Table 10 Vent & Control Options ......................... 27
Manual 2100-511F
Page2 of 27
GETTING OTHER INFORMATION AND PUBLICATIONS
These publications can help you install the air
conditioner or heat pump. You can usually find these at
your local library or purchase them directly from the
publisher. Be sure to consult current edition of each
standard.
National Electrical Code ...................... ANSI/NFPA 70
Standard for the Installation .............. ANSI/NFPA 90A
of Air Conditioning and Ventilating Systems
Standard for Warm Air ...................... ANSI/NFPA 90B
Batterymarch Park
P.O. Box 9101
Quincy, MA 02269-9901
Telephone: (800) 344-3555
Fax: (617) 984-7057
Manual 2100-511F
Page3 of 27
WALL MOUNT GENERAL INFORMATION
HEAT PUMP WALL MOUNT MODEL NOMENCLATURE
W42H1– A10XXXXXA
MODEL NUMBER
CAPACITY
18 - 1
½
Ton
24 - 2 Ton
½ Ton
30 - 2
36 - 3 Ton
42 - 3½ Ton
48 - 4 Ton
60 - 5 Ton
1 For 0 KW and circuit breakers (230/208 volt) or toggle disconnect (460V) applications, insert 0Z in the KW field of the model number.
2 Insert “D” for dehumidification with hot gas reheat. Reference Form 7960-576 for complete details.
NOTE: Vent options X, B and M are without exhaust capability. May require separate field supplied barometric relief in building.
H - Heat Pump
SPECIALTY PRODUCTS 2
(Non-Standard)
VENTILATION OPTIONS
X - Barometric Fresh Air Damper (Standard)
B - Blank-off Plate
M - Motorized Fresh Air Damper
V - Commercial Ventilator - Motorized with Exhaust
E - Economizer (Internal) - Fully Modulating with Exhaust
R - Energy Recovery Ventilator - Motorized with Exhaust
(See Spec. Sheet S3398)
SHIPPING DAMAGE
Upon receipt of equipment, the carton should be
checked for external signs of shipping damage. If
damage is found, the receiving party must contact the
last carrier immediately, preferably in writing,
requesting inspection by the carrier’s agent.
REVISIONS
VOLTS & PHASE
A - 230/208/60/1
B - 230/208/60/3
C - 460/60/3
KW
1
COLOR OPTIONS
X - Beige (Standard)
1 - White
4 - Buckeye Gray
5 - Desert Brown
8 - Dark Bronze
FILTER OPTIONS
X - One Inch Throwaway (Standard)
W - One Inch Washable
P - Two Inch Pleated
OUTLET OPTIONS
X - Front (Standard)
T - Top Outlet (W30H, W36H Only)
These instructions and any instructions packaged with
any separate equipment required to make up the entire
air conditioning system should be carefully read before
beginning the installation. Note particularly “Starting
Procedure” and any tags and/or labels attached to the
equipment.
CONTROL MODULES
(See Spec. Sheet S3398)
COIL OPTIONS
X - Standard
1 - Phenolic Coated Evaporator
2 - Phenolic Coated Condenser
3 - Phenolic Coated Evaporator
and Condenser
While these instructions are intended as a general
GENERAL
The equipment covered in this manual is to be installed
by trained, experienced service and installation
technicians.
The refrigerant system is completely assembled and
charged. All internal wiring is complete.
The unit is designed for use with or without duct work.
Flanges are provided for attaching the supply and return
ducts.
These instructions explain the recommended method to
install the air cooled self-contained unit and the
electrical wiring connections to the unit.
recommended guide, they do not supersede any national
and/or local codes in any way. Authorities having
jurisdiction should be consulted before the installation is
made. See Page 3 for information on codes and
standards.
Size of unit for a proposed installation should be based
on heat loss/gain calculation made according to methods
of Air Conditioning Contractors of America (ACCA).
The air duct should be installed in accordance with the
Standards of the National Fire Protection Association
for the Installation of Air Conditioning and Ventilating
Systems of Other Than Residence Type, NFPA No.
90A, and Residence Type Warm Air Heating and Air
Conditioning Systems, NFPA No. 90B. Where local
regulations are at a variance with instructions, installer
should adhere to local codes.
Manual 2100-511F
Page4 of 27
DUCT WORK
All duct work, supply and return, must be properly sized
for the design airflow requirement of the equipment. Air
Conditioning Contractors of America (ACCA) is an
excellent guide to proper sizing. All duct work or portions
thereof not in the conditioned space should be properly
insulated in order to both conserve energy and prevent
condensation or moisture damage.
Refer to Maximum ESP of operation Electric Heat Tables 7.
FILTERS
A 1-inch throwaway filter is standard with each unit.
The filter slides into position making it easy to service.
This filter can be serviced from the outside by removing
the filter access panel. A 1-inch washable filter and 2inch pleated filter are also available as optional
accessories. The internal filter brackets are adjustable
to accommodate the 2-inch filter by bending two (2)
tabs down on each side of the filter support bracket.
Design the duct work according to methods given by the Air
Conditioning Contractors of America (ACCA). When duct
runs through unheated spaces, it should be insulated with a
minimum of one inch of insulation. Use insulation with a
vapor barrier on the outside of the insulation. Flexible joints
should be used to connect the duct work to the equipment in
order to keep the noise transmission to a minimum.
Models W18 & W24 are approved for zero inch clearance
to the supply duct. For model series W30, W36, W42, W48
and W60 a 1/4 inch clearance to combustible material for
the first three feet of duct attached to the outlet air frame is
required. See Wall Mounting Instructions and Figures 3 and
4 for further details.
Ducts through the walls must be insulated and all joints
taped or sealed to prevent air or moisture entering the wall
cavity.
Some installations may not require any return air duct. A
metallic return air grille is required with installations not
requiring a return air duct. The spacing between louvers on
the grille shall not be larger than 5/8 inch.
Any grille that meets with 5/8 inch louver criteria may be
used. It is recommended that Bard Return Air Grille Kit
RG2 through RG5 or RFG2 through RFG5 be installed
when no return duct is used. Contact distributor or factory
for ordering information. If using a return air filter grille,
filters must be of sufficient size to allow a maximum
velocity of 400 fpm.
FRESH AIR INTAKE
All units are built with fresh air inlet slots punched in
the service door.
If the unit is equipped with a fresh air damper assembly,
the assembly is shipped already attached to the unit.
The damper blade is locked in the closed position. To
allow the damper to operate, the maximum and
minimum blade position stops must be installed. See
Figure 1.
All capacity, efficiency and cost of operation
information is based upon the fresh air blank-off plate in
place and is recommended for maximum energy
efficiency.
The blank-off plate is available upon request from the
factory and is installed in place of the fresh air damper
shipped with each unit.
CONDENSATE DRAIN
A plastic drain hose extends from the drain pan at the
top of the unit down to the unit base. There are
openings in the unit base for the drain hose to pass
through. In the event the drain hose is connected to a
drain system of some type, it must be an open or vented
type system to assure proper drainage.
NOTE: If no return air duct is used, applicable installation
codes may limit this cabinet to installation only in a
single story structure.
FIGURE 1
FRESH AIR DAMPER
Manual 2100-511F
Page5 of 27
INSTALLATION INSTRUCTIONS
WALL MOUNTING INFORMATION
1. Two holes for the supply and return air openings
must be cut through the wall as shown in Figure 3.
2. On wood frame walls, the wall construction must be
strong and rigid enough to carry the weight of the
unit without transmitting any unit vibration.
3. Concrete block walls must be thoroughly inspected
to insure that they are capable of carrying the weight
of the installed unit.
MOUNTING THE UNIT
1. These units are secured by wall mounting brackets
which secure the unit to the outside wall surface at
both sides. A bottom mounting bracket, attached to
skid for shipping, is provided for ease of installation,
but is not required.
2. The unit itself is suitable for 0 inch clearance, but
the supply air duct flange and the first 3 feet of
supply air duct require a minimum of 1/4 inch
clearance to combustible material for model series
W30, W36, W42, W48 and W60. However, it is
generally recommended that a 1-inch clearance is
used for ease of installation and maintaining the
required clearance to combustible material. See
Figure 3 for details on opening sizes.
3. Locate and mark lag bolt locations and bottom
mounting bracket location. See Figure 3.
WARNING
Failure to provide the 1/4 inch clearance
between the supply duct and a combustible
surface for the first 3 feet of duct can result in
fire causing damage, injury or death.
6. Position unit in opening and secure with 5/16 lag
bolts; use 7/8 inch diameter flat washers on the lag
bolts.
7. Secure rain flashing to wall and caulk across entire
length of top. See Figure 3.
8. For additional mounting rigidity, the return air and
supply air frames or collars can be drilled and
screwed or welded to the structural wall itself
(depending upon wall construction). Be sure to
observe required clearance if combustible wall.
9. On side-by-side installations, maintain a minimum
of 20 inches clearance on right side to allow access
to control panel and heat strips, and to allow proper
airflow to the outdoor coil. Additional clearance
may be required to meet local or national codes.
4. Mount bottom mounting bracket.
5. Hook top rain flashing, attached to front - right of
supply flange for shipping, under back bend of top.
All dimensions are in inches. Dimensional drawings are not to scale.
YLPPUSNRUTER
AB C B E F G I J K L MNO P QRST
W**H
RIGHT
UNIT
FRONT VIEW
SIDE VIEW
*Optional top outlet (factory installed only) for W30H and W36H models only.
BACK VIEW
Manual 2100-511F
Page7 of 27
FIGURE 3A
W18H1, W24H1
MOUNTING INSTRUCTIONS
Manual 2100-511F
Page8 of 27
FIGURE 3B
W30H1, W36H1
MOUNTING INSTRUCTIONS
Manual 2100-511F
Page9 of 27
FIGURE 3C
W42H1, W48H1, W60H1
MOUNTING INSTRUCTIONS
Manual 2100-511F
Page10 of 27
FIGURE 4
ELECTRIC HEAT CLEARANCE
W30H1, W36H1, W42H1, W48H1, W60H1
SIDE SECTION VIEW OF SUPPLY AIR DUCT FOR
WALL MOUNTED UNIT SHOWING 1/4 INCH
CLEARANCE TO COMBUSTIBLE SURFACES.
WARNING
A minimum of 1/4 inch clearance must be maintained between
the supply air duct and combustible materials. This is required
for the first 3 feet of ducting.
It is important to insure that the 1/4 inch minimum spacing is
maintained at all points.
Failure to do this could result in overheating the combustible
material and may result in a fire causing damage, injury or death.
Manual 2100-511F
Page11 of 27
WALL MOUNTING INSTRUCTIONS
SEE FIGURE 3 – MOUNTING INSTRUCTIONS
FIGURE 5
FIGURE 6
WALL MOUNTING INSTRUCTIONS
IF REQUIRED
IF REQUIRED
SEE UNIT DIMENSIONS, FIGURE 2,
FOR ACTUAL DIMENSIONS
Manual 2100-511F
Page12 of 27
FIGURE 7
COMMON WALL MOUNTING INSTALLATIONS
Manual 2100-511F
Page13 of 27
WIRING – MAIN POWER
Refer to the unit rating plate for wire sizing information
and maximum fuse or “HACR” type circuit breaker
size. Each outdoor unit is marked with a “Minimum
Circuit Ampacity”. This means that the field wiring
used must be sized to carry that amount of current.
Depending on the installed KW of electric heat, there
may be two field power circuits required. If this is the
case, the unit serial plate will so indicate. All models
are suitable only for connection with copper wire. Each
unit and/or wiring diagram will be marked “Use Copper
Conductors Only”. These instructions must be adhered
to. Refer to the National Electrical Code (NEC) for
complete current carrying capacity data on the various
insulation grades of wiring material. All wiring must
conform to NEC and all local codes.
The electrical data lists fuse and wire sizes (75° C
copper) for all models including the most commonly
used heater sizes. Also shown are the number of field
power circuits required for the various models with
heaters.
The unit rating plate lists a “Maximum Time Delay
Relay Fuse” or “HACR” type circuit breaker that is to
be used with the equipment. The correct size must be
used for proper circuit protection and also to assure that
there will be no nuisance tripping due to the momentary
high starting current of the compressor motor.
WIRING – LOW VOLTAGE WIRING
230/208V, 1 phase and 3 phase equipment dual primary
voltage transformers. All equipment leaves the factory
wired on 240V tap. For 208V operation, reconnect from
240V to 208V tap. The acceptable operating voltage
range for the 240 and 208V taps are:
TAPRANGE
240253 – 216
208220 – 187
NOTE: The voltage should be measured at the field power
connection point in the unit and while the unit is
operating at full load (maximum amperage
operating condition).
For wiring size and connections, refer to Wiring Manual
2100-516.
The disconnect access door on this unit may be locked
to prevent unauthorized access to the disconnect. To
convert for the locking capability, bend the tab located
in the bottom left-hand corner of the disconnect opening
under the disconnect access panel straight out. This tab
will now line up with the slot in the door. When shut, a
padlock may be placed through the hole in the tab
preventing entry.
See “Start Up” section for important information on
three phase scroll compressor start ups.
See Table 4 for Electrical Specifications.
Manual 2100-511F
Page14 of 27
START UP
THESE UNITS REQUIRE R-410A
REFRIGERANT AND POLYOL
ESTER OIL.
GENERAL:
1. Use separate service equipment to avoid cross
contamination of oil and refrigerants.
2. Use recovery equipment rated for R-410A
refrigerant.
3. Use manifold gauges rated for R-410A (800 psi/250
psi low).
4. R-410A is a binary blend of HFC-32 and HFC-125.
5. R-410A is nearly azeotropic - similar to R-22 and
R-12. Although nearly azeotropic, charge with
liquid refrigerant.
6. R-410A operates at 40-70% higher pressure than
R-22, and systems designed for R-22 cannot
withstand this higher pressure.
7. R-410A has an ozone depletion potential of zero,
but must be reclaimed due to its global warming
potential.
8. R-410A compressors use Polyol Ester oil.
9. Polyol Ester oil is hygroscopic; it will rapidly absorb
moisture and strongly hold this moisture in the oil.
10. A liquid line dryer must be used - even a deep
vacuum will not separate moisture from the oil.
11. Limit atmospheric exposure to 15 minutes.
12. If compressor removal is necessary, always plug
compressor immediately after removal. Purge with
small amount of nitrogen when inserting plugs.
TOPPING OFF SYSTEM CHARGE
If a leak has occurred in the system, Bard Manufacturing
recommends reclaiming, evacuating (see criteria above),
and charging to the nameplate charge. If done correctly,
topping off the system charge can be done without
problems.
With R-410A, there are no significant changes in the
refrigerant composition during multiple leaks and
recharges. R-410A refrigerant is close to being an
azeotropic blend (it behaves like a pure compound or
single component refrigerant). The remaining
refrigerant charge, in the system, may be used after
leaks have occurred and then “top-off” the charge by
utilizing the pressure charts on the inner control panel
cover as a guideline.
REMEMBER: When adding R-410A refrigerant, it
must come out of the charging cylinder/tank as a liquid
to avoid any fractionation, and to insure optimal system
performance. Refer to instructions for the cylinder that
is being utilized for proper method of liquid extraction.
WARNING
Failure to conform to these practices
could lead to damage, injury or death.
SAFETY PRACTICES:
1. Never mix R-410A with other refrigerants.
2. Use gloves and safety glasses, Polyol Ester oils can
be irritating to the skin, and liquid refrigerant will
freeze the skin.
3. Never use air and R-410A to leak check; the
mixture may become flammable.
4. Do not inhale R-410A – the vapor attacks the
nervous system, creating dizziness, loss of
coordination and slurred speech. Cardiac
irregularities, unconsciousness and ultimate death
can result from breathing this concentration.
5. Do not burn R-410A. This decomposition
produces hazardous vapors. Evacuate the area if
exposed.
6. Use only cylinders rated DOT4BA/4BW 400.
7. Never fill cylinders over 80% of total capacity.
8. Store cylinders in a cool area, out of direct
sunlight.
9. Never heat cylinders above 125°F.
10. Never trap liquid R-410A in manifold sets, gauge
lines or cylinders. R-410A expands significantly
at warmer temperatures. Once a cylinder or line is
full of liquid, any further rise in temperature will
cause it to burst.
Manual 2100-511F
Page15 of 27
START UP (Continued)
IMPORTANT INSTALLER NOTE
For improved start up performance wash the indoor coil
with a dish washing detergent.
HIGH & LOW PRESSURE SWITCH
All W**H wall mounted air conditioner series models are
supplied with a remote reset for the high and low
pressure switch. If tripped, this pressure switch may be
reset by turning the thermostat off then back on again.
THREE PHASE SCROLL COMPRESSOR
START UP INFORMATION
Scroll compressors, like several other types of
compressors, will only compress in one rotational
direction. Direction of rotation is not an issue with
single phase compressors since they will always start
and run in the proper direction.
However, three phase compressors will rotate in either
direction depending upon phasing of the power. Since
there is a 50-50 chance of connecting power in such a
way as to cause rotation in the reverse direction,
verification of proper rotation must be made.
Verification of proper rotation direction is made by
observing that suction pressure drops and discharge
pressure rises when the compressor is energized.
Reverse rotation also results in an elevated sound level
over that with correct rotation, as well as substantially
reduced current draw compared to tabulated values.
Verification of proper rotation must be made at the
time the equipment is put into service. If improper
rotation is corrected at this time, there will be no
negative impact on the durability of the compressor.
However, reverse operation for over one hour may have
a negative impact on the bearing due to oil pump out.
NOTE: If compressor is allowed to run in reverse rotation
for several minutes, the compressor’s internal
protector will trip.
PHASE MONITOR
All units with three phase scroll compressors are
equipped with a 3 phase line monitor to prevent
compressor damage due to phase reversal.
The phase monitor in this unit is equipped with two
LEDs. If the Y signal is present at the phase monitor
and phases are correct the green LED will light.
If phases are reversed, the red fault LED will be lit and
compressor operation is inhibited.
If a fault condition occurs, reverse two of the supply
leads to the unit. Do not reverse any of the unit factory
wires as damage may occur.
CONDENSER FAN OPERATION
Applies to W42, W48 and W60 models only. The
condenser fan motor on 230/208 volt, one and three
phase, 60 HZ units is a two-speed motor that comes
factory wired on high speed for peak performance. If
ambient conditions permit, it can be reconnected to low
speed (red wire) for lower sound level. See wiring
diagram.
50 HZ models must have fan wired on low speed.
These models are factory wired on low speed.
SERVICE HINTS
1. Caution owner/operator to maintain clean air filters
at all times. Also, not to needlessly close off supply
and return air registers. This reduces airflow
through the system, which shortens equipment
service life as well as increasing operating costs.
2. Check all power fuses or circuit breakers to be sure
they are the correct rating.
3. Periodic cleaning of the outdoor coil to permit full
and unrestricted airflow circulation is essential.
All three phase ZP compressors are wired identically
internally. As a result, once the correct phasing is
determined for a specific system or installation,
connecting properly phased power leads to the same
Fusite terminal should maintain proper rotation
direction.
The direction of rotation of the compressor may be
changed by reversing any two line connections to the
unit.
Manual 2100-511F
Page16 of 27
SEQUENCE OF OPERATION
COOLING – Circuit R-Y makes at thermostat pulling in
compressor contactor, starting the compressor and outdoor
motor. The G (indoor motor) circuit is automatically completed
on any call for cooling operation or can be energized by manual
fan switch on subbase for constant air circulation.
HEATING – A 24V solenoid coil on reversing valve controls
heating cycle operation. Two thermostat options, one allowing
“Auto” changeover from cycle to cycle and the other constantly
energizing solenoid coil during heating season, and thus
eliminating pressure equalization noise except during defrost,
are to be used. On “Auto” option a circuit is completed from RW1 and R-Y on each heating “on” cycle, energizing reversing
valve solenoid and pulling in compressor contactor starting
compressor and outdoor motor. R-G also make starting indoor
blower motor. Heat pump heating cycle now in operation. The
second option has no “Auto” changeover position, but instead
energizes the reversing valve solenoid constantly whenever the
system switch on subbase is placed in “Heat” position, the “B”
terminal being constantly energized from R. A Thermostat
demand for heat completes R-Y circuit, pulling in compressor
contactor starting compressor and outdoor motor. R-G also
make starting indoor blower motor.
PRESSURE SERVICE PORTS
High and low pressure service ports are installed on all units
so that the system operating pressures can be observed.
Pressure tables can be found later in the manual covering all
models. It is imperative to match the correct pressure table
to the unit by model number. See Tables 3A & 3B.
DEFROST CYCLE
The defrost cycle is controlled by temperature and time on
the solid state heat pump control.
When the outdoor temperature is in the lower 40°F
temperature range or colder, the outdoor coil temperature is
32°F or below. This coil temperature is sensed by the coil
temperature sensor mounted near the bottom of the outdoor
coil. Once coil temperature reaches 30°F or below, the coil
temperature sensor sends a signal to the control logic of the
heat pump control and the defrost timer will start
accumulating run time.
After 30, 60 or 90 minutes of heat pump operation at 30°F or
below, the heat pump control will place the system in the
defrost mode.
During the defrost mode, the refrigerant cycle switches back
to the cooling cycle, the outdoor motor stops, electric heaters
are energized, and hot gas passing through the outdoor coil
melts any accumulated frost. When the temperature rises to
approximately 57°F, the coil temperature sensor will send a
signal to the heat pump control which will return the system
to heating operations automatically.
If some abnormal or temporary condition such as a high
wind causes the heat pump to have a prolonged defrost
cycle, the heat pump control will restore the system to
heating operation automatically after 8 minutes.
The heat pump defrost control board has an option of 30, 60
or 90-minute setting. By default, this unit is shipped from
the factory with the defrost time on the 60 minute pin. If
circumstances require a change to another time, remove the
wire from the 60-minute terminal and reconnect to the
desired terminal. Refer to Figure 8.
There is a cycle speed up jumper on the control. This can be
used for testing purposes to reduce the time between defrost
cycle operation without waiting for time to elapse.
Use a small screwdriver or other metallic object, or another
¼ inch QC, to short between the SPEEDUP terminals to
accelerate the HPC timer and initiate defrost.
Be careful not to touch any other terminals with the
instrument used to short the SPEEDUP terminals. It may take
up to 10 seconds with the SPEEDUP terminals shorted for the
speedup to be completed and the defrost cycle to start.
As soon as the defrost cycle kicks in remove the shorting
instrument from the SPEEDUP terminals. Otherwise the
timing will remain accelerated and run through the 1-minute
minimum defrost length sequence in a matter of seconds and
will automatically terminate the defrost sequence.
There is an initiate defrost jumper (sen jump) on the control
that can be used at any outdoor ambient during the heating
cycle to simulate a 0° coil temperature.
This can be used to check defrost operation of the unit without
waiting for the outdoor ambient to fall into the defrost region.
By placing a jumper across the SEN JMP terminals (a
¼ inch QC terminal works best) the defrost sensor mounted
on the outdoor coil is shunted out & will activate the timing
circuit. This permits the defrost cycle to be checked out in
warmer weather conditions without the outdoor temperature
having to fall into the defrost region.
In order to terminate the defrost test the SEN JMP jumper
must be removed. If left in place too long, the compressor
could stop due to the high pressure control opening because
of high pressure condition created by operating in the
cooling mode with outdoor fan off. Pressure will rise fairly
fast as there is likely no actual frost on the outdoor coil in
this artificial test condition.
There is also a 5-minute compressor time delay function built
into the HPC. This is to protect the compressor from short
cycling conditions. The board’s LED will have a fast blink rate
when in the compressor time delay. In some instances, it is
helpful to the service technician to override or speed up this
timing period, and shorting out the SPEEDUP terminals for a
few seconds can do this.
Low Pressure Switch Bypass Operation - The control has a
selectable (SW1) low pressure switch bypass set up to ignore
the low pressure switch input during the first (30, 60, 120 or 180
seconds) of “Y” operation.
After this period expires, the control will then monitor the low
pressure switch input normally to make sure that the switch is
closed during “Y” operation.
High Pressure Switch Operation - The control has a built-in
lockout system that allows the unit to have the high pressure
switch trip up to two times in one hour and only encounter a
“soft” lockout. A “soft” lockout shuts the compressor off and
waits for the pressure switch to reset, which at that point then
allows the compressor to be restarted as long as the 5-minute
short cycle timer has run out. If the high pressure switch trips a
third time within one hour, the unit is in “hard” lockout indicating
something is certainly wrong and it will not restart itself.
Shown in Figure 9 is the correct fan blade setting for
proper air delivery across the outdoor coil. Refer to
Table 2 for unit specific dimension.
Any service work requiring removal or adjustment in
the fan and/or motor area will require that the
dimensions below be checked and blade adjusted in or
out on the motor shaft accordingly.
FIGURE 9
FAN BLADE SETTING
AIRFLOW
"A"
MIS-1724
TABLE 2
FAN BLADE DIMENSION
ledoM
1H81W
1H42W
1H03W
1H63W
1H24W
1H84W
1H06W
noisnemiD
A
"00.1
"52.1
"57.1
REMOVAL OF FAN SHROUD
1. Disconnect all power to the unit.
2. Remove the screws holding both grilles, one on each
side of unit, and remove grilles.
3. Remove screws holding fan shroud to condenser and
bottom. Nine (9) screws.
4. Unwire condenser fan motor.
5. Slide complete motor, fan blade, and shroud
assembly out the left side of the unit.
6. Service motor/fan as needed.
7. Reverse steps to reinstall.
R-410A
REFRIGERANT CHARGE
This unit was charged at the factory with the quantity of
refrigerant listed on the serial plate. AHRI capacity and
efficiency ratings were determined by testing with this
refrigerant charge quantity.
The following pressure tables show nominal pressures
for the units. Since many installation specific situations
can affect the pressure readings, this information should
only be used by certified technicians as a guide for
evaluating proper system performance. They shall not
be used to adjust charge. If charge is in doubt, reclaim,
evacuate and recharge the unit to the serial plate charge.
Manual 2100-511F
Page21 of 27
TABLE 3A
COOLING PRESSURE TABLE
ledoM
1H81W
1H42W
1H03W
1H63W
1H24W
1H84W
1H06W
Low side pressure ± 4 PSIG
High side pressure ± 10 PSIG
Tables are based upon rated CFM (airflow) across the evaporator coil. If there is any doubt as to correct operating charge being in the system, the charge
should be removed, system evacuated and recharged to serial plate charge weight.
NOTE: Pressure table based on high speed condenser fan operation. If condensing pressures appear elevated check condenser fan wiring.
See “Condenser Fan Operation”.
1 Maximum size of the time delay fuse or HACR type circuit breaker for protection of field wiring conductors.
2 Based on 75C copper wire. All wiring must conform to the National Electrical Code and all local codes.
3 These “Minimum Circuit Ampacity” values are to be used for sizing the field power conductors. Refer to the National Electrical code (latest version), Article
310 for power conductor sizing.
Caution: When more than one field power circuit is run through one conduit, the conductors must be derated. Pay special attention to note 8 of Table 310
regarding Ampacity Adjustment Factors when more than three (3) current carrying conductors are in a raceway.
* Top outlet supply option is available only factory installed and only on the selected models.
IMPORTANT: While this electrical data is presented as a guide, it is important to electrically connect properly sized fuses and conductor wires in
accordance with the National Electrical Code and all local codes.