Brocade, the B-wing symbol, BigIron, DCX, Fabric OS, FastIron, IronPoint, IronShield, IronView, IronWare, JetCore, NetIron,
SecureIron, ServerIron, StorageX, and TurboIron are registered trademarks, and DCFM, Extraordinary Networks, and SAN Health
are trademarks of Brocade Communications Systems, Inc., in the United States and/or in other countries. All other brands,
products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their
respective owners.
Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning
any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to
this document at any time, without notice, and assumes no responsibility for its use. This informational document describes
features that may not be currently available. Contact a Brocade sales office for information on feature and product availability.
Export of technical data contained in this document may require an export license from the United States government.
The authors and Brocade Communications Systems, Inc. shall have no liability or responsibility to any person or entity with
respect to any loss, cost, liability, or damages arising from the information contained in this book or the computer programs that
accompany it.
The product described by this document may contain “open source” software covered by the GNU General Public License or other
open source license agreements. To find out which open source software is included in Brocade products, view the licensing
terms applicable to the open source software, and obtain a copy of the programming source code, please visit
http://www.brocade.com/support/oscd.
Brocade Communications Systems, Incorporated
Corporate and Latin American Headquarters
Brocade Communications Systems, Inc.
130 Holger Way
San Jose, CA 95134
Tel: 1-408-333-8000
Fax: 1-408-333-8101
E-mail: info@brocade.com
European Headquarters
Brocade Communications Switzerland Sàrl
Centre Swissair
Tour B - 4ème étage
29, Route de l'Aéroport
Case Postale 105
CH-1215 Genève 15
Switzerland
Tel: +41 22 799 5640
Fax: +41 22 799 5641
E-mail: emea-info@brocade.com
Asia-Pacific Headquarters
Brocade Communications Systems China HK, Ltd.
No. 1 Guanghua Road
Chao Yang District
Units 2718 and 2818
Beijing 100020, China
Tel: +8610 6588 8888
Fax: +8610 6588 9999
E-mail: china-info@brocade.com
Asia-Pacific Headquarters
Brocade Communications Systems Co., Ltd. (Shenzhen WFOE)
Citic Plaza
No. 233 Tian He Road North
Unit 1308 – 13th Floor
Guangzhou, China
Tel: +8620 3891 2000
Fax +8620 3891 2111
E-mail: china-info@brocade.com
Document History
TitlePublication numberSummary of changesDate
Converged Enhanced Ethernet
Administrator’s Guide
Converged Enhanced Ethernet
Administrator’s Guide
53-1001258-01New documentMarch 2009
53-1001336-02Updated for Fabric OS
v6.3.0. Added new chapters
for standard configurations
and port authentication
November 2009
DRAFT: BROCADE CONFIDENTIAL
TitlePublication numberSummary of changesDate
Converged Enhanced Ethernet
Administrator’s Guide
Converged Enhanced Ethernet
Administrator’s Guide
Converged Enhanced Ethernet
Administrator’s Guide
Converged Enhanced Ethernet
Administrator’s Guide
53-1001761-01 Updated for Fabric OS
v7.0.0. Added chapter for
IGMP.
53-1002061-01 Updated to support iSCSI
TLV configuration.
53-1002163-01Updated for Fabric OS v7.0.0 April 2011
• Chapter 12, “Configuring 802.1x Port Authentication,”describes how to configure the 802.1x
Port Authentication protocol.
• Chapter 13, “Configuring IGMP,” describes how to configure IGMP snooping on the Brocade
FCoE hardware.
• Chapter 14, “Configuring RMON,” describes how to configure remote monitoring (RMON).
Supported hardware and software
This document includes updated information specific to Fabric OS v7.0.0. The following hardware
platforms are supported in this release of the CEE Administrator’s Guide:
• Brocade 8000
The following blades are supported by this release of the CEE Administrator’s Guide:
• Brocade FCOE10-24 blade
Within this manual, any appearance of the term “Brocade FCoE hardware” is referring to:
• Brocade 8000
• Brocade FCOE10-24 port blade
Although many different software and hardware configurations are tested and supported by
Brocade Communications Systems, Inc. for Fabric OS v7.0.0, documenting all possible
configurations and scenarios is beyond the scope of this document.
To obtain information about an OS version other than Fabric OS v7.0.0, refer to the documentation
specific to that OS version.
What’s new in this document
This document has been updated for Fabric OS v7.0.0.
The following information was added:
• New chapter on Internet Group Management Protocol, Chapter 13, “Configuring IGMP”.
• New appendix on replacing the Brocade 8000, Appendix A, “Brocade 8000 Replacement”.
For further information about new features and documentation updates for this release, refer to
the release notes.
This section describes text formatting conventions and important notice formats used in this
document.
Text formatting
The narrative-text formatting conventions that are used are as follows:
bold textIdentifies command names
italic textProvides emphasis
DRAFT: BROCADE CONFIDENTIAL
Identifies the names of user-manipulated GUI elements
Identifies keywords and operands
Identifies text to enter at the GUI or CLI
Identifies variables
Identifies paths and Internet addresses
Identifies document titles
code textIdentifies CLI output
Identifies command syntax examples
For readability, command names in the narrative portions of this guide are presented in mixed
lettercase: for example, switchShow. In actual examples, command lettercase is often all
lowercase. Otherwise, this manual specifically notes those cases in which a command is case
sensitive.
Command syntax conventions
Command syntax in this manual follows these conventions:
TABLE 1Command syntax conventions
ConventionDescription
[ ]Default responses to system prompts appear in square brackets.
{x | y | z} A choice of required keywords appears in braces separated by vertical
bars. You must select one.
screen fontExamples of information displayed on the screen.
<>Nonprinting characters, for example passwords, appear in angle
brackets.
[ ]Keywords or arguments that appear within square brackets are
optional.
bold face font Commands and keywords.
italicVariables for which you supply values.
Notes, cautions, and warnings
The following notices and statements are used in this manual. They are listed below in order of
increasing severity of potential hazards.
A note provides a tip, guidance, or advice, emphasizes important information, or provides a
reference to related information.
An Attention statement indicates potential damage to hardware or data.
A Caution statement alerts you to situations that can be potentially hazardous to you or cause
damage to hardware, firmware, software, or data.
A Danger statement indicates conditions or situations that can be potentially lethal or extremely
hazardous to you. Safety labels are also attached directly to products to warn of these conditions
or situations.
Key terms
For definitions specific to Brocade and Fibre Channel, see the technical glossaries on MyBrocade.
See “Brocade resources” on page xxi for instructions on accessing MyBrocade.
For terminology specific to this document, see “FCoE terminology” on page 1.
For definitions of SAN-specific terms, visit the Storage Networking Industry Association online
dictionary at:
http://www.snia.org/education/dictionary
Notice to the reader
This document may contain references to the trademarks of the following corporations. These
trademarks are the properties of their respective companies and corporations.
These references are made for informational purposes only.
CorporationReferenced Trademarks and Products
NoneNot applicable
Additional information
This section lists additional Brocade and industry-specific documentation that you might find
helpful.
For additional Brocade documentation, visit the Brocade website:
http://www.brocade.com
Release notes are available on the MyBrocade website and are also bundled with the Fabric OS
firmware.
Other industry resources
For additional resource information, visit the Technical Committee T11 website. This website
provides interface standards for high-performance and mass storage applications for Fibre
Channel, storage management, and other applications:
http://www.t11.org
For information about the Fibre Channel industry, visit the Fibre Channel Industry Association
website:
http://www.fibrechannel.org
Getting technical help
Contact your switch support supplier for hardware, firmware, and software support, including
product repairs and part ordering. To expedite your call, have the following information available:
1. General Information
• Switch model
• Switch operating system version
• Software name and software version, if applicable
• Error numbers and messages received
• supportSave command output
• Detailed description of the problem, including the switch or fabric behavior immediately
following the problem, and specific questions
• Description of any troubleshooting steps already performed and the results
The switch serial number and corresponding bar code are provided on the serial number label,
as illustrated below:
*FT00X0054E9*
FT00X0054E9
The serial number label is located as follows:
• Brocade 8000 —On the switch ID pull-out tab located inside the chassis on the port side
on the left
3. World Wide Name (WWN)
Use the licenseIdShow command to display the WWN of the chassis.
If you cannot use the licenseIdShow command because the switch is inoperable, you can get
the WWN from the same place as the serial number, except for the Brocade DCX. For the
Brocade DCX, access the numbers on the WWN cards by removing the Brocade logo plate at
the top of the nonport side of the chassis.
Document feedback
Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and
completeness of this document. However, if you find an error or an omission, or you think that a
topic needs further development, we want to hear from you. Forward your feedback to:
documentation@brocade.com
Provide the title and version number of the document and as much detail as possible about your
comment, including the topic heading and page number and your suggestions for improvement.
Tab le 2 lists and describes the FCoE terminology used in this document.
TABLE 2FCoE terminology
TermDescription
1
FCoEFibre Channel over Ethernet
CEEConverged Enhanced Ethernet
VN_portFCoE equivalent of an FC N_port
VF_port FCoE equivalent of an FC F_port
ENodeAn FCoE device that supports FCoE VN_ports
FCoE Forwarder (FCF)An FCoE link end point that provides FC fabric
FIPFCoE Initialization Protocol
FCoE overview
Fibre Channel over Ethernet (FCoE) enables you to transport FC protocols and frames over
Converged Enhanced Ethernet (CEE) networks. CEE is an enhanced Ethernet that enables the
convergence of various applications in data centers (LAN, SAN, and HPC) onto a single interconnect
technology.
FCoE provides a method of encapsulating the Fibre Channel (FC) traffic over a physical Ethernet
link. FCoE frames use a unique EtherType that enables FCoE traffic and standard Ethernet traffic to
be carried on the same link. FC frames are encapsulated in an Ethernet frame and sent from one
FCoE-aware device across an Ethernet network to a second FCoE-aware device. The FCoE-aware
devices may be FCoE end nodes (ENodes) such as servers, storage arrays, or tape drives on one
end and FCoE Forwarders on the other end. FCoE Forwarders (FCFs) are switches providing FC
fabric services and FCoE-to-FC bridging.
The motivation behind using CEE networks as a transport mechanism for FC arises from the desire
to simplify host protocol stacks and consolidate network interfaces in data center environments. FC
standards allow for building highly reliable, high-performance fabrics for shared storage, and these
characteristics are what CEE brings to data centers. Therefore, it is logical to consider transporting
FC protocols over a reliable CEE network in such a way that it is completely transparent to the
applications. The underlying CEE fabric is highly reliable and high performing, the same as the FC
SAN.
In FCoE, ENodes discover FCFs and initialize the FCoE connection through the FCoE Initialization
Protocol (FIP). The FIP has a separate EtherType from FCoE. The FIP includes a discovery phase in
which ENodes solicit FCFs, and FCFs respond to the solicitations with advertisements of their own.
At this point, the ENodes know enough about the FCFs to log into them. The fabric login and fabric
discovery (FLOGI/FDISC) for VN-to-VF port connections is also part of the FIP.
With pre-FIP implementations, as an alternative to FIP, directly connected devices can send an
FCoE-encapsulated FLOGI to the connected FCF.
FCoE hardware
At a fundamental level, FCoE is designed to enable the transport of storage and networking traffic
over the same physical link. Utilizing this technology, the Brocade 8000 switch and the Brocade
FCOE10-24 port blade provide a unique platform that connects servers to both LAN and SAN
environments.
Within this manual, any appearance of the term “Brocade FCoE hardware” is referring to the
following hardware:
• Brocade 8000 switch
• Brocade FCOE10-24 port blade
The intermediate switching devices in the CEE network do not have to be FCoE-aware. They simply
route the FCoE traffic to the FCoE device based on the Ethernet destination address in the FCoE
frame.
The Brocade FCoE hardware contain CEE ports that support FCoE forwarding. The CEE ports are
also backwards compatible and support classic Layer 2 Ethernet networks (see Figure 1). In Layer
2 Ethernet operation, a host with a Converged Network Adapter (CNA) can be directly attached to a
CEE port on the Brocade FCoE hardware. Another host with a classic 10-Gigabit Ethernet NIC can
be either directly attached to a CEE port, or attached to a classic Layer 2 Ethernet network which is
attached to the Brocade FCoE hardware.
FIGURE 1Multiple switch fabric configuration
Layer 2 Ethernet overview
1
Layer 2 forwarding
Layer 2 Ethernet frames are forwarded on the CEE ports. 802.1Q VLAN support is used to tag
incoming frames to specific VLANs, and 802.3ac VLAN tagging support is used to accept VLAN
tagged frames from external devices. The 802.1D Spanning Tree Protocol (STP), Rapid Spanning
Tree Protocol (RSTP), and Multiple Spanning Tree Protocol (MSTP) are used as the bridging
protocols between Layer 2 switches.
The Brocade FCoE hardware handles Ethernet frames as follows:
• When the destination MAC address is not in the lookup table, the frame is flooded on all ports
except the ingress port.
• When the destination MAC address is present in the lookup table, the frame is switched only to
the correct egress port.
• When the destination MAC address is present in the lookup table, and the egress port is the
• If the Ethernet Frame Check Sequence (FCS) is incorrect, because the switch is in cut-through
mode, a correctly formatted Ethernet frame is sent out with an incorrect FCS.
• If the Ethernet frame is too short, the frame is discarded and the error counter is incremented.
• If the Ethernet frame is too long, the frame is discarded and the error counter is incremented.
• Frames sent to a broadcast destination MAC address are flooded on all ports except the
ingress port.
• When MAC address entries in the lookup table time out, they are removed. In this event, frame
forwarding changes from unicast to flood.
• An existing MAC address entry in the lookup table is discarded when a device is moved to a
new location. When a device is moved, the ingress frame from the new port causes the old
lookup table entry to be discarded and the new entry inserted into the lookup table. Frame
forwarding remains unicast to the new port.
• When the lookup table is full, new entries replace the oldest MAC addresses after the oldest
MAC addresses age and time out. MAC addresses that still have traffic running are not timed
out.
New entries start replacing older entries when the lookup table reaches 90 percent of its 32k
capacity.
VLAN tagging
The Brocade FCoE hardware handles VLAN tagging as follows:
• If the CEE port is configured to tag incoming frames with a single VLAN ID, then incoming
frames that are untagged are tagged with the VLAN ID.
• If the CEE port is configured to tag incoming frames with multiple VLAN IDs, then incoming
frames that are untagged are tagged with the correct VLAN ID based on the port setting.
• If the CEE port is configured to accept externally tagged frames, then incoming frames that are
tagged with a VLAN ID are passed through unchanged.
Only a single switch-wide VLAN is capable of forwarding FCoE traffic.
For detailed information on configuring VLANs, see “Configuring VLANs” on page 45.
Loop-free network environment
The Brocade FCoE hardware uses the following protocols to maintain a loop-free network
environment:
• 802.1D Spanning Tree Protocol (STP)—STP is required to create a loop-free topology in the LAN.
• Rapid Spanning Tree Protocol (RSTP)—RSTP evolved from the 802.1D STP standard. RSTP
provides for a faster spanning tree convergence after a topology change.
• Multiple Spanning Tree Protocol (MSTP)—MSTP defines an extension to RSTP to further
develop the usefulness of VLANs. With per-VLAN MSTP, you can configure a separate spanning
tree for each VLAN group. The protocol automatically blocks the links that are redundant in
each spanning tree.
Using MSTP, you can create multiple loop-free active topologies on a single physical topology.
These loop-free topologies are mapped to a set of configurable VLANs. This enables you to
better utilize the physical resources present in the network and achieve better load balancing
of VLAN traffic.
For detailed information on configuring these protocols, see “Configuring STP, RSTP, and MSTP” on
page 57.
1
Frame classification (incoming)
The Brocade FCoE hardware is capable of classifying incoming Ethernet frames based on the
following criteria:
• Port number
• Protocol
• MAC address
The classified frames can be tagged with a VLAN ID or with 802.1p Ethernet priority. The 802.1p
Ethernet priority tagging is done using the Layer 2 Class of Service (CoS). The 802.1p Ethernet
priority is used to tag frames in a VLAN with a Layer 2 CoS to prioritize traffic in the VLAN. The
Brocade FCoE hardware also accepts frames that have been tagged by an external device.
Frame classification options are as follows:
• VLAN ID and Layer 2 CoS by physical port number—With this option, the port is set to classify
incoming frames to a preset VLAN ID and the Layer 2 CoS by the physical port number on the
Brocade FCoE hardware.
• VLAN ID and Layer 2 CoS by LAG virtual port number—With this option, the port is set to classify
incoming frames to a preset VLAN ID and Layer 2 CoS by the Link Aggregation Group (LAG)
virtual port number.
• Layer 2 CoS mutation—With this option, the port is set to change the Layer 2 CoS setting by
enabling the QoS mutation feature.
• Layer 2 CoS trust—With this option, the port is set to accept the Layer 2 CoS of incoming
frames by enabling the QoS trust feature.
For detailed information on configuring QoS, see “Configuring QoS” on page 107.
Congestion control and queuing
The Brocade FCoE hardware supports several congestion control and queuing strategies. As an
output queue approaches congestion, Random Early Detection (RED) is used to selectively and
proactively drop frames to maintain maximum link utilization. Incoming frames are classified into
priority queues based on the Layer 2 CoS setting of the incoming frame, or the possible rewriting of
the Layer 2 CoS field based on the settings of the CEE port or VLAN.
The Brocade FCoE hardware supports a combination of two scheduling strategies to queue frames
to the egress ports; Priority queuing, which is also referred to as strict priority, and Deficit Weighted
Round Robin (DWRR) queuing.
The scheduling algorithms work on the eight traffic classes as specified in 802.1Qaz Enhanced
Transmission Selection (ETS).
• RED—RED increases link utilization. When multiple inbound traffic streams are switched to the
same outbound port, and some traffic streams send small frames while other traffic streams
send large frames, link utilization will not be able to reach 100 percent. When RED is enabled,
link utilization approaches 100 percent.
• Classification—Setting user priority.
-Inbound frames are tagged with the user priority set for the inbound port. The tag is visible
when examining the frames on the outbound port. By default, all frames are tagged to
priority zero.
-Externally tagged Layer 2 frames—When the port is set to accept externally tagged Layer 2
frames, the user priority is set to the Layer 2 CoS of the inbound frames.
• Queuing
-Input queuing—Input queuing optimizes the traffic flow in the following way. Suppose a
CEE port has inbound traffic that is tagged with several priority values, and traffic from
different priority settings is switched to different outbound ports. Some outbound ports
are already congested with background traffic while others are uncongested. With input
queuing, the traffic rate of the traffic streams switched to uncongested ports should
remain high.
-Output queuing—Output queuing optimizes the traffic flow in the following way. Suppose
that several ports carry inbound traffic with different priority settings. Traffic from all ports
is switched to the same outbound port. If the inbound ports have different traffic rates,
some outbound priority groups will be congested while others can remain uncongested.
With output queuing, the traffic rate of the traffic streams that are uncongested should
remain high.
-Multicast rate limit—A typical multicast rate limiting example is where several ports carry
multicast inbound traffic that is tagged with several priority values. Traffic with different
priority settings is switched to different outbound ports. The multicast rate limit is set so
that the total multicast traffic rate on output ports is less than the specified set rate limit.
-Multicast input queuing—A typical multicast input queuing example is where several ports
carry multicast inbound traffic that is tagged with several priority values. Traffic with
different priority settings is switched to different outbound ports. Some outbound ports
are already congested with background traffic while others are uncongested. The traffic
rate of the traffic streams switched to the uncongested ports should remain high. All
outbound ports should carry some multicast frames from all inbound ports. This enables
multicast traffic distribution relative to the set threshold values.
-Multicast output queuing—A typical multicast output queuing example is where several
ports carry multicast inbound traffic. Each port has a different priority setting. Traffic from
all ports is switched to the same outbound port. If the inbound ports have varying traffic
rates, some outbound priority groups will be congested while others remain uncongested.
The traffic rate of the traffic streams that are uncongested remains high. The outbound
ports should carry some multicast frames from all the inbound ports.
• Scheduling—A typical example of scheduling policy (using SP0 and SP1 modes) is where ports
0 through 7 carry inbound traffic, each port has a unique priority level, port 0 has priority 0,
port 1 has priority 1, and so on. All traffic is switched to the same outbound port. In SP0 mode,
all ports have DWRR scheduling; therefore, the frames-per-second (FPS) on all ports should
correspond to the DWRR settings. In SP1 mode, priority 7 traffic uses SP; therefore, priority 7
can achieve a higher FPS. Frames from input ports with the same priority level should be
scheduled in a round robin manner to the output port.
When setting the scheduling policy, each priority group that is using DWRR scheduling can be
set to use a percentage of the total bandwidth by setting the PG_Percentage parameter.
For detailed information on configuring QoS, see “Configuring QoS” on page 107.
1
Access control
Access Control Lists (ACLs) are used for Layer 2 switching security. Standard ACLs inspect the
source address for the inbound ports. Extended ACLs provide filtering by source and destination
addresses and protocol. ACLs can be applied to the CEE ports or to VLANs.
ACLs function as follows:
• A standard Ethernet ACL configured on a physical port is used to permit or deny frames based
on the source MAC address. The default is to permit all frames.
• An extended Ethernet ACL configured on a physical port is used to permit or deny frames
based on the source MAC address, destination MAC address, and EtherType. The default is to
permit all frames.
• A standard Ethernet ACL configured on a LAG virtual port is used to permit or deny frames
based on the source MAC address. The default is to permit all frames. LAG ACLs apply to all
ports in the LAG.
• An extended Ethernet ACL configured on a LAG virtual port is used to permit or deny frames
based on the source MAC address, destination MAC address, and EtherType. The default is to
permit all frames. LAG ACLs apply to all ports in the LAG.
• A standard Ethernet ACL configured on a VLAN is used to permit or deny frames based on the
source MAC address. The default is to permit all frames. VLAN ACLs apply to the Switch Vertical
Interface (SVI) for the VLAN.
• An extended Ethernet ACL configured on a VLAN is used to permit or deny frames based on the
source MAC address, destination MAC address, and EtherType. The default is to permit all
frames. VLAN ACLs apply to the Switch Vertical Interface (SVI) for the VLAN.
For detailed information on configuring ACLs, see “Configuring ACLs” on page 101.
Trunking
The term “trunking” in an Ethernet network refers to the use of multiple network links (ports) in
parallel to increase the link speed beyond the limits of any one single link or port, and to increase
the redundancy for higher availability.
802.1ab Link Layer Discovery Protocol (LLDP) is used to detect links to connected switches or
hosts. Trunks can then be configured between an adjacent switch or host and the Brocade FCoE
hardware using the VLAN classifier commands. See “Configuring an interface port as a trunk
interface” on page 50.
The Data Center Bridging (DCB) Capability Exchange Protocol (DCBX) extension is used to identify a
CEE-capable port on an adjacent switch or host. For detailed information on configuring LLDP and
DCBX, see “Configuring LLDP” on page 87.
The 802.3ad Link Aggregation Control Protocol (LACP) is used to combine multiple links to create a
trunk with the combined bandwidth of all the individual links. For detailed information on
configuring LACP, see “Configuring Link Aggregation” on page 79.
The Brocade software supports a maximum 24 LAG interfaces.
Flow Control
802.3x Ethernet pause and Ethernet Priority-based Flow Control (PFC) are used to prevent dropped
frames by slowing traffic at the source end of a link. When a port on a switch or host is not ready to
receive more traffic from the source, perhaps due to congestion, it sends pause frames to the
source to pause the traffic flow. When the congestion has been cleared, it stops requesting the
source to pause traffic flow, and traffic resumes without any frame drop.
When Ethernet pause is enabled, pause frames are sent to the traffic source. Similarly, when PFC
is enabled, there is no frame drop; pause frames are sent to the source switch.
For detailed information on configuring Ethernet pause and PFC, see “Configuring QoS” on
page 107.
FCoE Initialization Protocol
The FCoE Initialization Protocol (FIP) discovers and initializes FCoE capable entities connected to
an Ethernet cloud through a dedicated Ethertype, 0x8914, in the Ethernet frame.
FIP discovery
This software version supports the October 8, 2008 (REV 1.03) of the ANSI FC Backbone
Specification with priority-tagged FIP VLAN discovery protocol and FIP version 0. This release
supports FIP Keep Alive.
The Brocade FCoE hardware FIP discovery phase operates as follows:
• The Brocade FCoE hardware uses the FCoE Initialization Protocol (FIP). Enodes discover FCFs
and initialize the FCoE connection through the FIP.
• VF_port configuration—An FCoE port accepts Enode requests when it is configured as a
VF_port and enabled. An FCoE port does not accept ENode requests when disabled.
• Solicited advertisements—A typical scenario is where a Brocade FCoE hardware receives a FIP
solicitation from an ENode. Replies to the original FIP solicitation are sent to the MAC address
embedded in the original FIP solicitation. After being accepted, the ENode is added to the
VN_port table.
• Login group—When enabled, replies to solicitations are sent only by Brocade FCoE hardware
that have the ENode in the login group.
• FCF forwarding—The Brocade FCoE hardware forwards FIP frames only when the VLAN is set to
FCF forwarding mode.
• VLAN 1—The Brocade FCoE hardware should not forward FIP frames on VLAN 1 because it is
reserved for management traffic only.
• A fabric-provided MAC address is supported. A server-provided MAC-address is not supported