimal places of this parameter will change to match that of the Destination parameter.
AmpsField Speed Top Nameplate
AmpsField Speed Top Nameplate
AmpsField Speed Top Nameplate
%100
×=
%100
×=
%100
×=
32
Example - Digital Input
Using Digital Input 4 to select between two Jog speed references of 20.00% and 40.00%:
1. While the drive is stopped, go to Setup|Programming|Inputs|Digital|Digital Input 4 menu.
2. Set Digital Input 4 Destination to Jog Reference (221).
3. Set Digital Input 4 Open Value to 20.00%.
4. Set Digital Input 4 Closed Value to 40.00%. Digital Input 4 will now write the value of 20.00% to Jog Reference when the pushbutton is open. When closed, it will write the value of 40.00%.
Figure 18
7.11 Analog Inputs Block
The Elite Pro has 5 customer configurable analog inputs. Analog inputs 1-4 can be configured as voltage or current inputs. Analog input 5 is hardwired as a voltage input. Each input can be configured to write to any writeable parameter.
Destination (23-27, ICR) The tag number of the parameter where the analog input information is to be sent.
Polarity (28-32) If the input signal is positive only, set to Unipolar. Otherwise, set to Bipolar for positive and negative inputs.
Filtering (58-62) An averaging filter can be applied to the incoming signal to reduce the effects of noise. Increasing the value increases the filtering.
Type (33-37) Select either Voltage or Current depending on the type of input signal. Note that Analog Input 5 is hardwired as a Voltage input.
Calibrate Analog Input The Calibrate Analog Input screen provides menu assisted instructions for setting the 0% Calibration and 100% Calibration parameters.
0% Calibration (38-42) This calibration value corresponds to the 12 bit value from the A2D when the input signal is at zero for bipolar signals, and the minimum signal for unipolar signals. This defines 0% input signal. For proper operation, the 0% Calibration value must be
Figure 19
33
less than the 100% Calibration value.
100% Calibration (43-47) This calibration value corresponds to the 12 bit value from the A2D when the input signal is at its maximum level. This defines 100% input signal. For proper operation, the 100% Calibration value must be greater than the 0% Calibration value.
Bias (48-52) Refer to footnote on p.32 The Bias parameter is only used in unipolar inputs and defines the minimum value when 0% signal is input.
Gain (53-57) Refer to footnote on p.32 The Gain parameter defines the value when the input is at 100%.
Invert (344-348) When set to True, the analog input value is inverted before being sent to the destination parameter.
Status (139-143, Read-Only) Each analog input A2D reading can be viewed for diagnostic purposes. The resolution and scaling of the inputs are dependent upon the Bipolar and Type parameters. See chart below for typical readings:
Voltage Current
Unipolar Bipolar Unipolar Bipolar
10V 4095 2047 20mA 4095 2047
5V 2047 1023 10mA 2047 1023 0V 0 0 0mA 0 0
-5V - -1024 -10mA - -1024
-10V - -2048 -20mA - -2048
Table 10: Analog Input Status Readings
Example - Bipolar Analog Input
Setup Analog Input 2 as a bipolar voltage input to control the internal Reference 3 parameter. Define the voltage input so that 5V corresponds to 25.00% speed.
1. While the drive is stopped, go to Setup|Programming|Inputs|Analog|Analog Input 2 menu
section.
2. Set Analog Input 2 Destination to Reference 3 (220).
3. Set Analog Input 2 Polarity to Bipolar.
4. Set Analog Input 2 Type to Voltage.
5. Select Calibrate Analog Input Step 1. Adjust external voltage to 0 Volts. Press ENT when done. Step 2. Adjust external voltage to 5 Volts. Press ENT when done. Step 3. The Elite Pro verifies that the 100% level is greater than the 0% level and
displays the actual levels recorded during the calibration process. Press OK when done.
6. The Analog Input 2 Bias value is ignored with bipolar inputs.
7. Set Analog Input 2 Gain to 25.00%.
When 5V is applied to Analog Input 2, a value of 25.00% is written to the Reference 3 parameter. When -5V is applied, a value of -25.00% is written to Reference 3.
34
Figure 20
Example - Unipolar Analog Input
Setup Analog Input 3 as a unipolar current input to control the internal Setpoint C parameter. Define the 4-20mA current input to produce 0.00%-75.00% speed.
1. While the drive is stopped, go to Setup|Programming|Inputs|Analog|Analog Input 3 menu section.
2. Set Analog Input 3 Destination to Setpoint C (236).
3. Set Analog Input 3 Polarity to Unipolar.
4. Set Analog Input 3 Type to Current.
5. Select Calibrate Analog Input
Step 1. Adjust external current to 4mA. Press ENT when done. Step 2. Adjust external voltage to 20mA. Press ENT when done. Step 3. The Elite Pro verifies that the 100% level is greater than the 0% level and
displays the actual levels recorded during the calibration process. Press OK when done.
6. Set Analog Input 3 Bias to 0.00%.
7. Set Analog Input 3 Gain to 75.00%.
When any current signal below 4mA is applied, Setpoint C equates to 0.00%. As the current increases to 20mA, Setpoint C increases to 75.00%.
Figure 21
7.12 Frequency Input Block
The Elite Pro has 1 customer configurable frequency input that can be configured to write to any writeable parameter.
35
Destination (63, ICR) The tag number of the parameter where the frequency or distance input information is to be sent.
Filtering (68) A averaging filter can be applied to the incoming signal to reduce the effects of noise. Increasing the value increases the filtering.
Mode (468) The frequency input has two modes of operation: frequency or sonic. In Frequency mode, the input measures the incoming frequency level. In Sonic mode, the input measures the incoming pulse width to determine a distance in inches. This mode requires an external Carotron Sonic transducer assembly.
Calibrate Frequency Input The Calibrate Frequency Input screen provides menu assisted instructions for setting the 0% Calibration and 100% Calibration parameters.
0% Calibration (64) This calibration value corresponds to the minimum frequency in Hertz or the minimum distance in inches that the input signal will provide. This defines 0% input signal. For proper operation, the 0% Calibration value must be less than the 100% Calibration value.
100% Calibration (65) This calibration value corresponds to the maximum frequency in Hertz or the maximum distance in inches that the input signal will provide. This defines 100% input signal. For proper operation, the 100% Calibration value must be greater than the 0% Calibration value.
Bias (66) Refer to footnote on p.32 The Bias parameter defines the minimum value when 0% signal is input.
Gain (67) Refer to footnote on p.32 The Gain parameter defines the level written to the destination parameter when the input is at 100%.
Sign (349) Since a single ended frequency signal has no polarity, the Sign parameter can be used to make the input signal positive or negative.
Status (164, Read-Only) The actual frequency level in Hertz or distance in inches can be viewed for diagnostic purposes.
Out of Range (469) When the input is in Sonic mode, Out of Range will become True anytime the measured distance falls outside of the 0% and 100% calibration levels. For example, if the 0% and 100% calibrations are set as 12.00 inches and 20.00 inches respectively, Out of Range will be True for any distance less than 12 or greater than 20 inches. The output value written to the destination parameter is held at its last valid value when Out of Range is True.
Figure 22
36
Example 1 - Frequency Input
second
revolution
1
seconds
60
minute
Setup the Elite Pro to follow an encoder signal from a lead drive. The max speed of the lead drive is 1750 RPM with a 1024 line encoder. This gives a maximum frequency of 29866 Hz as shown below:
minute 1
1750 ==××
1. While the drive is stopped, go to Setup|Programming|Inputs|Frequency Input menu section.
2. Set the Frequency Input Destination to Setpoint B (234).
3. Set the Frequency Input Min Calibration to 0 Hz.
4. Set the Frequency Input Max Calibration to 29866 Hz.
5. Set the Frequency Input Bias to 0.00%.
6. Set the Frequency Input Gain to 100.00%.
srevolution
pulses 1024
29866
pulses
Hz 29866
Figure 23
Example 2 - Sonic (Distance) Input
Setup the Elite Pro to measure the diameter of a roll and provide this diameter information to the Winder Speed Calculator.
1. Connect the Sonic transducer per C12671 on page 108. Note Switch SW3 on Control Board must be in Int position.
2. While the drive is stopped, navigate to the Setup|Programming|Outputs|Frequency/Digital Output menu section.
3. Set the Frequency/Digital Mode to Sonic.
4. Set Frequency/Digital Source to Aux 1 (115).
5. Go to the Setup|Programming|Miscellaneous Parameters|Auxiliary menu section.
6. Set Aux Parameter 1 to 0.35% to output a 7 Hz clock signal to the transducer.
7. Go to the Setup|Programming|Inputs|Frequency Input menu section.
8. Set the Frequency Input Destination to Diameter Ratio (431).
9. With an empty core, observe the distance reading displayed in Frequency Input Status.
10. Set Frequency Input 100% Calibration to this value (maximum distance).
11. Load a full roll or place an object in front of the transducer to simulate a full roll.
12. Set Frequency Input 0% Calibration to the value displayed in Frequency Input Status (minimum distance).
13. Set Frequency Input Bias to 100.00%.
14. Set Frequency Input Gain to 0.00%.
Steps 13 and 14 are done so that the Diameter Ratio value will have the correct sense (i.e.,
0.00% at Core and 100.00% at maximum diameter). Thus, with an empty core, the Diameter
Ratio parameter should be equal to 0.00%. As the diameter increases to its maximum,
37
Diameter Ratio should increase to 100.00%.
Figure 24
7.13 Relay Outputs Block
The Elite Pro has 3 customer configurable form C relay outputs. Each relay can be configured to turn on (or energize) at a programmable level and turn off (or de-energize) at a different level. Thus the relay outputs have built in hysteresis that can be completely controlled by the customer. Figure 25 shows the relay outputs in the off state.
Source (69-71, ICR) The tag number of the parameter from which data is to be taken.
Absolute Value (72-74) When Absolute Value is True, the absolute value of the source data is used to provide a positive only level. This allows bipolar signals to operate the relays properly regardless of the signal polarity.
On Value (75-77)* The threshold level that the source signal must equal or exceed in order for the relay to turn on (or energize).
Off Value (78-80) * The threshold level that the source signal must equal or fall below in order for the relay to turn off (or de­energize).
Status (165-167, Read-Only) The state of each relay can be viewed for diagnostic purposes. 0 indicates off, 1 indicates on.
Example - Relay Output
Setup Relay Output 2 to signal when the drive speed is above 50% with a hysteresis of 2%.
1. While the drive is stopped, go to Setup|Programming|Outputs|Relay|Relay Output 2 menu section.
2. Set Relay Output 2 Source to Velocity Feedback (193).
3. Set Relay Output 2 Absolute Value to True.
4. Set Relay Output 2 On Value to 50.00%.
Figure 25
* Note that the units and number of decimal places of this parameter will change to match that of the Source parameter.
38
5. Set Relay Output 2 Off Value to 48.00 %.
10V
Relay Output 2 will energize when the drive speed equals or exceeds 50.00% and will de­energize when the speed equals or falls below 48.00%. A hysteresis level was used to prevent the relay from 'chattering' (continually energizing and de-energizing) when the drive runs at 50.00% speed. Setting the Absolute Value parameter to True allows the relay to work in the reverse direction as well.
Figure 26
7.14 Analog Outputs Block
The Elite Pro has 2 customer configurable analog voltage outputs. Each output can supply up to 20 mA, and can therefore be configured to serve as an open loop current output if the load impedance is known.
Source (81, 82, ICR) The tag number of the parameter from which data is to be taken.
Gain (83, 84) The analog output level is controlled by the Gain
setting. Nominally, a source value of 100% will produce 10V output with the Gain set at 100%.
Gain ×=
Bias (85, 86) The Bias adjustment can be used to set a minimum output.
Absolute Value (87, 88) If set to True, the output will be forced to a positive polarity regardless of the input signal polarity.
Status (168, 169, Read-Only) Each DAC output (12 bit + sign) can be viewed for diagnostic purposes. See below for common readings.
Output Voltage Sensor Reading
10V 4095
-5V -2048
-10V -4095
Table 11: Analog Output Readings
Voltage Scale Full Desired
5V 2047 0V 0
%100
Figure 27
39
Example - Analog Output
10V
10V
Setup Analog Output 1 to output the Ramp Output signal. Scale the analog output so that a
100.00% value from the Ramp Output gives 5V.
1. While the drive is stopped, go to Setup|Programming|Outputs|Analog|Analog Output 1 menu section.
2. Set Analog Output 1 Source to Ramp Output (225).
3. Set Analog Output 1 Bias to 0.00%.
4. Set Analog Output 1 Gain to 50%:
Gain =×=×=
5. Set Analog Output 1 Absolute Value to False.
Analog Output 1 will give a 5V full-scale version of Ramp Output. If a 10V full-scale signal were required, the Analog Output 1 Gain should be set to 100% in Step 3.
Voltage Scale Full Desired
%100
V5
%50%100
Figure 28
40
7.15 Frequency/Digital Output Block
Hz 2000
The Elite Pro has a configurable digital output that can be setup to output logic values (on/off) or numeric values in the form of a frequency output. Note: The Frequency/Digital Output is an open collector opto-coupler output. A voltage must be supplied at the required terminals for the output to
function properly when switch SW3 is in the external position. Refer to Example Connections D12326. Otherwise, the internal 5V supply can be used by selecting the internal position.
Frequency/Digital Mode (90) This parameter selects the type of output desired: frequency or digital.
Source (89, ICR) The tag number of the parameter from which data is to be taken.
Absolute Value (Applicable for Digital Output Only) (91) When Absolute Value is True, the absolute value of the source data is used to provide a positive only level. This allows bipolar signals to operate the output properly regardless of the signal polarity.
On Value (Applicable for Digital Output Only) (92) Refer to footnote Error! Bookmark not defined.on p.38 The threshold level that the source signal must equal or exceed in order for the digital output to be on.
Off Value (Applicable for Digital Output Only) (93) Refer to footnote on p.38 The threshold level that the source signal must equal or fall below in order for the digital output to be off.
Invert (Applicable for Digital Output Only) (94) When Invert is True, the output logic is inverted.
Gain (Applicable for Frequency Output Only) (95) The Gain adjustment is used to scale the maximum output. 100.00% gain equates to 2000 Hz output. This value can be calculated as follows:
Gain ×=
Hertzin Output Scale Full Desired
Figure 29
%100
Bias (Applicable for Frequency Output Only) (96) The Bias adjustment can be used to set a minimum output.
Status (170, Read-Only) The level of the frequency/digital output can be viewed for diagnostic purposes. In the frequency mode, the sensor indicates the actual frequency level output in Hertz. In the digital output mode, 0 indicates the output is off (low), while -1 indicates the output is on (high).
Example - Frequency Output
Setup the Frequency Output to monitor the Armature Current Feedback. A full-scale level of 1800 Hz should correspond to 100% current.
1. While the drive is stopped, go to Setup|Programming|Outputs|Frequency/Digital menu
41
section.
Hz 2000
Hz 2000
2. Set the Frequency/Digital Mode to Frequency.
3. Set the Frequency/Digital Source to Current Feedback (102).
4. Set Frequency Output Bias to 0.00%.
5. Set the Frequency Gain to 90.00%:
Gain =×=×=
The Frequency Output will give a 1800 Hz full-scale signal of Current Feedback. If a 2000 Hz full-scale signal were required, the Gain should be set to 100% in Step 5.
Example - Digital Output
Setup the Digital Output to indicate when the Elite Pro is in the Jog mode. The output should be inverted logic (off when in the Jog mode and on at all other times).
1. While the drive is stopped, go to Setup|Programming|Outputs|Frequency/Digital Output menu section.
2. Set the Frequency/Digital Mode to Digital.
3. Set the Frequency/Digital Source to Jog Status (243).
4. Set the Digital Output On Value to 1 (True).
5. Set the Digital Output Off Value to 0 (False).
6. Set the Digital Output Invert to True.
The Digital Output will be off (0 Volts) when the drive is in the Jog mode. The output will be on (positive voltage) at all other times.
Hertzin Output Scale Full Desired
Figure 30
%100
Hz 1800
%00.90%100
Figure 31
42
7.16 Calibration Block
Nameplate Drive Current (122, Read-Only) This parameter contains the full load current rating of the drive.
Nameplate Motor Current (123) The motor nameplate armature current rating should be entered here. This allows the Elite Pro to scale the Current Feedback signal for proper operation. The Elite Pro can supply up to 150% of this value, but only for a short duration. See the Armature Current Foldback Time in the Fault Logic Block for more information.
Encoder Lines (124) If quadrature encoder feedback is used, set this parameter according to the code in Table 12 to match the nameplate rating of the encoder. The nameplate rating may be listed as Encoder Lines, Cycles per Revolution or Pulses per Revolution (PPR). The factory preset is 1024. The 256 and 512 settings while provided, are not recommended because they cannot provide a feedback resolution of less than 1 RPM. If the resolution of the encoder used does not match one of the values in the table, choose the one that is closest. Refer to the 100% Encoder
RPM parameter for scaling of the non-standard feedback.
Figure 32
Code Encoder Lines
0 256 1 512 2 1024 3 2048
Table 12: Encoder Lines
100% Encoder RPM (125) This parameter is used to scale the encoder feedback signal. If the encoder resolution matches one of the values in Table 12, set this parameter to the maximum speed the drive will run in RPM. If the encoder resolutions do not match, set via the following:
RPM Encoder 100%
Lines Encoder Actual
×=
RPM Motor Maximum
(124) Lines Encoder
43
Tachometer Type (127) Selects between a DC or an AC tachometer. Since an AC tachometer cannot convey direction of rotation, the armature feedback signal is used to supply the polarity for directional control.
Invert Feedback (126) The encoder and tachometer feedback signals are polarity sensitive. The polarity is used to determine the direction of rotation of the motor. If the encoder or tachometer wires are reversed, this parameter can be used to quickly invert the polarity of the feedback signals for proper operation without re-wiring.
Nameplate Motor Voltage (128) The nameplate armature voltage rating of the motor should be entered here. This allows the Elite Pro to correctly scale the armature feedback signal.
7.17 Diagnostics Block
The diagnostics section is provided to aid in troubleshooting. The majority of the status parameters are analog to digital readings. A few of the status readings are scaled and converted to provide helpful monitoring data and are listed below.
44
Figure 33
Line Voltage (175) Line Voltage provides an approximation of the line to line AC input voltage.
Heatsink Temperature (176) A thermistor on the heatsink monitors the temperature and is used to control the heatsink fans. The temperature is also used to shutdown the drive due to excessive heating.
Fan Mode (410) In Auto mode, the heatsink fans turn on and off due to the Heatsink Temperature. The fans can be manually turned on for testing by setting Fan Mode to On.
Voltage Supplies (171-174) The +12V, +15V, +24V, and +3V Battery supplies can be monitored.
System Status (238) An internal status register that can be decoded to show the source of a processor reset: power-on, illegal address, software, watchdog or external reset.
Reset Source Hex Code Power-On 0x8000 Illegal Address 0x1000 Software 0x0400 Watchdog 0x0200 External None of above
Table 13: System Status
Watchdog Status (418) An internal status register displaying a code for the source of a watchdog reset. Each firmware block has a hexadecimal weight as shown below.
Firmware Block Hex Code Main Loop 0x0001 A2D Interrupt (TCINT1) 0x0002 Current Loop 0x0004 Velocity Loop 0x0008 Field Loop 0x0010
Table 14: Watchdog Status
7.18 Miscellaneous Block - Internal Links
The internal links can be used to connect or link parameters together. The Elite Pro provides 20 links for custom configuration. Each link has a source and a destination.
Note: When two parameters with different numbers of decimal places are linked together the following occurs: The source parameter value is reformatted into an integer without any decimal places. The number of decimal places of the destination parameter is then applied to the resulting integer. For example, if a source parameter has a value of 12.34% (2 decimals) and it is linked to an accel/decel time parameter (1 decimal),
12.34% is converted to an integer value of 1234, and then reformatted with 1 decimal place, 123.4. Therefore, the destination will contain the value 123.4 seconds.
Source The tag of the source parameter.
Destination (ICR) The tag of the destination parameter.
Example - Internal Link
Setup an internal link from Forward Accel A to Forward Decel A. Whenever the Forward Accel A parameter is changed, the Forward Decel A parameter is also changed to the same value.
1. While the drive is stopped, go to Setup|Programming|Miscellaneous Parameters|Internal
Figure 34
45
Links|Internal Link 5.
2. Set Internal Link 5 Source to Forward Accel A (226).
3. Set Internal Link 5 Destination to Forward Decel A (227).
Figure 35
7.19 Miscellaneous Block - Communications
The Communication parameters control the 'Modbus' serial port interface available at CN16 (DB9) and TB2 (terminal strip).
Network Address (434) The Network Address is used to distinguish one device on the network from others. Each device on a Modbus network must have a different address.
Baud Rate (435) This parameter sets the transmit and receive rate of data over the serial communications port. All devices on the network should be set to the same value.
Parity (436) The Parity parameter sets the type of byte level error checking that is used. All devices on the network should be set to the same value.
Stop Bits (437) Sets the number of stop bits used per byte. Normally, all devices on the network should be set to the same value. In the Modbus specification, the number of stop bits is determined by the parity selection. One stop bit should be used with Even or Odd parity, and two stop bits should be used with No parity. However, at very high baud rates, like 38400, Carotron recommends that the Stop Bits setting in the master be set to two stop bits regardless of the setting in the Elite Pro or other slave devices. The extra stop bit sent from the master will not cause any communications errors (even if the other slave devices are set to one stop bit), but may help the master establish communication with all devices on the network.
Figure 36
46
7.20 Miscellaneous Block - MOP
The MOP (Motor Operated Potentiometer) block provides a means to control a reference level via external contact closures for Increase, Decrease, and Reset.
Increase (316) When True, the Output increases at a rate controlled by
Increase Time up to a maximum value determined by Max Value.
Decrease (317) When True, the Output decreases at a rate controlled by Decrease Time down to a minimum value determined by Min Value.
Increase Time (318) The Increase Time adjustment controls the amount of time that it takes for the Output to change from 0.00% to 100.00%.
Decrease Time (319) The Decrease Time adjustment controls the amount of time that it takes for the Output to change from 100.00% to 0.00%.
Max Value (320) The upper limit of the Output.
Min Value (321) The lower limit of the Output.
Reset (322) When True, the Output is reset to the Reset Value level.
Reset Value (323) The level the Output is immediately set to when the Reset is True.
Output (324, Read-Only) The output of the MOP Block.
Example - MOP
Setup the MOP block to control Setpoint B. Define Digital Input 4 as the Increase input, Digital Input 5 as the Decrease input, and Digital Input 6 as the Reset Input. The MOP should operate between 0.00% and 50.00% with Accel and Decel times of 20.0 seconds. The Reset Value should be 5.00%.
1. While the drive is stopped, go to Setup|Programming|Inputs|Digital menu section.
2. Set Digital Input 4 Destination to Increase (316).
3. Set Digital Input 4 Open Value to 0 (False).
4. Set Digital Input 4 Closed Value to 1 (True).
5. Set Digital Input 5 Destination to Decrease (317).
6. Set Digital Input 5 Open Value to 0 (False).
7. Set Digital Input 5 Closed Value to 1 (True).
8. Set Digital Input 6 Destination to Reset (322).
9. Set Digital Input 6 Open Value to 0 (False).
10. Set Digital Input 6 Closed Value to 1 (True).
Figure 37
47
11. Go to Setup|Programming|Miscellaneous Parameters|MOP menu section.
12. Set Increase Time and Decrease Time to 20.0 seconds.
13. Set Max Value to 50.00%, Min Value to 0.00%, and Reset Value to 5.00%.
14. Go to Setup|Programming|Miscellaneous Parameters|Internal Links menu section
15. Set Internal Link 14 Source to Output (324).
16. Set Internal Link 14 Destination to Setpoint B (234).
With the drive in the RUN mode, Digital Input 4 will cause the speed of the drive to increase, while Digital Input 5 will cause the speed to decrease. Digital Input 6 will reset the speed immediately to 5.00%.
Figure 38
7.21 Miscellaneous Block - System Parameters
Save (406, ICR) Any parameter changes made must be saved or they will be lost on a power-down or a processor reset. Toggling Save to True will save the parameters into the onboard EEPROM. Note that the Save function can only be performed when the drive is in the Stop mode.
Load (407, ICR) The Load command can be used to load the last saved configuration. This may also be achieved by cycling the power to the drive or performing a processor reset.
Control Firmware Version (409, Read-Only) Contains the firmware version level of the code for the DSP.
Aux Firmware Versions (419, Read-Only) Contains the firmware version level of the Comm Processor in the upper 8 bits and the Menu Data in the lower 8 bits.
Trigger Board Firmware Version (491, Read-Only) Contains the Trigger Board firmware version level.
Drive Model (411, Read-Only) Contains the drives model number.
Figure 39
48
7.22 Miscellaneous Block - Thresholds
The threshold block can be used to monitor the level of an internal parameter. A threshold can then be set to select between two setpoints. The threshold block contains two identical threshold detectors designated A and B.
Input (177, 183) The value of the internal parameter that serves as the control for the switch. An input or internal link must be used to connect the desired parameter to this input.
Threshold (178, 184) The level of the Input where the switch activates.
Hysteresis (179, 185) Provides a hysteresis level that the Input must exceed or fall below.
Greater Than (181, 187) When the Input is greater than the
Threshold, this value is sent to the Output.
Less Than or Equal (180, 186) When the Input is less than or equal to the Threshold, this value is sent to the Output.
Output (182, 188, Read-Only) Contains either the Greater Than or Less Than or Equal values depending on the comparison between the Input and the Threshold.
Example - Thresholds
Setup the threshold block to monitor analog input 3. The analog signal ranges from 0.0 to
10.0 Volts and should switch the velocity loop gain schedule when it reaches 6.0 volts.
1. While the drive is stopped, go to Setup|Programming|Inputs|Analog|Analog Input
2. Set the Analog Input 3 Destination to Input A (177). All other Analog Input 3 parameters are assumed to be set to the factory settings.
3. Go to the Threshold section under Miscellaneous.
4. Set Threshold A to 60.00% (6 Volts is 60% of 10 Volts)
5. Set Hysteresis A to 5.00%.
6. Set Greater Than A to 0.01% (True).
7. Set Less Than or Equal A to 0.00% (False).
8. Go to the Internal Links section under Miscellaneous.
9. Set Internal Link 10 Source to Output A (182).
10. Set Internal Link 10 Destination to Velocity Gain Select (203).
The 0 to 10 Volt signal at Analog Input 3 is converted to a 0 to 100.00% value by the analog input. This value is sent to Input A and compared to the Threshold A level of 60.00%. When the signal starts out, it is below the threshold level and the Output A is equal to the Less Than or Equal setting of 0.00%. The Internal Link copies this value to the Velocity Gain Select parameter. When the signal level exceeds 60.00% (6 Volts), the Greater Than value (0.01%) is copied to Output A. The Internal Link copies the Output A value to the Velocity Gain Select parameter. The 0.01% value is interpreted by the Velocity Gain Select as a 1 and the velocity loop uses Velocity Gain Set
B.
Figure 40
49
Figure 41
7.23 Miscellaneous Block - Timer
The timer block is a modified version of the threshold block. Instead of monitoring a parameter as the threshold block does, a timer is monitored. When the timer exceeds the threshold, a switch position is toggled, sending selected
levels to the output.
Timer Reset (311) This parameter resets and holds the timer at 0 when True. A False value enables the timer and counting begins. The timer range is 0.0 to 240.0 seconds.
Timer Invert (365) Normally, when the Timer Reset signal is True (any non-zero value), the timer is in the reset and hold mode. The Invert parameter can be used to invert the logic, so that a False value causes the timer to reset and hold.
Timer Threshold (312) The value that the Timer must count up to before the switch toggles.
Timer (428) The value of the Timer.
Timer Greater Than (314) When the timer is greater than the Threshold, this value is sent to the Output.
Timer Less Than or Equal (313) When the timer is less than or equal to the Threshold, this value is sent to the Output.
Timer Output (315, Read-Only) Contains either the Greater Than or Less Than or Equal values depending on the comparison between the timer and the Threshold.
Example - Timer With the drive in Torque mode, setup the timer to provide an additional torque of 20.00% for
Figure 42
50
1.0 second after the drive has started. This feature is sometimes used on winders with
oversized mechanics. Extra torque is momentarily needed to overcome the static friction in the system. However, once in motion, this torque is no longer needed.
1. While the drive is stopped, go to Setup|Programming|Miscellaneous Parameters|Internal Links menu section.
2. Set Internal Link 14 Source to Run Status (242).
3. Set Internal Link 14 Destination to Timer Reset (311).
4. Set Internal Link 15 Source to Timer Output (315).
5. Set Internal Link 15 Destination to Auxiliary Current Demand (98).
6. Go to the Timer section under Miscellaneous.
7. Set Timer Invert to True.
8. Set Timer Threshold to 1.0 second.
9. Set Timer Greater Than to 0.00%.
10. Set Timer Less Than or Equal to 20.00%.
When the drive is in the Stop mode, Run Status is False. Since Timer Invert is set to True, this causes the Timer to be reset, and the Timer Less Than or Equal value of 20.00% is sent to the Timer Output and to the Auxiliary Current Demand parameter. When the drive enters the Run mode, a torque reference of 20.00% is immediately present. Run Status is now True, enabling the Timer. After one second, the Timer exceeds the Timer Threshold, and the Timer Greater Than value of 0.00% is sent to Timer Output. As above, the internal link sends the Timer Output value to the Auxiliary Current Demand signal.
Figure 43
51
7.24 Miscellaneous Block - Min Max
The Min Max block is a setup and adjustment tool that can be used to measure the fluctuation of a signal and record the minimum and maximum values.
Source (412) The tag number of the parameter from which data is to be taken.
Reset (413) When True, the Minimum and Maximum values are cleared to zero.
Minimum (415, Read-Only) The minimum peak level that the source data has achieved since the last Reset.
Maximum (414, Read-Only) The maximum peak level that the source data has achieved since the last Reset.
Difference (416, Read-Only) The mathematical difference of the Maximum and Minimum values.
7.25 Miscellaneous Block - Auxiliary Parameters
The Elite Pro provides 7 auxiliary parameters for general use. One specific function the auxiliary parameters are used for is to tie an input to an output.
Example - Auxiliary Parameters A frequency to voltage conversion is needed for another portion of the system that the drive is installed in. Instead of using an external individual frequency to voltage card, the Elite Pro can perform the conversion using its frequency input and an analog output. Setup the Elite Pro to convert a 0 to 4000 Hz signal to a voltage signal of 0 to
7.5VDC.
1. While the drive is stopped, go to the Frequency Input section.
2. Set the Frequency Input Destination to Auxiliary 1 (115),
3. Set the Frequency Input Min Calibration to 0 Hz.
4. Set the Frequency Input Max Calibration to 4000 Hz.
5. The Frequency Input Bias and Gain parameters should be set the factory presets of 0.00% and 100.00%.
6. Go to the Analog output section.
7. Set Analog Output 1 Source to Auxiliary 1 (115).
8. Set Analog output 1 Bias to 0.00%.
9. Set Analog Output 1 Gain to 75.00%(7.5VDC/10.0VDC=75%).
Analog Output 1 should now give the desired voltage levels.
Figure 44
Figure 45
52
Figure 46
7.26 Miscellaneous Block - General Parameters
The Elite Pro provides 12 general use parameters. Typically, these parameters are used as a control block interface to HMI (Human Machine Interface) displays. Note: these parameters are not accessible via the keypad, but can be accessed using the ProLink software.
7.27 Miscellaneous Block - Set Time & Date
The Elite Pro provides a Real Time Clock (RTC) that is used to provide date and time information to the fault log.
Year (262) Two digit year from 00-99.
Month (261) Two digit month from 1-12.
Date (260) Two digit date from 1-31.
Day (259) One digit day from 1-7 representing Sunday - Saturday.
Hours (258) Two digit hours from 00 to 23.
Minutes (257) Two digit minutes from 00 to 59.
Figure 47
Figure 48
53
Seconds (256) Two digit seconds from 00 to 59. Note: This parameter is not directly accessible from the keypad, but can be accessed via ProLink software.
7.28 Fault Logic Block
The Elite Pro monitors multiple fault signals for drive protection. When any one of these inputs signals a fault condition, the Elite Pro immediately shuts down the trigger circuit, clamps all loops, and de-energizes the armature contactor pilot relay. The drive will then coast to stop or D.B Stop if dynamic breaking resistors are provided.
Figure 49
Field Loss Level (249) The shunt field current is monitored and if it falls below this level, a field loss fault is generated.
Field Loss Inhibit (250) If permanent magnet motors or non-motor loads are used with the Elite Pro, the Field Loss Inhibit parameter can be set to True to inhibit the field loss fault.
VFB (Velocity Feedback) Loss Level (247) This fault provides for a means to quickly shutdown the drive if the encoder or tachometer feedback signal is lost due to a device failure or a wire break. Protection is provided by comparing the encoder or tachometer feedback signal with the armature feedback. Under normal operating conditions, these two values should be roughly the same. This adjustment provides a threshold that must be obtained before a fault is generated. Nominally this is set to
50.00%.
VFB Loss Inhibit (248) The VFB Loss Fault can be inhibited by setting this parameter to True.
Overspeed Level (223) The overspeed level defines a threshold speed. If the drive exceeds this threshold, an overspeed fault is generated. This fault is especially useful in winding applications when the drive is used in torque mode.
Armature Current Foldback Time (251) The Elite Pro can provide up to 150% of the Nameplate Motor Current rating for a given
54
time before the drive automatically foldsback the current limit to 107%. This parameter
7.29 Fault Log Block
The Elite Pro keeps a log file of the last 5 faults along with the date and time. Each time a new fault occurs, the oldest fault data is lost.
adjusts the amount of time the drive must exceed 105% current before foldback is entered.
Armature Current Foldback Status (252, Read-Only) This status parameter indicates when the drive is in Foldback mode and is limiting the current output to a maximum of 107%.
Overcurrent Time (253) At the same time the foldback timer begins, an overcurrent timer also begins counting. If the drive continually exceeds 105% current for the Overcurrent Time, an overcurrent fault is generated.
External Fault (490) This parameter provides an interface for external devices to generate a fault. Typically, a digital input is used to write to this parameter.
Present Fault Status (255, Read-Only) Each of the signals that can cause a fault are individually coded with a hexadecimal weight and summed (in Fault Logic Block) to produce the Present Fault Status parameter. This parameter can be examined to determine if there are any faults currently present. Multiple fault codes sum together. For example, Fault Code 0x0141 is Phase Lock, Phase Loss, & Field Loss.
Code Fault Cause 0x0001 Field Loss field current feedback < field loss level 0x0002 VFB Loss loss of feedback signal 0x0004 Over Voltage armature voltage >120% 0x0008 Over Speed velocity feedback > overspeed level 0x0010 Over Current drive exceeded 105% current for timed period 0x0020 Over Temp heatsink temperature over limit 0x0040 Phase Loss loss of at least one of the 3 AC line inputs 0x0080 CT ID Error no CT ID Board installed 0x0100 Phase Lock phase lock not achieved 0x0200 Thermistor Open heatsink thermistor open 0x0400 External Fault external fault present
Figure 50
Table 15: Fault Codes
Latched Fault Status (304, Read-Only) The signal or signals that generated the fault are latched and stored into this parameter and the fault log. This is done to help identify the actual cause of the fault.
External Fault Reset (254) The External Fault Reset parameter is typically written to by a digital input and can be used
55
to reset drive faults externally.
Internal Fault Reset (485) The Internal Fault Reset displays the status of the Fault Reset pushbutton on the control board.
Power On Reset (327, Read-Only) The Power On Reset is used to automatically clear any latched faults on power up. Note: This parameter is not directly accessible for viewing from the keypad.
Fault Reset (486)
Fault Reset displays the logical 'OR' result of the Internal Fault Reset, External Fault Reset, Keypad Fault Reset, and the Power On Reset. The Present Fault Status parameter must be equal to zero (indicating no faults) before the Fault Reset can clear the Latched Fault Status.
7.30 Applications Block - Auxiliary PI Loop
An Auxiliary PI loop is provided for system integration with dancers potentiometers or loadcells. The block provides for Proportional and Integral loop control.
Figure 51
Setpoint (350) The desired position on dancer systems or the desired tension on loadcell control.
Feedback (351) The dancer feedback signal or loadcell feedback signal. This signal will typically come from one of the Analog Inputs.
Error (352, Read-Only) The difference between the desired Setpoint and the actual Feedback.
Proportional Gain (355) The Proportional Gain scales the output based upon the Error. Increasing the gain improves the loop response but can also increase overshoot.
Integral Time (356) The Integral Time adjustment eliminates steady-state error. Decreasing the integral time improves loop response. However, setting it too low can cause oscillation. The adjustment is in seconds and corresponds to the amount of time that the PI Output signal would take to integrate from 0.00% to 100%.
Integral Clamp (353) When Integral Clamp is True, the integral signal is clamped to zero in the PI loop, yielding proportional control only.
56
Polarity (358) The Polarity parameter controls whether the PI Output needs to be unipolar (positive only) or bipolar (positive and negative).
Deadband (354) The Deadband adjustment is used to provide a window of tolerance in the error signal that the integral circuit will ignore. This is commonly used to ignore small dancer movements.
Reset (357) When True, resets the PI Output to zero.
Enable (495) When False, resets the PI Output to zero.
PI Trim (359) The PI Trim adjustment controls the amount of correction that the PI Output can provide.
PI Scale (360) The PI Scale adjustment provides for a method to scale the PI Output via an external signal. This signal is typically a line speed signal from an Analog Input.
Output (364, Read-Only) The output of the PI loop after being modified by the PI Trim and PI Scale parameters.
Proportional Status (362, Read-Only) The individual proportional component of the PI Output. This parameter is provided for aid in setup and tuning.
Integral Status (363, Read-Only) The individual integral component of the PI Output. This parameter is provided for aid in setup and tuning.
At Limit (361, Read-Only) When the Integral signal saturates at ±100.00%, the At Limit parameter becomes True. This may indicate that the PI Trim parameter may need to be increased. This parameter is provided for aid in setup and tuning.
7.31 Applications Block - Winder Speed Calculator
A problem encountered in center driven wind and unwind applications is the nonlinear relationship between the diameter of a roll and the motor speed required to maintain constant surface speed of the roll during diameter increase or decrease. A plot of this relationship shows a hyperbolic curve.
With inputs proportional to line speed and roll diameter, the required Winder or Unwinder Motor Speed can be calculated. The rate of material pay-out from a center driven unwinder would be held constant during roll diameter decrease. The line speed signal could come from a tachometer on the line drive or mounted on the machine to sense speed. The diameter signal could come from an ultrasonic measuring unit like the SONICTRAC® or from a mechanical measuring device such as a rider arm and pot. The scaled line speed is divided by the scaled diameter signal to generate the center drive speed reference. Depending on required system response, a dancer or other device may be required for limited transient compensation between the center winder/unwinder and other driven parts of a line.
Figure 52
57
diameter
maximum
Core (429) The size of an empty core expressed as a percentage with respect to the maximum diameter. If multiple size cores and/or maximum diameters are used, calculate using the smallest core and the largest maximum diameter.
Line Speed (430) This signal will typically come from one of the analog or frequency inputs and should be scaled to range from 0.00% to 100.00%.
Line Speed Sum (459) This parameter provides a place to sum a signal with the Line Speed before it is multiplied by the Core and divided by the Diameter. A typical use would be to sum in the output of the Aux PI Block in order to proved dancer or loadcell trim.
Diameter Ratio (431) This scaled diameter signal will typically come from one of the Analog Inputs, and should be scaled with an empty Core to read 0.00%. With the maximum diameter roll, this signal should read 100.00%.
Diameter (432, Read-Only) The diameter expressed as a percentage of the maximum diameter. This value is calculated from the Diameter Ratio and Core parameters.
Winder Speed (433, Read-Only) The center driven speed of the winder/unwinder.
7.32 Applications Block ­CTCW (Constant Tension Center Winder)
The CTCW block allows an Elite Pro drive to provide constant or taper tension control without external tension sensors. The CTCW block provides a torque reference output that is composed of diameter torque, inertia torque, friction torque, and static friction torque.
Figure 53
Core
diameter core
%100
×=
Figure 54
58
Inertia Compensation (449)
diameter
maximum
Additional torque is required by the winder drive when the line is accelerating. This parameter is used in conjunction with Line Speed to control the amount of additional Inertia Torque.
Inertia Torque (454, Read-Only) The amount of additional torque supplied to the winder drive when the line is accelerating.
Friction Compensation (448) Torque is required to overcome the dynamic friction in the mechanics of the drive train. Friction loading typically increases with speed. The amount of Friction Torque is controlled by Friction Compensation and Line Speed.
Friction Torque (453, Read-Only) The amount of torque supplied to the winder drive proportional to line speed.
Static Friction Torque (462) Torque is required to overcome the static friction in the mechanics of the drive train. This parameter sums with all the other torque signals to produce the Total Torque signal.
Line Speed (443) An external analog or frequency signal proportional to the speed of the line is typically linked to this parameter. Line Speed is used in calculating Inertia Torque and Friction Torque. The scaling of the analog or frequency input should be set so this parameter reads 0.00% when the line is stopped and 100.00% at full line speed.
Winder Speed (463) The winder speed feedback. Typically this signal is linked from Velocity Feedback in the Velocity Loop block. This signal is used along with the Line Speed to calculate Diameter. It is only used when the Line/Winder method of diameter calculation is selected by Diameter Select.
100% Winder Speed (444) This parameter defines the 100% level of the Winder Speed and is only used when the Line/Winder method of Diameter calculation is selected by Diameter Select.
Scaled Winder Speed (452, Read-Only) The center driven feedback speed of the winder. This parameter is used to calculate Diameter along with Line Speed when Diameter Select is set to Line/Winder.
Diameter Ratio (445) This parameter is used only when Diameter Select is set to External Diameter. This scaled diameter signal will typically come from one of the analog inputs, and should be scaled with an empty Core to read 0.00%. With the maximum diameter roll, this signal should read
100.00%.
Core (446) The size of an empty core expressed as a percentage with respect to the maximum diameter. If multiple size cores and/or maximum diameters are used, calculate using the smallest core and the largest maximum diameter.
Core
diameter core
%100
×=
59
Diameter Memory Reset (447) The diameter calculator provides a diameter memory function to maintain the speed based diameter levels during stop. This allows the CTCW block to provide the required torque to maintain constant/taper tension even when the line is stopped. When this parameter is True, the diameter memory is reset.
Diameter Select (442) Controls the method of diameter calculation. When set to Line/Winder, the Line Speed is divided by the Winder Speed to determine the Diameter. The External Diameter Ratio option should be used when an external device (such as a sonic measuring unit) is used to directly measure the diameter.
Diameter (451, Read-Only) The diameter expressed as a percentage of the maximum diameter. This parameter along with the Tension Demand parameter is used to calculate the Diameter Torque.
Tension Setpoint (441) Controls the level of tension applied to the material by the winder drive. This parameter along with the Tension Sum, Taper Diameter and Taper Percentage is used to calculate Tension Demand.
Taper Diameter (456) In some cases, decreasing tension (taper tension) is desirable to prevent telescoping and/or wrinkling of inner layers of material. The Taper Diameter parameter sets the diameter level at which the decreasing tension level starts.
Taper Percentage (457) Sets the amount of decreasing tension (taper tension). If no taper tension is desired, set to
0.00%.
Tension Demand (458, Read-Only) The desired taper tension level. This value is used with the Diameter to calculate the Diameter Torque.
Diameter Torque (454, Read-Only) In order to provide constant tension, the winder torque must increase proportionally to the increase in diameter.
Total Torque (455, Read-Only) The sum of the Inertia Torque, Friction Torque, Static Friction Torque, Diameter Torque, and Torque Sum parameters. The Friction Torque, Static Friction Torque, Diameter Torque, and Torque Sum levels are first summed and limited to 100%. The Inertia Torque is then summed and the total is limited to 150%. This parameter should be linked to Torque Reference and the Drive Mode set to Torque for proper operation.
Torque Sum (484) This parameter provides an auxiliary summing point before the Total Torque is calculated. A typical use would be to sum in a correction signal from the output of the PID block when loadcells are used with the CTCW Calculator.
7.33 Parameter Tables
The following two tables lists all the Elite Pro parameters and their properties. Table 16 is sorted by Tag Number and Table 17 is sorted by Parameter Name. ICR stands for Inhibit Change while Running and identifies the parameters that cannot be modified while the drive is running. Furthermore, RO indicates Read-Only parameters.
60
Table 16: Parameters by Tag
Tag Parameter Name Min Max ICR RO Preset Menu Block User
0 Trash -32768 32767 0 None 1 Digital Input 1 Term 31 Destination 0 500 ICR 239 Digital Input 2 Digital Input 2 Term 32 Destination 0 500 ICR 240 Digital Input 3 Digital Input 3 Term 33 Destination 0 500 ICR 241 Digital Input 4 Digital Input 4 Term 34 Destination 0 500 ICR 222 Digital Input 5 Digital Input 5 Term 35 Destination 0 500 ICR 215 Digital Input 6 Digital Input 6 Term 36 Destination 0 500 ICR 216 Digital Input 7 Digital Input 7 Term 37 Destination 0 500 ICR 254 Digital Input 8 Digital Input 1 Term 31 Open Value 0:False* 1:True* 0:False Digital Input 9 Digital Input 2 Term 32 Open Value 0:False* 1:True* 1:True Digital Input 10 Digital Input 3 Term 33 Open Value 0:False* 1:True* 0:False Digital Input 11 Digital Input 4 Term 34 Open Value 0:False* 1:True* 0:False Digital Input 12 Digital Input 5 Term 35 Open Value 0:False* 1:True* 0:False Digital Input 13 Digital Input 6 Term 36 Open Value 0:False* 1:True* 0:False Digital Input 14 Digital Input 7 Term 37 Open Value 0:False* 1:True* 0:False Digital Input 15 Digital Input 1 Term 31 Closed Value 0:False* 1:True* 1:True Digital Input 16 Digital Input 2 Term 32 Closed Value 0:False* 1:True* 0:False Digital Input 17 Digital Input 3 Term 33 Closed Value 0:False* 1:True* 1:True Digital Input 18 Digital Input 4 Term 34 Closed Value 0:False* 1:True* 1:True Digital Input 19 Digital Input 5 Term 35 Closed Value 0:False* 1:True* 1:True Digital Input 20 Digital Input 6 Term 36 Closed Value 0:False* 1:True* 1:True Digital Input 21 Digital Input 7 Term 37 Closed Value 0:False* 1:True* 1:True Digital Input 22 Run Enable Term 7 0:Open 1:Closed RO 0:Open Digital Input 23 Analog Input 1 Term 10 Destination 0 500 ICR 217 Analog Input 24 Analog Input 2 Term 11 Destination 0 500 ICR 0 Analog Input 25 Analog Input 3 Term 12 Destination 0 500 ICR 0 Analog Input 26 Analog Input 4 Term 13 Destination 0 500 ICR 0 Analog Input 27 Analog Input 5 Term 14 Destination 0 500 ICR 0 Analog Input 28 Analog Input 1 Term 10 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 29 Analog Input 2 Term 11 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 30 Analog Input 3 Term 12 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 31 Analog Input 4 Term 13 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 32 Analog Input 5 Term 14 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 33 Analog Input 1 Term 10 Type 0:Current 1:Voltage 1:Voltage Analog Input 34 Analog Input 2 Term 11 Type 0:Current 1:Voltage 1:Voltage Analog Input 35 Analog Input 3 Term 12 Type 0:Current 1:Voltage 1:Voltage Analog Input 36 Analog Input 4 Term 13 Type 0:Current 1:Voltage 1:Voltage Analog Input 37 Analog Input 5 Term 14 Type 0:Current 1:Voltage RO 1:Voltage Analog Input 38 Analog Input 1 Term 10 0% Calibration -2048 4095 0 Analog Input 39 Analog Input 2 Term 11 0% Calibration -2048 4095 0 Analog Input 40 Analog Input 3 Term 12 0% Calibration -2048 4095 0 Analog Input 41 Analog Input 4 Term 13 0% Calibration -2048 4095 0 Analog Input 42 Analog Input 5 Term 14 0% Calibration -2048 4095 0 Analog Input 43 Analog Input 1 Term 10 100% Calibration 0 4095 4095 Analog Input 44 Analog Input 2 Term 11 100% Calibration 0 4095 4095 Analog Input 45 Analog Input 3 Term 12 100% Calibration 0 4095 4095 Analog Input 46 Analog Input 4 Term 13 100% Calibration 0 4095 4095 Analog Input 47 Analog Input 5 Term 14 100% Calibration 0 4095 4095 Analog Input 48 Analog Input 1 Term 10 Bias 0.00%* 200.00%* 0.00% Analog Input 49 Analog Input 2 Term 11 Bias 0.00%* 200.00%* 0.00% Analog Input 50 Analog Input 3 Term 12 Bias 0.00%* 200.00%* 0.00% Analog Input 51 Analog Input 4 Term 13 Bias 0.00%* 200.00%* 0.00% Analog Input 52 Analog Input 5 Term 14 Bias 0.00%* 200.00%* 0.00% Analog Input 53 Analog Input 1 Term 10 Gain 0.00%* 200.00%* 100.00% Analog Input 54 Analog Input 2 Term 11 Gain 0.00%* 200.00%* 100.00% Analog Input 55 Analog Input 3 Term 12 Gain 0.00%* 200.00%* 100.00% Analog Input 56 Analog Input 4 Term 13 Gain 0.00%* 200.00%* 100.00% Analog Input 57 Analog Input 5 Term 14 Gain 0.00%* 200.00%* 100.00% Analog Input 58 Analog Input 1 Term 10 filtering 0 15 0 Analog Input 59 Analog Input 2 Term 11 filtering 0 15 0 Analog Input 60 Analog Input 3 Term 12 filtering 0 15 0 Analog Input 61 Analog Input 4 Term 13 filtering 0 15 0 Analog Input 62 Analog Input 5 Term 14 filtering 0 15 0 Analog Input 63 Frequency Input Term 18 Destination 0 500 ICR 0 Frequency Input
* The Min and Max values shown are according to the factory presets for its Source/Destination parameter. If the Source/Destination parameter is modified, the Min and Max values will change according to the new Source/Destination parameter.
61
Tag Parameter Name Min Max ICR RO Preset Menu Block User
64 Frequency Input Term 18 0% Calibration 0 Hz 60000 Hz 0 Hz Frequency Input 65 Frequency Input Term 18 100% Calibration 0 Hz 60000 Hz 40000 Hz Frequency Input 66 Frequency Input Term 18 Bias 0.00%* 200.00%* 0.00% Frequency Input 67 Frequency Input Term 18 Gain 0.00%* 200.00%* 100.00% Frequency Input 68 Frequency Input Term 18 filtering 0 15 0 Frequency Input 69 User Relay 1 Term 25-27 Source 0 500 ICR 210 User Relay 70 User Relay 2 Term 28-30 Source 0 500 ICR 242 User Relay 71 User Relay 3 Term 54-56 Source 0 500 ICR 303 User Relay 72 User Relay 1 Term 25-27 Absolute Value 0:False 1:True 1:True User Relay 73 User Relay 2 Term 28-30 Absolute Value 0:False 1:True 1:True User Relay 74 User Relay 3 Term 54-56 Absolute Value 0:False 1:True 1:True User Relay 75 User Relay 1 Term 25-27 On Value 0:False* 1:True* 1:True User Relay 76 User Relay 2 Term 28-30 On Value 0:False* 1:True* 1:True User Relay 77 User Relay 3 Term 54-56 On Value 0:False* 1:True* 1:True User Relay 78 User Relay 1 Term 25-27 Off Value 0:False* 1:True* 0:False User Relay 79 User Relay 2 Term 28-30 Off Value 0:False* 1:True* 0:False User Relay 80 User Relay 3 Term 54-56 Off Value 0:False* 1:True* 0:False User Relay 81 Analog Output 1 Term 21 Source 0 500 ICR 193 Analog Output 82 Analog Output 2 Term 22 Source 0 500 ICR 102 Analog Output 83 Analog Output 1 Term 21 Gain -200.00% 200.00% 100.00% Analog Output 84 Analog Output 2 Term 22 Gain -200.00% 200.00% 100.00% Analog Output 85 Analog Output 1 Term 21 Bias -100.00% 100.00% 0.00% Analog Output 86 Analog Output 2 Term 22 Bias -100.00% 100.00% 0.00% Analog Output 87 Analog Output 1 Term 21 Absolute Value 0:False 1:True 0:False Analog Output 88 Analog Output 2 Term 22 Absolute Value 0:False 1:True 0:False Analog Output 89 Freq/Digital Output Term 52 Source 0 500 ICR 193 F/D Output 90 Frequency/Digital Term 52 Mode 0:Freq 1:Digital 0:Freq F/D Output 91 Digital Output Term 52 Absolute Value 0:False 1:True 1:True F/D Output 92 Digital Output Term 52 On Value -200.00%* 200.00%* 100.00% F/D Output 93 Digital Output Term 52 Off Value -200.00%* 200.00%* 0.00% F/D Output 94 Digital Output Term 52 Invert 0:False 1:True 0:False F/D Output 95 Frequency Output Term 52 Gain 0.00% 200.00% 100.00% F/D Output 96 Frequency Output Term 52 Bias 0.00% 100.00% 0.00% F/D Output 97 Torque Reference -150.00% 150.00% 0.00% Current Loop 98 Aux Current Demand -150.00% 150.00% 0.00% Current Loop 99 Positive C.L. 0.00% 150.00% 150.00% Current Loop 100 Negative C.L. -150.00% 0.00% -150.00% Current Loop 101 Final Current Demand -150.00% 150.00% RO 0.00% Current Loop 102 Current Feedback -150.00% 150.00% RO 0.00% Current Loop 103 Current Error -300.00% 300.00% RO 0.00% Current Loop 104 Open Loop Arm Select 0:False 1:True ICR 0:False Current Loop 105 Open Loop Arm Set Pt -100.00% 100.00% 0.00% Current Loop 106 Conduction Angle Demand 0.00% 100.00% RO 0.00% Current Loop 107 Current Proportional Gain 0.00 25.00 2.50 Current Loop 108 Current Integral Time 0.010 Secs 30.000 Secs 0.164 Secs Current Loop 109 Drive Mode (MSB) 0 1 0 Current Loop 110 Drive Mode (LSB) 0 1 0 Current Loop 111 Current Demand -150.00% 150.00% RO 0.00% Current Loop 112 Current Feedback {Filtered} -150.00% 150.00% RO 0.00% Current Loop 113 Final Current Demand {Filtered} -150.00% 150.00% RO 0.00% Current Loop 114 Armature Amps 0.0 Amps 1530.0 Amps RO 0.0 Amps Current Loop 115 Aux 1 Param -200.00% 200.00% 0.00% Misc Aux Params 116 Aux 2 Param -200.00% 200.00% 0.00% Misc Aux Params 117 Aux 3 Param -200.00% 200.00% 0.00% Misc Aux Params 118 Aux 4 Param -200.00% 200.00% 0.00% Misc Aux Params 119 Aux 5 Param -200.00% 200.00% 0.00% Misc Aux Params 120 Aux 6 Param -200.00% 200.00% 0.00% Misc Aux Params 121 Aux 7 Param -200.00% 200.00% 0.00% Misc Aux Params 122 Nameplate Drive Current Per Model Per Model RO Per Model Calibration 123 Nameplate Motor Current 0.0 Amps Per Model Per Model Calibration 124 Encoder Lines 0:256,1:512,2:1024,3:2048 2:1024 Calibration 125 100% Encoder RPM 0 RPM 10000 RPM 1750 RPM Calibration 126 Invert FB 0:False 1:True 0:False Calibration 127 Tachometer Type 0:DC 1:AC 0:DC Calibration 128 Nameplate Motor Voltage 0.0 Volts 500.0 Volts 240.0 Volts Calibration 129 Final Velocity Demand -105.00% 105.00% RO 0.00% Velocity Loop 130 VFB Offset -10.00% 10.00% 0.00% Velocity Loop 131 IR Compensation 0.00% 10.00% 0.00% Velocity Loop 132 Digital Input 1 Term 31 Status 0:Open 1:Closed RO 0:Open Digital Input 133 Digital Input 2 Term 32 Status 0:Open 1:Closed RO 0:Open Digital Input
62
Tag Parameter Name Min Max ICR RO Preset Menu Block User
134 Digital Input 3 Term 33 Status 0:Open 1:Closed RO 0:Open Digital Input 135 Digital Input 4 Term 34 Status 0:Open 1:Closed RO 0:Open Digital Input 136 Digital Input 5 Term 35 Status 0:Open 1:Closed RO 0:Open Digital Input 137 Digital Input 6 Term 36 Status 0:Open 1:Closed RO 0:Open Digital Input 138 Digital Input 7 Term 37 Status 0:Open 1:Closed RO 0:Open Digital Input 139 Analog Input 1 Term 10 Status -2048 4095 RO 0 Analog Input 140 Analog Input 2 Term 11 Status -2048 4095 RO 0 Analog Input 141 Analog Input 3 Term 12 Status -2048 4095 RO 0 Analog Input 142 Analog Input 4 Term 13 Status -2048 4095 RO 0 Analog Input 143 Analog Input 5 Term 14 Status -2048 4095 RO 0 Analog Input 144 DC TFB Status -2048 4095 RO 0 Diagnostics 145 AC TFB Status -2048 4095 RO 0 Diagnostics 146 AFB Status -2048 4095 RO 0 Diagnostics 147 Armature IFB Status #1 0 1023 RO 0 Diagnostics 148 Field IFB Status #1 0 1023 RO 0 Diagnostics 149 Line Voltage Status 0 1023 RO 0 Diagnostics 150 Field VFB Status 0 1023 RO 0 Diagnostics 151 Armature IFB Status #2 0 1023 RO 0 Diagnostics 152 Field IFB Status #2 0 1023 RO 0 Diagnostics 153 Heatsink Status 0 1023 RO 0 Diagnostics 154 Battery Status 0 1023 RO 0 Diagnostics 155 Armature IFB Status #3 0 1023 RO 0 Diagnostics 156 Field IFB Status #3 0 1023 RO 0 Diagnostics 157 +12V Status 0 1023 RO 0 Diagnostics 158 +15V Status 0 1023 RO 0 Diagnostics 159 Armature IFB Status #4 0 1023 RO 0 Diagnostics 160 Field IFB Status #4 0 1023 RO 0 Diagnostics 161 Reserved [ADCIN11] 0 1023 RO 0 Diagnostics 162 +24V Status 0 1023 RO 0 Diagnostics 163 EFB Counter Status 0 Hz 65535 Hz RO 0 Hz Diagnostics 164 Frequency Input Term 18 Status 0 Hz 60000 Hz RO 0 Hz Freq Input 165 Relay Output 1 Term 25-27 Status 0 1 RO 0 User Relay 166 Relay Output 2 Term 28-30 Status 0 1 RO 0 User Relay 167 Relay Output 3 Term 54-56 Status 0 1 RO 0 User Relay 168 Analog Output 1 Term 21 Status -4095 4095 RO 0 Analog Output 169 Analog Output 2 Term 22 Status -4095 4095 RO 0 Analog Output 170 Freq/Dig Output Term 52 Status -1 2000 RO 0 F/D Output 171 +12V Supply 0.0 Volts 15.0 Volts RO 0.0 Volts Diagnostics 172 +15V Supply 0.0 Volts 18.7 Volts RO 0.0 Volts Diagnostics 173 +24V Supply 0.0 Volts 30.4 Volts RO 0.0 Volts Diagnostics 174 Battery Supply 0.0 Volts 5.0 Volts RO 0.0 Volts Diagnostics 175 Line Voltage 0.0 Volts 600.0 Volts RO 0.0 Volts Diagnostics 176 Heatsink Temperature 0 C 115 C RO 0 C Diagnostics 177 Input A -200.00% 200.00% 0.00% Misc Thresholds 178 Threshold A 0.00% 200.00% 1.00% Misc Thresholds 179 Hysteresis A 0.00% 200.00% 0.00% Misc Thresholds 180 Less Than or Equal A -200.00% 200.00% 0.00% Misc Thresholds 181 Greater Than A -200.00% 200.00% 1.00% Misc Thresholds 182 Output A -200.00% 200.00% RO 0.00% Misc Thresholds 183 Input B -200.00% 200.00% 0.00% Misc Thresholds 184 Threshold B 0.00% 200.00% 1.00% Misc Thresholds 185 Hysteresis B 0.00% 200.00% 0.00% Misc Thresholds 186 Less Than or Equal B -200.00% 200.00% 0.00% Misc Thresholds 187 Greater Than B -200.00% 200.00% 1.00% Misc Thresholds 188 Output B -200.00% 200.00% RO 0.00% Misc Thresholds 189 Velocity Demand -100.00% 100.00% RO 0.00% Velocity Loop 190 Forward Max Speed Scale 0.00% 105.00% 100.00% Velocity Loop 191 Reverse Max Speed Scale -105.00% 0.00% -100.00% Velocity Loop 192 Velocity Error -230.00% 230.00% RO 0.00% Velocity Loop 193 Velocity Feedback -125.00% 125.00% RO 0.00% Velocity Loop 194 Armature Feedback -120.00% 120.00% RO 0.00% Velocity Loop 195 Tach Feedback -125.00% 125.00% RO 0.00% Velocity Loop 196 Encoder Feedback -125.00% 125.00% RO 0.00% Velocity Loop 197 Feedback Select 0:AFB, 1:TFB, 2:EFB ICR 0:AFB Velocity Loop 198 Velocity Feedback Filtered -125.00% 125.00% RO 0.00% Velocity Loop 199 100% RPM Level 0 RPM 10000 RPM 1750 RPM Velocity Loop 200 Motor RPM 0 RPM 20000 RPM RO 0 RPM Velocity Loop 201 Velocity Prop Gain A 0.00 100.00 9.00 Velocity Loop 202 Velocity Integral Time A 0.010 Secs 30.000 Secs 0.158 Secs Velocity Loop 203 Velocity Gain Select 0 1 0 Velocity Loop
63
Tag Parameter Name Min Max ICR RO Preset Menu Block User
204 Velocity Overshoot Gain A 0.00% 100.00% 100.00% Velocity Loop 205 Velocity Loop Output -150.00% 150.00% RO 0.00% Velocity Loop 206 Regenerative Mode 0:False 1:True ICR 1:True Current Loop 207 Zero Speed Setpoint 1.00% 25.00% 2.00% Zero Speed 208 Standstill Logic 0:False 1:True 0:False Zero Speed 209 At Zero Set 0:False 1:True RO 1:True Zero Speed 210 At Zero Speed 0:False 1:True RO 1:True Zero Speed 211 At Standstill 0:False 1:True RO 1:True Zero Speed 212 Loop Enable 0:False 1:True RO 0:False Zero Speed 213 Velocity Overshoot Gain B 0.00% 100.00% 100.00% Velocity Loop 214 Integral Clamp 0:False 1:True 0:False Velocity Loop 215 Reference Select (MSB) 0 1 0 Setpoints 216 Reference Select (LSB) 0 1 0 Setpoints 217 Reference 0 -200.00% 200.00% 0.00% Setpoints 218 Reference 1 -200.00% 200.00% 0.00% Setpoints 219 Reference 2 -200.00% 200.00% 0.00% Setpoints 220 Reference 3 -200.00% 200.00% 0.00% Setpoints 221 Jog Reference -200.00% 200.00% 5.00% Setpoints 222 Reference Invert 0:False 1:True 0:False Setpoints 223 Overspeed Level 0.00% 125.00% 125.00% Fault Logic 224 Ramp Input -150.00% 150.00% RO 0.00% Accel/Decel 225 Ramp Output -150.00% 150.00% RO 0.00% Accel/Decel 226 Forward Accel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 227 Forward Decel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 228 Reverse Accel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 229 Reverse Decel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 230 Ramp Threshold 0.00% 100.00% 5.00% Accel/Decel 231 Ramping Status 0:False 1:True RO 0:False Accel/Decel 232 Stop Mode 0:Ramp,1:Quick,2:Coast 0:Ramp Start/Stop 233 Setpoint A Invert 0:False 1:True 0:False Setpoint Sum 234 Setpoint B -200.00% 200.00% 0.00% Setpoint Sum 235 Setpoint B Invert 0:False 1:True 0:False Setpoint Sum 236 Setpoint C -200.00% 200.00% 0.00% Setpoint Sum 237 Setpoint C Invert 0:False 1:True 0:False Setpoint Sum 238 System Status Register 0x0000 0xFFFF RO 0x0000 Diagnostics 239 Run 0:False 1:True 0:False Start/Stop 240 Stop 0:False 1:True 0:False Start/Stop 241 Jog 0:False 1:True 0:False Start/Stop 242 Run Status 0:False 1:True RO 0:False Start/Stop 243 Jog Status 0:False 1:True RO 0:False Start/Stop 244 Armature Pilot 0:False 1:True RO 0:False Start/Stop 245 Start/Stop Logic Select 0:Three Wire 1:TwoWire 0:Three Wire Start/Stop 246 Jog Delay 0.0 Secs 10.0 Secs 3.0 Secs Start/Stop 247 VFB Loss Level 0.00% 100.00% 50.00% Fault Logic 248 VFB Loss Inhibit 0:False 1:True 0:False Fault Logic 249 Field Loss Level 0.00% 100.00% 6.00% Fault Logic 250 Field Loss Inhibit 0:False 1:True 0:False Fault Logic 251 Armature I Foldback Time 0.0 Secs 60.0 Secs 15.0 Secs Fault Logic 252 Armature I Foldback Status 0:False 1:True RO 0:False Fault Logic 253 Overcurrent Time 0.0 Secs 240.0 Secs 45.0 Secs Fault Logic 254 External Fault Reset 0:False 1:True 0:False Fault Logic 255 Present Fault Status 0x0000 0xFFFF RO 0x0000 Fault Logic 256 Seconds 0 59 - Fault Logic 257 Minute 0 59 - Fault Logic 258 Hour 0 23 - Fault Logic 259 Day 1 7 - Fault Logic 260 Date 1 31 - Fault Logic 261 Month 1 12 - Fault Logic 262 Year 0 99 - Fault Logic 263 Fault #1 0x0000 0xFFFF RO - Fault Logic 264 Seconds #1 0 59 RO - Fault Logic 265 Minute #1 0 59 RO - Fault Logic 266 Hour #1 0 23 RO - Fault Logic 267 Day #1 1 7 RO - Fault Logic 268 Date #1 1 31 RO - Fault Logic 269 Month #1 1 12 RO - Fault Logic 270 Year #1 0 99 RO - Fault Logic 271 Fault #2 0x0000 0xFFFF RO - Fault Logic 272 Seconds #2 0 59 RO - Fault Logic 273 Minute #2 0 59 RO - Fault Logic
64
Tag Parameter Name Min Max ICR RO Preset Menu Block User
274 Hour #2 0 23 RO - Fault Logic 275 Day #2 1 7 RO - Fault Logic 276 Date #2 1 31 RO - Fault Logic 277 Month #2 1 12 RO - Fault Logic 278 Year #2 0 99 RO - Fault Logic 279 Fault #3 0x0000 0xFFFF RO - Fault Logic 280 Seconds #3 0 59 RO - Fault Logic 281 Minute #3 0 59 RO - Fault Logic 282 Hour #3 0 23 RO - Fault Logic 283 Day #3 1 7 RO - Fault Logic 284 Date #3 1 31 RO - Fault Logic 285 Month #3 1 12 RO - Fault Logic 286 Year #3 0 99 RO - Fault Logic 287 Fault #4 0x0000 0xFFFF RO - Fault Logic 288 Seconds #4 0 59 RO - Fault Logic 289 Minute #4 0 59 RO - Fault Logic 290 Hour #4 0 23 RO - Fault Logic 291 Day #4 1 7 RO - Fault Logic 292 Date #4 1 31 RO - Fault Logic 293 Month #4 1 12 RO - Fault Logic 294 Year #4 0 99 RO - Fault Logic 295 Fault #5 0x0000 0xFFFF RO - Fault Logic 296 Seconds #5 0 59 RO - Fault Logic 297 Minute #5 0 59 RO - Fault Logic 298 Hour #5 0 23 RO - Fault Logic 299 Day #5 1 7 RO - Fault Logic 300 Date #5 1 31 RO - Fault Logic 301 Month #5 1 12 RO - Fault Logic 302 Year #5 0 99 RO - Fault Logic 303 Drive Ready 0:False 1:True RO 0:False Start Stop Logic 304 Latched Fault Status 0x0000 0xFFFF RO 0x0000 Fault Logic 305 Ramp Bypass 0:False 1:True 0:False Accel/Decel 306 Ramp Select 0:False 1:True 0:False Accel/Decel 307 Forward Accel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 308 Forward Decel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 309 Reverse Accel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 310 Reverse Decel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 311 Timer Reset 0:False 1:True 1:True Misc Timer 312 Timer Threshold 0.0 Secs 240.0 Secs 5.0 Secs Misc Timer 313 Timer Less Than or Equal To -100.00% 100.00% 0.00% Misc Timer 314 Timer Greater Than -100.00% 100.00% 1.00% Misc Timer 315 Timer Output -100.00% 100.00% RO 0.00% Misc Timer 316 MOP Increase 0:False 1:True 0:False Misc MOP 317 MOP Decrease 0:False 1:True 0:False Misc MOP 318 MOP Increase Time 0.0 Secs 600.0 Secs 5.0 Secs Misc MOP 319 MOP Decrease Time 0.0 Secs 600.0 Secs 5.0 Secs Misc MOP 320 MOP Max Value -100.00% 100.00% 100.00% Misc MOP 321 MOP Min Value -100.00% 100.00% -100.00% Misc MOP 322 MOP Reset 0:False 1:True 0:False Misc MOP 323 MOP Reset Value -100.00% 100.00% 0.00% Misc MOP 324 MOP Output -100.00% 100.00% RO 0.00% Misc MOP 325 Velocity Prop Gain B 0.00 100.00 9.00 Velocity Loop 326 Velocity Integral Time B 0.010 Secs 30.000 Secs 0.058 Secs Velocity Loop 327 Power On Reset 0:False 1:True RO 0:False Fault Logic 328 Field Conduction Angle 0.00% 100.00% RO 0.00% Field Loop 329 Open Loop Field Select 0:False 1:True 1:True Field Loop 330 Open Loop Field Setpoint 0.00% 100.00% 67.00% Field Loop 331 Field Enable 0:False 1:True ICR 1:True Field Loop 332 Field Economy Enable 0:False 1:True 0:True Field Loop 333 Field VFB 0.00% 125.00% RO 0.00% Field Loop 334 Field VFB {Filtered} 0.00% 125.00% RO 0.00% Field Loop 335 Field Voltage 0.0 Volts 400.0 Volts RO 0.0 Volts Field Loop 336 Field IFB 0.00% 100.00% RO 0.00% Field Loop 337 Field IFB {Filtered} 0.00% 100.00% RO 0.00% Field Loop 338 Field Amps 0.00 Amps 10.00 Amps RO 0.00 Amps Field Loop 339 Field Current Demand 0.00% 100.00% 0.00% Field Loop 340 Field Prop Gain 0.00 20.00 0.20 Field Loop 341 Field Integral Time 0.001 Secs 30.000 Secs 0.200 Secs Field Loop 342 Field IFB Offset -20.00% 20.00% 0.00% Field Loop 343 Field VFB Offset -20.00% 20.00% 0.00% Field Loop
65
Tag Parameter Name Min Max ICR RO Preset Menu Block User
344 Analog Input 1 Term 10 Invert 0:False 1:True 0:False Analog Input 345 Analog Input 2 Term 11 Invert 0:False 1:True 0:False Analog Input 346 Analog Input 3 Term 12 Invert 0:False 1:True 0:False Analog Input 347 Analog Input 4 Term 13 Invert 0:False 1:True 0:False Analog Input 348 Analog Input 5 Term 14 Invert 0:False 1:True 0:False Analog Input 349 Frequency Input Term 18 Sign 0:Positive 1:Negative 0:Positive Freq Input 350 Aux PI Setpoint -100.00% 100.00% 0.00% App Aux PI 351 Aux PI Feedback -100.00% 100.00% 0.00% App Aux PI 352 Aux PI Error -200.00% 200.00% RO 0.00% App Aux PI 353 Aux PI Integral Clamp 0:False 1:True 0:False App Aux PI 354 Aux PI Deadband Setpoint -30.00% 30.00% 0.00% App Aux PI 355 Aux PI Proportional Gain Setpoint 0.00 5.00 1.00 App Aux PI 356 Aux PI Integral Time Setpoint 0.100 Secs 60.000 Secs 0.200 Secs App Aux PI 357 Aux PI Reset 0:False 1:True 0:False App Aux PI 358 Aux PI Polarity 0:Unipolar 1:Bipolar 1:Bipolar App Aux PI 359 Aux PI Trim Setpoint 0.00% 100.00% 100.00% App Aux PI 360 Aux PI Scale Setpoint -100.00% 100.00% 100.00% App Aux PI 361 Aux PI At Limit 0:False 1:True RO 0:False App Aux PI 362 Aux PI Proportional Status 0.00% 100.00% RO 0.00% App Aux PI 363 Aux PI Integral Status 0.00% 100.00% RO 0.00% App Aux PI 364 Aux PI Output 0.00% 100.00% RO 0.00% App Aux PI 365 Timer Reset Invert 0:False 1:True 0:False Misc Timer 366 Internal Link 1 Source 0 500 243 Misc Internal Links 367 Internal Link 1 Destination 0 500 ICR 306 Misc Internal Links 368 Internal Link 2 Source 0 500 225 Misc Internal Links 369 Internal Link 2 Destination 0 500 ICR 105 Misc Internal Links 370 Internal Link 3 Source 0 500 225 Misc Internal Links 371 Internal Link 3 Destination 0 500 ICR 97 Misc Internal Links 372 Internal Link 4 Source 0 500 0 Misc Internal Links 373 Internal Link 4 Destination 0 500 ICR 0 Misc Internal Links 374 Internal Link 5 Source 0 500 0 Misc Internal Links 375 Internal Link 5 Destination 0 500 ICR 0 Misc Internal Links 376 Internal Link 6 Source 0 500 0 Misc Internal Links 377 Internal Link 6 Destination 0 500 ICR 0 Misc Internal Links 378 Internal Link 7 Source 0 500 0 Misc Internal Links 379 Internal Link 7 Destination 0 500 ICR 0 Misc Internal Links 380 Internal Link 8 Source 0 500 0 Misc Internal Links 381 Internal Link 8 Destination 0 500 ICR 0 Misc Internal Links 382 Internal Link 9 Source 0 500 0 Misc Internal Links 383 Internal Link 9 Destination 0 500 ICR 0 Misc Internal Links 384 Internal Link 10 Source 0 500 0 Misc Internal Links 385 Internal Link 10 Destination 0 500 ICR 0 Misc Internal Links 386 Internal Link 11 Source 0 500 0 Misc Internal Links 387 Internal Link 11 Destination 0 500 ICR 0 Misc Internal Links 388 Internal Link 12 Source 0 500 0 Misc Internal Links 389 Internal Link 12 Destination 0 500 ICR 0 Misc Internal Links 390 Internal Link 13 Source 0 500 0 Misc Internal Links 391 Internal Link 13 Destination 0 500 ICR 0 Misc Internal Links 392 Internal Link 14 Source 0 500 0 Misc Internal Links 393 Internal Link 14 Destination 0 500 ICR 0 Misc Internal Links 394 Internal Link 15 Source 0 500 0 Misc Internal Links 395 Internal Link 15 Destination 0 500 ICR 0 Misc Internal Links 396 Internal Link 16 Source 0 500 0 Misc Internal Links 397 Internal Link 16 Destination 0 500 ICR 0 Misc Internal Links 398 Internal Link 17 Source 0 500 0 Misc Internal Links 399 Internal Link 17 Destination 0 500 ICR 0 Misc Internal Links 400 Internal Link 18 Source 0 500 0 Misc Internal Links 401 Internal Link 18 Destination 0 500 ICR 0 Misc Internal Links 402 Internal Link 19 Source 0 500 0 Misc Internal Links 403 Internal Link 19 Destination 0 500 ICR 0 Misc Internal Links 404 Internal Link 20 Source 0 500 0 Misc Internal Links 405 Internal Link 20 Destination 0 500 ICR 0 Misc Internal Links 406 Save 0 1 ICR 0 Misc System 407 Load 0 2 ICR 0 Misc System 408 Re-Initialize 0 1 ICR 0 Misc System 409 Control Firmware Version 0 255 RO - Misc System 410 Fan Mode 0:Auto 1:On 0:Auto Diagnostics 411 Drive Model 0 65535 RO 0 Misc System 412 Min Max Source 0 500 0 Misc MinMax 413 Min Max Reset 0:False 1:True 0:False Misc MinMax
66
Tag Parameter Name Min Max ICR RO Preset Menu Block User
414 Max Peak -200.00% 200.00% RO 0.00% Misc MinMax 415 Min Peak -200.00% 200.00% RO 0.00% Misc MinMax 416 Min Max Difference -200.00% 200.00% RO 0.00% Misc MinMax 417 Armature Voltage -600.0 Volts 600.0 Volts RO 0.0 Volts Velocity Loop 418 W atchdog Status 0x0000 0xFFFF RO 0x0000 Misc System 419 Aux Firmware Versions 0 65535 RO - Misc System 420 Keypad Fault Reset 0 1 0 None 421 Command Entry 0 65535 0 None 422 Drive Status 0 8 RO 0 Start/Stop 423 Field Crossover Enable 0:False 1:True ICR 0:False Field Crossover 424 Min Field Current Demand 0.00% 100.00% 0.00% Field Crossover 425 Field Crossover Setpoint 0.00% 95.00% 85.00% Field Crossover 426 Field Crossover Output 0.00% 100.00% RO 0.00% Field Crossover 427 Final Field Current Demand 0.00% 100.00% RO 0.00% Field Loop 428 Timer 0.0 Secs 240.0 Secs RO 0.0 Secs Misc Timer 429 Core 0.00 % 100.00 % 10.0 % App Winder Speed 430 Line Speed 0.00 % 100.00 % 0.00 % App Winder Speed 431 Diameter Ratio 0.00 % 100.00 % 0.00 % App Winder Speed 432 Diameter 0.00 % 100.00 % RO 0.00 % App Winder Speed 433 W inder Speed 0.00 % 100.00 % RO 0.00 % App Winder Speed 434 Network Address 1 255 1 Misc Comm. 435 Baud Rate 2400,4800,9600,19200,38400 38400 Misc Comm. 436 Parity 0:None, 1:Odd, 2:Even None Misc Comm. 437 Stop Bits 1 2 2 Misc Comm. 438 Addressing Mode 0:No Offset 1: Offset 1: Offset Misc Comm. 439 Parameters Changed 0:False 1:True RO 0:False Misc System 440 Total Parameters 0 65535 RO 500 Misc System 441 Tension Setpoint 0.00 % 100.00 % 0.00 % App CTCW 442 Diameter Select 0:Off, 1:Line/Winder, 2: Ext Dia 0:Off App CTCW 443 Line Speed 0.00 % 100.00 % 0.00 % App CTCW 444 100% Winder Speed Calibration 0.00 % 100.00 % 0.00 % App CTCW 445 External Diameter Ratio 0.00 % 100.00 % 0.00 % App CTCW 446 Core 0.00 % 100.00 % 0.00 % App CTCW 447 Diameter Memory Reset 0:False 1:True 0:False App CTCW 448 Friction Compensation 0.00 % 100.00 % 0.00 % App CTCW 449 Inertia Compensation 0.00 % 50.00 % 0.00 % App CTCW 450 Diameter Torque 0.00 % 100.00 % RO 0.00 % App CTCW 451 Diameter 0.00 % 100.00 % RO 0.00 % App CTCW 452 Scaled Winder Speed Ratio 0.00 % 100.00 % RO 0.00 % App CTCW 453 Friction Torque 0.00 % 100.00 % RO 0.00 % App CTCW 454 Inertia Torque 0.00 % 100.00 % RO 0.00 % App CTCW 455 Total Torque 0.00 % 100.00 % RO 0.00 % App CTCW 456 Taper Diameter 0.00 % 100.00 % 0.00 % App CTCW 457 Taper Percentage 0.00 % 100.00 % 0.00 % App CTCW 458 Tension Demand 0.00 % 100.00 % RO 0.00 % App CTCW 459 Line Speed Sum 0.00 % 100.00 % 0.00 % App Winder Speed 460 Addressing Mode Test 1 0 65535 RO 21845 Misc System 461 Addressing Mode Test 2 0 65535 RO 43690 Misc System 462 Static Friction Torque 0.00 % 100.00 % 0.00 % App CTCW 463 W inder Speed Ratio 0.00 % 100.00 % 0.00 % App CTCW 464 Data Logger Signal Source 0 500 0 - 465 Data Logger Trigger Source 0 500 0 - 466 Data Logger Control 0 2 0 - 467 Data Logger Samples 1 10000 10000 - 468 Reserved -200.00% 200.00% 0.00% - 469 Reserved -200.00% 200.00% 0.00% - 470 Reserved -200.00% 200.00% 0.00% - 471 Reserved -200.00% 200.00% 0.00% - 472 General Param 1 0 65535 0 - 473 General Param 2 0 65535 0 - 474 General Param 3 0 65535 0 - 475 General Param 4 0 65535 0 - 476 General Param 5 0 65535 0 - 477 General Param 6 0 65535 0 - 478 General Param 7 0 65535 0 - 479 General Param 8 0 65535 0 - 480 General Param 9 0 65535 0 - 481 General Param 10 0 65535 0 - 482 General Param 11 0 65535 0 - 483 General Param 12 0 65535 0 -
67
Tag Parameter Name Min Max ICR RO Preset Menu Block User
484 Torque Sum -100.00% 100.00% 0.00% App CTCW 485 Internal Fault Reset 0:False 1:True RO 0:False Fault Log 486 Fault Reset 0:False 1:True RO 0:False Fault Log 487 Field Current Feedback Select 0:Internal 1:External 0:Internal Field Loop 488 External Field Current Feedback 0.00% 100.00% 0.00% Field Loop 489 100% Field Current Feedback 0.00 Amps 100.00 Amps 8.00 Amps Field Loop 490 External Fault 0:False 1:True RO 0:False Fault Logic 491 Trigger Board Firmware Version 0 255 RO - Misc System 492 Boot Loader Firmware Version 0 255 RO - Misc System 493 Independent Current Limits 0:False 1:True 1:True Current Loop 494 Independent Speed Scales 0:False 1:True 1:True Velocity Loop 495 Aux PI Enable 0:False 1:True 1:True App Aux PI 496 Command Data 0 65535 0 - 497 Actual Tension 0.00% 100.00% 0.00% App CTCW 498 Setpoint A Ratio -100.00% 100.00% 100.00% Setpoint Sum 499 Setpoint D -200.00% 200.00% 0.00% Setpoint Sum 500 Slew Rate Limit 0.00% 100.00% 100.00% Current Loop
Table 17: Parameters by Name
Parameter Name Min Max ICR RO Preset Menu Block User
157 +12V Status 0 1023 RO 0 Diagnostics 171 +12V Supply 0.0 Volts 15.0 Volts RO 0.0 Volts Diagnostics 158 +15V Status 0 1023 RO 0 Diagnostics 172 +15V Supply 0.0 Volts 18.7 Volts RO 0.0 Volts Diagnostics 162 +24V Status 0 1023 RO 0 Diagnostics 173 +24V Supply 0.0 Volts 30.4 Volts RO 0.0 Volts Diagnostics 125 100% Encoder RPM 0 RPM 10000 RPM 1750 RPM Calibration 489 100% Field Current Feedback 0.00 Amps 100.00 Amps 8.00 Amps Field Loop 199 100% RPM Level 0 RPM 10000 RPM 1750 RPM Velocity Loop 444 100% W inder Speed Calibration 0.00 % 100.00 % 0.00 % App CTCW 145 AC TFB Status -2048 4095 RO 0 Diagnostics 497 Actual Tension 0.00% 100.00% 0.00% App CTCW 438 Addressing Mode 0:No Offset 1: Offset 1: Offset Misc Comm. 460 Addressing Mode Test 1 0 65535 RO 21845 Misc System 461 Addressing Mode Test 2 0 65535 RO 43690 Misc System 146 AFB Status -2048 4095 RO 0 Diagnostics 38 Analog Input 1 Term 10 0% Calibration -2048 4095 0 Analog Input 43 Analog Input 1 Term 10 100% Calibration 0 4095 4095 Analog Input 48 Analog Input 1 Term 10 Bias 0.00%* 200.00%* 0.00% Analog Input 23 Analog Input 1 Term 10 Destination 0 437 ICR 217 Analog Input 58 Analog Input 1 Term 10 filtering 0 15 0 Analog Input 53 Analog Input 1 Term 10 Gain 0.00%* 200.00%* 100.00% Analog Input 344 Analog Input 1 Term 10 Invert 0:False 1:True 0:False Analog Input 28 Analog Input 1 Term 10 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 139 Analog Input 1 Term 10 Status -2048 4095 RO 0 Analog Input 33 Analog Input 1 Term 10 Type 0:Current 1:Voltage 1:Voltage Analog Input 39 Analog Input 2 Term 11 0% Calibration -2048 4095 0 Analog Input 44 Analog Input 2 Term 11 100% Calibration 0 4095 4095 Analog Input 49 Analog Input 2 Term 11 Bias 0.00%* 200.00%* 0.00% Analog Input 24 Analog Input 2 Term 11 Destination 0 500 ICR 0 Analog Input 59 Analog Input 2 Term 11 filtering 0 15 0 Analog Input 54 Analog Input 2 Term 11 Gain 0.00%* 200.00%* 100.00% Analog Input 345 Analog Input 2 Term 11 Invert 0:False 1:True 0:False Analog Input 29 Analog Input 2 Term 11 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 140 Analog Input 2 Term 11 Status -2048 4095 RO 0 Analog Input 34 Analog Input 2 Term 11 Type 0:Current 1:Voltage 1:Voltage Analog Input 40 Analog Input 3 Term 12 0% Calibration -2048 4095 0 Analog Input 45 Analog Input 3 Term 12 100% Calibration 0 4095 4095 Analog Input 50 Analog Input 3 Term 12 Bias 0.00%* 200.00%* 0.00% Analog Input 25 Analog Input 3 Term 12 Destination 0 500 ICR 0 Analog Input 60 Analog Input 3 Term 12 filtering 0 15 0 Analog Input 55 Analog Input 3 Term 12 Gain 0.00%* 200.00%* 100.00% Analog Input 346 Analog Input 3 Term 12 Invert 0:False 1:True 0:False Analog Input 30 Analog Input 3 Term 12 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 141 Analog Input 3 Term 12 Status -2048 4095 RO 0 Analog Input 35 Analog Input 3 Term 12 Type 0:Current 1:Voltage 1:Voltage Analog Input 41 Analog Input 4 Term 13 0% Calibration -2048 4095 0 Analog Input 46 Analog Input 4 Term 13 100% Calibration 0 4095 4095 Analog Input
68
Parameter Name Min Max ICR RO Preset Menu Block User
51 Analog Input 4 Term 13 Bias 0.00%* 200.00%* 0.00% Analog Input 26 Analog Input 4 Term 13 Destination 0 500 ICR 0 Analog Input 61 Analog Input 4 Term 13 filtering 0 15 0 Analog Input 56 Analog Input 4 Term 13 Gain 0.00%* 200.00%* 100.00% Analog Input 347 Analog Input 4 Term 13 Invert 0:False 1:True 0:False Analog Input 31 Analog Input 4 Term 13 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 142 Analog Input 4 Term 13 Status -2048 4095 RO 0 Analog Input 36 Analog Input 4 Term 13 Type 0:Current 1:Voltage 1:Voltage Analog Input 42 Analog Input 5 Term 14 0% Calibration -2048 4095 0 Analog Input 47 Analog Input 5 Term 14 100% Calibration 0 4095 4095 Analog Input 52 Analog Input 5 Term 14 Bias 0.00%* 200.00%* 0.00% Analog Input 27 Analog Input 5 Term 14 Destination 0 500 ICR 0 Analog Input 62 Analog Input 5 Term 14 filtering 0 15 0 Analog Input 57 Analog Input 5 Term 14 Gain 0.00%* 200.00%* 100.00% Analog Input 348 Analog Input 5 Term 14 Invert 0:False 1:True 0:False Analog Input 32 Analog Input 5 Term 14 Polarity 0:Unipolar 1:Bipolar 0:Unipolar Analog Input 143 Analog Input 5 Term 14 Status -2048 4095 RO 0 Analog Input 37 Analog Input 5 Term 14 Type 0:Current 1:Voltage RO 1:Voltage Analog Input 87 Analog Output 1 Term 21 Absolute Value 0:False 1:True 0:False Analog Output 85 Analog Output 1 Term 21 Bias -100.00% 100.00% 0.00% Analog Output 83 Analog Output 1 Term 21 Gain -200.00% 200.00% 100.00% Analog Output 81 Analog Output 1 Term 21 Source 0 500 ICR 193 Analog Output 168 Analog Output 1 Term 21 Status -4095 4095 RO 0 Analog Output 88 Analog Output 2 Term 22 Absolute Value 0:False 1:True 0:False Analog Output 86 Analog Output 2 Term 22 Bias -100.00% 100.00% 0.00% Analog Output 84 Analog Output 2 Term 22 Gain -200.00% 200.00% 100.00% Analog Output 82 Analog Output 2 Term 22 Source 0 500 ICR 102 Analog Output 169 Analog Output 2 Term 22 Status -4095 4095 RO 0 Analog Output 114 Armature Amps 0.0 Amps 1530.0 Amps RO 0.0 Amps Current Loop 194 Armature Feedback -120.00% 120.00% RO 0.00% Velocity Loop 252 Armature I Foldback Status 0:False 1:True RO 0:False Fault Logic 251 Armature I Foldback Time 0.0 Secs 60.0 Secs 15.0 Secs Fault Logic 147 Armature IFB Status #1 0 1023 RO 0 Diagnostics 151 Armature IFB Status #2 0 1023 RO 0 Diagnostics 155 Armature IFB Status #3 0 1023 RO 0 Diagnostics 159 Armature IFB Status #4 0 1023 RO 0 Diagnostics 244 Armature Pilot 0:False 1:True RO 0:False Start/Stop 417 Armature Voltage -600.0 Volts 600.0 Volts RO 0.0 Volts Velocity Loop 211 At Standstill 0:False 1:True RO 1:True Zero Speed 209 At Zero Set 0:False 1:True RO 1:True Zero Speed 210 At Zero Speed 0:False 1:True RO 1:True Zero Speed 115 Aux 1 Param -200.00% 200.00% 0.00% Misc Aux Params 116 Aux 2 Param -200.00% 200.00% 0.00% Misc Aux Params 117 Aux 3 Param -200.00% 200.00% 0.00% Misc Aux Params 118 Aux 4 Param -200.00% 200.00% 0.00% Misc Aux Params 119 Aux 5 Param -200.00% 200.00% 0.00% Misc Aux Params 120 Aux 6 Param -200.00% 200.00% 0.00% Misc Aux Params 121 Aux 7 Param -200.00% 200.00% 0.00% Misc Aux Params 98 Aux Current Demand -150.00% 150.00% 0.00% Current Loop 419 Aux Firmware Versions 0 65535 RO - Misc System 361 Aux PI At Limit 0:False 1:True RO 0:False App Aux PI 354 Aux PI Deadband Setpoint -30.00% 30.00% 0.00% App Aux PI 495 Aux PI Enable 0:False 1:True 1:True App Aux PI 352 Aux PI Error -200.00% 200.00% RO 0.00% App Aux PI 351 Aux PI Feedback -100.00% 100.00% 0.00% App Aux PI 353 Aux PI Integral Clamp 0:False 1:True 0:False App Aux PI 363 Aux PI Integral Status 0.00% 100.00% RO 0.00% App Aux PI 356 Aux PI Integral Time Setpoint 0.100 Secs 60.000 Secs 0.200 Secs App Aux PI 364 Aux PI Output 0.00% 100.00% RO 0.00% App Aux PI 358 Aux PI Polarity 0:Unipolar 1:Bipolar 1:Bipolar App Aux PI 355 Aux PI Proportional Gain Setpoint 0.00 5.00 1.00 App Aux PI 362 Aux PI Proportional Status 0.00% 100.00% RO 0.00% App Aux PI 357 Aux PI Reset 0:False 1:True 0:False App Aux PI 360 Aux PI Scale Setpoint -100.00% 100.00% 100.00% App Aux PI 350 Aux PI Setpoint -100.00% 100.00% 0.00% App Aux PI 359 Aux PI Trim Setpoint 0.00% 100.00% 100.00% App Aux PI 154 Battery Status 0 1023 RO 0 Diagnostics 174 Battery Supply 0.0 Volts 5.0 Volts RO 0.0 Volts Diagnostics 435 Baud Rate 2400,4800,9600,19200,38400 38400 Misc Comm. 492 Boot Loader Firmware Version 0 255 RO - Misc System
69
Parameter Name Min Max ICR RO Preset Menu Block User
500 Command Data 0 65535 0 - 421 Command Entry 0 65535 0 None 106 Conduction Angle Demand 0.00% 100.00% RO 0.00% Current Loop 409 Control Firmware Version 0 255 RO - Misc System 429 Core 0.00 % 100.00 % 10.0 % App Winder Speed 446 Core 0.00 % 100.00 % 0.00 % App CTCW 111 Current Demand -150.00% 150.00% RO 0.00% Current Loop 103 Current Error -300.00% 300.00% RO 0.00% Current Loop 102 Current Feedback -150.00% 150.00% RO 0.00% Current Loop 112 Current Feedback {Filtered} -150.00% 150.00% RO 0.00% Current Loop 108 Current Integral Time 0.010 Secs 30.000 Secs 0.164 Secs Current Loop 107 Current Proportional Gain 0.00 25.00 2.50 Current Loop 466 Data Logger Control 0 2 0 - 467 Data Logger Samples 1 10000 10000 - 464 Data Logger Signal Source 0 500 0 - 465 Data Logger Trigger Source 0 500 0 - 260 Date 1 31 - Fault Logic 268 Date #1 1 31 RO - Fault Logic 276 Date #2 1 31 RO - Fault Logic 284 Date #3 1 31 RO - Fault Logic 292 Date #4 1 31 RO - Fault Logic 300 Date #5 1 31 RO - Fault Logic 259 Day 1 7 - Fault Logic 267 Day #1 1 7 RO - Fault Logic 275 Day #2 1 7 RO - Fault Logic 283 Day #3 1 7 RO - Fault Logic 291 Day #4 1 7 RO - Fault Logic 299 Day #5 1 7 RO - Fault Logic 144 DC TFB Status -2048 4095 RO 0 Diagnostics 432 Diameter 0.00 % 100.00 % RO 0.00 % App Winder Speed 451 Diameter 0.00 % 100.00 % RO 0.00 % App CTCW 447 Diameter Memory Reset 0:False 1:True 0:False App CTCW 431 Diameter Ratio 0.00 % 100.00 % 0.00 % App Winder Speed 442 Diameter Select 0:Off,1:Line/Winder,2:Ext Dia 0:Off App CTCW 450 Diameter Torque 0.00 % 100.00 % RO 0.00 % App CTCW 15 Digital Input 1 Term 31 Closed Value 0:False* 1:True* 1:True Digital Input 1 Digital Input 1 Term 31 Destination 0 500 ICR 239 Digital Input 8 Digital Input 1 Term 31 Open Value 0:False* 1:True* 0:False Digital Input 132 Digital Input 1 Term 31 Status 0:Open 1:Closed RO 0:Open Digital Input 16 Digital Input 2 Term 32 Closed Value 0:False* 1:True* 0:False Digital Input 2 Digital Input 2 Term 32 Destination 0 500 ICR 240 Digital Input 9 Digital Input 2 Term 32 Open Value 0:False* 1:True* 1:True Digital Input 133 Digital Input 2 Term 32 Status 0:Open 1:Closed RO 0:Open Digital Input 17 Digital Input 3 Term 33 Closed Value 0:False* 1:True* 1:True Digital Input 3 Digital Input 3 Term 33 Destination 0 500 ICR 241 Digital Input 10 Digital Input 3 Term 33 Open Value 0:False* 1:True* 0:False Digital Input 134 Digital Input 3 Term 33 Status 0:Open 1:Closed RO 0:Open Digital Input 18 Digital Input 4 Term 34 Closed Value 0:False* 1:True* 1:True Digital Input 4 Digital Input 4 Term 34 Destination 0 500 ICR 222 Digital Input 11 Digital Input 4 Term 34 Open Value 0:False* 1:True* 0:False Digital Input 135 Digital Input 4 Term 34 Status 0:Open 1:Closed RO 0:Open Digital Input 19 Digital Input 5 Term 35 Closed Value 0:False* 1:True* 1:True Digital Input 5 Digital Input 5 Term 35 Destination 0 500 ICR 215 Digital Input 12 Digital Input 5 Term 35 Open Value 0:False* 1:True* 0:False Digital Input 136 Digital Input 5 Term 35 Status 0:Open 1:Closed RO 0:Open Digital Input 20 Digital Input 6 Term 36 Closed Value 0:False* 1:True* 1:True Digital Input 6 Digital Input 6 Term 36 Destination 0 500 ICR 216 Digital Input 13 Digital Input 6 Term 36 Open Value 0:False* 1:True* 0:False Digital Input 137 Digital Input 6 Term 36 Status 0:Open 1:Closed RO 0:Open Digital Input 21 Digital Input 7 Term 37 Closed Value 0:False* 1:True* 1:True Digital Input 7 Digital Input 7 Term 37 Destination 0 500 ICR 254 Digital Input 14 Digital Input 7 Term 37 Open Value 0:False* 1:True* 0:False Digital Input 138 Digital Input 7 Term 37 Status 0:Open 1:Closed RO 0:Open Digital Input 91 Digital Output Term 52 Absolute Value 0:False 1:True 1:True F/D Output 94 Digital Output Term 52 Invert 0:False 1:True 0:False F/D Output 93 Digital Output Term 52 Off Value -200.00%* 200.00%* 0.00% F/D Output 92 Digital Output Term 52 On Value -200.00%* 200.00%* 100.00% F/D Output 110 Drive Mode (LSB) 0 1 0 Current Loop 109 Drive Mode (MSB) 0 1 0 Current Loop 411 Drive Model 0 65535 RO 0 Misc System
70
Parameter Name Min Max ICR RO Preset Menu Block User
303 Drive Ready 0:False 1:True RO 0:False Start Stop Logic 422 Drive Status 0 8 RO 0 None 163 EFB Counter Status 0 Hz 65535 Hz RO 0 Hz Diagnostics 196 Encoder Feedback -125.00% 125.00% RO 0.00% Velocity Loop 124 Encoder Lines 0:256,1:512,2:1024,3:2048 2:1024 Calibration 445 External Diameter Ratio 0.00 % 100.00 % 0.00 % App CTCW 490 External Fault 0:False 1:True RO 0:False Fault Logic 254 External Fault Reset 0:False 1:True 0:False Fault Logic 488 External Field Current Feedback 0.00% 100.00% 0.00% Field Loop 410 Fan Mode 0:Auto 1:On 0:Auto Diagnostics 263 Fault #1 0x0000 0xFFFF RO - Fault Logic 271 Fault #2 0x0000 0xFFFF RO - Fault Logic 279 Fault #3 0x0000 0xFFFF RO - Fault Logic 287 Fault #4 0x0000 0xFFFF RO - Fault Logic 295 Fault #5 0x0000 0xFFFF RO - Fault Logic 486 Fault Reset 0:False 1:True RO 0:False Fault Log 197 Feedback Select 0:AFB, 1:TFB, 2:EFB ICR 0:AFB Velocity Loop 338 Field Amps 0.00 Amps 10.00 Amps RO 0.00 Amps Field Loop 328 Field Conduction Angle 0.00% 100.00% RO 0.00% Field Loop 423 Field Crossover Enable 0:False 1:True ICR 0:False Field Crossover 426 Field Crossover Output 0.00% 100.00% RO 0.00% Field Crossover 425 Field Crossover Setpoint 0.00% 95.00% 85.00% Field Crossover 339 Field Current Demand 0.00% 100.00% 0.00% Field Loop 487 Field Current Feedback Select 0:Internal 1:External 0:Internal Field Loop 332 Field Economy Enable 0:False 1:True 0:True Field Loop 331 Field Enable 0:False 1:True ICR 1:True Field Loop 336 Field IFB 0.00% 100.00% RO 0.00% Field Loop 337 Field IFB {Filtered} 0.00% 100.00% RO 0.00% Field Loop 342 Field IFB Offset -20.00% 20.00% 0.00% Field Loop 148 Field IFB Status #1 0 1023 RO 0 Diagnostics 152 Field IFB Status #2 0 1023 RO 0 Diagnostics 156 Field IFB Status #3 0 1023 RO 0 Diagnostics 160 Field IFB Status #4 0 1023 RO 0 Diagnostics 341 Field Integral Time 0.001 Secs 30.000 Secs 0.200 Secs Field Loop 250 Field Loss Inhibit 0:False 1:True 0:False Fault Logic 249 Field Loss Level 0.00% 100.00% 6.00% Fault Logic 340 Field Prop Gain 0.00 20.00 0.20 Field Loop 333 Field VFB 0.00% 125.00% RO 0.00% Field Loop 334 Field VFB {Filtered} 0.00% 125.00% RO 0.00% Field Loop 343 Field VFB Offset -20.00% 20.00% 0.00% Field Loop 150 Field VFB Status 0 1023 RO 0 Diagnostics 335 Field Voltage 0.0 Volts 400.0 Volts RO 0.0 Volts Field Loop 101 Final Current Demand -150.00% 150.00% RO 0.00% Current Loop 113 Final Current Demand {Filtered} -150.00% 150.00% RO 0.00% Current Loop 427 Final Field Current Demand 0.00% 100.00% RO 0.00% Field Loop 129 Final Velocity Demand -105.00% 105.00% RO 0.00% Velocity Loop 226 Forward Accel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 307 Forward Accel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 227 Forward Decel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 308 Forward Decel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 190 Forward Max Speed Scale 0.00% 105.00% 100.00% Velocity Loop 170 Freq/Dig Output Term 52 Status -1 2000 RO 0 F/D Output 89 Freq/Digital Output Term 52 Source 0 500 ICR 193 F/D Output 64 Frequency Input Term 18 0% Calibration 0 Hz 60000 Hz 0 Hz Frequency Input 65 Frequency Input Term 18 100% Calibration 0 Hz 60000 Hz 40000 Hz Frequency Input 66 Frequency Input Term 18 Bias 0.00%* 200.00%* 0.00% Frequency Input 63 Frequency Input Term 18 Destination 0 500 ICR 0 Frequency Input 68 Frequency Input Term 18 filtering 0 15 0 Frequency Input 67 Frequency Input Term 18 Gain 0.00%* 200.00%* 100.00% Frequency Input 349 Frequency Input Term 18 Sign 0:Positive 1:Negative 0:Positive Freq Input 164 Frequency Input Term 18 Status 0 Hz 60000 Hz RO 0 Hz Freq Input 96 Frequency Output Term 52 Bias 0.00% 100.00% 0.00% F/D Output 95 Frequency Output Term 52 Gain 0.00% 200.00% 100.00% F/D Output 90 Frequency/Digital Term 52 Mode 0:Freq 1:Digital 0:Freq F/D Output 448 Friction Compensation 0.00 % 100.00 % 0.00 % App CTCW 453 Friction Torque 0.00 % 100.00 % RO 0.00 % App CTCW 472 General Param 1 0 65535 0 - 481 General Param 10 0 65535 0 - 482 General Param 11 0 65535 0 - 483 General Param 12 0 65535 0 -
71
Parameter Name Min Max ICR RO Preset Menu Block User
473 General Param 2 0 65535 0 - 474 General Param 3 0 65535 0 - 475 General Param 4 0 65535 0 - 476 General Param 5 0 65535 0 - 477 General Param 6 0 65535 0 - 478 General Param 7 0 65535 0 - 479 General Param 8 0 65535 0 - 480 General Param 9 0 65535 0 - 181 Greater Than A -200.00% 200.00% 1.00% Misc Thresholds 187 Greater Than B -200.00% 200.00% 1.00% Misc Thresholds 153 Heatsink Status 0 1023 RO 0 Diagnostics 176 Heatsink Temperature 0 C 115 C RO 0 C Diagnostics 258 Hour 0 23 - Fault Logic 266 Hour #1 0 23 RO - Fault Logic 274 Hour #2 0 23 RO - Fault Logic 282 Hour #3 0 23 RO - Fault Logic 290 Hour #4 0 23 RO - Fault Logic 298 Hour #5 0 23 RO - Fault Logic 179 Hysteresis A 0.00% 200.00% 0.00% Misc Thresholds 185 Hysteresis B 0.00% 200.00% 0.00% Misc Thresholds 493 Independent Current Limits 0:False 1:True 1:True Current Loop 494 Independent Speed Scales 0:False 1:True 1:True Velocity Loop 449 Inertia Compensation 0.00 % 50.00 % 0.00 % App CTCW 454 Inertia Torque 0.00 % 100.00 % RO 0.00 % App CTCW 177 Input A -200.00% 200.00% 0.00% Misc Thresholds 183 Input B -200.00% 200.00% 0.00% Misc Thresholds 214 Integral Clamp 0:False 1:True 0:False Velocity Loop 485 Internal Fault Reset 0:False 1:True RO 0:False Fault Log 367 Internal Link 1 Destination 0 500 ICR 306 Misc Internal Links 366 Internal Link 1 Source 0 500 243 Misc Internal Links 385 Internal Link 10 Destination 0 500 ICR 0 Misc Internal Links 384 Internal Link 10 Source 0 500 0 Misc Internal Links 387 Internal Link 11 Destination 0 500 ICR 0 Misc Internal Links 386 Internal Link 11 Source 0 500 0 Misc Internal Links 389 Internal Link 12 Destination 0 500 ICR 0 Misc Internal Links 388 Internal Link 12 Source 0 500 0 Misc Internal Links 391 Internal Link 13 Destination 0 500 ICR 0 Misc Internal Links 390 Internal Link 13 Source 0 500 0 Misc Internal Links 393 Internal Link 14 Destination 0 500 ICR 0 Misc Internal Links 392 Internal Link 14 Source 0 500 0 Misc Internal Links 395 Internal Link 15 Destination 0 500 ICR 0 Misc Internal Links 394 Internal Link 15 Source 0 500 0 Misc Internal Links 397 Internal Link 16 Destination 0 500 ICR 0 Misc Internal Links 396 Internal Link 16 Source 0 500 0 Misc Internal Links 399 Internal Link 17 Destination 0 500 ICR 0 Misc Internal Links 398 Internal Link 17 Source 0 500 0 Misc Internal Links 401 Internal Link 18 Destination 0 500 ICR 0 Misc Internal Links 400 Internal Link 18 Source 0 500 0 Misc Internal Links 403 Internal Link 19 Destination 0 500 ICR 0 Misc Internal Links 402 Internal Link 19 Source 0 500 0 Misc Internal Links 369 Internal Link 2 Destination 0 500 ICR 105 Misc Internal Links 368 Internal Link 2 Source 0 500 225 Misc Internal Links 405 Internal Link 20 Destination 0 500 ICR 0 Misc Internal Links 404 Internal Link 20 Source 0 500 0 Misc Internal Links 371 Internal Link 3 Destination 0 500 ICR 97 Misc Internal Links 370 Internal Link 3 Source 0 500 225 Misc Internal Links 373 Internal Link 4 Destination 0 500 ICR 0 Misc Internal Links 372 Internal Link 4 Source 0 500 0 Misc Internal Links 375 Internal Link 5 Destination 0 500 ICR 0 Misc Internal Links 374 Internal Link 5 Source 0 500 0 Misc Internal Links 377 Internal Link 6 Destination 0 500 ICR 0 Misc Internal Links 376 Internal Link 6 Source 0 500 0 Misc Internal Links 379 Internal Link 7 Destination 0 500 ICR 0 Misc Internal Links 378 Internal Link 7 Source 0 500 0 Misc Internal Links 381 Internal Link 8 Destination 0 500 ICR 0 Misc Internal Links 380 Internal Link 8 Source 0 500 0 Misc Internal Links 383 Internal Link 9 Destination 0 500 ICR 0 Misc Internal Links 382 Internal Link 9 Source 0 500 0 Misc Internal Links 126 Invert FB 0:False 1:True 0:False Calibration 131 IR Compensation 0.00% 10.00% 0.00% Velocity Loop
72
Parameter Name Min Max ICR RO Preset Menu Block User
241 Jog 0:False 1:True 0:False Start/Stop 246 Jog Delay 0.0 Secs 10.0 Secs 3.0 Secs Start/Stop 221 Jog Reference -200.00% 200.00% 5.00% Setpoints 243 Jog Status 0:False 1:True RO 0:False Start/Stop 420 Keypad Fault Reset 0 1 0 None 304 Latched Fault Status 0x0000 0Xffff RO 0x0000 Fault Logic 180 Less Than or Equal A -200.00% 200.00% 0.00% Misc Thresholds 186 Less Than or Equal B -200.00% 200.00% 0.00% Misc Thresholds 430 Line Speed 0.00 % 100.00 % 0.00 % App W inder Speed 443 Line Speed 0.00 % 100.00 % 0.00 % App CTCW 459 Line Speed Sum 0.00 % 100.00 % 0.00 % App Winder Speed 175 Line Voltage 0.0 Volts 600.0 Volts RO 0.0 Volts Diagnostics 149 Line Voltage Status 0 1023 RO 0 Diagnostics 407 Load 0 2 ICR 0 Misc System 212 Loop Enable 0:False 1:True RO 0:False Zero Speed 414 Max Peak -200.00% 200.00% RO 0.00% Misc MinMax 424 Min Field Current Demand 0.00% 100.00% Field Crossover 416 Min Max Difference -200.00% 200.00% RO 0.00% Misc MinMax 413 Min Max Reset 0:False 1:True 0:False Misc MinMax 412 Min Max Source 0 500 0 Misc MinMax 415 Min Peak -200.00% 200.00% RO 0.00% Misc MinMax 257 Minute 0 59 - Fault Logic 265 Minute #1 0 59 RO - Fault Logic 273 Minute #2 0 59 RO - Fault Logic 281 Minute #3 0 59 RO - Fault Logic 289 Minute #4 0 59 RO - Fault Logic 297 Minute #5 0 59 RO - Fault Logic 261 Month 1 12 - Fault Logic 269 Month #1 1 12 RO - Fault Logic 277 Month #2 1 12 RO - Fault Logic 285 Month #3 1 12 RO - Fault Logic 293 Month #4 1 12 RO - Fault Logic 301 Month #5 1 12 RO - Fault Logic 317 MOP Decrease 0:False 1:True 0:False Misc MOP 319 MOP Decrease Time 0.0 Secs 600.0 Secs 5.0 Secs Misc MOP 316 MOP Increase 0:False 1:True 0:False Misc MOP 318 MOP Increase Time 0.0 Secs 600.0 Secs 5.0 Secs Misc MOP 320 MOP Max Value -100.00% 100.00% 100.00% Misc MOP 321 MOP Min Value -100.00% 100.00% -100.00% Misc MOP 324 MOP Output -100.00% 100.00% RO 0.00% Misc MOP 322 MOP Reset 0:False 1:True 0:False Misc MOP 323 MOP Reset Value -100.00% 100.00% 0.00% Misc MOP 200 Motor RPM 0 RPM 20000 RPM RO 0 RPM Velocity Loop 122 Nameplate Drive Current Per Model Per Model RO Per Model Calibration 123 Nameplate Motor Current 0.0 Amps Per Model Per Model Calibration 128 Nameplate Motor Voltage 0.0 Volts 500.0 Volts 240.0 Volts Calibration 100 Negative C.L. -150.00% 0.00% -150.00% Current Loop 434 Network Address 1 255 1 Misc Comm. 104 Open Loop Arm Select 0:False 1:True ICR 0:False Current Loop 105 Open Loop Arm Set Pt -100.00% 100.00% 0.00% Current Loop 329 Open Loop Field Select 0:False 1:True 1:True Field Loop 330 Open Loop Field Setpoint 0.00% 100.00% 67.00% Field Loop 182 Output A -200.00% 200.00% RO 0.00% Misc Thresholds 188 Output B -200.00% 200.00% RO 0.00% Misc Thresholds 253 Overcurrent Time 0.0 Secs 240.0 Secs 45.0 Secs Fault Logic 223 Overspeed Level 0.00% 125.00% 125.00% Fault Logic 439 Parameters Changed 0:False 1:True RO 0:False Misc System 436 Parity 0:None, 1:Odd, 2:Even None Misc Comm. 99 Positive C.L. 0.00% 150.00% 150.00% Current Loop 327 Power On Reset 0:False 1:True RO 0:False Fault Logic 255 Present Fault Status 0x0000 0xFFFF RO 0x0000 Fault Logic 305 Ramp Bypass 0:False 1:True 0:False Accel/Decel 224 Ramp Input -150.00% 150.00% RO 0.00% Accel/Decel 225 Ramp Output -150.00% 150.00% RO 0.00% Accel/Decel 306 Ramp Select 0:False 1:True 0:False Accel/Decel 230 Ramp Threshold 0.00% 100.00% 5.00% Accel/Decel 231 Ramping Status 0:False 1:True RO 0:False Accel/Decel 217 Reference 0 -200.00% 200.00% 0.00% Setpoints 218 Reference 1 -200.00% 200.00% 0.00% Setpoints 219 Reference 2 -200.00% 200.00% 0.00% Setpoints
73
Parameter Name Min Max ICR RO Preset Menu Block User
220 Reference 3 -200.00% 200.00% 0.00% Setpoints 222 Reference Invert 0:False 1:True 0:False Setpoints 216 Reference Select (LSB) 0 1 0 Setpoints 215 Reference Select (MSB) 0 1 0 Setpoints 206 Regenerative Mode 0:False 1:True ICR 1:True Current Loop 408 Re-Initialize 0 1 ICR 0 Misc System 165 Relay Output 1 Term 25-27 Status 0 1 RO 0 User Relay 166 Relay Output 2 Term 28-30 Status 0 1 RO 0 User Relay 167 Relay Output 3 Term 54-56 Status 0 1 RO 0 User Relay 468 Reserved -200.00% 200.00% 0.00% - 469 Reserved -200.00% 200.00% 0.00% - 470 Reserved -200.00% 200.00% 0.00% - 471 Reserved -200.00% 200.00% 0.00% - 161 Reserved [ADCIN11] 0 1023 RO 0 Diagnostics 228 Reverse Accel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 309 Reverse Accel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 229 Reverse Decel Time A 0.1 Secs 600.0 Secs 5.0 Secs Accel/Decel 310 Reverse Decel Time B 0.1 Secs 600.0 Secs 10.0 Secs Accel/Decel 191 Reverse Max Speed Scale -105.00% 0.00% -100.00% Velocity Loop 239 Run 0:False 1:True 0:False Start/Stop 22 Run Enable Term 7 0:Open 1:Closed RO 0:Open Digital Input 242 Run Status 0:False 1:True RO 0:False Start/Stop 406 Save 0 1 ICR 0 Misc System 452 Scaled Winder Speed Ratio 0.00 % 100.00 % RO 0.00 % App CTCW 256 Seconds 0 59 - Fault Logic 264 Seconds #1 0 59 RO - Fault Logic 272 Seconds #2 0 59 RO - Fault Logic 280 Seconds #3 0 59 RO - Fault Logic 288 Seconds #4 0 59 RO - Fault Logic 296 Seconds #5 0 59 RO - Fault Logic 233 Setpoint A Invert 0:False 1:True 0:False Setpoint Sum 498 Setpoint A Ratio -100.00% 100.00% 100.00% Setpoint Sum 234 Setpoint B -200.00% 200.00% 0.00% Setpoint Sum 235 Setpoint B Invert 0:False 1:True 0:False Setpoint Sum 236 Setpoint C -200.00% 200.00% 0.00% Setpoint Sum 237 Setpoint C Invert 0:False 1:True 0:False Setpoint Sum 499 Setpoint D -200.00% 200.00% 0.00% Setpoint Sum 500 Slew Rate Limit 0.00% 100.00% 100.00% Current Loop 208 Standstill Logic 0:False 1:True 0:False Zero Speed 245 Start/Stop Logic Select 0:Three Wire 1:TwoWire 0:Three Wire Start/Stop 462 Static Friction Torque 0.00 % 100.00 % 0.00 % App CTCW 240 Stop 0:False 1:True 0:False Start/Stop 437 Stop Bits 1 2 2 Misc Comm. 232 Stop Mode 0:Ramp,1:Quick,2:Coast 0:Ramp Start/Stop 238 System Status Register 0x0000 0xFFFF RO 0x0000 Diagnostics 195 Tach Feedback -125.00% 125.00% RO 0.00% Velocity Loop 127 Tachometer Type 0:DC 1:AC 0:DC Calibration 456 Taper Diameter 0.00 % 100.00 % 0.00 % App CTCW 457 Taper Percentage 0.00 % 100.00 % 0.00 % App CTCW 458 Tension Demand 0.00 % 100.00 % RO 0.00 % App CTCW 441 Tension Setpoint 0.00 % 100.00 % 0.00 % App CTCW 484 Tension Sum -100.00% 100.00% 0.00% App CTCW 178 Threshold A 0.00% 200.00% 1.00% Misc Thresholds 184 Threshold B 0.00% 200.00% 1.00% Misc Thresholds 428 Timer 0.0 Secs 240.0 Secs RO 0.0 Secs Misc Timer 314 Timer Greater Than -100.00% 100.00% 1.00% Misc Timer 313 Timer Less Than or Equal To -100.00% 100.00% 0.00% Misc Timer 315 Timer Output -100.00% 100.00% RO 0.00% Misc Timer 311 Timer Reset 0:False 1:True 1:True Misc Timer 365 Timer Reset Invert 0:False 1:True 0:False Misc Timer 312 Timer Threshold 0.0 Secs 240.0 Secs 5.0 Secs Misc Timer 97 Torque Reference -150.00% 150.00% 0.00% Current Loop 440 Total Parameters 0 65535 RO 500 Misc System 455 Total Torque 0.00 % 100.00 % RO 0.00 % App CTCW 0 Trash -32768 32767 0 None 491 Trigger Board Firmware Version 0 255 RO - Misc System 72 User Relay 1 Term 25-27 Absolute Value 0:False 1:True 1:True User Relay 78 User Relay 1 Term 25-27 Off Value 0:False* 1:True* 0:False User Relay 75 User Relay 1 Term 25-27 On Value 0:False* 1:True* 1:True User Relay 69 User Relay 1 Term 25-27 Source 0 500 ICR 210 User Relay
74
Parameter Name Min Max ICR RO Preset Menu Block User
73 User Relay 2 Term 28-30 Absolute Value 0:False 1:True 1:True User Relay 79 User Relay 2 Term 28-30 Off Value 0:False* 1:True* 0:False User Relay 76 User Relay 2 Term 28-30 On Value 0:False* 1:True* 1:True User Relay 70 User Relay 2 Term 28-30 Source 0 500 ICR 242 User Relay 74 User Relay 3 Term 54-56 Absolute Value 0:False 1:True 1:True User Relay 80 User Relay 3 Term 54-56 Off Value 0:False* 1:True* 0:False User Relay 77 User Relay 3 Term 54-56 On Value 0:False* 1:True* 1:True User Relay 71 User Relay 3 Term 54-56 Source 0 500 ICR 303 User Relay 189 Velocity Demand -100.00% 100.00% RO 0.00% Velocity Loop 192 Velocity Error -230.00% 230.00% RO 0.00% Velocity Loop 193 Velocity Feedback -125.00% 125.00% RO 0.00% Velocity Loop 198 Velocity Feedback Filtered -125.00% 125.00% RO 0.00% Velocity Loop 203 Velocity Gain Select 0 1 0 Velocity Loop 202 Velocity Integral Time A 0.010 Secs 30.000 Secs 0.158 Secs Velocity Loop 326 Velocity Integral Time B 0.010 Secs 30.000 Secs 0.058 Secs Velocity Loop 205 Velocity Loop Output -150.00% 150.00% RO 0.00% Velocity Loop 204 Velocity Overshoot Gain A 0.00% 100.00% 100.00% Velocity Loop 213 Velocity Overshoot Gain B 0.00% 100.00% 100.00% Velocity Loop 201 Velocity Prop Gain A 0.00 100.00 9.00 Velocity Loop 325 Velocity Prop Gain B 0.00 100.00 9.00 Velocity Loop 248 VFB Loss Inhibit 0:False 1:True 0:False Fault Logic 247 VFB Loss Level 0.00% 100.00% 50.00% Fault Logic 130 VFB Offset -10.00% 10.00% 0.00% Velocity Loop 418 Watchdog Status 0x0000 0xFFFF RO 0x0000 Misc System 433 Winder Speed Ratio 0.00 % 100.00 % RO 0.00 % App Winder Speed 463 Winder Speed Ratio 0.00 % 100.00 % 0.00 % App CTCW 262 Year 0 99 - Fault Logic 270 Year #1 0 99 RO - Fault Logic 278 Year #2 0 99 RO - Fault Logic 286 Year #3 0 99 RO - Fault Logic 294 Year #4 0 99 RO - Fault Logic 302 Year #5 0 99 RO - Fault Logic 207 Zero Speed Setpoint 1.00% 25.00% 2.00% Zero Speed
75
Serial Network Communications
The serial interface is a standard feature on all Elite Pro drives. The interface enables other equipment such as a computer or programmable logic controller (PLC) to monitor, modify, and/or log data. The network is physically implemented on an RS-485 medium (2 or 4 wire selectable) using the Modbus software protocol. Refer to D12586 in the Prints Section for network connection information.
RS485 Multidrop Network Wiring
All network wiring should use the TB2 terminal strip located on the right-hand side of the unit. DIP switch SW4 should be set as follows:
SW4 DIP Switch
Position Description
1 Fail-Safe Bias 2 Fail-Safe Bias 3 Terminator 4 2-Wire 5 2-Wire
6-8 Reserved
Table 18: SW4 DIP Switch Settings
Fail-Safe Biasing
Failsafe biasing is required to bias the communication lines to a known state when no devices are communicating (i.e., driving the bus). Fail-safe biasing should be active in ONLY one unit in the network. Placing positions 1 & 2 in the closed (down) position activates the Fail-Safe biasing. In some cases, the network master may provide this biasing, and therefore would not need to be activated on one of the slave units. (Refer to master documentation.)
Terminator
Terminating resistors are required at each end of a daisy chained RS-485 network in order to provide clean, error free signal transmissions. If the Elite Pro is at one end of the daisy chained network, activate the terminating resistor by placing position 3 in the closed position (down).
2-Wire
RS-485 networks can operate in either a 2-Wire or 4-Wire configuration. In 4-Wire mode, the transmit and receive signals use separate twisted wire pairs. In 2-Wire mode, the transmit and receive signals share the same twisted wire pair. If a 2-Wire network is used, place positions 4 & 5 in the closed (down) position. This provides an internal connection from TXD+ to RXD+ and from TXD- to RXD-, and eliminates the need to add jumpers externally to the drive between these points.
RS232 Singledrop Wiring (CN16)
Connector CN16 is provided to allow a device with an RS-232 serial port a quick and easy method to connect to the drive. This connection can only be used in a singledrop environment (i.e., only one slave device) and cannot be used along with TB2. (If the drive is wired in a network via TB2, unplug the TB2 terminal strip before plugging into CN16.) Position 2 of DIP switch SW4 should be closed (down) and all others positions should be open to use CN16.
Also available is Carotron's ProLink software that can be used to setup the Elite Pro via a PC. Features include loading/saving drive parameters to a file, graphical interface, & Professors to aid in complex setups.
76
Spare Parts
9.1 Printed Circuit Assemblies
9.2 Fuses
Control Board
All models.......................................................................................................... D12155-000
Trigger Board
Models EPN020-000 thru EPN060-000............................................................ D13073-002
Models EPR020-000 thru EPR060-000............................................................ D13073-003
Models EPN075-000 thru EPN150-000............................................................ D13073-004
Models EPR075-000 thru EPR150-000............................................................ D13073-005
Models EPN200-000 thru EPN600-000............................................................ D13073-000
Models EPR200-000 thru EPR600-000............................................................ D13073-001
CT ID Board
Models EPx020-000.......................................................................................... C12164-000
Models EPx040-000.......................................................................................... C12164-001
Models EPx060-000.......................................................................................... C12164-002
Models EPx075-000.......................................................................................... C12164-003
Models EPx100-000.......................................................................................... C12164-004
Models EPx125-000.......................................................................................... C12164-005
Models EPx150-000.......................................................................................... C12164-006
Models EPx200-000.......................................................................................... C12164-007
Models EPx250-000.......................................................................................... C12164-008
Models EPx300-000.......................................................................................... C12164-009
Models EPx400-000.......................................................................................... C12164-010
Models EPx500-000.......................................................................................... C12164-011
Processor Board
All models...........................................................................................................A12150-000
Power Supply Board
All models.......................................................................................................... C12572-000
Trigger Board: FU1, FU2, FU3: Dual Element, Time Delay, 500VAC
Model Amps Carotron P/N Manufacturer P/N
EPx020-000
thru EPx060-000 EPx075-000
thru EPx600-000
10 FUS1008-03
15 FUS1008-04
Bussmann FNQ-10 Littelfuse FLQ-10
Bussmann FNQ-15 Littelfuse FLQ-15
Table 19: Trigger Board Fuses
77
Power Supply Board: F1, F2, F3: 1 Ampere, Time Delay, 600VAC
Model Amps Carotron P/N Manufacturer P/N
All Models 1 FUS1007-00
Table 20: Power Supply Board Fuses
Bussmann FNQ-R-1 Littelfuse KLDR-1
Recommended Line Fuses: Semiconductor
(Not included with basic drive package)
Model Amps Carotron P/N Manufacturer P/N
EPx020-000 50 FUS1009-00
EPx040-000 100 FUS1009-01
EPx060-000 150 FUS1009-02
EPx075-000 175 FUS1009-03
EPx100-000 250 FUS1009-05
EPx125-000 300 FUS1009-06
EPx150-000 350 FUS1009-04
EPx200-000 450 FUS1009-07
EPx250-000 600 FUS1009-08
EPx300-000 700 FUS1009-09
EPx400-000 1000 FUS1009-12 Bussmann FWH1000 EPx500-000 1200 FUS1009-13 Bussmann FWH1200 EPx600-000 1400 FUS1009-14 Bussmann FWH1400
(Very Fast Acting)
Bussmann FWH50 Littelfuse L50S50 Bussmann FWH100 Littelfuse L50S100 Bussmann FWH150 Littelfuse L50S150 Bussmann FWH175 Littelfuse L50S175 Bussmann FWH250 Littelfuse L50S250 Bussmann FWH300 Littelfuse L50S300 Bussmann FWH350 Littelfuse L50S350 Bussmann FWH450 Littelfuse L50S450 Bussmann FWH600 Littelfuse L50S600 Bussmann FWH700 Littelfuse L50S700
, 500VAC
78
Table 21: Recommended Line Fuses
9.3 Power Components
Armature Bridge
All armature bridge devices are dual SCR isolated power modules rated at 1400 volts (minimum) repetitive peak off state and reverse voltage and have 1000V/uS dvdt. There are 3 each on EPN Series models, PMD3-5, and 3 additional, PMD6-8, on EPR Series models. Current ratings are per control model.
NOTE: The IR (Internaltional Rectifier) modules are not pin-for-pin compatible with the Eupec and Semikron modules. The gate and cathode signal leads on IR modules are reversed on the second SCR device. Consult factory for assistance when replacing a Eupec or Semikron module with an IR module or vice-versa.
Model Amps Carotron P/N Manufacturer P/N
Eupec TT31N14KOF
EPx020-000 31 PMD1025-00
EPx040-000 56 PMD1026-00
EPx060-000 92 PMD1027-00
EPx075-000 105 PMD1019-00
EPx100-000 131 PMD1029-00
EPx125-000 EPx150-000 EPx200-000 EPx250-000 EPx300-000 EPx400-000 500 PMD1033-00 Powerex LD431650
EPx500-000 EPx600-000
162 PMD1021-00
251 PMD1031-00
700 PMD1034-00 Powerex PD431607
Semikron SKKT42/14E IR IRKT41/14A Eupec TT56N14KOF Semikron SKKT57/14E IR IRKT56/14A Eupec TT92N14KOF Semikron SKKT92/14E IR IRKT91/14A Eupec TT105N14KOF Semikron SKKT106/14E IR IRKT105/14A Eupec TT131N14KOF IR IRKT136/14 Eupec TT162N14KOF IR IRKT162/14
Eupec TT251N14KOF IR IRKT250/14
Table 22: Armature Bridge Modules
Field Supply
The Field Supply uses one dual SCR isolated power module (PMD1) rated at 1400 volts (minimum), and one dual diode module (PMD2) also rated at 1400 volts (minimum).
Model Module Amps Carotron P/N Manufacturer P/N
All Models PMD1 31 PMD1025-00
All Models PMD2 31 PMD1028-00
Table 23: Field Supply Modules
Eupec TT31N14KOF Semikron SKKT42/14E Eupec DD31N14K Semikron SKKD26/14
79
Prints
80
81
82
83
P /N
P O W E R
LLL
C N
E L I T E
C N 1
C
G
C N 2
C N
84
85
FOR 75 HP MODEL ONLY
ELITE PRO
POWER SUPPLY
P/N C12110-000
CN9B
CN26B
CN32
CN13B
L3 L2
CN7B
L1
GND
86
FOR 75 HP MODEL ONLY
CN9B CN2 6B
ELITE PRO
POWER SUPPLY
P/N C12110-000
CN32
CN13B
CN7B
L2L3
L1
GND
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Loading...