Burr Brown OPA685N-3K, OPA685U-2K5, OPA685U, OPA685N-250 Datasheet

Ultra-Wideband, Current-Feedback
OPERATIONAL AMPLIFIER With Disable
TM
DESCRIPTION
The OPA685 is a very high bandwidth, current-feed­back op amp that combines exceptional 4200V/µs slew rate and low input voltage noise to deliver a precision low cost, high dynamic range Intermediate Frequency (IF) amplifier. Optimized for high gain operation, the OPA685 is ideally suited to buffering Surface Acoustic Wave (SAW) filters in an IF strip or delivering high output power at low distortion for cable modem up­stream line drivers. Even higher bandwidth at lower gains gives a 900MHz video line driver for high resolution workstation graphics.
The OPA685’s low 12.9mA supply current is pre­cisely trimmed at +25°C. This trim, along with a low temperature drift, guarantees low system power over-
OPA685
®
FEATURES
GAIN = +2 BANDWIDTH (900MHz)
GAIN = +8 BANDWIDTH (420MHz)
OUTPUT VOLTAGE SWING: ±3.6V
ULTRA-HIGH SLEW RATE: 4200V/µs
3RD-ORDER INTERCEPT: > 40dBm (f < 50MHz)
LOW POWER: 129mW
LOW DISABLED POWER: 3mW
APPLICATIONS
LOW COST PRECISION IF AMPLIFIER
CABLE MODEM UPSTREAM DRIVER
BROADBAND VIDEO LINE DRIVER
VERY WIDEBAND ADC BUFFER
PORTABLE INSTRUMENTS
ACTIVE FILTERS
ARB WAVEFORM OUTPUT DRIVER
OPA685 RELATED PRODUCTS
SINGLES DUALS
OPA658 OPA2658 OPA681 OPA2681 OPA682 OPA2682
©
1999 Burr-Brown Corporation PDS-1499A Printed in U.S.A. April, 1999
International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111
Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132
temperature. System power may be further reduced using the optional disable control pin. Leaving this pin open, or holding it HIGH, gives normal operation. If pulled LOW, the OPA685 supply current drops to less than 320µA. This power-savings feature, along with exceptional single +5V operation, and ultra-small SOT23-6 packaging, make the OPA685 ideal for por­table communications requirements.
Low Distortion, 12dB Gain SAW Driver
OPA685
O
P
A
685
For most current data sheet and other product
information, visit www.burr-brown.com
OPA685
SAW Filter
+5V
–5V
Matching
Network
50
Source
50
50
400
50
50
40
30
20
10
Center Frequency (MHz)
0 50 150 250200100
TWO-TONE, 3rd-ORDER
INTERMODULATION INTERCEPT
Output Intercept (dBm)
2
®
OPA685
SPECIFICATIONS: VS = ±5V
RF = 402, RL = 100, and G = +8, (Figure 1 for AC performance only), unless otherwise noted.
OPA685U, N
TYP GUARANTEED
0°C to –40°C to
MIN/
TEST
PARAMETER CONDITIONS +25°C +25°C
(2)
70°C
(3)
+85°C
(3)
UNITS MAX
LEVEL
(1)
AC PERFORMANCE (Figure 1)
Small-Signal Bandwidth (VO = 0.5Vp-p) G = +1, RF = 523 1200 MHz typ C
G = +2, RF = 511 900 MHz typ C G = +8, RF = 402 420 360 350 320 MHz min B
G = +16, RF = 249 340 MHz typ C Bandwidth for 0.1dB Gain Flatness G = +2, VO = 0.5Vp-p, RF =523 350 150 80 70 MHz min B Peaking at a Gain of +1 RF = 523Ω, VO = 0.5Vp-p 3 4.5 5 6.0 dB max B Large Signal Bandwidth G = +8, VO = 4Vp-p 350 MHz typ C Slew Rate G = –8, VO = 4V Step 4200 3000 2500 2200 V/µs min B
G = +8, VO = 4V Step 2900 2400 2400 2100 V/µs min B
Rise/Fall Time G = +8, VO = 0.5V Step 0.7 ns typ C
G = +8, VO = 4V Step 1.0 ns typ C
Settling Time to 0.02% G = +8, VO = 2V Step 4 ns typ C
0.1% G = +8, VO = 2V Step 3 ns typ C
Harmonic Distortion G = +8, f = 10MHz, V
O
= 2Vp-p
2nd Harmonic RL = 100 –66 –59 –56 –53 dBc max B
RL 500 –75 –69 –66 –63 dBc max B
3rd Harmonic RL = 100 –90 –83 –77 –74 dBc max B
RL 500 –84 –78 –76 –75 dBc max B Input Voltage Noise f > 1MHz 1.7 1.8 2.2 2.3 nV/√Hz max B Non-Inverting Input Current Noise f > 1MHz 13 15 15 15 pA/√Hz max B Inverting Input Current Noise f > 1MHz 19 22 22 22 pA/√Hz max B Differential Gain G = +2, NTSC, VO = 1.4Vp, RL = 150 0.10 % typ C Differential Phase G = +2, NTSC, VO = 1.4Vp, RL = 150 0.01 deg typ C
DC PERFORMANCE
(4)
Open-Loop Transimpedance Gain (ZOL)
VO = 0V, RL = 100 42 26 24 23 kΩ min A Input Offset Voltage VCM = 0V ±1.7 ±3.5 ±5 ±7 mV max A Average Offset Voltage Drift VCM = 0V +35 +40 µV/°C max B Non-Inverting Input Bias Current VCM = 0V +56 +90 ±100 ±130 µA max A Average Non-Inverting Input Bias Current Drift VCM = 0V –530 –570 nA/°C max B Inverting Input Bias Current VCM = 0V ±10 ±100 ±120 ±150 µA max A Average Inverting Input Bias Current Drift V
CM
= 0V –500 –560 nA°/C max B
INPUT
Common-Mode Input Range
(5)
(CMIR)
±3.4 ±3.2 ±3.1 ±3.0 V min A
Common-Mode Rejection Ratio (CMRR)
VCM = 0V 54 49 48 48 dB min A Non-Inverting Input Impedance 87 || 2 k || pF typ C Inverting Input Resistance (RI)
Open-Loop 19 typ C
OUTPUT
Voltage Output Swing No Load ±4.1
±3.9 ±3.8 ±3.8 V min A
100 Load ±3.6 ±3.3 ±3.2 ±3.1 V min A
Current Output, Sourcing VO = 0 +130 +90 +75 +70 mA min A Current Output, Sinking VO = 0 –90 –60 –50 –45 mA min A Closed-Loop Output Impedance G = +8, f = 100kHz 0.2 typ C
DISABLE (Disabled Low)
Power Down Supply Current (+V
S
)V
DIS
= 0 –320 µA typ C Disable Time 100 ns typ C Enable Time 100 ns typ C Off Isolation G = +8, 10MHz 70 dB typ C Output Capacitance in Disable 3 pF typ C Turn On Glitch G = +2, RL = 150Ω, VIN = 0 ±160 mV typ C Turn Off Glitch G = +2, RL = 150Ω, VIN = 0 ±20 mV typ C Enable Voltage 3.3 3.5 3.6 3.7 V min A Disable Voltage 1.8 1.7 1.6 1.5 V max A Control Pin Input Bias Current (DIS) V
DIS
= 0 115 160 160 160 µA max A
POWER SUPPLY
Specified Operating Voltage ±5 V typ C Maximum Operating Voltage Range
±6 ±6 ±6 V max A
Max Quiescent Current VS = ±5V 12.9 13.5 13.5 13.5 mA max A Min Quiescent Current VS = ±5V 12.9 12.5 11.9 11.2 mA min A Power Supply Rejection Ratio (–PSRR) Input Referred 55 49 47 46 dB typ A
TEMPERATURE RANGE
Specification: U, N
–40 to +85
°C typ C
Thermal Resistance,
θ
JA
Junction-to-Ambient U SO-8 125 °C/W typ C N SOT23-6 150 °C/W typ C
NOTES: (1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (2) Junction temperature = ambient for 25°C guaranteed specifications. (3) Junction temperature = ambient at low temperature limit: junction temperature = ambient +23°C at high temperature limit for over temperature guaranteed specifications. (4) Current is considered positive out-of-node. V
CM
is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ± CMIR limits.
3
®
OPA685
SPECIFICATIONS: VS = +5V
RF = 348, RL = 100to VS/2, and G = +8, (Figure 3 for AC performance only), unless otherwise noted.
OPA685U, N
TYP GUARANTEED
0°C to –40°C to
MIN/
TEST
PARAMETER CONDITIONS +25°C +25°C
(2)
70°C
(3)
+85°C
(3)
UNITS MAX
LEVEL
(1)
AC PERFORMANCE (Figure 3)
Small-Signal Bandwidth (V
O
= 0.5Vp-p) G = +1, RF = 511 600 MHz typ C
G = +2, R
F
= 487 450 MHz min B
G = +8, R
F
= 348 350 240 220 200 MHz typ C
G = +16, R
F
= 162 250 MHz typ C
Bandwidth for 0.1dB Gain Flatness G = +2, V
O
< 0.5Vp-p, RF = 487 140 80 70 60 MHz min B
Peaking at a Gain of +1 R
F
= 511Ω, VO < 0.5Vp-p 0.4 1.0 1.5 1.5 dB max B
Large Signal Bandwidth G = +8, V
O
= 2Vp-p 350 MHz typ C Slew Rate G = +8, 2V Step 1900 1300 1200 1100 V/µs min B Rise/Fall Time G = +8, V
O
= 0.5V Step 0.8 ns typ C
G = +8, VO = 2V Step 1.0 ns typ C
Settling Time to 0.02% G = +8, V
O
= 2V Step 9 ns typ C
0.1% G = +8, V
O
= 2V Step 7 ns typ C
Harmonic Distortion G = +8, f = 10MHz, V
O
= 2Vp-p
2nd Harmonic RL = 100Ω to VS/2 –60 –54 –53 –52 dBc max B
RL 500to VS/2 –68 –60 –59 –58 dBc max B
3rd Harmonic RL = 100Ω to VS/2 –58 –51 –50 –50 dBc max B
RL 500to VS/2 –60 –55 –54 –54 dBc max B Input Voltage Noise f > 1MHz 1.7 1.8 2.2 2.2 nV/√Hz max B Non-Inverting Input Current Noise f > 1MHz 13 15 15 15 pA/√Hz max B Inverting Input Current Noise f > 1MHz 19 22 22 22 pA/√Hz max B
DC PERFORMANCE
(4)
Open-Loop Transimpedance Gain (ZOL)
VO = VS/2, RL = 100to VS/2 40 25 23 20 k min A
Input Offset Voltage V
CM
= VS/2 ±1 ±3 ±3.5 ±4.0 mV max A
Average Offset Voltage Drift V
CM
= VS/2 12 15 µV/°C max B
Non-Inverting Input Bias Current V
CM
= VS/2 +40 +110 ±120 ±150 µA max A
Average Non-Inverting Input Bias Current Drift V
CM
= VS/2 –550 –650 nA/°C max B
Inverting Input Bias Current V
CM
= VS/2 ±50 ±100 ±120 ±150 µA max A
Average Inverting Input Bias Current Drift V
CM
= VS/2 –550 –650 nA/°C max B
INPUT
Least Positive Input Voltage
(5)
1.7 1.8 1.9 2.0 V max A
Most Positive Input Voltage
(5)
3.3 3.2 3.1 3.0 V min A
Common-Mode Rejection Ratio (CMRR)
VCM = VS/2 54 48 47 47 dB min A Non-Inverting Input Impedance 87 || 2 k|| pF typ C Inverting Input Resistance (RI)
Open-Loop 23 typ C
OUTPUT
Most Positive Output Voltage No Load 4.1 3.9 3.7 3.5 V min A
R
L
= 100 to VS/2 4.0 3.8 3.6 3.4 V min A
Least Positive Output Voltage No Load 0.9 1.1 1.3 1.5 V max A
R
L
= 100to VS/2 1.0 1.2 1.4 1.6 V max A
Current Output, Sourcing V
O
= VS/2 90 62 60 58 mA min A
Current Output, Sinking V
O
= VS/2 –70 –45 –40 –38 mA min A
Closed-Loop Output Impedance G = +2, f = 100kHz 0.3 typ C
DISABLE (Disable Low)
Power Down Supply Current (+V
S
)V
DIS
= 0 –270 µA typ C Disable Time 150 ns typ C Enable Time 150 ns typ C Off Isolation G = +8, 10MHz 70 dB typ C Output Capacitance in Disable 3 pF typ C Turn On Glitch G = +2, R
L
= 150Ω, VIN = VS /2 ±160 mV typ C
Turn Off Glitch G = +2, R
L
= 150Ω, VIN = VS /2 ±20 mV typ C Enable Voltage 3.3 3.5 3.6 3.7 V min A Disable Voltage 1.8 1.7 1.6 1.5 V max A Control Pin Input Bias Current (DIS) V
DIS
= 0 100 µA typ C
POWER SUPPLY
Specified Single-Supply Operating Voltage 5 V typ C Max Single-Supply Operating Voltage 12 12 12 V max A Max Quiescent Current V
S
= +5V 10.7 11.3 11.3 11.3 mA max A
Min Quiescent Current V
S
= +5V 10.7 9.0 8.3 8.1 mA min A
Power Supply Rejection Ratio (–PSRR) Input Referred 54 51 49 48 dB min A
TEMPERATURE RANGE
Specification: U, N
–40 to +85
°C typ C
Thermal Resistance,
θ
JA
Junction-to-Ambient U SO-8 125 °C/W typ C N SOT23-6 150 °C/W typ C
NOTES: (1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (2) Junction temperature = ambient for 25°C guaranteed specifications. (3) Junction temperature = ambient at low temperature limit: junction temperature = ambient +23°C at high temperature limit for over temperature guaranteed specifications. (4) Current is considered positive out-of-node. V
CM
is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ±CMIR limits.
4
®
OPA685
ABSOLUTE MAXIMUM RATINGS
Power Supply .............................................................................. ±6.5VDC
Internal Power Dissipation ................................ See Thermal Information
Differential Input Voltage .................................................................. ±1.2V
Input Voltage Range ............................................................................ ±V
S
Storage Temperature Range: U, N................................–40°C to +125°C
Lead Temperature (soldering, 10s).............................................. +300°C
Junction Temperature (T
J
) ........................................................... +175°C
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.
PACKAGE SPECIFIED DRAWING TEMPERATURE PACKAGE ORDERING TRANSPORT
PRODUCT PACKAGE NUMBER
(1)
RANGE MARKING NUMBER MEDIA
OPA685U SO-8 Surface Mount 182 –40°C to +85°C OPA685U OPA685U Rails
" " """OPA685U/2K5 Tape and Reel
OPA685N SOT23-6 332 –40°C to +85°C A85 OPA685N/250 Tape and Reel
" " """OPA685N/3K Tape and Reel
NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only as Tape and Reel in the quantity indicated after the slash (e.g. /3K indicates 3000 devices per reel). Ordering 3000 pieces of the OPA685N/3K will get a single 3000-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of the Burr-Brown IC Data Book.
PACKAGE/ORDERING INFORMATION
ELECTROSTATIC DISCHARGE SENSITIVITY
Electrostatic discharge can cause damage ranging from perfor­mance degradation to complete device failure. Burr-Brown Corpo­ration recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.
PIN CONFIGURATIONS
Top View SO-8
NC = No Connection
Top View SOT23-6
1
2
3
4
8
7
6
5
NC
Inverting Input
Non-Inverting Input
–V
S
DIS
+V
S
Output
NC
1
2
3
6
5
4
Output
–V
S
Non-Inverting Input
+V
S
DIS
Inverting Input
123
654
A85
Pin Orientation/Package Marking
5
®
OPA685
TYPICAL PERFORMANCE CURVES: VS = ±5V
G = +8, RF = 402, and RL = 100, unless otherwise noted.
6 3
0 –3 –6 –9
–12 –15 –18 –21 –24
Frequency (100MHz/div)
01GHz500MHz
NON-INVERTING SMALL-SIGNAL
FREQUENCY RESPONSE
Normalized Gain (3dB/div)
G = +16, RF = 249
G = +8, RF = 402
See Figure 1
G = +2, RF = 511
VO = 500mVp-p
G = +4, RF = 475
24 21 18 15 12
9 6 3
0 –3 –6
Frequency (100MHz/div)
0 1GHz500MHz
INVERTING LARGE-SIGNAL
FREQUENCY RESPONSE
Gain (3dB/div)
VO = 4Vp-p
VO = 7Vp-p
G = –8, RF = 442
VO = 1Vp-p
VO = 2Vp-p
See Figure 2
70
60
50
40
30
20
10
0
10
100
G = +8
OPA685
R
S
V
I
C
L
V
O
402
56.2
1kis optional
50
1k
RECOMMENDED RS vs CAPACITIVE LOAD
Capacitive Load (pF)
R
S
(Ω)
21 18 15 12
9
6
3
0
–3
0 250 MHz 500 MHz
Frequency (50MHz/div)
Gain-to-Capacitive Load (3dB/div)
FREQUENCY RESPONSE vs CAPACITIVE LOAD
CL = 10pF
CL = 20pF
CL = 47pF
CL = 100pF
Optimized R
S
24 21 18 15 12
9 6 3
0 –3 –6
Frequency (100MHz/div)
0 1GHz500MHz
NON-INVERTING LARGE-SIGNAL
FREQUENCY RESPONSE
Gain (3dB/div)
VO = 7Vp-p
VO = 2Vp-p
VO = 4Vp-p
G = +8, RF = 402
See Figure 1
VO = 1Vp-p
6 3
0 –3 –6 –9
–12 –15 –18 –21 –23
Frequency (100MHz/div)
01GHz500MHz
INVERTING SMALL-SIGNAL
FREQUENCY RESPONSE
Normalized Gain (3dB/div)
G = –16, RF = 806
G = –2, RF = 499
VO = 500mVp-p
G = –2, RF = 499
G = –4, RF = 475
G = –8, RF = 442
See Figure 2
6
®
OPA685
TYPICAL PERFORMANCE CURVES: VS = ±5V (CONT)
G = +8, RF = 402, and RL = 100, unless otherwise noted. See Figure 1.
–50
–60
–70
–80
–90
–100
10MHz 2nd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
2nd Harmonic Distortion (dBc)
RL = 500
RL = 100
RL = 200
G = +8V/V
–50
–60
–70
–80
–90
–100
10MHz 3rd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
3rd Harmonic Distortion (dBc)
RL = 500
RL = 100
RL = 200
G = +8V/V
–50
–60
–70
–80
–90
–100
20MHz 2nd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
2nd Harmonic Distortion (dBc)
RL = 500
RL = 200
G = +8V/V
RL = 100
–50
–60
–70
–80
–90
–100
20MHz 3rd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
3rd Harmonic Distortion (dBc)
RL = 500
RL = 100
RL = 200
G = +8V/V
–40
–50
–60
–70
–80
–90
50MHz 2nd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
2nd Harmonic Distortion (dBc)
RL = 500
RL = 200
RL = 100
G = +8V/V
–40
–50
–60
–70
–80
–90
50MHz 3rd HARMONIC DISTORTION
vs OUTPUT VOLTAGE
Output Voltage (Vp-p)
0.1 1 10
3rd Harmonic Distortion (dBc)
RL = 100
RL = 200
G = +8V/V
RL = 500
7
®
OPA685
TYPICAL PERFORMANCE CURVES: VS = ±5V (CONT)
G = +8, RF = 402, and RL = 100, unless otherwise noted. See Figure 1.
–40
–50
–60
–70
–80
–90
2nd HARMONIC DISTORTION
vs FREQUENCY
Frequency (MHz)
1 10 100
2nd Harmonic Distortion (dBc)
G = +2,
R
F
= 511
G = +4,
R
F
= 475
G = +8
R
F
= 402
G = +16
R
F
= 249
VO = 2Vp-p
R
L
= 100
–40
–50
–60
–70
–80
–90
3rd HARMONIC DISTORTION
vs FREQUENCY
Frequency (MHz)
1 10 100
3rd Harmonic Distortion (dBc)
G = +4
R
F
= 475
G = +16
R
F
= 249
VO = 2Vp-p
R
L
= 100
G = +8
R
F
= 402
G = +2
R
F
= 511
NON-INVERTING LARGE-SIGNAL PULSE RESPONSE
Time (1ns/div)
800mV/div
G = +2
R
F
= 511
V
O
= 4Vp-p
Output
Input
2400
1600
800
0
–800
–1600
–2400
NON-INVERTING SMALL-SIGNAL PULSE RESPONSE
Time (1ns/div)
400mV/div
1200
800
400
0
–400
–800
–1200
Output
Input
G = +2
R
F
= 511
V
O
= 1Vp-p
INVERTING LARGE-SIGNAL PULSE RESPONSE
Time (1ns/div)
800mV/div
Input
2400
1600
800
0
–800
–1600
–2400
Output
See Figure 2
G = –8
R
F
= 442
V
O
= 4Vp-p
INVERTING SMALL-SIGNAL PULSE RESPONSE
Time (1ns/div)
400mV/div
1200
800
400
0
–400
–800
–1200
G = –8
R
F
= 442
V
O
= 1Vp-p
Output
Input
See Figure 2
8
®
OPA685
TYPICAL PERFORMANCE CURVES: VS = ±5V (CONT)
G = +8, RF = 402, and RL = 100, unless otherwise noted.
–15 –20 –25 –30 –35 –40 –45 –50 –55 –60 –65
ISOLATION CHARACTERISTICS vs FREQUENCY
Frequency (Hz)
10M 100M 1G
Isolation (dB)
G = –8 (see Figure 2)
Reverse Isolation (S
12
)
G = +8 (see Figure 1)
Disabled Isolation (S
21
)
G = +8 (see Figure 1)
Reverse Isolation (S
12
)
20
15
10
5
Gain to Matched Load (dB)
6128 9.5 11
NOISE FIGURE vs GAIN
Noise Figure (dB)
Non-Inverting Gain with
50 Input Match
Non-Inverting Gain with
1:2 Input Transformer
(see Figure 5)
See Tables I, II, III
RS = 50 T
A
= +25°C
Optimized R
F
Inverting Gain with
50 Input Match
100
10
1
INPUT VOLTAGE AND CURRENT NOISE DENSITY
Frequency (Hz)
100 1k 10k 100k 1M 10M
Current Noise (pA/Hz)
Voltage Noise (nV/Hz)
Non-Inverting Input Current Noise
Inverting Input Current Noise
13pA/Hz
19pA/Hz
Input Voltage Noise
1.7nV/Hz
–5 –10 –15 –20 –25 –30 –35 –40 –45 –50 –55
INPUT RETURN LOSS vs FREQUENCY (S
11
)
Frequency (Hz)
10M 100M 1G
Return Loss (5dB/div)
G = +8
(see Figure 1)
G = –8
(see Figure 2)
VSWR < 1.2:1
–5 –10 –15 –20 –25 –30 –35 –40 –45 –50 –55
OUTPUT RETURN LOSS vs FREQUENCY (S
22
)
Frequency (Hz)
10M 100M 1G
Return Loss (5dB/div)
G = ±8
Without
Trim Cap
With
Trim Cap
VSWR < 1.2:1
OPA685
50
3.3pF
S
22
Trim Cap
50
40
30
20
10
Center Frequency (MHz)
0 50 150 250200100
TWO-TONE, 3rd-ORDER
INTERMODULATION INTERCEPT
Output Intercept (dBm)
OPA685
P
I
P
O
402
50
50
50
56.2
G = 12dB to matched load.
OPA685
P
I
P
O
402
50
50
50
G = 12dB to matched load.
G = +8
G = –8
9
®
OPA685
TYPICAL PERFORMANCE CURVES: VS = ±5V (CONT)
G = +8, RF = 402, and RL = 100, unless otherwise noted.
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0.
Number of Video Loads
1234
COMPOSITE VIDEO dG/d
φ
dG/d
φ
(%/°)
dG, Positive Video
dφ, Negative Video
dφ, Positive Video
dG, Negative Video
G = +2 R
F
= 511
6.1
6.0
5.9
+1.0 +0.5 0 –0.5 –1.0
0 100 200
Frequency (20MHz/div)
Gain (0.1dB/div)
Phase (0.5°/div)
GAIN FLATNESS AND DEVIATION FROM
LINEAR PHASE vs FREQUENCY
Deviation from Linear Phase
Right Scale
Gain
Left Scale
G = +2 R
L
= 100
R
F
= 523
60 55 50 45 40 35 30 25 20
10
2
10
3
10
4
10
5
10
6
10
7
10
8
CMRR AND PSRR vs FREQUENCY
Frequency (Hz)
Rejection Ratio (dB)
+PSRR
–PSRR
CMRR
95
85
75
65
55
45
35
OPEN-LOOP TRANSIMPEDANCE GAIN/PHASE
Frequency (Hz)
100k 1M 10M 100M 1G 10G
Log Transimpedance Gain (10dB/div)
0
–40
–80
–120
–160
–200
–240
Open-Loop Phase (40°/div)
|ZOL|
Z
OL
15
12
9
6
3
0
150
120
90
60
30
0
–40 –10 20 50 80 110 140
SUPPLY AND OUTPUT CURRENT vs TEMPERATURE
Temperature (C)
Supply Current (mA)
Output Current (mA)
Supply Current
Sourcing Output Current
Sinking Output Current
5 4 3 2 1
0 –1 –2 –3 –4 –5
100 80 60 40 20 0 –20 –40 –60 –80 –100
–40 –20 0 20 40 60 80 100 120 140
TYPICAL DC DRIFT OVER TEMPERATURE
Ambient T emperature (°C)
Input Offset Voltage (mV)
Input Bias Current (µA)
Inverting Input
Bias Current
Non-Inverting Input
Bias Current
V
IO
Loading...
+ 19 hidden pages