Campbell Scientific DCP100 User Manual

INSTRUCTION MANUAL
DCP100
Data Collection Platform
2/99
Copyright (c) 1999
Campbell Scientific, Inc.

Warranty and Assistance

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers wi thin their territories. Please visi t www.campbellsci.com to determine which Campbell Scientific company serves your country. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC's shipping address is:
CAMPBELL SCIENTIFIC, INC.
RMA#_____ 815 West 1800 North Logan, Utah 84321-1784
CAMPBELL SCIENTIFIC, INC. does not accept collect calls.

WARNINGS FOR DCP100 USERS

1. The datalogger operating system must be compatible for use with the TGT-1. CR10X dataloggers must have version 1.6 or later. All CR510 datalogger operating systems are compatible with the DCP100. CR500 dataloggers need version 1.4 or later. CR23X dataloggers should have version
1.4 or later. CR10 and 21X dataloggers require a special PROM. CR10 PROM is item number 8131-00, 21X PROM is item number 8132-04. Check *B mode for operating system version. If you did not purchase the TGT-1 and datalogger together, make sure you have the latest operating system. Contact a Campbell Scientific Applications Engineer if you have any questions.
2. The datalogger clock must be set to Coordinated Universal Time. All references to time are based on Coordinated Universal Time.
3. If you are using the keypad (CR10KD) when the datalogger initiates a P120 or P123 instruction, the instruction will fail without reporting a failure.
4. Due to atmospheric interference and other sources of error, it is possible for a data transmission to be missed by the ground station. If this happens, your missed data is still in the datalogger until overwritten by new data.
5. The antenna must be connected before transmission or the transmitter will be damaged.
DCP100 DATA COLLECTION PLATFORM OPERATOR’S MANUAL

TABLE OF CONTENTS

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.
PAGE
1. INTRODUCTION.........................................................................................................................1
2. GOES SYSTEM..........................................................................................................................1
2.1 Orbit ...........................................................................................................................................1
2.2 NESDIS and TransmitWindows .............................................................................................1
2.3 Data Retrieval.............................................................................................................................1
3. TGT1 TRANSMITTER SPECIFICATIONS.........................................................................2
4. REQUIRED EQUIPMENT........................................................................................................2
4.1 Computer Base Station..............................................................................................................2
4.2 Field Station ...............................................................................................................................2
5. POWER SUPPLIES...................................................................................................................4
5.1 12 and 24 AHr Sealed Rechargeable Batteries .........................................................................4
5.2 AC Power and Deep-Cycle Rechargeable Batteries..................................................................4
5.3 Datalogger’s Batteries................................................................................................................4
6. INSTALLATION ..........................................................................................................................4
6.1 Wiring.........................................................................................................................................4
6.2 Battery........................................................................................................................................4
6.3 Antenna......................................................................................................................................4
7. FORWARD AND REFLECTED POWER............................................................................7
8. PROGRAMMING THE TRANSMITTER..............................................................................8
8.1 Star Pound Mode .......................................................................................................................8
8.2 Establishing and Editing Parameters .........................................................................................8
8.3 Status Information and Test Transmissions ..............................................................................9
8.4 Error Messages..........................................................................................................................9
9. PROGRAMMING THE DATALOGGER............................................................................10
9.1 CR10X, CR10, CR510, and CR500.........................................................................................10
9.2 Program Instruction 123 - TGT-1 Auto Setup ..........................................................................12
9.3 21X...........................................................................................................................................14
I
TABLE OF CONTENTS
APPENDICES
A. INFORMATION ON ELIGIBILITY AND GETTING ONTO THE
GOES SYSTEM................................................................................................................A-1
A.1 Eligibility..................................................................................................................................A-1
A.2 Acquiring Permission .............................................................................................................A-1
B. DATA CONVERSION COMPUTER PROGRAM..........................................................B-1
C. ANTENNA ORIENTATION COMPUTER PROGRAM................................................C-1
D. DETAILED FORWARD/REFLECTED POWER INFORMATION............................D-1
D.1 Impedance Matching..............................................................................................................D-1
D.2 Calculating Pow e r-Out...........................................................................................................D-1
D.3 Impedance Match Datalogger Program.................................................................................D-1
E. CHANNEL/FREQUENCY CORRELATION...................................................................E-1
F. DATA DUMP DATALOGGER PROGRAM ....................................................................F-1
F.1 Introduction............................................................................................................................. F-1
F.2 Toggling User Flag 1 High .....................................................................................................F-1
F.3 Checking the Buffer................................................................................................................ F-1
F.4 Test Transmission..................................................................................................................F-1
F.5 Toggling User Flag 2 High .....................................................................................................F-1
F.6 CR10X Data Dump Program ................................................................................................. F-1
F.7 21X Data Dump Program.......................................................................................................F-2
G. LOCAL MAGNETIC DECLINATION................................................................................G-1
G.1 Determining True North..........................................................................................................G-1
G.2 Prompts from GEOMAG........................................................................................................G-1
H. CHANGING THE CR10’S RAM OR PROM CHIPS....................................................H-1
H.1 Disassembling the CR10........................................................................................................H-1
H.2 Installing New RAM Chips in CR10s with 16K RAM..............................................................H-1
H.3 Installing New PROM.............................................................................................................H-1
I. 21X PROM REPLACEMENT PROCEDURE.................................................................. I-1
I.1 Tools Required........................................................................................................................ I-1
I.2 Procedure................................................................................................................................ I-1
J. TELONICS MODEL TGT1 GOES CERTIFICATION BY NOAA/NES DIA.............J-1
FIGURES
2-1 Data Retrieval Diagram..............................................................................................................2
4-1 A Field Station Monitoring a Well’s Depth..................................................................................3
4-2 Inside the Enclosure of a Typical Field Station ..........................................................................3
6.3-1 Antenna Mounting Hardware, Exploded View............................................................................5
6.3-2 Antenna Mounting Hardware, Assembled View 1......................................................................6
II
TABLE OF CONTENTS
6.3-3 Antenna Mounting Hardware, Assembled View 2......................................................................6
6.3-4 Example Antenna Orientation Diagram......................................................................................7
G-1 Magnetic Declination for the Contiguous United States.........................................................G-1
G-2 Declination Angles East of True North...................................................................................G-2
G-3 Declination Angles West of True North..................................................................................G-2
H-1 Disassembling CR10..............................................................................................................H-2
H-2 Jumper Settings for Different RAM Configurations................................................................H-2
I-1 Removing Faceplate Screws ...................................................................................................I-1
I-2 Separating the Faceplate from the Base..................................................................................I-1
I-3 Removing the Back Cover of the Faceplate ............................................................................I-2
I-4 Inside the Faceplate.................................................................................................................I-2
I-5 Removing the PROM with a Screwdriver.................................................................................I-2
I-6 Inserting the New PROM.........................................................................................................I-3
TABLES
6.1-1 Wiring Diagram ..........................................................................................................................5
8.2-1 *# Parameter’s Descriptions.......................................................................................................8
8.2-2 Decimal Equivalent ....................................................................................................................9
8.3-1 *#60 Commands ........................................................................................................................9
9.1-1 CR10X, CR10, CR510 and CR500’s Instruction Parameters..................................................10
9.1-2 CR10X Example Program........................................................................................................11
9.2-1 P123 Parameter’s Descriptions................................................................................................13
9.3-1 21X’s Instruction 99 Parameters..............................................................................................14
9.3-2 21X Example Program.............................................................................................................14
D.1-1 Impedance Matching Correlation...........................................................................................D-1
D.2-1 P
Values..............................................................................................................................D-1
out
III
TABLE OF CONTENTS
This is a blank page.
IV
DCP100 DATA COLLECTION PLATFORM
OPERATOR'S MANUAL

1. INTRODUCTION

The DCP100 combines the measurement and control capabilities of Campbell Scientific’s dataloggers with the broad geographic coverage afforded by GOES (Geogstationary Operational Environmental Satellite) telemetry. Satellite telemetry offers a convenient telecommunication alternative for field stations where phone lines or RF systems are impractical.
The DCP100 contains the following components:
Datalogger: Campbell’s CR23X, CR10X, CR510, CR500, CR10, or 21X with appropriate PROMs. A CR10KD keyboard/display is required when using a CR10X, CR10, or CR500.
Transmitter: TGT1 satellite transmitter and power cable.
Antenna: Yagi antenna, mounting bracket and coaxial cable.
Enclosure: Campbell's 16” by 18” fiberglass enclosure with a water-tight compression fitting for the antenna, 6 water-tight compression fittings for the sensors and the solar panel.
Power Supply: Typically a 12 AHr or 24 AHr sealed rechargeable battery, a charging regulator, and a solar panel.
This allows a user to point the GOES antenna at a fixed position in the sky.
There are two satellites, GOES East and GOES West. GOES East is located at 75° West longitude and GOES West is located 135° West longitude. Both satellites are located over the equator. Within the United States, odd numbered channels are assigned to GOES East. Only even numbered channels are assigned to GOES West. Channels used outside the United States are assigned to either spacecraft.
2.2 NESDIS AND TRANSMITWINDOWS
GOES is managed by the National Environmental Satellite Data Information Service (NESDIS). NESDIS assigns addresses, uplink channels, and self­timed/random transmit time windows. Self­timed windows allow data transmission only during a predetermined time frame (typically 1 minute every 3 or 4 hours). The self-timed data is erased from the transmitter's buffer after each transmission. Random windows are for critical applications (e.g., flood reporting) and allow transmission immediately after a threshold has been exceeded. The transmission is then randomly repeated to ensure it is received. A combination of self­timed and random windows can be executed by the TGT-1.

2.3 DATA RETRIEVAL

The TGT1 transmitter supports one-way communication, via satellite, from a Campbell Scientific datalogger to a ground receiving station. This transmitter features a crystal oscillator that is digitally temperature­compensated to prevent the frequency from drifting into adjacent channels. The TGT1 is manufactured for CSI by Telonics Inc. and inter­faces directly to the datalogger's 9-pin I/O port.

2. GOES SYSTEM

2.1 ORBIT

The TGT1 transmitter sends data via Geostationary Operational Environmental Satellites (GOES). GOES satellites have orbits that coincide with the Earth's rotation, allowing each satellite to remain above a specific region.
Data retrieval via the TGT1 and the GOES system is illustrated in Figure 2-1. The User Interface Manual, provided by NOAA/ NESDIS, describes the process of retrieving the data from the NESDIS ground station. The data are in the form of 3-byte ASCII (see Appendix B for a computer program that converts the data to decimal). You can also retrieve data directly from the NESDIS ground station via the DOMSAT satellite downlink. DOMSAT is only practical for organizations with many GOES users; contact NESDIS for more information (see Appendix A).
NOTE: Array IDs less than 255 are not transmitted.
1
DCP100 DATA COLLECTION PLATFORM
NESDIS
Wallops Station, VA
Computer Base Station
Phone
modem
Phone
ground station has
10 asynchronous
Wallops Station, VA
ground station has
line
10 asynchronous
dial-up circuits
NESDIS
dial circuits
FIGURE 2-1. Data Retrieval Diagram
Antenna cable
Yagi antenna
Transmitter
Data Collection Platform
DCP100
Environmental enclosure
communication/power cable
Datalogger
Power supply

3. TGT1 TRANSMITTER SPECIFICATIONS

Output level: +40 dBm (10 watts), +1.0 dBm
at 12 VDC with automatic leveling control Typical current drain: 9 mA quiescent, 2200
mA active
Operating temperature range: 40° to +60°C Supply voltage range: 10.5 to 14.0 VDC Dimensions: 3.5" x 7.2" x 4.4" (8.9 x 18.3 x
11.2 cm)
Weight: 2.1 lbs (1.0 kg) Self-timed buffer: 2000 bytes Random buffer: 2000 bytes Transmission rate: 100 bits per second Typical number of data points transmitted:
118 for a 1 minute transmit-window (with 15 second guard bands)
Maximum EIRP allowed by NESDIS: +50 dB Antenna's maximum gain: +9 dB with right-
hand circular polarization, +12 dB with linear polarization.
Clock accuracy: Capable of running 420 days without adjustment.

4. REQUIRED EQUIPMENT

4.1 COMPUTER BASE STATION

Phone modem with MNP level 4 error correction. (Most commercially available Hayes-compatible modems contain this error-checking protocol. Check the operator's manual for your modem).
Computer with user-supplied commu­nication software (e.g., Procomm Plus, Crosstalk).

4.2 FIELD STATION

The field stations equipment is illustrated in Figures 4-1 and 4-2. The required equipment is listed below.
TGT1 satellite transmitter.
Datalogger (CR23X, CR10X, CR500,
CR510, CR10, or 21X). A CR10KD keyboard/display is required when using a CR10X, CR10, CR510, or CR500. The CR10 and 21X require a special PROM. When using a 21X with both a TGT1 and a storage module (SM192, SM716, or CSM1), hardware and datalogger programming modifications are required. Contact a Campbell Scientific applications engineer for more information.
Yagi antenna, mounting bracket, and coaxial cable.
Weather-proof enclosure.
12 Volt power supply, charging regulator, and
a solar panel.
The equipment required at the computer base station is listed below.
2
A filter is also required when measuring sensor(s) requiring equalization with the atmosphere (e.g., vented pressure transducers,
barometers). Campbell Scientific’s pn 6832 fits into one of the enclosure’s compression fittings to allow pressure equalization between the inside and outside of the enclosure. The filter retards the entry of water vapor into the enclosure protecting the transmitter and measurement electronics.
DCP100 DATA COLLECTION PLATFORM
12V12V
DIFFSEAGHL AGH LAGH LAG GGE3AG
GGGG
G12V
SERIAL I/O
4 5 6
POWER
789101112
SWITCHED
IN
12V
CAMPBELL
CR10
SCIENTIFIC INC.
MADE IN USA
WIRING PANEL NO.
SWITCHED
12V
1234 56
SE
CONTROL
EARTH
1 2 3
G5V5VP1P2C8C7C6C5C4C3C2C1
AGHL AGH LAGH LAG GGE1E2
DIFF
INT
BATT
EXT
ON OFF
CHG
CHG
+12
+12
UNITED D
ASLFJO AKD
U N
D
DO NOT EAT
IT E D
E
ASLFJO AKD
D
ESICC
S
E S
IC
I P
UNITED DESICCANTS-G
C
U
ANTS-G
A
N
ASLFJO AKD ASLFJO AKD
N
D
DO NOT EAT
IT
A
T
E
S
D
E
-G
K
D
ATES
A
S
E
.
T
S E IC
I P
S C A
ASLFJO AKD
N
A
T S
-G
K
ATES
A
.
T E S
thia ia thia ia thia thia
thia thia thia thia thia thia
thia thia thia thia thia thia
thia thia thia thia
tryu to read this whoever
thia thia thia thia
thia
thia thia thia
thia
thia thia thia
thia
thia
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
ASLFJO AKD
U
ASLFJO AKD
U
SPECIFICATION MIL-D-3463
N
A
N
S
A
ITED
L
DESI PAK.
S
F
A
L
ITE
J
F
K
S
O
J L
A
O
A
F A J
DO
K
O
L
D
K A
S
D
D
D
ASLFJO AKD
D
K
DESI PAK.
P
H
D
D
ASLFJO AKD
E F
N
ES
C I;O
ESIC
IF
A S
O
A
A IC
IC
L
S
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
F
A
L
J
K
F S
A
ASLFJO AKD
O
T EA
J
UN
L
ASLFJO AKD
C
J
A
O F
T
ASLFJO AKD
U
A J
I A
C
K
O
SPECIFICATION MIL-D-3463
IO
D
K
AN
A
A
N
D
S
AN
A K
I A
ITE
N
L
DESI PAK.
S D
F
A
L
ITE
ASLFJO AKD
J
M
F
K
S
O
TS-G
J
J
L
A
O
A
T
F
TS-G
H
A
IL
J
D
K
D D
L
O
D
K
F
A
S
D
D
-D
D
H
ASLFJO AKD
O
K
DESI PAK.
P
A
ASLFJO AKD
H
D
D
O
S
-3
A
ASLFJO AKD
E
L
F
S
N
A
F
E
A
A
L
C 4 I;O
J
F S
A
ESICC
O
J
6
L
TES
IF
SICC
L
A
O F
A
3
TES
A J
D
S
K
O
A
A IC
O D
L
K
S
A F
L
A
D
L J
K
F
K
S
A IF
O
T E
J
D
L
J
A
O
F
T
A
J
J
I A
K
O
IO
D
AN
K
A
D
ANTS-G
ASLFJO AKD
K
I A N
D
AT
ASLFJO AKD
M
TS-G
J H IL F
-D H
A
O
-3
S
A L
S
A
F
A
A
L
4
J
F
S
A
O
6
J
L
TES
L
A
O
F
3
TES
A
J
D
K
O D
K
A
L
D
K
IF
D
J
16/18 Enclosure
TGT1
SC925G Cable
CH12R
Antenna Cable
Ground Lug
INT
BATT
EXT
ON
OFF
CHG
CHG
+12
+12
DIFFSEAG H L AG H L AG H L AG GGE3AG
4 5 6
78 9101112
CAMPBELL SCIENTIFIC INC.
12 34 56
SE
1 2 3
AG H L AG H L AG H L AG GGE1E2
DIFF
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
ASLFJO
UNITED DESICCANTS-GATES
ASLFJO
ASLFJO
UNITED DESICCANTS-GATES
SPECIFICATION MIL-D-3463
AKD
AKD
DESI PAK.
DO NOT EAT
AKD
ASLFJO AKD
ASLFJO
ASLFJO
AKD
AKD
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
ASLFJO
UNITED DESICCANTS-GATES
ASLFJO
ASLFJO
UNITED DESICCANTS-GATES
SPECIFICATION MIL-D-3463
ASLFJO AKD
ASLFJO
AKD
DESI PAK.
DO NOT EAT
ASLFJO
AKD
AKD
AKD
AKD
ASLFJO AKD
ASLFJO
ASLFJO
AKD
AKD
ASLFJO
ASLFJO
ASLFJO
AKD
AKD
AKD
UNITED DESICCANTS-GATES
UNITED DESICCANTS-GATES
DESI PAK.
UNITED DESICCANTS-GATES
UNITED DESICCANTS-GATES
DESI PAK.
FIGURE 4-1. A Field Station Monitoring a
Well's Depth (Solar Panel Not Shown)
CR10X Datalogger
12V12V
G 12V
SERIAL I/O
GGGG
POWER
SWITCHED
IN
12V
CR10
MADE IN USA
WIRING PANEL NO.
SWITCHED
12V
CONTROL
EARTH
G5V5VP1P2 C8C7C6C5C4C3C2C1
thia ia
thia ia thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
tryu to read this whoever
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
thia
Optional Storage
l
M
12 AHr or 24 AHr
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
DO NOT EAT
DO NOT EAT
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
KALDHFI;O AKJI AI AJHFHO ALDLIFJ
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
ASLFJO AKD
SPECIFICATION MIL-D-3463
DESI PAK.
SPECIFICATION MIL-D-3463
DESI PAK.
Battery and Bracket
Desiccant
Compression Fittings
FIGURE 4-2. Inside the Enclosure of a Typical Field Station
3
DCP100 DATA COLLECTION PLATFORM

5. POWER SUPPLIES

5.1 12 AND 24 AHR SEALED RECHARGEABLE BATTERIES

Typically, the system is powered with a 12 Volt, 12 AHr sealed rechargeable battery that connects to a charging regulator and a solar panel. The 12 AHr battery lasts 15 to 20 days per charge. A 24 AHr sealed rechargeable battery which lasts 30 to 40 days is available.
NOTE: This assumes the data are transmitted for 30 seconds at 3 hour intervals. The datalogger's scan rate is 1 second, and the sensors have negligible power consumption.
A discharged 12 AHr battery is recharged by a 10 watt solar panel in 2 to 3 days when there are a 1000 watts per square meter of illumination and the solar panel temperature is 25°C. A 20 watt solar panel is available. The minimum daily battery voltage should be monitored with datalogger program Instruction 10, and output as a part of the user’s data stream.

5.2 AC POWER AND DEEP-CYCLE RECHARGEABLE BATTERIES

NOTE: The datalogger's batteries should
be removed when not in use. Rechargeable batteries should be trickle charged with either Solar or AC power through a charging regulator.

6. INSTALLATION

6.1 WIRING

The DCP100 hardware (excluding the battery and solar panel) and the datalogger are premounted and prewired. The enclosure's ground lug must be connected to an appropriate earth ground (see Table 6.1-1).

6.2 BATTERY

Before installing the battery, turn OFF the charging regulator’s (CH12R) power switch. To install the battery, remove the battery bracket from the DCP100 and insert the battery facing outward into the bracket. When inserting the 24 AHr battery into its bracket, the battery’s power connections (posts) go on the top side where a section of the bracket has been cut away. Reattach the bracket to the DCP100’s enclosure, and connect the battery cable (see Table 6.1-1). The antenna must be connected to the transmitter before turning on the CH12R's power switch.
Although either the 12 or 24 AHr battery is sufficient for most systems, applications with high current drain sensors or peripherals (e.g., SDM devices) might require AC power or a user-supplied deep-cycle rechargeable battery that is trickle-charged with a 20 Watt solar panel. Campbell Scientific's power supply brochure and application note provide information about determining your system's power requirements.

5.3 DATALOGGER'S BATTERIES

The transmitter's power consumption is too high for alkaline batteries. The 21XL's rechargeable batteries do not source sufficient current for the transmitter. Although the PS12LA 7 AHr battery can power the transmitter, the battery only lasts 3 to 7 days per charge. One option is to have the datalogger's batteries power the datalogger and sensors, while the transmitter uses a 12 AHr battery, a 24 AHr battery, or a deep-cycle battery.

6.3 ANTENNA

You mount the antenna to a tripod, tower, or vertical 1.5" OD pipe (see Figures 6.3-1 through
6.3-3). The antenna is then oriented towards the satellite by using a computer program (see Appendix C). This program prompts you for the satellite's longitude (provided by NESDIS) and the antenna's longitude, latitude, and height. It then calculates the antenna's elevation and azimuth (see Figure 6.3-4). You must also account for local magnetic declination (see Appendix G).
After the antenna is properly oriented, insert the antenna cable into the enclosure's largest compression fitting and connect the cable to the transmitter.
CAUTION: The antenna must be connected before transmission or the transmitter will be damaged.
4
TABLE 6.1-1 Wiring Diagram
GOESBKT2 (satellite)
SC925G Cable 25-Pin connector connects to TGT1 I/O port Black connects to CH12R Red connects to CH12R +12 Terminal 9-Pin connector connects to datalogger I/O port
Antenna Cable BNC male connector connects to TGT1 BNC
female port
Red Cable Connects to CH12R +12 and datalogger 12 V
(Ground)
DCP100 DATA COLLECTION PLATFORM
Black Cable Connects to CH12R and datalogger G (Ground)
Green Cable Connects to datalogger G (Ground) and is
routed through the enclosures ground lug and connected to earth ground
Battery Connects to CH12R INT white connector
Solar Panel Black and white leads connect to the two
CH12R CHG Ports. Polarity does not matter.
FIGURE 6.3-1. Antenna Mounting
Hardware, Exploded View
5
DCP100 DATA COLLECTION PLATFORM
Fits onto the
1.5" OD pipe
Fits onto the
1.5" OD pipe
FIGURE 6.3-2. Antenna Mounting Hardware,
Assembled View 1
FIGURE 6.3-3. Antenna Mounting Hardware,
Assembled View 2
6
DATA
COLLECTION
PLATFORM
ANTENNA
DCP100 DATA COLLECTION PLATFORM
GOES SATELLITE
(22,300 miles)
36 (Elevation Angle)
E
(90 )
EXAMPLE ORIENTATION
N
(360 )
S (180 )
213 (Azimuth Angle)
W
(270 )
FIGURE 6.3-4. Example Antenna Orientation Diagram

7. FORWARD AND REFLECTED POWER

Forward and reflected power are measured (in decimal units) and updated during each transmission (see Sections 8 and 9). The forward power must be between 165 and 215 for the transmitter's output level to be within specifications. The antenna/cable assembly is operating properly when the percentage of power reflected is less than 5. A reflected power reading of 27 is 5% of 165 and 2.7% of
215. This percentage can be estimated with the
following equation (see the datalogger program in Appendix D.3).
When the percentage of power reflected is greater or equal to 5, one or more of the following situations exist and must be corrected:
The antenna is not connected.
The antenna is too close to metal.
You are transmitting inside a building.
The antenna is covered with snow or ice.
The frequency that the antenna is tuned to
does not match the transmitter's frequency.
There is a problem with the coaxial cable connector or connection.
There is a problem with the antenna cable.
% power reflected =
[((ref + 17.4)/(fwd + 17.4))
2
x 100] - 1
7
Loading...
+ 33 hidden pages